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ABSTRACT Formalising deontic concepts, such as obligation, prohibition and 
permission, is normally carried out in a modal logic with a possible world semantics, 
in which some worlds are better than others. The main focus in these logics is on 
inferring logical consequences, for example inferring that the obligation O q is a 

logical consequence of the obligations O p and O (p  q).  
  In this paper we propose a non-modal approach in which obligations are 
preferred ways of satisfying goals expressed in first-order logic. To say that p is 
obligatory, but may be violated, resulting in a less than ideal situation s, means that 

the task is to satisfy the goal p  s, and that models in which p is true are preferred 
to models in which s is true. Whereas, in modal logic, the preference relation 
between possible worlds is part of the semantics of the logic, in this non-modal 
approach, the preference relation between first-order models is external to the 
logic. 
  Although our main focus is on satisfying goals, we also formulate a notion of 
logical consequence, which is comparable to the notion of logical consequence in 
modal deontic logic. In this formalisation, an obligation O p is a logical consequence 
of goals G, when p is true in all best models of G.  
  We show how this non-modal approach to the treatment of deontic concepts 
deals with problems of contrary-to-duty obligations and normative conflicts, and 
argue that the approach is useful for many other applications, including abductive 
explanations, defeasible reasoning, combinatorial optimisation, and reactive 
systems of the production system variety.  
 
Keywords: Deontic logic, Abductive logic programming, Normative conflicts, 
Contrary-to-duty obligations, Goals, Preferences 
__________________________________________________________________ 
 
1. Introduction 
 
There are two ways to understand such natural language sentences as birds can fly. 
One is to understand them literally, but only as defeasible assumptions. The other 
is to understand them as approximations to more precisely stated sentences, such 
as a bird can fly if the bird is normal, with an extra condition the bird is normal, 
which is defeasible, but is assumed to hold by default. 
  In this paper, we explore the second approach, applied to natural language 
sentences involving deontic attitudes. In contrast to modal approaches, which aim 
to stay close to the literal expression of natural language sentences, our approach 
uses a non-modal logic, in which implicit alternatives are made explicit. For 
example, instead of understanding the sentence you should wear a helmet if you 
are driving a motorcycle as it is expressed literally, we understand it instead as 
saying that you have a choice: if you are driving a motorcycle, then you will drive 
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with a helmet or you will risk suffering undesirable consequences that are worse 
than the discomfort of wearing a helmet.  
  This is not an entirely new idea. Herbert Bohnert [8] suggested a similar 
approach for imperative sentences, treating the command do a, for example, as an 
elliptical statement of a non-modal, declarative sentence either you will do a or else 
s, where s is a sanction or “some future situation of directly unpleasant character”. 
Alan Ross Anderson [2] built upon Bohnert’s idea, but reformulated it in alethic 
modal logic, reducing deontic sentences of the form O p (meaning p is obligatory) 

to alethic sentences of the form N (¬p  s) (meaning it is necessarily the case that 
if p does not hold, then s holds). A similar reduction of deontic logic to alethic logic 
was also proposed by Stig Kanger [36]. Our non-modal approach, using abductive 
logic programming (ALP) [35], is similar in spirit, in the sense that goals in ALP - 
whether they represent the personal goals of an individual agent, the social goals 
of a society of agents, the dictates of a powerful authority, or physical constraints - 
are hard constraints that must be satisfied. 
  In the simplified variant of ALP that we use in this paper, an abductive 

framework is a triple P, G, A, where P is a logic program representing an agent’s 
beliefs, G is a set of sentences in FOL (first-order logic) representing the agent’s 
goals, and A is a set of atomic sentences representing candidate assumptions. The 
logic program P serves as an intensional definition (or representation) of an 

incomplete model of the world, which can be extended by adding assumptions   

  A, to obtain a more complete model represented by P  Δ. The abductive task is 

to satisfy the goals G, by generating some     A, such that: 
 

    G is true in the model represented by P  Δ.  
 
For simplicity, we consider only logic programs, which are sets of definite clauses 

of the form conclusion  condition1   …   conditionn, where conclusion and each 
conditioni  is an atomic formula, and all variables are universally quantified. Any 

logic program P (or P  Δ) of this form has a unique minimal model [18]. The logic 
program can be regarded as a definition of this model, and the model can be 
regarded as the intended model of the logic program. 

  In ordinary abduction, the goals G represent a set of observations, and  
represents external events that explain G. In deontic applications, the goals G 
represent obligations, augmented if necessary with less desirable alternatives, and 

 represents actions and possibly other assumptions that together with P satisfy G. 

  In general, there can be many     A that satisfy the same goals G. In some 

cases, the choice between them may not matter; but in other cases, where some  

are better than others, it may be required to generate some best . For example, 
in ordinary abduction, it is normally required to generate the best explanation of 
the observations. In deontic applications, it is similarly required to generate some 
best more complete model of the world. However, due to practical limitations of 
incomplete knowledge and lack of computational resources, it may not always be 
feasible to generate a best Δ. In some cases, it may not even be possible to decide 
whether one Δ is better than another. It other cases, it may be enough simply to 
satisfy the goals [65] without attempting to optimise them. Nonetheless, the aim 
of generating a best solution represents a normative ideal, against which other, 
more practical solutions can be compared.  

  For this purpose, we extend the notion of an abductive framework P, G, A to 

that of a normative abductive framework P, G, A, <, where < is a strict partial 



ordering among the models represented by extended logic programs P  Δ, where 

    A.  
 

  The normative abductive task is to satisfy G by generating some     A,  

  such that G is true in the model M represented by P  Δ and 

  there does not exist any ’   A  

  such that G is true in the model M’ represented by P  Δ’ and M < M’. 
 
This focus on satisfying goals in ALP contrasts with the more common focus on 
determining logical consequence in most formal logics. We will argue that some of 
the problems that arise in deontic logic in particular are due to this focus on logical 
consequence, and that they can be solved by shifting focus to goal satisfaction. To 
facilitate the argument, we employ the following definition, adapted from [32]: 
 

An obligation O p is a logical consequence of a normative abductive framework 

P, G, A, < if and only if p is true in all best models of G.  
  
In this paper, we show how ALP deals with contrary-to-duty obligations, which arise 
when the violation of a primary obligation p invokes a secondary obligation q. We 

represent such contrary-to-duty obligations by means of a goal of the form  p  

q (or equivalently p  q), together with an indication that models in which p is true 
are better than models in which q is true.  
  We also address the problem of reasoning with conflicting norms, which arise 
when two obligations p and q are incompatible. We represent such conflicting 

norms by goals of the form p  sanction1 and q  sanction2, where models in which 
p is true are better than models in which sanction1 is true, models in which q is true 
are better than models in which sanction2 is true, but models in which both p and 
sanction2 are true and models in which both q and sanction1 are true may be 
incomparable. 
  At various places in this paper, we compare the ALP approach with that of 
standard deontic logic and some of its variants, production systems, Horty’s default 
deontic logic, constrained optimisation, SBVR (Semantics of Business Vocabulary 
and Rules [63] and SCIFF [1]. The comparison with constrained optimisation shows 
that the separation in ALP between goals and preferences is a standard approach 
in practical problem solving systems. One of the advantages of the separation is 
that it shows how the normative ideal of generating a best solution can be 
approximated in practice by strategies designed to find the best solution possible 
within the computational resources available. The comparison with SBVR, on the 
other hand, shows that the syntactic limitations of ALP compared with modal 
deontic logics do not seem to be a limitation in practice, because they are shared 
with other approaches, such as SBVR, developed for applying deontic reasoning to 
practical applications.  
  The application of ALP to deontic reasoning has previously been explored in [39], 
which applies ALP to deontic interpretations of the Wason selection task [72] and 
to moral dilemmas in so-called trolley problems [67]. However, the approach most 
closely related to the one of this paper is that of SCIFF [1], which uses ALP to specify 
and verify interaction in multi-agent systems. Alberti et al. [1] compare SCIFF with 
modal deontic logics, but do not discuss the treatment of conflicting obligations or 
contrary-to-duty obligations.   
  Although we compare our approach with standard deontic logic, we do not 
compare it in detail with the myriad of other logics that have been developed for 



deontic reasoning. These other logics include defeasible deontic logics [50], stit 
logics of agency [31], input-output logics [45, 46] and preference-based deontic 
logics, such as [27] and [68]. As Paul Bartha [7] puts it, “Attempts to address these 
problems have resulted in an almost bewildering proliferation of different systems 
of deontic logic - at least one per deontic logician, as some have quipped - so that 
innovation inevitably meets with a certain amount of skepticism and fatigue.” 
Instead, we broaden our comparison to include such related work as production 
systems, constrained optimisation and SBVR, which have received little attention in 
the literature on deontic logic. 
  Many of the issues addressed in this paper are controversial, for example 
whether first-order logic is adequate for knowledge representation and problem 
solving or whether other logics are necessary; and whether a single universal logic 
is possible for human reasoning or whether many logics are needed for different 
purposes. Although it is possible to address these issues with theorems and their 
proofs, we pursue a more informal approach in this paper. We assume only that 
the reader has a general background in formal logic, but no specific knowledge of 
deontic logic or ALP. The next two sections provide brief introductions to both 
deontic logic and ALP. 
 
 
2. Deontic Logic 
 
Deontic logic is concerned with representing and reasoning about norms of 
behaviour. However, many authors have denied “the very possibility of the logic of 
norms and imperatives” [28]. Makinson [46], in particular, states that “there is a 
singular tension between the philosophy of norms and the formal work of deontic 
logicians. .... Declarative statements may bear truth-values, i.e. are capable of being 
true or false, whilst norms are items of another kind. They assign obligations, 
permissions, and prohibitions. They may be applied or not, respected or not… But 
it makes no sense to describe norms as true or as false.” However Jørgensen [34], 
while acknowledging this distinction between norms and declarative sentences, 
noted that there are “inferences in which one or both premises as well as the 
conclusion are imperative sentences, and yet the conclusion is just as inescapable 
as the conclusion of any syllogism containing sentences in the indicative mood 
only”. The resulting conundrum has come to be known as Jørgensen’s dilemma. 
  Despite these philosophical concerns, deontic logic has been a thriving research 
area, owing in large part to its formalisation in modal logic by von Wright [71]. The 
best known formalisation, which is commonly used as a basis for comparison with 
other deontic logics, is standard deontic logic (SDL). SDL is a propositional logic with 
a modal operator O representing obligation, where O p means that p is obligatory.  
 SDL can be formalised by adding to non-modal propositional logic the following 
axiom schemas and inference rule: 
 

D:       (O p   O   p) 

K:      O p  O (p  q)  O q 
NEC:     If p is a theorem, then O p is a theorem. 
 
Modal operators representing prohibition F and permission P can be defined in 
terms of obligation O: 
 

      F p    O  p 



      P p    O  p 
 
The semantics of SDL is defined in terms of models M = <W, R>, where W is a set of 
possible worlds and R is a binary relation over possible worlds, where the intention 

of (w, w’)  R is that w’ is a world where everything obligatory in w holds. For 

simplicity, and to aid comparison with the semantics of ALP, possible worlds w  W 
can be represented by sets of (non-modal) atomic sentences (which do not include 

any Boolean connectives or the modal operator O). The definition of M, w = p, 

expressing that p is true in w  W, is then just: 
 

M, w =  p   iff   p  w, where p is an atomic sentence 

M, w =   p  iff   it is not the case that M, w =  p  

M, w = p  q  iff   M, w = p and M, w =  q     
(and similarly for the other Boolean connectives) 

M, w =  O p   iff    M, w’ =  p for all w’ such that (w, w’)  R. 
 
The proof theory of SDL is sound and complete with respect to this semantics.  
  There are many, well-known problems with SDL and its variants. In section 5, we 
will see how ALP deals with the problems presented in this section. A major source 
of these problems is the following inference pattern, which follows from K and NEC: 
 

RM:    If p   q  is a theorem, then O p  O q  is a theorem. 
 
Thus if you have an obligation p, and if q is any consequence of p, then you also 
have the obligation q. 
 
2.1 Ross’s Paradox 
 
RM entails, for example, Ross’s Paradox [60]: 
 
   It is obligatory that the letter is mailed.                
   If the letter is mailed, then the letter is mailed or the letter is burned.    
   Therefore, it is obligatory that the letter is mailed or the letter is burned.  

   i.e.  O mail,  mail  mail  burn.   Therefore  O(mail  burn).   
 
Thus, it seems that, if you are obliged to mail a letter, then you can satisfy the 
obligation either by mailing it or by burning it. 
 
2.2 The Good Samaritan Paradox 
 
RM also entails the Good Samaritan Paradox [56]: 
 
   It ought to be the case that Jones helps Smith who has been robbed.    
   If Smith has been robbed and Jones helps Smith, then Smith has been robbed. 
   Therefore, it ought to be the case that Smith has been robbed.       

   i.e.  O(rob  help),  rob  help rob .  Therefore  O rob. 
 
But concluding that a person ought to be robbed if the person ought to be helped 
when he is robbed seems hardly good advertising for being a Good Samaritan.  
 
2.3 Chisholm’s Paradox 



In his history of deontic logic, McNamara [48] identifies Chisholm’s Paradox [12] as 
“the booster rocket” that propelled deontic logic into a distinct specialization. The 
Paradox can be represented as follows: 
 
   It ought to be that Jones goes to assist his neighbours.        
   It ought to be that, if Jones goes, then he tells them he is coming.   
   If Jones doesn't go, then he ought not tell them he is coming.     
   Jones doesn't go.                     
   i.e.  O go,   O (go → tell),   ¬go → O ¬tell,  ¬go. 
 
Much of the discussion concerning the Paradox concerns the representation of 
conditional obligations of the kind involved in the second and third sentences. For 
example, the second and third sentences can be represented in the alternative 
forms go → O tell and O (¬ go → ¬tell), respectively. Different representations lead 
to different problems. See, for example, the discussion in [11]. 
  McNamara [48] claims, in the context of discussing the Paradox, that there is 
nearly universal agreement that such conditional obligations cannot be faithfully 
represented “by a composite of some sort of unary deontic operator and a material 
conditional”. One of the most common responses to the problem is to employ a 
dyadic deontic logic, like that of [27], in which conditional obligations are expressed 
using a binary deontic operator O (q/p), representing that the obligation q is 
conditional on p. 
  Another reaction to the Paradox is to formalise it in an action or temporal logic, 
e.g. [49], so that the obligation for John to assist his neighbours holds only until he 
doesn’t go, at which time he has the new obligation not to tell that he is coming. 
However, as [57] points out, the solution doesn’t work for contrary-to-duty 
obligations not involving change of state, as in Forrester’s paradox.  
 
2.4. Forrester’s Paradox.  
 
Forrester’s [20] Paradox of Gentle Murder has been called "the deepest paradox of 
all" [23]. Here is a common formulation: 
 
   It is forbidden for a person to kill.        i.e.  O ¬ kill 

   But if a person kills, the killing ought to be gentle.   i.e.  kill  O kill gently 

   If a person kills gently, then the person kills.    i.e. kill gently  kill 
 
Suppose, regrettably, that Smith kills Jones. Then he ought to kill him gently. But, 
by RM, Smith ought to kill Jones, which contradicts the first obligation, that Smith 
ought not to kill Jones. 
 
2.5 Conflicting Obligations 
 
Whereas RM seems to allow too many inferences, axiom schema D, because it 
prevents conflicting obligations, seems to be too restrictive. In particular, it cannot 
deal with the conflicts that arise in such famous examples as Sartre’s Dilemma, 
where a young man during the Second World War in occupied France is torn 
between two conflicting obligations: 
 
   Join the French resistance.          i.e.  O join 

      Stay at home and look after his aged mother.   i.e.  O stay 



   Joining and staying are incompatible.      i.e.   (join  stay) 
 
Together with RM, D implies that these obligations are inconsistent. But as Hilpinen 
and McNamara [28] put it, such moral dilemmas “seem not only logically coherent 
but all too familiar”. 
  Sartre’s Dilemma is a hard case, but conflicting obligations also arise in more 
mundane cases. For example: 
 
   Don’t eat with your fingers.               
   If you are served cold asparagus, eat it with your fingers.   
   You are served cold asparagus.             

   i.e.  O  fingers,  asparagus  O fingers,  asparagus. 
 
In SDL and most other modal deontic logics, it follows that you should both eat with 
your fingers and not eat with your fingers, which is clearly impossible. However, 
intuitively, the first obligation is a general rule, which is defeated by the second 
obligation, which is an exception to the rule. Horty [33] shows how to formalise 
such defeasible rules using default logic [59]. Our ALP representation of conflicting 
obligations, in section 5, can be viewed, in part, as a variant of Horty’s solution, 
using Poole’s [2] transformation of default rules into strict rules with abductive 
hypotheses. 
 
 
3. Abductive Logic Programming 
 
Abduction was identified by Charles Sanders Peirce [51] as a form of reasoning in 
which assumptions are generated in order to deduce conclusions - for example to 

generate the assumption q, to deduce the conclusion p, using the belief q  p. 
Peirce focused on the use of abductive reasoning to generate explanations q for 
observations p. In Artificial Intelligence, abduction has also been used for many 
other purposes, including natural language understanding [29], fault diagnosis [55] 
and planning [19].  
  Poole et al. [52] developed a form of abduction, called Theorist, and showed that 
it can be used for non-monotonic, default reasoning - for example, to generate the 
assumption normal-bird(tweety), to deduce can-fly(tweety), using the beliefs 

bird(tweety) and  X (bird(X)  normal-bird(X)  can-fly(X)). Poole [53] showed, 
more generally, that, by making implicit assumptions, like normal-bird(X), explicit, 
default rules in default logic [59] can be translated into “hard” or “strict” rules in an 
abductive framework.1 Bondarenko et al. [9] showed that abduction with an 
argumentation interpretation can be used to generalize many other existing 
formalisms for default reasoning. Poole [54] showed that, by associating 
probabilities with assumptions, abductive logic programs can also represent 
Bayesian networks. 
  Abductive logic programming (ALP) [35] is a variant of Theorist, in which: 
 
    the task is to extend a “theory” P, which is a logic program,  

    with a set of assumptions     A,  
    which are ground (i.e. variable-free) atomic sentences,  

                                                           
1 This translation is similar to the use of an abnormality predicate in circumscription [47], 

expressing the default rule in the form  X (bird(X)    abnormal-bird(X)  can-fly(X)). 



    so that the extended logic program P   both 
    solves a goal G and satisfies integrity constraints I. 
 
This characterisation of ALP distinguishes between goals G, which are “one off” and 
integrity constraints I, which are “persistent”. It reflects the historical origins of ALP, 
in which logic programs are used to solve existentially quantified goals, but are 
extended with assumptions, which are restricted by integrity constraints, which are 
universally quantified.  
  However, in this paper, we employ a variant of ALP in which the emphasis is 
shifted from logic programs to integrity constraints, which are arbitrary sentences 
of first-order logic (FOL), in the spirit of the related framework FO(ID) [17], in which 
FOL is extended with logic programs, viewed as inductive definitions. Moreover, we 
do not distinguish formally between goals and integrity constraints and between 
solving a goal and satisfying integrity constraints.  

  In this simplified variant of ALP, an abductive framework is a triple P, G, A, 
where P is a definite clause logic program, G is a set of sentences in FOL, A is set of 
atomic sentences, and: 
 

    the task is to satisfy G, by generating some     A such that 

    G is true in the minimal model min(P  Δ) defined by P  Δ.2 
 
It is the task of satisfying G that gives G its goal-like nature. As mentioned in the 
Introduction, a sentence in G can represent a personal goal of an individual agent, 
a social goal of a society of agents, a dictate of a powerful authority, or a physical 
or logical constraint. It can also represent an observation to be explained. Despite 
these different uses of sentences in G, they all have the same formal properties; 
and we use the two terms goal and integrity constraint interchangeably. 
  In this paper, we understand the term goal satisfaction in a model-theoretic 
sense, which contrasts with the theorem-proving view in which goal satisfaction 

means that G is a theorem that is a logical consequence of P  Δ or of the 

completion of P  Δ [14]. These two different uses of logic, for theorem-proving 
and for satisfiability, have analogues in modal logic, where there has also been a 
shift away from theorem-proving to model checking [25] and to model generation 
[6]. The corresponding shift from a theorem-proving semantics for ALP to a model 
generation semantics plays an important role in the ALP approach to reasoning 
about obligations. 
  
3.1. Logic programs (LP) as Definitions of Minimal Models 
 
In this paper, we restrict attention to simplified logic programs that are sets of 
definite clauses of the form: 
 

      conclusion  condition1   …   conditionn 

 
where conclusion and each conditioni is an atomic formula. All variables are 
implicitly universally quantified with scope the entire clause. If the clause contains 
no variables and n = 0, then the clause is called a fact (and written simply as 

                                                           
2 This is similar to the minimisation of abnormality predicates in circumscription. However, 
circumscription is a sceptical approach, in which the task is to derive sentences that are true 
in all minimal models. 



conclusion). Otherwise, the clause is called a rule. For example, let P1 be the logic 
program: 
 

P1:   threat(E, T)  fire(E, T) 

     threat(E, T)  flood(E,T) 
     fire(e1, 11) 
     flood(e2, 13) 
 
where the variable E and the constants e1 and e2 represent events, and the variable 
T and the constants 11 and 13 represent time points. P1 consists of two rules and 
three facts. The first rule is shorthand for the sentence:                     

     E,T (threat(E, T)  fire(E, T))  
 
The set of all the facts that can be derived3 from a definite clause program P 
represents a unique model min(P) of P. For example: 
 
    min(P1) = {fire(e1, 11), flood(e2, 13), threat(e1, 11), threat(e2, 13)} 
 
is a model of P1. In general, a set M of facts (ground atomic sentences) can be 
viewed as a model-theoretic structure, representing all and only the ground atomic 
sentences that are true in M. So any fact not in M is false in M. In general, such 
model-theoretic structures represented by sets of facts are called Herbrand 
interpretations. If P is a definite clause program, then the Herbrand interpretation 
min(P) is a model of P, because every clause in P is true in min(P). 
  Not only is the Herbrand model min(P) a model of P, but it is the unique minimal 

model of P, in the sense that min(P)   M’ for any other Herbrand model M’ of P 
[18].  
  We also say, somewhat loosely, that P is a set of beliefs, and that min(P) is a 
model of the world. This is a different notion from the notion of belief in epistemic 
logic, in which it is possible to distinguish between a statement p about the world 
and a statement B p of a belief about the world. In our simplified approach, there 
is no distinction between the “world” and “beliefs” about the world, which are 
represented in the unadorned form p rather than B p.  

 

3.2. Goals 
 
In ordinary logic programming, definite clause programs P are used to solve definite 
goals G, which are existentially quantified conjunctions of atoms. For example, 
consider the goal: 
 

G1:     E,T threat(E, T).  
 

Then P1 above solves G1, because  E,T threat(E, T) is true in min(P1) . Moreover, 
G1 is solved by “computing” one or more of the instances threat(e1, 11),      
threat(e2, 13)  of G1 that are true in min(P1) and that justify the solution.  

                                                           
3 In general, min(P) is the set of all facts derived by exhaustively applying modus ponens to 

the ground program obtained from P by replacing all variables in P by variable-free terms. 



  In this paper, we exploit the interpretation of logic programs as definitions of 
minimal models, to generalise goals to arbitrary sentences of FOL. For example, let 
G2 and G3 be the goals: 
 

G2:       E,T (threat(E, T)  (T  11  T  13)) 

G3:      E,T (threat(E, T)  fire(E, T)   flood(E, T)).  
 
Then P1 satisfies both G2 and G3, because G2 and G3 are both true in min(P1). 

Notice that we use the forward arrow “” for implication in FOL, and the backward 

arrow “” for implication in logic programs. 
  In our application of ALP to the treatment of obligations, we need the expressive 
power of FOL to represent such goals as:  
 

G4:   Agent1 Agent2 Action (do(Agent1, Action))  harms(Action, Agent2) ) 

G5:  Agent Action (promise(do(Agent, Action)) happens(do(Agent, Action)) ) 
   
Here, except for the lack of any explicit representation of less desirable alternatives, 
G4 expresses a prohibition from doing anyone any harm, and G5 expresses an 
obligation to keep one’s promises.  
  Although goals can have the form of any sentence of FOL, they often have the 
form: 
 

     X [antecedent Y [consequent1  ... consequentn]]  
 
where X is the set of all variables, including time or action variables, that occur in 
antecedent and Y is the set of all variables, including time or action variables, that 

occur only in consequent1  ... consequentn. If n = 0, the goal is equivalent to a 
denial: 
 

     X  antecedent 
 
Informally speaking, antecedent is typically a conjunction of conditions about the 
past or the present, and each consequenti is a conjunction of conditions about the 
present or the future. Goals of this form are a non-modal version of sentences in 
the temporal modal logic MetateM [6]. They have the desirable property that they 
can be satisfied without generating complete models, simply by performing actions 
to make consequents true whenever antecedents become true [41, 42, 43]. For 
example, the goal: 
 

G6:   E,T1 [threat(E, T1)   T2 [eliminate(E, T1, T2)  T1 < T2 < T1 + 3]] 
 
expresses that, whenever a threat E is observed at a time T1, you eliminate the 
threat at some future time T2, within 3 units of time after T1.  Notice that, in theory, 

the number of threats could be unbounded, and the set  of actions needed to 
satisfy G6 could be infinite. This would be difficult for a theorem-proving semantics, 
but is unproblematic for model generation.  
  
3.3. Integrity Constraints 
 
Logic programs can be used both as programs for performing computation and as 
databases for query-answering. When a logic program P is used as a database, then 



query-answering is the task of determining whether a query Q expressed as a 
sentence in FOL is true in the minimal model of the database, or of generating 
instances of Q that are true in the minimal model. Such queries do not involve a 
commitment to the truth of Q. In contrast, integrity constraints specify necessary 
properties of the database. In this respect, integrity constraints are like necessary 
truths in alethic modal logic, and the database P is like a set of contingent truths. 
  In our application of ALP to the treatment of obligations, we treat a logic 
program P, describing actions, external events and the consequences of actions and 
other events, in effect, as a database, and we treat obligations, augmented if 
necessary with less desirable alternatives, as integrity constraints. These integrity 
constraints G can be used not only to check whether P complies with G, but also to 

actively generate an update , so that P   complies with G. There may be many 

such , and some  may be better than others. Consider for example the 
database/program: 
 

P2:      threat(E, T)  fire(E, T) 

        threat(E, T)  flood(E,T) 
        fire(e1, 11) 
 
Assume that P2 also contains a definition of <, implying such facts as 0 < 1, ..., 11 < 
12, 11 < 13, etc. Then P2 does not comply with G6 above, because G6 is false in the 
minimal model of P2: 
 
     min(P2) = {fire(e1, 11), threat(e1, 11), 0 < 1, …, 11 < 12, 11 < 13, …} 
 

However, P2 can be updated, either with 1 = {eliminate(e1, 11, 12)} or with 2 = 

{eliminate(e1, 11, 13)}. Both P2  1 and P2  2 satisfy G6. Intuitively, P2  1 is 

somewhat better than P2  2, because, everything else being equal, it is better to 
deal with problems earlier rather than later. 
 
3.4. Abductive Explanations 
 
The use of abduction to generate explanations of observations treats observations 
as goals, rather than as facts. Consider, for example, the following simplified causal 
theory about some of the possible causes of smoke: 
 

        smoke(E, T+1)  fire(E, T) 

        smoke(E, T+1)  prank(E, T) 
 
Suppose that fire and prank are abducible predicates (whose ground instances 
constitute the set A). Then an observation of smoke at time 12 can be represented 

by a goal such as smoke(e3, 12) and can be explained either by 1 = {fire(e3, 11)} or 

by 2 = {prank(e3, 11)}. Given no other information, it may be hard to decide 
whether one explanation is better than the other. In practice, if the situation 
warrants it, it might be desirable to actively generate additional observations, to 
distinguish between the different hypotheses, because the more observations a 
hypothesis explains the better.  
  
3.5. Reduction of Soft Constraints to Hard Constraints 
 



Data base integrity constraints can be hard constraints, which represent physical or 
logical properties of the application domain, or soft constraints, which represent 
ideal behaviour and states of affairs, but which may nonetheless be violated. 
However, in ALP, all integrity constraints are hard constraints. Soft constraints need 
to be represented as hard constraints, by including less desirable alternatives 
explicitly. This reformulation of soft constraints as hard constraints in ALP is like the 
Andersonian reduction of deontic logic to alethic modal logic [2], but with the 
obvious difference that in ALP hard constraints are represented in FOL. 
  For example, a typical library database [64] might contain facts about books that 
are held by the library, about eligible borrowers, and about books that are out on 
loan. Some integrity constraints, for example that a book cannot be simultaneously 
out on loan and available for loan, are hard constraints, which reflect physical 
reality. Other constraints, for example that a person is not allowed to keep a book 
after the return date, are soft constraints, which may be violated in practice.   
  Because in ALP all integrity constraints are hard constraints, the soft constraint 
about not keeping a book after the return date: 
 

   Person, Book, T  [overdue(Book, T)  has(Person, Book, T)]  
 
needs to be reformulated as a hard constraint, by specifying what happens if the 
soft constraint is violated. For example: 
 

   Person, Book, T [overdue(Book, T)  has(Person, Book, T)  

   liable-to-fine(Person, Book, T)]. 
  
Reformulated in this way, if some instance of has(Person, Book, T) becomes true, 
then the hard constraint can be made true either by making the corresponding 
instance of overdue(Book, T)  false, or by making the corresponding instance of 
liable-to-fine(Person, Book, T) true. Which of the two alternatives is preferable 
depends on the agent and the circumstances. 
  Similarly, if the integrity constraint G6 above is understood as a soft constraint, 
then it needs to be reformulated as a hard constraint, by adding one or more 
additional alternatives. For example: 
 

G7:    E,T1 [threat(E, T1)   T2 [eliminate(E, T1, T2)  T1 < T2 < T1 + 3]   

               [escape(E, T1, T2)   T1 < T2 < T1 + 5]   

               [submit(E, T1, T2)    T1 + 4 < T2] ] 
 
Somewhat better from a knowledge representation point of view is to rewrite G7 
in a more general form, with the aid of an auxiliary predicate, say deal-with-
threat(E, T1): 
 

G8:    E, T1 [threat(E, T1)   deal-with-threat(E, T1)] 

P3:   deal-with-threat(E, T1)   eliminate(E, T1, T2)  T1 < T2 < T1 + 3 

     deal-with-threat(E, T1)   escape(E, T1, T2)  T1 < T2 < T1 + 5 

     deal-with-threat(E, T1)   submit(E, T1, T2)   T1 + 4 < T2 
       
The more general representation G8 is more flexible than G7, because additional 
alternatives can be added separately as additional sentences to P3, without 
changing the goal G8.  



  This way of representing alternatives is similar to the way in which defeasible 

rules, such as can-fly(X)  bird(X), are turned into strict rules by adding a single 

extra defeasible condition, such as normal-bird(X) or   abnormal-bird(X). The 
various alternative ways in which a bird can fail to be normal can be represented 
separately.  
  The reformulation of soft constraints as hard constraints is also like the 
Andersonian reduction. However, while the Andersonian reduction employs a 
single propositional constant s, representing a single, general, abstract sanction, 
the ALP reductions of both soft constraints to hard constraints and default rules to 
strict rules, employ an additional condition, such as deal-with-threat(E, T1) or 
normal-bird(X), which is specific to the constraint or rule to which it is added. 
  We maintain that obligations and prohibitions are similar. They can be hard 
constraints, which are inviolable, or they can be soft constraints, whose violations 
are represented explicitly as less desirable alternatives. For example, the 
prohibition ”do not steal” can be represented literally as a hard constraint, which 
admits no alternatives: 
 

        Agent, T ¬ steal(Agent, T) 
 
But if instead the prohibition is understood as a soft constraint, acknowledging that 
stealing can happen but should be discouraged, then it needs to be represented as 
a hard constraint, with additional, less desirable alternatives represented explicitly. 
For example: 
 

          Agent, T1 [¬ steal(Agent, T1)   

        T2 [punished(Agent, T2)  T1 < T2] ] 

equivalently:   Agent, T1 [ steal(Agent, T1)  

        T2 [punished(Agent, T2)  T1 < T2]] 
 
In contrast with the Andersonian reduction, which applies to all obligations, 
whether they can be violated or not, the ALP reduction applies only to obligations 
that can be violated, and to other soft constraints more generally. Hard constraints, 
whether they represent necessary properties of the problem domain or inviolable 
patterns of behaviour, are represented literally, without the addition of any less 
desirable alternatives.  
 
 
4. The separation of goals from preferences in ALP 
 

Not only does the Andersonian reduction, O p  N (¬p  s)  N (p  s), treat the 

disjunction p  s as a hard constraint, but by defining O p in terms of p  s it also 
builds into the semantics a preference for p over s. [68] generalises this simple 
preference into a more general binary relation M1 ≤ M2 between possible worlds 
M1 and M2, representing that M2 is at least as good as M1. 
  Our model-theoretic semantics of ALP, when applied to normative tasks, 
similarly employs a preference ordering among minimal models, which are like 
possible worlds, but the ordering is separate from and external to the logic. This 
separation of goals from preferences is an inherent feature of abductive reasoning, 
where generating possible explanations is a distinct activity from preferring one 
explanation to another. It is also a feature of most problem-solving frameworks in 
Artificial Intelligence and constrained optimization [e.g. 16], where it is standard 



practice to separate the specification of constraints from the optimisation criteria. 
In ALP, this separation has the advantage of simplifying the logic, because the 
semantics does not need to take preferences into account. 
 
4.1 The Map Colouring Problem 
 
The following variation of the map-colouring problem illustrates the separation of 
goals from preferences in constrained optimisation. The problem can be 
formulated in deontic terms, say, as instructions to a person colouring a map. Given 
a map of countries and an assortment of possible colours: 
 
     Every country ought to be assigned a colour. 
     It is forbidden to assign two different colours to the same country. 
     It is forbidden to assign the same colour to two adjacent countries.  
 
For simplicity, assume that these are hard constraints, so we don’t have to worry 
about how to deal with failures of compliance.  
  In ALP, the map can be represented by a logic program P, defining the predicates 
country(X) and adjacent(X, Y). The possible actions of assigning a colour C to a 
country X can be represented by a set A of candidate assumptions, represented by 
atomic sentences of the form colour(X, C). The goal G is a set (or conjunction) of 
first-order sentences: 
 

    X [country(X)   C colour(X, C)] 

    X C1, C2 [colour(X, C1)  colour(X, C2)  C1 = C2] 

    X, Y, C  ¬ [adjacent(X, Y)  colour(X, C)  colour(Y, C)] 
 
In addition, P needs to include a definition X = X of the identity relation. A solution 

is a set     A, assigning colours to countries, such that G is true in min(P  Δ). 
There are exactly two such minimal models for a simple map with two adjacent 
countries iz and oz and two colours red and blue, where A = {colour(iz, red), 
colour(iz, blue), colour(oz, red), colour(oz, blue)}. Ignoring the extension of the 
identity relation, the two models are: 
 
  M1 = { country(iz), country(oz), adjacent(iz, oz), colour(iz, red), colour(oz, blue) } 
  M2 = { country(iz), country(oz), adjacent(iz, oz), colour(iz, blue), colour(oz, red) } 
 
For a more complicated map with many countries and many colours there would 
be many more solutions. 
  So far, there is not much difference between the modal and the ALP 
representations. But now suppose that it is deemed desirable to colour the map 
using as few colours as possible. In ALP and other problem-solving frameworks, this 
optimisation criterion could be formalised by means of a cost function, which is 
represented separately, possibly in a metalanguage, as in [61, 62]. Such cost 
functions are employed in search strategies such as branch and bound, to generate 
solutions incrementally by successive approximation. Suboptimal solutions found 
early in the search are used as a bound to abandon partial solutions that are already 
worse than the best solution found so far. (For example, if a solution has already 
been found using five colours, then there is no point trying to extend a partial 
solution that already uses five colours.) Once a solution has been found, whether it 
is optimal or not, the search can be terminated with the best solution found so far. 



(Or it can be acted upon tentatively, until a better solution has been found.)  Such 
anytime problem solving strategies are essential for practical applications. 
  Using deontic logic, it would be necessary to incorporate the optimisation 
criterion (fewest colours, in this example) into the object level statement of the 
goal (colour the map, subject to the constraints). It is hard to see how this could be 
done; and, even if it could, it is hard to see how the resulting deontic representation 
would then be used to find solutions for difficult problems in practice. 
 
4.2 Decision Theory 
 
The separation of goals from preferences, which is inherent in ALP, is also built into 
the foundations of decision theory, which treats reasoning about goals and beliefs 
as a separate activity from making decisions about actions. As Jonathan Baron [5] 
puts it in his textbook, Thinking and Deciding (page 6): 
 

Decisions depend upon beliefs and goals, but we can think about beliefs and 
goals separately, without even knowing what decisions they will affect.  

 
Conversely, classical decision theory is concerned with choosing between 
alternative actions, without even considering the goals that motivate the actions 
and the beliefs that imply their possible consequences. Normative decision theory, 
which is concerned with maximising the utility (or goodness) of the expected 
consequences of actions, is a theoretical ideal, against which other, more practical, 
prescriptive approaches can be evaluated. Baron [5, page 231] argues that the 
fundamental normative basis of decision making (namely, maximising the utility of 
consequences) is the same, whether it is concerned with the personal goals of 
individual agents or with moral judgements concerning others. 
  Arguably, classical decision theory, which not only separates thinking about 
goals and beliefs from deciding between actions but also ignores the relationship 
between thinking and deciding, is too extreme. Deontic logic is the opposite 
extreme, entangling in a primary obligation O p and a secondary obligation (in one 

or other of the forms O (¬p  q), ¬p  O q or O (q / ¬ p) ) the representation of a 

goal p  q together with a preference for one alternative, p, over another, q. In 
contrast with these two extremes, ALP, like practical decision analysis [26, 37] 
separates thinking about goals and beliefs from deciding between alternative 
actions, but without ignoring their relationship. 
  
4.3 Algorithm = Logic + Control 
 
The separation of goals from preferences in the ALP approach to reasoning about 
norms is analogous to the separation of logic from control in the logic programming 
approach to reasoning about algorithms [38]. Consider, for example, the English 
language procedure for alerting the driver of a train to an emergency on the London 
underground [39]: 
 
    In an emergency, press the alarm signal button, to alert the driver. 
 
It might be tempting to represent the sentence as an anankastic conditional [70] in 
a modal logic, for example as: 
 

        If there is an emergency and you want to alert the diver,  



        then you should press the alarm signal button. 
 
However, the same procedure can also be understood both logically and more 
simply as a definite clause: 
 
    The driver is alerted to an emergency, if you press the alarm signal button. 
 
together with an indication that the clause should be used backwards to reduce a 
goal matching the conclusion of the clause to the sub-goals corresponding to the 
conditions of the clause. The use of the imperative verb press in the English 
sentence suggests that the belief represents the preferred method for achieving 
the conclusion. There are of course other ways of trying to alert the driver, like 
crying out loud, which might also work, and which might even be necessary if the 
preferred method fails. For example: 
 
 A person is alerted to a possible danger, 
 if you cry out loud and the person is within earshot. 
 
In ALP agents [41], logic programs are used both backwards, to reduce goals to 
subgoals, and forwards, to infer logical consequences of candidate actions.  
  For example, the following English sentence can also be read as a definite clause: 
 
     You are liable to a fifty pound penalty,  
     if you use the alarm signal button improperly. 
 
The clause can be used backwards or forwards. But read as an English sentence, its 
clear intention is to be used in the forward direction, to derive the likely, 
undesirable consequence of using the alarm signal button when there isn’t an 
emergency. However, there is nothing to prevent a person from using the clause 
backwards, if he perversely wants to incur a penalty, or if he wants to use the 
penalty for some other mischievous purpose. 
  Different logic programming languages employ different control strategies. 
Some logic programming formalisms, including Datalog and Answer Set 
Programming, are entirely declarative, leaving the issue of control to the 
implementation, beyond the influence of the “programmer”. Prolog, on the other 
hand, uses clauses backwards as goal-reduction procedures, and tries them one at 
a time, sequentially, in the order in which they are written. By determining the 
order in which clauses are written, the programmer can impose a preference for 
one goal-reduction procedure over another. For example, the order in which the 
clauses are written in the earlier program P3 prefers eliminating a threat, over 
escaping from the threat, over submitting to the threat. 
  The sequential ordering of alternatives, as in Prolog, is sufficient for many 
practical applications, and it has been developed in one form or another in many 
other logical frameworks. For example, Brewka et al. [10] employ a non-
commutative form of disjunction to indicate “alternative, ranked options for 
problem solutions”. In the domain of deontic logic, Governatori and Rotolo [24] 

employ a similar, non-commutative modal connective a  b, to represent a as a 
primary obligation and b as a secondary obligation if a is violated. Sequential 
ordering is also a common conflict resolution strategy in many production system 
languages. 
  



4.4 Production Systems  
 
Production systems have been used widely for modelling human thinking in 
cognitive science, and were popular for implementing expert systems in the 1980s. 
In recent years, they have been used in many commercial systems for representing 
and executing business rules.  
  A production system is a set of condition-action rules (or production rules) of 
the form IF conditions THEN actions, which can be understood either imperatively 
as expressing that if the conditions hold then do the actions, or in deontic terms as 
expressing that if the conditions hold then the actions should be performed.  
  The IF-THEN form of production rules is not the if-then of logical implication. 
Part of the reason for this is that contrary actions may be required when the 
conditions of different rules hold simultaneously, as in the case of the rules: 
 
   IF there is a threat THEN eliminate the threat. 
   IF there is a threat THEN escape from the threat. 
   IF there is a threat THEN submit to the threat. 
 
If IF-THEN were logical if-then, then this would be logically equivalent to: 
 
   IF there is a threat THEN  
   eliminate the threat AND escape from the threat AND submit to the threat. 
 
which is not physically possible. Production systems use “conflict resolution” 
strategies, to decide between such contrary actions. 
  In this example, the production rules can be reformulated in logical terms by 
replacing AND by OR, and by treating the resulting sentence as a goal to be made 
true. Conflict resolution then becomes a separate strategy for choosing between 
alternatives [41]. The ALP reconstruction of production systems in [41] is similar to 
the ALP reconstruction of deontic logic proposed in this paper. 
  Production rules of the form IF conditions THEN actions are purely reactive. The 
actions are performed only after the conditions have been recognised. But in ALP 

goals of the logical form antecedent  consequent can be made true in any way 
that conforms to the truth table for material implication. They can be made true 
reactively, by making consequent true when antecedent becomes true; 
preventatively, by making antecedent false, avoiding the need to make consequent 
true; or proactively, by making consequent true without waiting for antecedent to 

become true [39, 42, 43]. These alternative ways of making antecedent  
consequent goals true is once again a separate matter of preferring one model over 
another. 
  In many cases, it is possible to identify the best way of making goals true, at 
“compile time”, before they need to be considered in practice; and, for this 
purpose, it is often sufficient to order the rules sequentially in order of preference.  
But in other cases, it is better to decide at “run time”, taking all the facts about the 
current situation into account. Separating goals from preferences, as in ALP, leaves 
these options open, whereas combining goals and preferences inextricably into the 
syntax and semantics of the logic, as in modal deontic logic (and Prolog), forces 
decisions to be made at compile time and closes the door to other, more flexible 
possibilities. 
 
4.5 Normative ALP frameworks 



 
In this paper, we are neutral about the manner in which preferences are specified, 
and assume only that the specification of preferences induces a strict partial 
ordering < between models, where M < M’ means that M’ is better than M. The 
ordering can be defined directly on the models themselves, or it can be induced 
more practically by a cost function, by an ordering of clauses or rules, or by a priority 
ordering of candidate assumptions A. In particular, it can take into account that 
“other things being equal” it is normally better to make the consequents of 
conditional goals true earlier rather than later.  
  Given such an ordering <, we can define what it means to satisfy an abductive 
framework as well as possible. A normative ALP framework is a tuple of the form 

P, G, A, <, where P is a set of definite clauses, G is a set of sentences in FOL, A is 
set of ground atomic sentences and < is a partial ordering between Herbrand 
interpretations, where: 
 

   the task is to satisfy P, G, A, < by generating some    A such that 

   G is true in M = min(P  Δ) and  there does not exist any ’   A  

   such that G is true in M’ = min(P  Δ’)  and M < M’. 
 

If there are several such best  that satisfy P, G, A, <, then an agent can choose 
freely between them. But, if because of limited computational resources the agent 

is unable to generate a best , then the definition can nonetheless serve as a 
normative ideal, against which other more practical solutions can be compared.4 
 
 
5 ALP as a deontic logic  
 
The ALP distinction between logic programs, representing beliefs, and integrity 
constraints, representing goals, can be viewed as a weak modal logic, in which 
beliefs p are expressed without a modal operator (and are not distinguished from 
what is actually the case), and goals p are implicitly prefixed with a modal operator, 
O p, expressing that p must be true. Viewed in this way, there are no nested 

modalities, and there are no mixed sentences, such as p   O q.  
  Although these syntactic restrictions may seem very limiting, they are shared 
with several other approaches to deontic logic, such as that of Horty [30, 32]. 
Moreover, they are also shared with the deontic modal logic of SBVR (section 6), 
which has been developed specifically to deal with practical applications. 
  Arguably, the syntactic restrictions of ALP have an advantage over the more 
liberal syntax of modal deontic logics, because there is no need to choose between 
different ways of representing conditional obligations, which in effect are all 

represented implicitly in the same form O (p  q). 
  Although the main focus in ALP is on satisfying goals as well as possible, we can 
define a notion of logical consequence, following the lead of Horty [30, 32] building 
on van Fraassen [70], and referred to as vFH below. 
   
5.1 The van Fraassen-Horty (vFH) non-modal deontic logic 
 

                                                           
4 As in preference-based deontic logics, we may want to exclude infinite sequences of 

increasingly better . Alternatively, we may accept that there is no absolutely best , and 

simply generate the best  possible in the given circumstances. 



As in the ALP approach, vFH restricts attention to obligations of the form O p, where 
p does not include the modal operator O. According to the basic version of vFH [30, 
Theorem 3], if G is a set of sentences of ordinary classical logic, then: 
 

    O p is a logical consequence of {O q  q  G} if and only if,  

    there exists some G’  G such that  
    G’ is consistent and p is a non-modal logical consequence of G’,  
    i.e. p is true in all classical models of G’. 
 
This is a “credulous semantics”, (because of the qualification some G’), which is 
more like the notion of satisfaction than like the usual notion of logical 
consequence. However, Horty [30, 32] significantly extends this basic semantics, 
reformulating it in default logic with priorities between default rules, and 
considering both credulous and sceptical variants. Our notion of logical 
consequence in ALP, presented in the next section, 5.2, is an adaptation of Horty’s 
“sceptical semantics”. 
  Horty [30] claimed that, at the time, the van Fraassen [70] proposal was “the 
only intuitively adequate account of reasoning in the presence of normative 
conflicts”. Horty [32] illustrates the treatment of normative conflicts in the 
prioritised default logic version of vFH with the example of section 2.3, where 

antecedent  consequent represents a default rule, whose meaning is that if 
antecedent holds and consequent is consistent then consequent holds by default: 
 
   Don’t eat with your fingers.               
   If you are served cold asparagus, eat it with your fingers.   

   i.e    true   fingers,   asparagus  fingers 
 
Here the second rule has priority over the first. Horty shows that, in both its 

credulous and sceptical versions, the default theory implies both O  fingers and   
O (fingers /asparagus). Both of these logical consequences also hold when the 
same example is formulated in dyadic deontic logics. But the deontic logic 

formulations also imply the intuitively unintended consequence  O  asparagus, 
which is not implied by the default theory with the vFH semantics. The default logic 
is defeasible, because, given the additional, “hard” information asparagus, the 

obligation O  fingers no longer holds, and the contrary obligation O fingers holds 
instead. We give an ALP representation of the example in section 5.3. 
 
5.2 Normative ALP Frameworks and Implied Obligations 
 
The vFH semantics can be adapted to ALP by defining O p to be a logical 

consequence of a normative abductive framework P, G, A, <  as meaning that p is 
true in all best models of G. More formally: 
 

  O p is a logical consequence of P, G, A, < if and only if,  for all     A, 

 if G is true in M = min(P  Δ) and there does not exist any ’   A  

 such that G is true in M’ = min(P  Δ’)  and M < M’,  
 then p is true in M. 
 
The modal operators F for prohibition and P for permission can be defined in terms 
of obligation O: 
 



   P, G, A, <  implies  F p if and only if G implies O  p. 

   P, G, A, <  implies  P p if and only if G  does not imply O  p. 
 
Viewed in vFH terms, this is a sceptical semantics, because, for O p to be a logical 

consequence of P, G, A, <, p must be true in all best models of G. In contrast, the 

semantics of satisfying obligations is credulous, because, to satisfy P, G, A, < it 
suffices to generate some best model of G. 
  The main difference between the vFH and ALP approaches are that in vFH 
obligations are soft constraints, but in ALP they are hard constraints. In addition, 
vFH represents conditional obligations in the dyadic form  O p/q, but ALP represents 

them, in effect, in the form O (q  p) with ordinary material implication.  
  Prakken [58] proposes an alternative approach, which is also based on default 
logic, but is combined with SDL. He argues that, by comparison, the vFH approach 
has several limitations. Perhaps the most serious is that all defaults in vFH are 
deontic defaults, but that “factual” defaults are also necessary. This limitation does 
not apply to the ALP approach, because ALP combines goals/constraints, to 
represent deontic defaults, with logic programs, to represent factual defaults. 
  Prakken also points out that the vFH approach can represent only weak 

permissions P p, which hold implicitly when O  p does not hold. SDL and many 
other deontic logics can also represent strong permissions. The difference is that, if 

P p is a weak permission, and  p later becomes obligatory, then there is no conflict, 
because the weak permission P p simply no longer holds. But if P p is a strong 

permission, then the presence or introduction of the obligation O  p introduces a 
normative conflict.  
  This limitation of vFH can be avoided in ALP by treating a strong permission as 
an obligation not to apply a sanction, as proposed by Anderson [3] and developed 
further by Asher and Bonevac [4]. For example, we can represent the situation in 
which no vehicles are allowed in the park, but authorised vehicles are permitted. 
by the goals: 
 

    vehicle  liable to fine 

    vehicle   authorized   liable to fine 
    
This captures the normative conflict between an obligation and a permission, which 
is the defining characteristic of strong permission, but it does not capture the more 
common use of strong permission to override an obligation. For this, we need to 
represent the obligation and permission as a rule and an exception: 
 

      exception   vehicle  liable to fine 

    vehicle   authorized   liable to fine 

    exception  authorized 
 
In the remainder of this section we briefly show how normative ALP frameworks 
deal with the other problems of deontic logic presented earlier in the paper.  
 
5.3 Normative Conflicts in ALP Frameworks 
 

Here is a normative framework  P, G, A, < corresponding to the vFH example in 
section 5.1: 
 

  P = {exception  asparagus},  



  G = { exception  fingers  sanction, asparagus   fingers} 
  A = {fingers, asparagus, sanction} 

  M < M’ if sanction  M and sanction  M’. 
 
In this representation, the soft obligation not to eat with fingers is reformulated as 

a hard obligation by adding both a sanction and an extra condition  exception. But 
for simplicity the obligation to eat asparagus with fingers is treated as a hard 
obligation, without the addition of any sanctions or exceptions. The only best 
models that satisfy G are M1 = {} and M2 = {asparagus, exception, fingers}. 

Consequently, as in the vFH representation, P, G, A, < implies both O ( exception 

  fingers) and O (asparagus   fingers), but not O ( asparagus).  
  Suppose, however, that eating cold asparagus with fingers is not an obligation, 
but simply a strong permission overriding the obligation not to eat with fingers. 

Then it suffices to replace the goal asparagus   fingers by the goal asparagus   

 sanction. There are then three best models that satisfy the new goals, the two 
models, M1 and M2, above plus the additional model M3 = {asparagus, exception}, 
in which the strong permission is not exercised. 
  
5.4 Sartre’s Dilemma 
 
In the previous example, the obligation to eat asparagus with fingers is an exception 
to an obligation that holds as general rule. But in Sartre’s Dilemma, the two 

obligations are incomparable. This can be represented by P, G, A, < where: 
 

  P = {},  G = {join  sanction1, stay  sanction2,  (join  stay)} 
  A = {join, stay, sanction1, sanction2} 
  M < M’ if M contains more of the sanctions, sanction1 and sanction2, than M’. 
 
There are three models that satisfy the goals: M1 = {join, sanction2}, M2 = {stay, 
sanction1} and M3 = {sanction1, sanction2}. All of these models involve sanctions, 
so are less than ideal. But none the less, there are two equally best models, M1 and 

M2. join  stay is true in both of these. So O (join  stay) is a logical consequence. 
 
5.5 Ross’s Paradox 
 

Suppose that mail is a hard constraint in the framework  P, G, A, < where: 
 

  P = {}, G = {mail,  (mail  burn)},  
  A = {mail, burn}, and < = {}.  
  

Then M = {mail} is the only minimal model that satisfies G. But mail  burn is true 

in M. So P, G, A, < implies both  O mail and O (mail  burn) as logical consequences. 
But it is not possible to make mail true by making burn true, because there is no 

model that satisfies P, G, A, < and also contains the action burn. 
  Suppose, more realistically, that mail is really a soft constraint, which is 

represented as a hard constraint mail  sanction in the framework P’, G’, A’, <’ 
where: 
 

  P’ = {}, G’ = {mail  sanction,  (mail  burn)},  
  A’ = {mail, burn, sanction} and 

  M <’ M’ if sanction  M and sanction  M’. 



 
There is only one best model that satisfies the modified framework, namely the 

same model M = {mail}, as before. So, as in the simpler framework  P, G, A, <, the 

more realistic framework P’, G’, A’, <’ implies both O mail and O (mail  burn). But 
it is not possible to satisfy the obligation mail by performing the action burn, 
because there is no best model that contains the action burn. 
  So, no matter whether mail is regarded as a hard or soft constraint, O (mail) 

implies O (mail  burn), but in neither case does generating a model that makes 
burn true satisfy the obligation O (mail). Viewed in this way, Ross’s Paradox is not 
a paradox at all, but rather, as Fox [21] also argues, a confusion between satisfying 
an obligation and implying the obligation as a logical consequence of other 
obligations. Arguably, the “paradox” also suggests that the focus in deontic logic on 
inferring logical consequences is misdirected, and that it should be directed 
towards satisfying obligations instead. 
 
5.6 The Good Samaritan Paradox 
 
Suppose, as do Hilpinen and McNamara [28], that the obligation to help Smith, who 

has been robbed, is represented as O (rob  help). We can represent this by the 

framework P, G, A, < where: 
 

  P = {}, G = {rob  help}, A = {rob, help} and < = {}. 
  

There is only one minimal model M = {rob, help} that satisfies P, G, A, <. It follows 

that P, G, A, < implies O rob, which is the root of the paradox. 
  But surely this is a misrepresentation. As Forrester [20] and others have pointed 
out, the obligation to help Smith, who has been robbed, is more faithfully 

represented by rob  O help. This can be represented in turn by the framework    

P’, G’, A’, <’: 
 
  P’ = {rob}, G’ = {help}, A’ = {help} and <’ = {}. 
 
It is still the case that M = {rob, help} is the only minimal model that satisfies the 
representation, and it is still the case that the representation implies O rob. 
However, it is not the case that it is necessary to generate a model of the form 

min(P’   Δ) in which rob  , in order to satisfy P’, G’, A’, <’. 
  But arguably even this improved representation is inadequate. A truly good 
Samaritan is one who comes to a person’s aid whenever a person needs it. Sticking 
to a propositional representation for simplicity and for ease of comparison, this can 

be represented by the framework P’’, G’’, A’’, <’’ where: 
 

  P’’ = {}, G’’ = {rob  help}, A’’ = {rob, help} and  

  M <’’ M’ if rob  M and rob  M’ 
 
There are three minimal models that satisfy this framework, corresponding to the 

three ways of making the material implication rob  help true: 
 
  M1 = {}, M2 = {help}, M3 = {rob, help}, 
 



With the given preference relation, both M1 and M2 are equally best. So the revised 

framework P’’, G’’, A’’, <’’ implies O (rob  help) and even O ( rob), but does not 
imply either O (rob) or O (help). 
  Suppose, however, that we now observe that Smith has just been robbed, and 
we treat the observation simply as a fact to be accepted, adding rob to P’’, obtaining 

the updated framework P’’  {rob}, G’’, A’’, <’’. M3 is now the only (and best) 

minimal model that satisfies the updated framework, which implies O (rob  help), 
O (rob) and O (help).  
  The implication O (rob) is undoubtedly unintuitive. None the less, it faithfully 
reflects the definition of logical consequence, which restricts the set of possible 

models satisfying G in a framework P, G, A, < to models that also satisfy P by 

construction. But if, as in this case, some sentence p  P is already true, then it is 
not necessary to satisfy G by generating a model that makes p true, by adding p to 

. So although p is true in all models that satisfy G and therefore O (p) is a logical 
consequence, it is not the case that it is necessary or obligatory to make p true.  
  The moral of the story is that, as in Ross’s Paradox, goal satisfaction is more 
appropriate than logical consequence for reasoning about obligations. Moreover, 
the moral does not depend upon possible sanctions or exceptions. So it applies as 
much to deontic logic as it does to ALP. 
 
5.7 Chisholm's Paradox 

 

We will consider two representations. The first representation P, G, A, < does not 
involve any sanctions or exceptions, but represents the obligation for Jones to go 
to the assistance of his neighbour simply as a preference for making the material 
implication go → tell true by making both its antecedent and consequent true, over 
making its antecedent false: 
 
  P = {}, G = {go → tell, ¬ go → ¬ tell}, A = {go, tell} and  

  M < M’ if go  M and go  M’. 
 
M1 = {} and M2 = {go, tell} are the only minimal models that make G true, but M2 

is better than M1. So P, G, A, < implies O (go) and O (tell), as is intuitively correct. 
  Now suppose we observe that Jones doesn’t go. We can represent this simply 
by removing go from the set of candidate assumptions, obtaining the updated 

framework P, G, A - {go}, <. The only (and best) minimal model that satisfies the 
updated framework is the less than ideal model M1 = {}, which implies  O (¬ go) and 
O (¬tell). 
  A similar result is obtained by systematically transforming the modal 
representation from soft constraints into hard constraints by introducing Bohnert-

Andersonian-style sanctions, obtaining the framework P’, G’, A’, <’ where: 
 

  P’ = {}, G’ = {go  sanction1,  go → tell  sanction2,  ¬ go → ¬tell  sanction3} 
  A’ = {go, tell, sanction1, sanction2, sanction3} and  
  M <’ M’ if M’ contains fewer sanctions {sanction1, sanction2, sanction3} than M. 
 
There is only one best minimal model, M1 = {go, tell}, which contains no sanctions; 
and O (go) and O (tell), as before. If we now observe that Jones doesn’t go, then we 

update the framework to P,’ G’, A’ - {go}, <’. The only best model that satisfies the 
updated framework is the less than ideal model {sanction1}, which implies O (¬ go) 
and O (¬tell) as before. 



 
5.8 Forrester’s Paradox.  
 
As in the Chisholm paradox, we consider two propositional representations, one 

with sanctions and the other without. The simpler representation P, G, A, < 
without sanctions represents the obligation not to kill as a preference for making 

the goal kill   kill gently true by making kill false. In addition, we need to express 
that killing gently and killing violently are mutually exclusive alternative ways of 
making kill true: 
 

  P = {kill  kill gently, kill  kill violently} 

  G = {kill  kill gently,  ¬ (kill gently  kill violently)} 
  A = {kill gently, kill violently} and  

  M < M’ if kill  M and kill  M’. 
 

There is only one best minimal model M1 = {} that makes G true. So P, G, A, < 

implies O (kill   kill gently) and O (¬ kill), as is intuitively correct. 

  However, if we observe kill and update the framework to P  {kill}, G, A, <, 
then M2 = {kill gently, kill} is now the only (and best) model that makes G true, and 
O (kill gently) is a consequence. If instead we observe kill violently and update the 

framework to P  {kill violently}, G, A, <, then the goals are unsatisfiable, because 
there is no longer any model that makes the goals true.  
  The situation is similar if we represent the example with sanctions by the 

framework P’, G’, A’, <’ where: 
 

  P’ = P = {kill  kill gently, kill  kill violently} 

  G’ = {¬ kill   penalty,  kill  kill gently  severe penalty,   

    ¬ (kill gently  kill violently)}     
  A’ = {kill gently, kill violently, penalty, severe penalty} and  

  M <’ M’ if penalty  M and penalty  M’ 

  M <’ M’ if severe penalty  M and penalty  M’. 
 
There is only one best minimal model, M1 = {}, which contains no penalties. So both 

O (kill  kill gently) and O (¬ kill), as before. If we now observe kill and update the 

framework to P’  {kill}, G’, A’, <’, then the only best model is now the less than 
ideal model M2 = {kill gently, kill, penalty}. So the framework implies O (kill gently), 
as before. 
  If instead we observe kill violently, then there is a best model, M3 = {kill violently, 
kill, penalty, severe penalty}, and O (kill violently) is a logical consequence. But this 
doesn’t mean it is necessary to satisfy the goals by making kill violently true, 
because kill violently is already and unavoidably true. 
 
 
6. Comparison with SBVR (Semantics of Business Vocabulary and Rules) 
 
In section 5, we considered some of the problems of deontic logic that have been 
investigated in the field of philosophical logic. In this section, we consider some of 
the issues that arise when deontic logic is applied to practical applications. SBVR, 
which is based on predicate logic extended with deontic and alethic modal 
operators, has been adopted by the Object Management Group (OMG) for 
specifying the vocabulary and rules of complex organisations, “for business 

https://en.wikipedia.org/wiki/Object_Management_Group


purposes, independent of information systems designs” [63, page 3].  Despite its 
use of modal logic, SBVR has many properties that are similar to the ALP approach 
in this paper. In SBVR: 
 

“most statements of business rules include only one modal operator, and this 
operator is the main operator of the whole rule statement. For these cases, 
we simply tag the constraint as being of the modality corresponding to its main 
operator, without committing to any particular modal logic” [63, p. 108].  

 
This simplified, tagged form of modal logic in SBVR is similar to the “tagging” of 
sentences in ALP as either goals or beliefs. Sentences tagged as obligations in SBVR 
correspond to goals in ALP, and sentences tagged as necessities in SBVR correspond 
in ALP to beliefs (representing definitions). The correspondence is not exact 
because “goals” in ALP include some integrity constraints that would be tagged in 
SBVR by an alethic modal operator representing necessity. 
  The authors of the SBVR standard observe that sentences that are not naturally 
expressed in this simplified, tagged form of modal logic can often be rewritten in 
this form. For example: 
 

“For each Person, it is obligatory that that Person is a husband of at most one 
Person” can be rewritten as “It is obligatory that each Person is a husband of 
at most one Person” [63, p. 109]. 
 
“For each Invoice, if that Invoice was issued on Date1 then it is obligatory that 
that Invoice is paid on Date2 where Date2 <= Date1 + 30 days” can be rewritten 
as “It is obligatory that each Invoice that was issued on Date1 is paid on Date2 
where Date2 <= Date1 + 30 days”5 [63, p. 116]. 

 
This similar use of tagging in both ALP and SBVR supports the thesis that goals in 
non-modal ALP are adequate for representing the goal component of obligations in 
many practical applications. 
  In addition to tagging sentences with modal operators, SBVR also specifies levels 
of enforcement to deal with violations:  
 

“Depending on enforcement level, violating the rule could well invite 
response, which might be anything from immediate prevention and/or severe 
sanction, to mild tutelage” [63, page 171].  

 
These enforcement levels are: 
 

“a position in a graded or ordered scale of values that specifies the severity of 
action imposed in order to put or keep an operative business rule in force” [63, 
page 176]. 

 
To the best of our knowledge, such responses to violations are not represented in 
the SBVR formalism. This avoids the problems associated with contrary-to-duty 
obligations, which arise in ordinary deontic logics, and which are addressed with 
ALP in this paper. 

                                                           
5 To be more precise, the quantification of Date1 and Date2 should be specified, i.e. It is 

obligatory that for each Invoice and for each Date1, if the Invoice is issued on Date1, then 
there exists some Date2 on which the Invoice is paid where Date2 <= Date1 + 30 days. 



 
 
7. Abductive expectations in SCIFF 
 
The approach that is most closely related to the one in this paper is that of Alberti 
et al. [1], which maps deontic operators into abducible deontic predicates in ALP, 
using a proof procedure SCIFF, based on the IFF proof procedure of [22]. Here is a 
simplified variant of an example from [1], representing an obligation and a 
prohibition as integrity constraints: 
 

      A, B, Info, D, T1 [H(query(A, B, Info, D), T1)   

  →   Answer, T2 [ [E(inform(B, A, Info, Answer), T2) ∧ T2 < T1 + D]  ∨ 

              [E(refuse(B, A, Info), T2) ∧ T2 < T1 + D] ]] 
 

   A, B, Info, Answer, T1, T2 [H(inform(A, B, Info, Answer), T1)  

 →         EN(refuse(A, B, Info), T2) 

 
The first constraint means that, if agent A sends to agent B a query for Info at time 
T1 for response with maximum delay D, then B is expected to reply with either an 
inform or a refuse message by D time units later. The second constraint means that, 
if A sends an inform message to B, then A is expected not to send a refuse message 
to B at any time. 
  H(e, t) expresses that an event e happens at a time t. E(e, t) is an abducible 
predicate representing an obligation that e happens at t. EN(e, t) is an abducible 
predicate representing a prohibition that e happens at t. Abductive solutions are 
restricted to those whose obligations actually happen and whose prohibitions do 
not happen. 
  In contrast with SCIFF, we do not employ separate predicates H(e, t), E(e, t) and 
EN(e, t), but employ only a single abducible predicate H(e, t) (or happens(e, t)). 
Events that are given as happening are included in the set of beliefs P. Positive and 
negative expectations are both expressed in the same form as given events, but are 
included in the set of candidate assumptions A. The obligation and prohibition of 
the example above can then be represented by the goals: 
 

      A, B, Info, T1, D [happens(query(A, B, Info, D), T1)  

  →    Answer, T2, [ [happens (inform(B, A, Info, Answer), T2) ∧ T2 < T1 + D]  ∨ 

             [happens(refuse(B, A, Info), T2) ∧ T2 < T1 + D] ]] 
 

   A, B, Info, Answer, T1, T2 ¬  [happens(inform(A, B, Info, Answer), T1)  ∧  
              happens(refuse(A, B, Info), T2)] 
 
SCIFF focuses on specifying and verifying interaction in multi-agent systems. Alberti 
et al. [1] compare the SCIFF approach with modal deontic logics, but do not discuss 
the treatment of conflicting obligations or contrary-to-duty obligations.   
   SCIFF uses a theorem-proving view of goal satisfaction, which is adequate when 
the sequence of interactions between agents is finite, and logic programs are 
written in if-and-only-if form [14]. This contrasts with the model-generation view 
in this paper. For our intended applications, in which the sequence of interactions 
is conceptually never-ending, the model-generation view determines the truth 
value of any goal expressed in FOL, but the theorem-proving view is incomplete.   



  The situation is analogous to that of arithmetic, where the standard model of 
arithmetic is the minimal model of the definite clause definitions of addition and 
multiplication [15, 40]. The model-generation view of goal satisfaction determines 
the truth value of any sentence of arithmetic in this minimal model, but the 
theorem-proving view is incomplete.  
                 
 
8. Conclusions  
 
This paper concerns the more general controversy about the adequacy of classical 
first-order logic compared with other formal logics, and compared with modal 
logics in particular. We have argued that, in the case of representing and reasoning 
about deontic attitudes, the use of FOL for representing goals in ALP is a viable 
alternative to the use of modal logics. We have seen that the ALP approach is 
related to the vFH non-modal representation of obligations in default logic, and 
that, like the default logic approach, the ALP approach also tolerates normative 
conflicts. We have argued that, although the syntax of the deontic operators is 
restricted in comparison with that of modal deontic logics, it is nonetheless 
adequate both for many practical applications and for many of the problematic 
examples that have been studied in the philosophical literature. 
  The ALP approach represents obligations as hard goals or constraints, by 
representing sanctions and exceptions as additional, explicit alternatives. This is 
similar to the way in which abduction in Theorist turns defeasible rules into strict 
rules, by turning assumptions about normality into explicit defeasible conditions. 
We have argued that the ALP approach has the advantage that similar techniques 
apply to a wide range of applications, not only to satisfying obligations, but also to 
default reasoning, explaining observations and combinatorial optimisation. 
  In general, the ALP approach focuses on solving or satisfying goals, in contrast 
with modal deontic logics, which focus on inferring logical consequences. However, 
we have defined a notion of logical consequence for obligations in ALP, by adapting 
the sceptical version of Horty’s definition of logical consequence; and we have 
applied the definition to some of the examples that have proved problematic for 
modal deontic logic. We have argued that the ALP approach provides a satisfactory 
solution of the problems, and that, in cases where the ALP solution may not seem 
entirely intuitive, it is rather that logical consequence is a less appropriate 
consideration than goal satisfaction. Moreover, the goal satisfaction semantics 
makes it possible to distinguish between the normative ideal of satisfying goals in 
the best way possible, and the more practical objective of satisfying the goals in the 
best way possible given the resources that are available at the time. 
  The ALP approach of this paper is similar to the ALP approach of SCIFF. The main 
difference is between the theorem-proving semantics of SCIFF and the model 
generation semantics that we use in this paper.  
  This paper also concerns the controversy about whether a single logic, such as 
ALP, might be adequate for formalising human reasoning, or whether many logics 
are needed for different purposes. One of the strongest arguments for ALP is that 
it subsumes production systems [41], which have been widely promoted as a 
general-purpose theory of human thinking [66]. Other arguments include its use for 
abductive reasoning, default reasoning [52] and probabilistic reasoning, with the 
power of Bayesian networks [54].  
  The application of ALP to deontic reasoning in this paper is a further test of its 
generality. Conversely, the generality of ALP is an argument for its application to 
deontic reasoning. Of course, both of these claims – for ALP as a general-purpose 



logic, and for ALP as a logic for deontic reasoning – need further testing. For this 
purpose, extending the ALP approach from single agent to multi-agent systems, 
where different agents have different goals and beliefs, is perhaps the most 
important challenge for the future. 
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