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INTRODUCTION

We investigate in this paper the application of a modified version of semantic
trees (Robinson 1968) to the problem of finding efficient rules of proof for
mechanical theorem-proving, It is not our purpose to develop the general
theory of these trees. We concentrate instead on those cases of semantic tree
construction where we have found improvements of existing proof strategies,
The paper is virtually self-contained and to the extent that itis not, Robinsen’s
review paper (1967) contains a clear exposition of the necessary preliminaries.

After dealing with notational matters we define a notion of semantic tree
for the predicate calculus without equality, A version of Herbrand’s theorem
is then proved, The completeness of clash resolution (Robinson 1967} is
proved and it is shown that restrictions may be placed upon the generation of
all factors when resolving a latent clash. The completeness of binary resolution
is proved by specializing the notion of clash, and an ordering principle is
shown to be complete when used in conjunction with it. Slagle’s AM-clashes
(1967) are shown to be complete by another specialization, and some
clarification is presented of the réle of Slagle’s model M at the general level.
A further specialization of AM-clashes is then made to the case of hyper-
resolution (Robinson 1965a) and renaming (Meltzer 1966). It is shown in
this case how the restrictions on generating factors and Slagle’s A-ordering
can be combined to give a highly efficient refutation procedure. Moreover,
additional restrictions on the generation of factors are obtained for all cases
of AM-clashes by employing throughout a modified notion of A-ordering.
In the last seclion we report on attempts to apply the methods of semantic trees
to the construction of inference systems for the predicate calculus with
equality.
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PRELIMINARIES

Familiarity is assumed with the reduction of sentences to clausal forn.
Atomic formulae are sometimes referred to simply as afoms. Literals are
atoms or their negations; clauses are disjunctions of literals. Disjunctions and
conjunctions will often be identified with the sets of their disjuncts and
conjuncts respeciively. Thus one may speak of a literal L occurring in a clause
C and write L € C. The rull disjunci [ is always false and therefore identical
to the truth value false.

The result of applying a substitution & to an expression E is denoted by Eo.
If Eo=F for some o, then Fis said to be an instance of E. In case F contains
no variables Fis a ground expression and a ground instance of E. If F is an
instance of E and E of F, then E and F are variants. If expressions £ and F
have a common instance G, then E and F are unifiable and there is a most
general common instance Eg = Fo, where o is the most general unifier (in.g.u.)
of Eand F. The m.g.u. ¢ of E and Fis such that if z is any unifier of £ and F
then there is a A such that u=al.

Constants are functions of zero arguments. The Herbrand universe H of a
set S of clauses is the set of all terms consiructible from the function letlers
appearing in S (augmented by a single constant symbol if S centains no
constant symbols). The Herbrand base H is the set of all ground instances
over H of atoms occurring in S. IT K is a set of ground atoms, then by a
complete assignment to the set X we mean a set « such that for every atom
A € K exactly one of the literals 4 or 4 occurs in «f and s¢ contains no other
members. If &7 is a complete assignment to some subset XK'= K, then .« is
called a partial assignment to K. Given a set .S and its Herbrand base H any
complete assignment o7 to H can be considered as a possible interpretation of
S (i.e., the universe of the interpretation is H; the definition of the functions
over H is incorporated in the definition of H; and an s-place predicate P
holds for (#, . . ., &), te Hif and only if (¢, . . ., t,) €=},

Every tree is a partially ordered set 7 whose clements are its nodes. We
shall use < to refer to the partial ordering of the nodes. The unique node
N e T such that Nz= N’ for every node N’ is the root of the tree. Trees will be
considered as growing downward. Thus the root of a tree is the highest node
in the tree, and if there are at most finitely many nodes immediately below
any node then the tree is finitely branching. A tip of a tree T is a node N
which. is above no other node. A branch of T'is a sequence of nodes beginning
with the root and such that each other node in the sequence lies immediately
below the preceding node in that sequence. A branch of T is complete if either
it is infinite or else it is finite and ends in a tip.

SEMANTIC TREES FOR THE PREDICATE CALCULUS
WITHOUT EQUALITY

Definitions

Let K be a set of atoms. A finitely-branching tree 7" is a semantic tree for K
88
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when finite sets of atoms or negations of atoms from K are attached to the
nodes of T in such a way that
(i) the empty set is attached to the root and to no other node;

(ii) if nodes N4, . . ., NV, lie immediately below some node N and the sets
of literals 28, are attached to the nodes A, then BNV ... N Bisa
tautology, where #; is the conjunction of the literals in & ,;

(iii) the union of the sets of literals attached to the nodes of a complete
branch of 7'is a complete assignment to K.

Given a set 5 of clauses and a semantic tree T for H (the Herbrand base of
S}, then the union of all the sets attached to any complete branch of Tis a
complete assignment to H and therefore a possible interpretation of S.
Indeed it can be easily shown from condition (ii) of the definition that every
complete assignment .« to H can be obtained in this way.

The partial assignment which is the union of all the sets of literals attached
to the nodes of a branch ending in a node N is written s/ and is termed the
assignment at N. In this notation the set #; attached to N, referred to in (ii)
above, is just oy, — 7 .

The only case of an infinite semantic tree that we shall consider in this
paper is that of a simple binary tree, which is used in the proof of the version of
Herbrand’s theorem necessary for our applications. In this tree if N, and N»
lie immediately below the node N, then #; and %, are just {A} and {4}
respectively for some ground atom A in K. Every other semantic tree consid-
ered will be a finite clash tree. If T'is a clash tree, Ne Tand Ny, . . ., Ni, Nugg
lie immediately below &, then the set %, attached to N, for 1<i<k is just
{L.} and the set &1 attached to Ny is {Ly, .. ., L}, where {I4,.. ., L.}
is a partial assignment to K disjeint from the partial assignment .«/,. The
nodes Ny, . . ., N, are termed sarellite nodes and the node N, 4, a aucleus node.

Failure

If S is a set of clauses and 7 a semantic tree for H, then 7is in some sense an
exhaustive survey of all possible interpretations of 5. If S is in addition
unsatisfiable, then § fails to hold in each of these interpretations. These
considerations motivate the definitions given below.

Let 7 be a semantic tree and C a clause. We say that C fails at anode Ne T
when C has a ground instance Co such that o/y logically implies —1(Ca).
{We also write =/ xF 1(Ca), using the symbol F to denote logical implica-
tion}. Note that if C fails at ¥ then «Z/yF—1C. The converse, however, is not
in general true. For if &7y = {P(a), P(f(f(a)}))} and C=P(x)V P(f(x))
then oy E1C, but C does not fail at M.

Let T be a semantic tree and S a set of clauses. A node Ne T is a failure
point for S when some clause C e S fails at NV but no clause in § fails at any
node M> N, If N s a failure point for S'and M > N, then M is a free node for
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S. Note that if ¥ is free for S then any node M > N is also free for S and both
M and N are free for any subset of S. Also if N is a failure point for S, then
no node M < N is free for § and both M and N are not free for any superset
of 5.

A semantic tree every branch of which contains a failure point for S is
said to be closed (for S).

Herbrand's Theorem

The following is easily shown to be equivalent to Herbrand’s Theorem.
Theorem 1. If & is an unsatisfiable set of clauses then there is a finite subset
K<H such that every semantic tree 7 (or K is closed for .

Proof. Let (A1, . .., As, .. .) be an enumeration of the Herbrand base of §
and let 7’ be a simple binary tree for M constructed as follows: the empty set
¢ 1s attached to the root of T'; the sels { 4; } and { A, } are attached to the two
nodes immediately below the root; and if either {4,} or {4} is attached to
the node &, then the sets { A1 } and { A4 } are attached to the nodes immed-
iately below N. Any complete branch through 7" represents a complete
assignment & to H and therefore is a possible interpretation of S. Since S is
unsatisfiable, <7 fails to be a model of § and some clause C € S must be false
in 2. It follows that some ground instance Co of C must be false in «7. But
for this to happen the complement of each literal in C must occur in &, and
since there are only finitely many such literals they must occur already in
some partial assignment ./ with Co false in &7y, Thus, some M2zN is a
failure point for S and 7" is closed for S.

The number of nodes of T free for Sis finite, for otherwise, by Konig'slemma
we could find an infinite branch of free nodes containing no failure point. Let
k be the Jength of the longest branch of 77 which ends in a failure point and
let K= {dy, ... Ag}. Then every branch of T’ corresponding to a complete
assignment to K already contains a failure point for S. Now if 7 is any
semantic tree for K then every complete branch corresponds to a complete
assignment to K and must also contain a failure peint for S. Therefore T is
closed for S. Q.E.D.

Note that Robinsen (1967) uses essentially the same tree 77 in his proof of
Herbrand’s theorem. The semantic trees of this paper differ, however, from
those of Robinson (1968). Robinson defines failure of a clause at a node of a
semantic tree for ground clauses and establishes his main results for ground
clauses first. These results are then ‘lifted’ to the general level by applying
Herbrand’s Theorem. By generalizing the definition of failure and by applying
Herbrand’s Theorem in the form above, we establish our results for the gen-
eral level directly. A principal advantage of this modification is that it be-
comes clear how to restrict the generation of factors of clauses.

Inference node

The concept of inference node makes it possible to transfer from the semantics
of semantic trees to the syntax of inference systems. A node N of a semantic
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tree T is an inference node for a set of clauses S if N is free for §and the nodes
immediately below A are failure points for 5. Note that if T is closed for S

. and ] ¢ S, then T contains an inference node. For if (J -5, then O fails at

|

the root of T, and 7T'contains neither free nodesnor inference nodes ; otherwise,
if T contains no inference node, then it contains free nodes and since every
free node lies above another free node, we can construct a complete branch
all of whose nodes are free for S, contradicting the assumption that T is
closed for S.

If % denotes a system of valid inference rules for clauses, then by Z(§) we
denote the union of the set S with the set of all clauses which can be obtained
frem S by one application of one of the inference rules in £ to clauses in the
set 8. Setting #0(.S) =5 we define #+1(S) =R (#3(S5)).

The following theorem provides the foundation for our use of semantic
trees in automatic theorem-proving.

Theorem 2. Let & be a system of valid inference rules and let there be given a
particular way of associating with every umsatisfiable set of clauses S a
finite semantic tree T for § such that

(#) there is an inference node N e 7, and for some subset 5’ <5 of the set
of clauses which fail immediately below N there is a clause C e Z(S")
such that C fails at M.

Then [ € #7(S) for some n20, and consequently # is a complete system
of refutation.
Proof: Let S be unsatisfiable, T" the semantic tree asscciated with S. Let n be
the number of nodes of T free for S (# is finite since 7' is finite). If (] & S,
then [0 € #0(S). Otherwise, by (¥), there is an inference node Ne T and a
clause C e Z2(8) such that C fails at N. Therefore the number of nedes of T
free for #(S) is less than or equal to n— 1. Similarly, since T'is a closed sem-
antic tree for 7 1(S), m>1, (*) applies to 2 1(5); and consequently the
number of nodes of T free for 227(.S) is less than or equal to n—m. No node
of Tis free for 7 (S}, and therefore the root of Tis a failure point for £7(S).
Bul then [ £ #7(S5), for no other clause fails at the root of a semantic tree.
0Q.E.D.

Theorem 1 has been used implicitly in the statement and proof of Theorem
2, because #(S) unsgatisfiable implies, by Theorem 1, that T is closed, and
thus 7 has an inference nede for each #(S), i20.

Deletion strategies

A clause is a taufology if it conlains complementary literals. A clause C
subsumes a clause D if it has an instance Co which is a subclause of D (i.e.
Coc D). If # is a system of inference whose completeness can be justified by
Theorem 2, then % remains a complete inference system when we allow in #
the deletion of tautologies and of subsumed clauses.

I C is a tantology then Co contains complementary literals for every o,
Bul no oy contains complementary literals and € cannot fail onany semantic
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tree. If Co= D and D fails at some node N of a semantic tree, then some
ground instance DE of D fails at N, but then Coé also fails at N. Thus taut-
ologies and subsuimed clauses need never occur in a proof of [ in the system
2, for in the proof of Theorem 2 it is clear that only clauses which fail at
nodes of the semantic iree T associated with the original unsatisfiable set .S
need ever occur in such a proof. (If §is any unsatisfiable set of clauses, then
certainly S remains unsatisfiable after deleting tautologies and subsumed
clauses. However, such a demonsiration does not provide a proof of the
compatibility of these strategies with a system of inference. )

CLASH TREES
The Latent Clash Rule

All our applications of Theorem 2 will be to inference systems £ which consist
of just one rule of inference that is in each case a specializaticn of Robinson’s
(1967} latent clash resojution rule. The corresponding tree 7 associated with
an unsatishable set .5 will similarly be a specialization of a clash tree.

If clauses By, . . ., B, fail al the satellite nodes immediately below some
inference node N, then we term them satellite clauses, 1€ A fails at the cor-
responding nucleus node, then A is a nucleus clause.

The following theorem and its proof provide the peneral setting for sub-
sequent specializations.

Theorem 3. Let a finite clash tree T be associated with every unsatisiable
set of clauses § (where 7" depends on §) and let # consist of the single rule of
inference (latent clash resolution):

(**) From the ‘nucleus clause’ A=AgV Dy V...V D, and the “satellite
clauses’ B;= By, V E;, 1 £i<m, where the complements of the literals
in E; are unifiable with the literals in Dy, and £ is the most general
simultangous wnifier of these sets of literals Tor all 1<{<{m (the vari-
ables oceurring in the clauses 4, By, . . ., B, being standardized apart),

infer the ‘resolvent’ C=Apé V Bué V...V By, &
(Moreover we may insist that the clash condition be satisfied, namely

that no E £ or complement of £,& occurs in any of the clauses A,
Bié, ..., B, exceptin B, itself and in 4¢ as D&).

Then, if any clauses 4, By, . . ., By fail immediately below an inference node N
in T, A has the form of the nucleus clause in (**) and corresponding to 4 we
have satellite clauses By, . . ., B,, m<k, having the form of the satellite
clauses in (**) such that the resolvent C in {(**) fails at V.
Remarks, (a) Theorerns 2 and 3 combine to yield the completeness of latent
clash resolution; for the conclusion of Theorem 3 satisfies the hypothesis of
Theorem 2 and therefore the conclusion of Theorem 2 holds, namely that
(**) is complete.

(b) The rule (**)is stated without reference to unifiable partitions and lends
itself natyrally to a stalement in terms of factors, Tn either case the number
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of unifiable partitions or of factors which need be generated is in general
less than the total number possible. We shall return to this point after the
proof of Theorem 3.

(¢) Later we shall specialize in various ways the form of the clash tree T

associated with an unsatisflable set S. The corresponding specializations of
{**) and of the proof of Theorem 3 will provide proofs of completeness for
these inference systems when combined with Theorem 2.
Proof of Theorem 3. Let T'be a clash tree, N € T an inference node, Ny, ..., N,
the satellite nodes immediately below ¥, and N, the corresponding nucleus
node. Let 7y be the partial assignment at N, the singleton {L,}, where L; is
a ground literal, the set attached to the satellite node N, 1<i<k, and
{Li, ..., L} the set attached to #,,. Suppose A fails at N,.; and that B,
fails at N, 1<igk.

First we show that each B; has the form of a satellite clause in (*%).
Since B; fails at N, but not at N there is 4 ground instance B,o; which is false
at N; but not at N. Thus the complements of the literals in B, all occur in
yu {L;} butnotin &n. So Bio,=Byo;V L, where B,=Bo;V E, Egs,=L,,
and By, is false in /.

Now, to show that 4 has the form of a nucleus clavse in (**) we note
that similarly, as above, A fzils at N4, but not at N, Therefore some ground
Instance Ag is false at N, 44 but not at &, and consequently the complements
of the literals in Ao all ocour in &x W {Ly, . . ., Ly} but not in o7x. Thus
Ao=Apw VLV, .. VL, where for simplicity the nodes Ny, ..., N, have
been reordered if necessary so that the literals L;, 1 <i<m, which occurin 4+,
will be an initial segment of Ly, ., ., L. Thus A=A4oV D1V ...V D, where
Apo is false in &/ and Do=L,

It only remains now to show that the inferred clause C fails at N and that
the clash condition may be imposed upon the clash rule. We have already
shown that the clause C'=Ape V Byoy V. . . V By,0, fails at NV since cach
of Apa and Byo; are false in ./ y, We shall show that C fails at N by showing
that C’ is an instance of C. But because ¢ is the most general unifier which
transforms all of the literals ‘resolved upon’ in the inference into single
literals, and because 4, By, . . ., B, have been standardized apart, there is a
substitution A such that C'=CJ, and therefore C fails at N.

Suppose 1hat the clash condition is violated and that some E,£ or comple-
ment of E;¢ occurs in C. Then E,éA=L; or EZA=L, occurs in ¢’ which fails
at «/n. But then Z; or L; would have to occur aiready in o7y, and this is
impossible. The only other possibility is for E,¢ or its complement to be
identical to E;¢ or D€ for j# 7, But then L; would be identical to L, or L;to Zj
for jsi, which is likewise impossible. Q.1.1.

Factoring

When applying the latent clash rule (**) or some specializalion of it to prove
i sel ol cladses unsatisfinble, a single clause will normally occur as a premiss
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of an application of the rule many times. To avoid the duplication involved in
repeatedly unifying the same groups of literals within a clause we may employ
the device of factoring, The single most general simultaneous unifier (m.g.s.u.)
£ of (**), can be decomposed into a sequence of companeats &y, . . ., &,
S, and & such that £, is the m.gu. of £, 1<i<m, &,.1 the m.gsu. of
the resolvent C=A¢é V Bpé V...V By, ¢ equals (Aol V Bl V... V
By, £,:) ¢, where the unifiers £, 1<i<m+1, perform the necessary unifica-
tions within a single clause and &’ only mates simultaneously single literals in
the satellite clauses with the corresponding single literals in the nucleus
clause. The unifier &' must be constructed separately for each application of
the inference rule; but the unifiers &; need only be constructed once when a
clause is first produced, and this same substitution may be associated with its
clause whenever the literals £, in case 1<i<m, or the literals Dy, ..., D, in
case i=m-1, are the literals unified and resolved upon in an inference.

These considerations motivate replacing (**) by two independent opera-
tions, factoring and the resolution of factored clauses. A factor of a clause ¢
is a clause C4, where 0 is the m.g.u. of a single subset of literals in C in case
C0 is to be used as a satellite clause, or a clause Cf where  is the m.g.s.u. of
subsets Dy, . . ., D, of literals in C in case CG is to be used as a nucleus
clause. In addition we require that the literals in C0 which have been deliber-
ately unified by 0 be somehow distinguished from those which have not {this
may be accomplished for programming purpeses, for instance, by storing €@
with. its distinguished literal or literals occurring first in €9 and separated in
some way from those literals which follow and are not distinguished). The
operation of factoring then consists of replacing each clause C which is not a
factor by the set of all its factors. The clash rule for factored clauses then
amounts to resolving a clash on its distinguished literals.

The notion of factoring defined above is an improvement on the notion one
obtains by straightforward translation of unifiable partitions into terms of
factors, Firstly, only the literals which are to be resolved upon are deliberately
unified in a factor. Conversely, only literals deliberately unified need be
resolved upon, For the case of binary resolution this version of factoring is
equivalent to Robinson’s (1965a) notion of ‘key triple’. The remarks about
factoring above are however completely general and apply to any inference
rule which is & specialization of latent clash resolution.

Binary resolution and A-ordering

Given a set of clauses S we define an A-ordering for Sto be a total ordering <
defined on some subset of the set of literals { La|L e C for some clause Ce S}
such that
(i) il Ly<i;then Lic<L;s forall g;
(i) if Ly and L, are alphabetic variants or complements then Ly <.,
and fa-71.
Ol
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This definition is similar to Slagle’s (1967) but has the advantage of allowing
a finer discrimination between literals.

Now let S be an unsatisfiable set of clauses and K <H a finite subset such
that any semantic tree for K is closed. Let € be an A-ordering for § and
{44,.... Ay} =K be an enumeration of K compatible with <;ie., if 4,<4;
then i<j. We associate with S the simple binary tree 7 for K obtained by
attaching ¢ to the root of 7, the sets {4, } and { 4; } immediately below the
root and the sets {4;+1} and { Ay, } immediately below any node to which
{4;} or {4} has been attached.

Referring to the proof of Theorem 3 and using the notion of factor, we see
that if a clause C fails at a failure point N e T, then the distinguished literal 7,
of some factor C@ fails properly at N, while the remaining literals in CO fail
at nodes above N. Since the enumeration {4y, . . ., 4, is compatible with <
it follows that T4 <Lz for no Lz € Ca, where Ly # Lo, For otherwise, if Ly <Z;
and (C0)g is the ground instance of C# which is false at N, then Lo <Lya by
(i) and yet, by the construction of T, Lo is 4, or 4;, and Lo is 4; or A4,
where i<(j; so by (il) Ly <L,o cannot occur.

Teking into consideration the remarks above, specializing Theorem 3
appropriately and applying Theorem 2 we obtain completeness of the follow-
ing version of binary resolution:

Given a set of clauses § and an A-ordering < for S, infer from the
factors Ly V 4g and L} V By with distinguished literals L, and L}
respectively, the clause (A4 V By} where € is the m.gu. of £y and L,
and where neither £y <X nor L{<L; for any literal L, in either 4y or .

As an example of the use of an A-ordering in conjunction with this rule, let
the A-ordering < be determined for some set of clauses by the conditions
P(f(x))o<P(g(y))o and P(x)a< Q{y)s for all . Then the unfactored
clause C=P(g(a)) V P{f(x)) V Q(b) has only one facter C0, where 0 is the
identity substitution and P(f{x)) is the distinguished literal. In this case the
A-ordering = has eliminated the need to consider two of the three possible
factors. If C=Q(f(a))V P(x)V P{f(«)) then there arc thres factors of C
compatible with < and only one of the four possible factors need not be
generated.

The following example shows that the rule above is compatible with neither
set of support {Wos, Carson and Robinson 1965 ) nor Pi-deduction (Robinson
1965b): let S be the set {1y V Ly, Ly V Ly, Ly VI L1V La}, and let < be
determined by L; < L». Then, although $ is unsatisflable, [ can be deduced
with neither P;-deduction nor with set of support if we take {L; V L»} as the
set of support,

In the next sections we shall see that a weaker version of the A-ordering
restriction applies to M-clashes, and that in the particular case of Pp-deduction
{ P-deduction with renaming) a more restrictive ordering principle based on
A-vrdering is complete,
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M-clashes

We have been unable to construct binary semantic trees to justify either the
set of support strategy or Pi-deduction. However, the M-clash trees which
we introduce below can be used to prove completeness of M-clashes, and by
suitably choosing the interpretation M and by decomposing the corresponding
M-clash rules we obtain, following Slagle (1967), the completeness of these
inference systems.

Let S be a set of clauses, Define a Herbrand interpretation of S to be any
complete assignment to ¥, the Herbrand base of S (we have already seen
how any complete assignment to H can be regarded as a possible interpreta-
tion of §). Assume for the moment that M is a Herbrand interpretation of S.
Let S be unsatisfiable and K< H a finite subset such that any semantic tree for
K is closed. Let M= {4}, ..., 4;} be M restricted to K, where 4, ¢ H and
Ai=A,il A;e M and A=A, if A4;e M, so that M =M and M is a complete
assignment to K. We associate with S the M-clash tree T defined as follows:

(1) ¢ is attached to the root of T;

(ii) the root of Thas n+ 1 immediate descendants with { 4!} assigned
to the ith satellite node, 1 i<n,and {4}, .. ., 4;} to the nucleus
node;

(iii) let N e T, sy not a complete assignment to K, /=M and M —.of y
={dj, ..., A5 };then N has £+1 immediate descendants, with
the singletons { 45,1}, .. ., {4}, } attached to the k satellite nodes
and the set {4}, . .., A%} to the nucleus node.

Note that the assignment at any nucleus node is a complete assignment to K
and therefore every nucleus node of T'is a tip of 7. Note, too, that the assign-
ment at any satellite nodeis always a subset of M, and that for any such assign-
ment containing m < # literals there is a total of exactly m ! satellite nodes with,
the same assignment.

Suppese the clause B fails at a satellite node which is a failure point. Then
some ground instance B of B is false in M and therefore in M. Thus B itself
is false in the Herbrand interpretation M.

Suppose A fails at a failure point & which is a nucleus node. Some ground
instance Ao of A must fail at N and some literals A5, . . ., A%, for some m<k,
must fail properly at N. But since these literals belong to M =M and therefore
are true in M it follows that A is true in M. Thus 4 has an instance which is
true in M.

Note that, since the resolvent € of a clash fails at a satellite node, C must
be false in M. Note also that a nucleus clause is never a resolvent and therefore
must belong to the original set of clauses S.

Specializing Theorem 3 to the M-clash tree, keeping in mind the consider-
ations above and applying Theorem 2, we oblain the completeness of M-clash
resolution:

I
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Given a set of clauses § and a Herbrand interpretation M of the Herbrand
base H of S, from a factored nucleus clause A =LV... VL,V Ayand
factored saiellites Bi=L; V By, | <i<\m, where & is the most general
unifier such that Z,& = L{¢ simultaneously for all ! <i<m,

infer the resolvent C=(AgV Byt V...V By,),

when the clash conditions are satisfied; here each satellite B, is false in M,
Cis false in M, and 4 has an instance true in M.

Remarks, (a) Slagle (1967) has remarked that if T=.S and T— S is satisfiable
then itis satisfied by a Herbrand interpretation M. It follows that no clause in
T'— S can be a satellite of an M-clash. Decomposing the resulting M-clashes
into sequences of binary resolutions we see that no two clauses are resolved
which both come from 7'—S. But this is just the defining condition of the set
of support strategy.

(b) Complications arise if we wish to use an interpretation M explicitly
when in an application of the M-clash rule we need to decide the truth or
falsity of clauses and their instances. Firstly, if M is not a Herbrand inter-
pretation then we must extend M to an interpretation in which all the Skolem
functions which actually occur in S are defined in some way. To M extended in
this way there will then correspond a Herbrand interpretation which will justify
the use of this extended M. Otherwise questions of truth or falsity for clauses
whose vocabularies are not fully interpreted in M are literally meaningless,

A much more serious restriction on the explicit use of an interpretation M
ts that it actually admit of an algorithm for deciding truth and falsity of
clauses and their ingtances. Otherwise thers is no way in which its use can be
mechanized for a computer. Interpretations containing only a finite number
of elements are effective in this sense. But unless they possess other special
properties the exhaustive instantiation of each clause over the domain of the
interpretation for the purpose of testing it for false or true instances is likely
to be prohibitive. These same considerations apply to model partitions
{Luckham 1968), which can be justified as a special case of M-clashes.

(¢) Slagle has also shown that hyper-resolution may be regarded as the
special case of M-clashes where all instances of positive literals are regarded
as false in M and all instances of negative literals as true. Then all satellites
and resolvents contain only positive literals, and all the negative literals of the
nucleus clause are resolved upon in the clash. The resulting clash is maximal
in the sense that no subclash need ever be generated. This highly desirable
property can be extended by the device of renaming, We shall show in a later
scction how advantage can be taken of maximality to yield a particularly
cllicient version of £;-deduction.

AM-clashes

let < bean A-ordering and M a Herbrand interpretation for a set of clauses
then the following ordering principle may be imposed upon the M-clash
rule:
" a7
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Given the factored nucleus A=L, V...V L}, V Ap and the factored
satellites B,=L; V By;, 1 <i<m, with reselvent C== (4 V By V...V
By, } & satisfying the M-clash conditions, we may insist that for no literal
L;e By, do we have L, <L’ for any 1 <i<m.

This restriction improves upon Slagle’s ordering principle, for the notion of
A-ordering defined above is generally more restrictive. The proof that follows
of the compatibility of the ordering principle above with the M-clash rule is
essentially an adaptation of Slagle’s argument,

Given a clesed M-clash tree T and an A-ordering < for the unsatisfiable
set S, we shall show that there is in T an inference node N such that the
factored clauses 4 and B,, 1 <i< m, which fail below the inference node and
their resolvent C, satisfy the AM-clash conditions. It will then follow by
Theorem 2 that the AM-clash rule is complete. We note that it is in fact only
necessary to show that the satellites B; satisfy the ordering principle above
since we have already seen that the M-clash conditions are satisfied.

As before let M =M be defined as the set { 41, .. ., 4} }, where the ordering
of the 4! is compatible with the A-ordering <, i.e. if 4! <A}, then i< We
construct a subset A’ of M, as follows:

(1) My=4.

(ii) If some factored clause B;y1=L;4y V By ;41 of some clause in S has
a pround instance B0 false in { Al4y v M! but no clause in S fails
in M}, then Mt =M;; otherwise M| 1= {4’41} UM% Inthe
former case we may choose the factor B4 so that L,j0=A{,, and
we say that B, 1s associated with Al

(ifl) M'=M,.

M’ is a partial assignment to K and there is some nods & such that o y=M",
We claim that &V is an inference node. Note that the factor B, associated with
Aj fails at the satellite node &, immediately below . Some nucleus clause
fails at the nucleus node and no clause in S fails at N, by the construction of
M. A resolvent C from the nucleus clause and from some subset of the satel-
lite clauses fails at V.

Suppose now that the A-ordering restriction is violated and that therefore
for some i the distinguished literal Z; in the factor B,=L,;V By, associated
with A{ is less than some literal L} € By, l.e., L;<L!. Then, if B,z is the ground
instance of B; which fails at N, we have L <L}, But Lio=A;and Lio= A’
for some j<i, and since it is not true that 4} < 4} by the compatibility of the
enumeration of the A} with <, it follows that Lo <L!¢ does not hold:
consequently it is not true that L,< L.

Hyper-resolution and P;-deduction

Until other more efficient and mechanizable applications arc found for AM-
clash resolution, the two most likely candidites for an cflicient prool strategy
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seem to be set of support and hyper-resolution both supplemented by factor-
ing and A-ordering. Meltzer (1968) has shown that renaming and P,-deduc-
tion can often be used to sharpen a set of support strategy. Luckham
(1968) has given examples of proofs obtained by what is essentially ;-
deduction with renaming, and these proofs are no less efficient than those
obtained with set of support. The version of Py-deduction stated below seems
to us a distinct improvement over the existing strategy, Preliminary results
obtained by programming this strategy in ATLAS-AUTOCODE on the
KDF9 support this view.

Hyper-resolution has the advantage over Pj-deduction that it avoids
generating the (27! resolvents that are produced by resolving in all possible
ways among n-factored satellite clauses and a given factored nucleus clause
(where cach distinguished literal in the nucleus is associated with, only one of
the satellites), It has the disadvantage of not saving the partial hyper-resol-
vents that are generated on the way to producing the maximal hyper-resolvent.
These partiai hyper-resolvents need to be recomputed each time any of them
is completed in a distinct way. In addition, the problem of searching for
hyper-resolvents is more complicated than the corresponding problem for
Py-deduction. The following version of Pj-deduction incorporates the advan-
tages of hyper-resolution over Pj-deduction without suffering from its
disadvantages.

Given a set of clauses § and an A-ordering < and after a renaming (if
desired),

(i) replace each non-positive clause in S by the set of its factors (a
non-positive clause is fzctored as a nucleus clause ). Choose any
total ordering of the distinguished literals in such a factor 4 {the
ordering may be chosen independently for each 4). Let 4=1,,
V...V L,V 4y, where we agree to write negative literals L, in order
and before positive literals and where Ay is the positive subclause
of 4.

(ii} replace each positive clause in S and, later, each positive resclvent
by the set of its factors (positive clauses are factored as satellite
clauses). We may insist that the A-ordering restriction is satisfied
for each such factor.

(iii) resolve positive factors on their distinguished literal against the first
negative literal of non-positive factors. If the resolvent is negative it
is not factored, but a new ordering of its distinguished literals may
be chosen if desired. If a resolvent is positive it is factored as in
(ii) above.

It is cusily seen that every hyper-resolvent is obtainable exactly once by a
sequence of reselutions satisfying restriction (iii). It follows that this infer-
eoee system is complete and thad it satisfies the properties claimed above,

il
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Condition (i) may be improved and replaced by

(i") replace each non-positive clause 4 by its factor 40 =4 ; where 0 is
the identity substitution. Choose any total ordering of the
distinguished literals . . ., etc.

Condition (i) states in effect that non-positive clauses are not factored at
all. The proof that completeness is preserved when (1) is replaced by (i) is
scmewhat complicated and does not lie within the scope of this paper,

Darlington (1969) shows how to exploit renaming, A-ordering, and the
ordering of negative literals in non-positive clauses to avoid performing
most of the reselutions excluded by set of support. He does this for the case
of applications of theorem-proving to large-scale information retrieval sys-
tems where a set of support strategy seems to be highly desirable.

Other applications of semantic trees

The notion of semantic trees employed in this paper can easily be extended
to the predicate calculus with equality. Indeed, Robinson’s (1968) original
formulation of the semantic tree construction was for this logic. None the
less, we have been unable to find any binary semantic trees which yield
reasonably mechanizable inference systems. It is easy to show that assignment
trees (Sibert 1967) can be constructed as semantic clash trees, In this case, by
exploiting the generalized notion of failure, it has been possible to impose
additional restrictions on the generation of unifiable partitions. However, the
basic system of three inference rules corresponding to inference nodes re-
mains essentially that of Sibert’s thesis. We are pessimistic about the possi-
bilities of finding other semantic tree constructions which yield efficient
inference systems for the predicate calculus with equality.

Hayes (1969) has applied the semantic tree method to obtain a simple
mechanizable inference system for J. McCarthy’s three-valued predicate
calculus.
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