
S.

1 Programming J. J. Horning
Languages Editor

Algorithm =
Logic + Control
Robert Kowalski
Imperial College, London

An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be.
used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic
component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.

Key Words and Phrases: control language, logic
programming, nonprocedural language, programming
methodology, program specification, relational data
structures

CR Categories: 3.64, 4.20, 4.30, 5.21, 5.24

Introduction

Predicate logic is a high level, human-oriented lanl
guage for describing problems and problem-solving
methods to computers. In this paper, we are concerned
not with the use of predicate logic as a programming
language in its own right, but with its use as a tool for
the analysis of algorithms. Our main aim will be to study
ways in which logical analysis can contribute to improv-
ing the structure and efficiency of algorithms.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
Eommer&al advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported by a grant from the Science Research- - -
Council.

Author’s address: R.A. Kowalski, Dept. of Computing and Con*
trol, Imperial College of Science and Technology, 180 Queens Gate,
London SW7 2BZ, England.
0 1979 ACM OOOl-0782/79/0700-0424 $00.75.

Communications
of
the ACM

July 1979
Volume 22
Number 7

The notion that computation = controlled deduction
was first proposed by Pay Hayes [19] and more recently
by Bibel [2] and Vaughn-Pratt [31]. A similar thesis that
database systems should be regarded as consisting of a
relational component, which defines the logic of the data,
and a control component, which stores and retrieves it,
has been successfully argued by Codd [10]. Hewitt's
argument [20] for the programming language PLAN-
NER, though generally regarded as an argument against
logic, can also be regarded as an argument for the thesis
that algorithms be regarded as consisting of both logic
and control components. In this paper we shall explore
some of the useful consequences of that thesis.

We represent the analysis of an algorithm A into a
logic component L, which defines the logic of the algo-
rithm, and a control component C, which specifies the
manner in which the definitions are used, symbolically
by the equation

A = L + C .

Algorithms for computing factorials are a simple exam-
ple. The definition of factorial constitutes the logic com-
ponent of the algorithms:

1 is the factor ia l o f 0;
u is the factor ia l o f x + 1 ~ v is the factor ia l o f x a n d u is v t imes

x + l .

The definition can be used bottom-up to derive a se-
quence of assertions about factorial or it can be used top-
down to reduce the problem of computing the factorial
of x + 1 to the subproblems of computing the factorial
of x and multiplying the result by x + 1. Different ways
of using the same definition give rise to different algo-
rithms. Bottom-up use of the definition behaves like
iteration. Top-down use behaves like recursive evalua-
tion.

The manner in which the logic component is used to
solve problems constitutes the control component. As a
first approximation, we restrict the control component C
to general-purpose problem-solving strategies which do
not affect the meaning of the algorithm as it is deter-
mined by the logic component L. Thus different algo-
rithms A1 and Az, obtained by applying different meth-
ods of control Cx and C2 to the same logic definitions L,
are equivalent in the sense that they solve the same
problems with the same results. Symbolically, if A1 =

L + C1 and Az = L + C2, then A1 and Az are equivalent.
The relationship of equivalence between algorithms, be-
cause they have the same logic, is the basis for using
logical analysis to improve the efficiency of an algorithm
by retaining its logic but improving the way it is used. In
particular, replacing bottom-up by top-down control
often (but not always) improves efficiency, whereas re-
placing top-down sequential solution of subproblems by
top-down parallel solution seems never to decrease effi-
ciency.

Both the logic and the control components of an
algorithm affect efficiency. The logic component ex-

425

presses the knowledge which can be used in solving
problems and the control component determines the way
in which that knowledge can be used. The distinction
between logic and control is not wholly unambiguous.
The same algorithm A can often be analyzed in different
ways.

A = L~ + C~.
A = L z + C2.

One analysis might include in the logic component what
another analysis includes in the control component. In
general, we prefer an analysis which places the greatest
burden for achieving efficiency on the control compo-
nent. Such an analysis has two advantages: (1) the logic
component can afford to be a clearer and more obviously
correct statement of the problem and the knowledge
which can be used in its solution and (2) the control
component assumes greater responsibility for the effi-
ciency of the algorithm, which consequently can be more
readily improved by upgrading the efficiency of the
control.

It is the intention that this paper should be self-
contained. The first part, accordingly, introduces the
clausal form of predicate logic and defines the top-down
and bottom-up interpretations of Horn clauses. The body
of the paper investigates the following decomposition of
algorithms into their various components.

//•ithm cLOg ic . / \

Abstract Oefinitk)ns of ~,~Control component
procedure data -structures

def ini t ions represented by / / ~

Direction Strategy for Strategy for Scheme for
(e.g. top-down execution of investigating storing data
or bottorn-up) i)rocedure alternative represented

calls (e.g. procedures relationally
sequential or
parallel)

We study the affect of altering each of the above com-
ponents of an algorithm. The final section of the paper
introduces a graphical notation for expressing, more
formally than in the rest of the paper, certain kinds of
control information. Much of the material in this paper
has been abstracted from lecture notes [23] prepared for
the advanced summer school on foundations of comput-
ing held at the Mathematical Centre in Amsterdam in
May 1974.

Notation

We use the clausal form of predicate logic. Simple
assertions are expressed by clauses:

Father (Zeus, Ares) ~--
Mother (Hera, Ares)
Father (Ares, Harmonia) ~-
Mother (Semele, Dionisius)
Father (Zeus, Dionisius)
etc.

Communications July 1979
of Volume 22
the ACM Number 7

Here Father (x, y) states that x is the father of y and
Mother (x, y) states that x is the mother ofy .

Clauses can also express general conditional propo-
sitions:

Female (x) *- Mother (x, y)
Male (x) ,--- Father (x, y)
Parent (x, y) ~ Mother (x, y)
Parent (x, y) ~-- Father (x, y).

These state that

x is female / fx is mother of y,
x is m a l e / f x is father of y,
x is parent o f y t fx is mother of y, and
x is parent o f y t fx is father ofy.

The arrow ~ is the logical connective "i f" ; "x" and "y"
are variables representing any individuals; "Zeus,"
"Ares," etc. are constant symbols representing particular
individuals; "Father ," "Mother ," "Female ," etc. are
predicate symbols representing relations among individ-
uals. Variables in different clauses are distinct even if
they have the same names.

A clause can have several joint conditions or several
alternative conclusions. Thus

Grandparent (x, y) ,--- Parent (x, z), Parent (z, y)
Male (x), Female (x) ~-- Parent (x, y)
Ancestor (x, y) ,--- Parent (x, y)
Ancestor (x, y) ~ Ancestor (x, z), Ancestor (z, y)

where x, y, and z are variables, state that for all x, y, and
g

x is grandparent o f y / f x is parent of z and z is parent of y;
x is male or x is female t fx is parent of y;
x is ancestor o f y t fx is parent of y; and
x is ancestor o f y t fx is ancestor of z and z is ancestor ofy.

Problems to be solved are represented by clauses
which are denials. The clauses

~-- Grandparent (Zeus, Harmonia)
Ancestor (Zeus, x)

• ,-- Male (x), Ancestor (x, Dionisius)

where x is a variable state that

Zeus is not grandparent of Harmonia,
for no x is Zeus ancestor of x, and
for no x is x male and is x an ancestor of Dionisius.

A typical problem-solver (or theorem-prover) reacts
to a denial by using other clauses to try to refute the
denial. I f the denidl contains variables, then it is possible
to extract from the refutation the values of the variables
which account for the refutation and represent a solution
of the problem to be solved. In this example, different
refutations of the second denial find different x of which
Zeus is the ancestor:

x = Ares, x = Harmonia, x = Dionisius.

More generally, we define clauses and their interpre-
tation as follows. A clause is an expression of the form

B h . . . , B m * - - A I , . . . , A , ~ re, n-->0,

where B~ Bin, A1 An are atoms. The atoms A~,

426

.... An are conditions of the clause and the atoms B1 ,
Bm are alternative conclusions of the clause. I f the clause
contains the variables Xl Xk then interpret it as stating
that

for all xl xk
B1 or ... or Bm if A1 and ... and An.

I f n = 0, then interpret it as stating unconditionally that
for all x~, xk
B~ or ... or Bin.

I f m = 0, then interpret it as stating that

for no x~, ..., xk
A ~ and ... and A n.

I f m = n = O, then interpret the clause as a sentence
which is always false.

An atom (or atomic formula) is an expression of the
form

P (h tn)

where P is an n-place predicate symbol and t~, ..., t,, are
terms. Interpret the a tom as asserting that the relation
called P holds among the individuals called t~ tn.

A term is a variable, a constant symbol, or an expres-
sion of the form

f (h tn)

where f is an n-place function symbol and tl tn are
terms.

The sets of predicate symbols, function symbols, con-
stant symbols, and variables are any mutually disjoint
sets. (By convention, we reserve the lower case letters u,
v, w, x, y, z, with or without adornments, for variables.
The type of other kinds of symbols is identified by the
position they occupy in clauses.)

Clausal form has the same expressive power as the
standard formulation of predicate logic. All variables Xl,
.... Xk which occur in a clause C are implicitly governed
by universal quantifiers Vxa Vxk (for all xl and ...
and for all Xk). Thus C is an abbreviation for

Vx~ ... Vxh C.

The existential quantifier 3 x (there exists an x) is avoided
by using constant symbols or function symbols to name
individuals. For example, the clauses

Father (dad (x), x) ~ Human (x)
Mother (mum (x), x) <-- Human (x)

state that for all humans x, there exists an individual,
called dad (x), who is father of x, and there exists an
individual, called m u m (x), who is mother of x.

Although the clausal form has the same power as the
standard form, it is not always as natural or as easy to
use. The definition of subset is an example: "x is a subset
of y if for all z, z belongs to y if z belongs to x." The
definition in the standard form of logic

x C _ y ~ - - V z [z ¢ y ' ~ - z ¢ x]

_is a direct translation of the English. The clausal form of

Communications July 1979
of Volume 22
the ACM Number 7

the definition can be systematically derived from the
standard form. It can take considerable effort, however,
to recognize the notion of subset in the resulting pair of
clauses:

x C__y, arb (x, fl) ~ x
x CC_y ~-- arb (x , y) ~y .

(Here we have used infix notatio 9 for predicate symbols,
writing xPy instead of P(x, y).)

In this paper, we shall avoid the awkwardness of the
clausal definition of subset by concentrating attention on
clauses which contain at the most one conclusion. Such
clauses, called Horn clauses, can be further classified into
four kinds:

assertions (of the form) B
procedure declarations (of the form) B *--- A1 , An
denials ~-- A~, . . . , A,,

and contradiction ~--

Assertions can be regarded as the special case of proce-
dure declarations where n = 0.

The Horn clause subset of logic resembles conven-
tional programming languages more closely than either
the full clausal or standard forms of logic. For example,
the notion of subset can be defined recursively by means
of Horn clauses:

x C y "~- E m p t y (x)
x _ y ~-- Spli t (x, z, x ') z ~y , x ' _ y .

Here it is intended that the relationship Empty (x) holds
when x is empty, and Split (x, z, x ') holds when x
consists of element z and subset x'. Horn clauses used in
this way, to define relations recursively, are related to
Herbrand-Grdel recursion equations as described by
Kleene [22], elaborated by McCarthy [28], employed for
program transformation by Burstall and Darlington
[13], and augmented with control annotations by
Schwarz [34].

Top-Down and Bottom-Up Interpretations of Horn
Clauses

A typical Horn clause problem has the form of

(1) a set of clauses which defines a problem domain
and

(2) a theorem which consists of (a) hypotheses repre-
sented by assertions A1 ~ An ~-- and (b) a
conclusion which is negated and represented by a
denial ~--B1 Bin.

In top-down problem-solving, we reason backwards
from the conclusion, repeatedly reducing goals to
subgoals until eventually all subgoals are solved directly
by the original assertions. In bottom-up problem-solving,
we reason forwards from the hypotheses, repeatedly
deriving new assertions from old ones until eventually
the original goal is solved directly by derived assertions.

427

The problem of showing that Zeus is a grandparent
of Harmonia can be solved either top-down or bottom-
up. Reasoning bottom-up, we start with the assertions

Father (Zeus, Ares) ~--
Father (Ares, Harmonia) ~--

and use the clause Parent (x, y) ~-- Father (x, y) to derive
new assertions

Parent (Zeus, Ares)
Parent (Ares, Harmonia) ~--

Continuing bottom-up we derive, from the definition of
grandparent, the new assertion

Grandparent (Zeus, Harmonia) *--

which matches the original goal.
Reasoning top-down, we start with the original goal

of showing that Zeus is a grandparent of Harmonia

Grandparent (Zeus, Harmonia)

and use the definition of grandparent to derive two new
subgoals

,--- Parent (Zeus, z), Parent (z, Harmonia)

by denying that any z is both a child of Zeus and a
parent of Harmonia. Continuing top-down and consid-
ering both subgoals (either one at a time or both simul-
taneously), we use the clause Parent (x, y) *--
Father (x, y) to replace the subproblem Parent (Zeus, z)
by Father (Zeus, z) and the subproblem Parent (z, Har-
monia) by Father (z, Harmonia). The newly derived
subproblems are solved compatibly by assertions which
determine "Ares" as the desired value of z.

In both the top-down and bottom-up solutions of the
grandparent problem, we have mentioned the derivation
of only those clauses which directly contribute to the
eventual solution. In addition to the derivation of rele-
vant clauses, it is often unavoidable, during the course of
searching for a solution, to derive assertions or subgoals
which do not contribute to the solution. For example, in
the bottom-up search for a solution to the grandparent
problem, it is possible to derive the irrelevant assertions

Parent (Hera, Ares) ~--
Male (Zeus}

In the top-down search it is possible to replace the
subproblem Parent (Zeus, z) by the irrelevant and un-
solvable subproblem Mother (Zeus, z).

There are both proof procedures which understand
logic top-down (e.g. model elimination [17], SL-resolu-
tion [20], and interconnectivity graphs [35]) as well as
ones which understand logic bottom-up (notably hyper-
resolution [35]). These proof procedures operate with the
clausal form of predicate logic and deal with both Horn
clauses and non-Horn clauses. Among clausal proof
procedures, the connection graph procedure [25] is able
to mix top-down and bottom-up reasoning. Among non-
clausal proof procedures, Gentzen systems [1] and Bled-
soe's related natural deduction systems [5] provide facil-
ities for mixing top-down and bottom-up reasoning.

Communications July 1979
of Volume 22
the ACM Number 7

The terminology "top-down" and "bottom-up" ap-
plied to proof procedures derives from our investigation
of the parsing problem formulated in predicate logic [23,
25]. Given a grammar formulated in clausal form, top-
down reasoning behaves as a top-down parsing algo-
rithm and bottom-up reasoning behaves as a bottom-up
algorithm. David Warren (unpublished) has shown how
to define a general proof procedure for Horn clauses,
which when applied to the parsing problem, behaves like
the Earley parsing algorithm [16].

The Procedural Interpretation of Horn Clauses

The procedural interpretation is the top-down inter-
pretation. A clause of the form

B~----A~ A. n>_O

is interpreted as a procedure. The name of the procedure
is the conclusion B which identifies the form of the
problems which the procedure can solve. The body of
the procedure is the set o f procedure calls Ai. A clause of
the form

*--Bl Bm m-->O

consisting entirely of procedure calls (or problems to be
solved) behaves as a goal statement. A procedure

B,---A1 A,

is invoked by a procedure call Bi in the goal statement:

(1) By matching the call Bi with the name B of the
procedure;

(2) By replacing the call Bi with the body of the pro-
cedure obtaining the new goal statement

B1 Bi-l, A1, ..., An, Bi+l ,Bm

and;
(3) By applying the matching substitution 0

(B1 Bi-1, A1 An, Bi+l Bin) O.

(The matching substitution 0 replaces variables by terms
in a manner which makes B and Bi identical: BO = B,O.)
The part of the substitution 0 which affects variables in
the original procedure calls B~ Bm transmits output.

The part which affects variables in the new procedure
calls A1 An transmits input.

For example, ihvoking the grandparent procedure by
the procedure call in

Grandparent (Zeus, Harmonia)

derives the new goal statement

Parent (Zeus, z), Parent (z, Harmonia).

The matching substitution
x = Z e u s

y = Harmonia

transmits input only. Invoking the assertional procedure

Father (Zeus, Ares)

4211

by the first procedure call in the goal statement

~-- Father (Zeus, z), Parent (z, Harmonia)

derives the new goal statement

~-- Parent (Ares, Harmonia).

The matching substitution

z = Ares

transmits output only. In general, however, a single
procedure invocation may transmit both input and out-
put.

The top-down interpretation of Horn clauses differs
in several important respects from procedure invocation
in conventional programming languages:

(1) The body of a procedure is a set rather than a
sequence of procedure calls. This means that pro-
cedure calls can be executed in any sequence or in
parallel.

(2) More than one procedure can have a name which
matches a given procedure call. Finding the "right"
procedure is a search problem which can be solved
by trying the different procedures in sequence, in
parallel, or in other more sophisticated ways.

(3) The input-output arguments of a procedure are not
fixed but depend upon the procedure call. A pro-
cedure which tests that a relationship holds among
given individuals can also be used to f i nd individ-
uals for which the relationship holds.

The Relationship Between Logic and Control

In the preceding sections we considered alternative
top-down and bottom-up control strategies for a fixed
predicate logic representation of a problem-domain. Dif-
ferent control strategies for the same logical representa-
tion generate different behaviors. However, information
about a problem-domain can be represented in logic in
different ways. Alternative representations can have a
more significant effect on the efficiency of an algorithm
than alternative control strategies for the same represen-
tation.

Consider the problem of sorting a list. In one repre-
sentation, we have the definition

sorting x gives y ~---y is a permutation of x, y is ordered.

(Here we have used distributed infix notation for predi-
cate symbols, writing P l x l P z x 2 ... PnX,P,+I instead of
P(x1 Xn) where the Pi (possibly empty) are parts of
P.) As described in [24], different control strategies ap-
plied to the definition generate different behaviors. None
of these behaviors, however, is efficient enough to qualify
as a reasonable sorting algorithm. By contrast, even the
simplest top-down, sequential control behaves efficiently
with the logic of quicksort [17]:

Communications July 1979
of Volume 22
the ACM Number 7

sorting x gives y ~-- x is empty, y is empty
sorting x g ivesy ~-- first element o f x is x~, rest o f x is xe,

parti t ioning x~ by x~ gives u and v,
sorting u gives u',
sorting v gives v',
appending w to u' gives y,
first element of w is xl,
rest of w is v'.

Like the predicates "permutation" and "ordered" before,
the predicates "empty," "first," "rest," "partitioning,"
and "appending" can be defined independently from the
definition of "sorting." (Partitioning x2 by Xl is intended
to give the list u of the elements of x2 which are smaller
than or equal to xl and the list v of the elements of x2
which are greater than xl.)

Our thesis is that, in the systematic development of
well-structured programs by successive refinement, the
logic component needs to be specified before the control
component. The logic component defines the problem-
domain-specific part of an algorithm. It not only deter-
mines the meaning of the algorithm but also influences
the way the algorithm behaves. The control component
specifies the problem-solving strategy. It affects the be-
havior of the algorithm without affecting its meaning.
Thus the efficiency of an algorithm can be improved by
two very different approaches, either by improving the
logic component or by leaving the logic component
unchanged and improving the control over its use.

Bibel [3, 4], Clark, Darlington, Sickel [7, 8, 9], and
Hogger [21] have developed strategies for improving
algorithms by ignoring the control component and using
deduction to derive a new logic component. Their meth-
ods are similar to the ones used for transforming formal
grammars and programs expressed as recursion equa-
tions [13].

In a logic programming system, specification of the
control component is subordinate to specification of the
logic component. The control component can either be
expressed by the programmer in a separate control-spec-
ifying language, or it can be determined by the system
itself. When logic, is used, as in the relational calculus,
for example [11], to specify queries for a database, the
control component is determined entirely by the system.
In general, the higher the level of the programming
language and the less advanced the level of the program-
mer, the more the system needs to assume responsibility
for efficiency and to exercise control over the use of the
information which it is given.

The provision of a separate control-specifying lan-
guage is more likely to appeal to the more advanced
programmer. Greater efficiency can often be achieved
when the programmer is able to communicate control
information to the computer. Such information might
be, for example, that in the relation F(x, y) the value of
y is a function of the argument x. This could be used by
a backtracking interpreter to avoid looking for another
solution to the first goal in the goal statement

• --F(A,y), G(y)

429

when the second goal fails. Another example of such
information might be that one procedure
p e - - Q

is more likely to solve P than another procedure

P e - R .

This kind of information is common in fault diagnosis
where, on the basis of past experience, it might be known
that symptom P is more likely to have been caused by Q
than R.

Notice, in both of these examples, that the control
information is problem-specific. However, if the control
information is correct and the interpreter is correctly
implemented, then the control information should not
affect the meaning of the algorithm as determined by its
logic component.

Data Structures

In a well-structured program it is desirable to separate
data structures from the procedures which interrogate
and manipulate them. Such separation means that the
representation of data structures can be altered without
altering the higher level procedures. Alteration of data
structures is a way of improving algorithms by replacing
an inefficient data structure by a more effective one. In
a large, complex program, the demands for information
made on the data structures are often fully determined
only in the final stages of the program design. By sepa-
rating data structures from procedures, the higher levels
of the program can be written before the data structures
have been finally decided.

The data structures of a program are already included
in the logic component. Lists for example can be repre-
sented by terms, where

nil names for the empty list and
cons (x , y) names the list with first element x and rest which is

another list y.

Thus the term

cons (2, cons (1, cons (3, nil)))

names the three-element list consisting of the individuals
2, 1, 3 in that order.

The data-structure-free definition of quicksort in the
preceding section interacts with the data structure for
lists via the definitions

nil is empty ~--
first element of cons (x, y) is x
rest of cons (x, y) is y

If the predicates "empty," "first," and "rest" are elimi-
nated from the definition of quicksort by a preliminary
bottom-up deduction, then the original data-structure-
free definition can be replaced by a definition which
mixes the data structures with the procedures

Communica t ions July 1979
o f Volume 22
the A C M N u m b e r 7

sorting nil gives nil

sorting cons (x~, x2) g ivesy ~ parti t ioning x2 by x~ gives u and v,
sorting u gives u',
sorting v gives v',

appending to u' the list cons (x~, v') gives
y.

Clark and Tarnlund [6] show how to obtain a more
efficient version of quicksort from the same abstract
definition with a different data structure for lists.

Comparing the original data-structure-free definition
with the new data-structure-dependent one, we notice
another advantage of data-structure-independence: the
fact that, with well-chosen names for the interfacing
procedures, data-structure-independent programs are
virtually self-documenting. For the conventional pro-
gram which mixes procedures and data structures, the
programmer has to provide documentation, external to
the program, which explains the data structures. For the
well-structured, data-independent program, such docu-
mentation is provided by the interfacing procedures and
is part of the program.

Despite the arguments for separating data structures
and procedures, programmers mix them for the sake of
run-time efficiency. One way of reconciling efficiency
with good program structure is to use the macroexpan-
sion facilities provided in some programming languages.
Macroexpansion flattens the hierarchy of procedure calls
before run-time and is the computational analog of the
bottom-up and middle-out reasoning provided by some
theorem-proving systems. Macro-expansion is also a fea-
ture of the program improving transformations devel-
oped by Burstall and Darlington.

Notice how our terminology conflicts with Wirth's
[39]: program = algorithm + data structure. In our
terminology the definition of data structures belongs to
the logic component of algorithms. Even more confus-
ingly, we would like to call the logic component of
algorithms "logic programs." This is because, given a
fixed Horn clause interpreter, the programmer need only
specify the logic component. The interpreter can exercise
its own control over the way in which the information in
the logic component is used. Of course, if the program-
mer knows how the interpreter behaves, then he can
express himself in a manner which is designed to elicit
the behavior he desires.

Top-Down Execution of Procedure Calls

In the simplest top-down execution strategy, proce-
dure calls are executed one at a time in the sequence in
which they are written. Typically an algorithm can be
improved by executing the same procedure calls either
as coroutines or as communicating parallel processes.
The new algorithm

A 2 = L + C2

430

is obtained from the original algorithm

A~ = L + C1

by replacing one control strategy by another leaving the
logic of the algorithm unchanged.

For example, executing procedure calls in sequence,
the procedure

sorting x gives y ~-- y is a permuta t ion of x, y is ordered

first generates permutations of x and then tests whether
they are ordered. Executing procedure calls as corou-
tines, the procedure generates permutations, one element
at a time. Whenever a new element is generated, the
generation of other elements is suspended while it is
determined whether the new element preserves the or-
deredness of the existing partial permutation. This ex-
ample is discussed in more detail elsewhere [24].

Similarly the procedure calls in the body of the
quicksort definition can be executed either in sequence
or as coroutines or parallel processes. Executed in par-
allel, partitioning the rest of x can be initiated as soon as
the first elements of the rest are generated. Sorting the
output, u and v, of the partitioning procedure can begin
and proceed in parallel as soon as the first elements of u
and v are generated. Appending can begin as soon as the
first elements of u', the sorted version of u, are known.

Philippe Roussel [33] has investigated the problem of
showing that two trees have the same lists of leaves:

x and y have the same leaves ~ the leaves of x are z,
the leaves o f y are z',
z and z' are the same

x and x are the same ~--

Executing procedure calls in the sequence in which they
are written, the procedure first constructs the li.st z of
leaves of x, then constructs the list z' of leaves of y, and
finally tests that z and z' are the same. Roussel has
argued that a more sophisticated algorithm is obtained,
without changing the logic of the algorithm, by executing
the same procedure calls as communicating parallel pro-
cesses. When one process finds a leaf, it suspends activity
and waits until the other process finds a leaf. A third
process then tests whether the two leaves are identical. If
the leaves are identical, then the first two processes
resume. If the leaves are different, then the entire pro-
cedu~e fails and terminates.

The parallel algorithm is significantly more efficient
than the simple sequential one when the two trees have
different lists of leaves. In this case the sequential algo-
rithm recognizes failure only after both lists have been
completely generated. The parallel algorithm recognizes
failure as soon as the two lists begin to differ.

The sequential algorithm, whether it eventually suc-
ceeds or fails, constructs the intermediate lists z and z'
which are no longer needed when the procedure termi-
nates. In contrast, the parallel algorithm can be imple-
mented in such a way that it compares the two lists z
and z', one element at a time, without constructing and

Communica t ions July 1979
of Volume 22
the A C M N u m b e r 7

saving the initial lists of those elements already compared
and found to be identical.

In a high level programming language like SIMULA
it is possible to write both the usual sequential algorithms
and also coroutining ones in which the programmer
controls when coroutines are suspended and resumed.
But, as in other conventional programming languages,
logic and control are inextricably intertwined in the
program text. It is not possible to change the control
strategy of an algorithm without rewriting the program
entirely.

The arguments for separating logic and control are
like the ones for separating procedures and data struc-
tures. When procedures are separated from data struc-
tures, it is possible to distinguish (in the procedures)
what functions the data structures fulfill from the manner
in which the data structures fulfill them. When logic is
separated from control, it is possible to distinguish (in
the logic) what the program does from how the program
does it (in the control). In both cases it is more obvious
what the program does, and therefore it is easier to
determine whether it correctly does what it is intended
to do.

The work of Clark and Tarnlund [6] (on the correct-
ness of sorting algorithms) and the unpublished work of
Warren and Kowalski (on the correctness of plan-for-
mation algorithms) supports the thesis that correctness
proofs are simplified when they deal only with the logic
component and ignore the control component of algo-
rithms. Similarly, ignoring control simplifies the deriva-
tion of programs from specifications [3, 4, 7, 8, 9, 21].

Top-Down vs. Bottom-Up Execution

Recursive definitions are common in mathematics
where they are more likely to be understood bottom-up
rather than top-down. Consider, for example, the defi-
nition of factorial

The factor ia l o f 0 is 1 ~--
The factor ia l o f x is u <--y plus 1 is x,

the factor ia l o f y is v,
x t imes v is u.

The mathematician is likely to understand such a defi-
nition bottom-up, generating the sequence of assertions

The factor ia l o f 0 is 1 <---
The factor ia l o f 1 is 1 <--
The factor ia l o f 2 is 2 <--
The factor ia l o f 3 is 6 <--
etc.

Conventional programming language implementations
understand recursions top-down. Programmers, accord-
ingly, tend to identify recursive definitions with top-
down execution.

An interesting exception to the rule that recursive
definitions are more efficiently executed top-down than
bottom-up is the definition ofa Fibonacci number, which

431

is both more intelligible and efficient when interpreted
bottom-up:

the 0 - t h F ibonacc i n u m b e r is 1 ~--
the l - t h F ibonacc i n u m b e r is 1
the u + 2 - th F ibonacc i n u m b e r is x

the u + l - t h F ibonacc i n u m b e r is y,
the u - t h F ibonacc i n u m b e r is z,
y plus z is x.

(Here the terms u + 2 and u + 1 are expressions to be
evaluated rather than terms representing data structures.
This notation is an abbreviation for the one which has
explicit procedure calls in the body to evaluate u + 2
and u + 1.)

Interpreted top-down, finding the u + l - th Fibonacci
number reintroduces the subproblem of finding the u-th
Fibonacci number. The top-down computation is a tree
whose nodes are procedure calls, the number of which is
an exponential function of u. Interpreting the same
definition bottom-up generates the sequence of assertions

the 0 - t h F ibonacc i n u m b e r is 1 ~--
the l - t h F ibonacc i n u m b e r is 1
the 2 - th F ibonacc i n u m b e r is 2 ~--
the 3 - th F ibonacc i n u m b e r is 3 ~--
etc.

The number of computation steps is a linear function of
l/.

In this example, bottom-up execution is also less
space-consuming than top-down execution. Top-down
execution uses space which is proportional to u, whereas
bottom-up execution needs to store only two assertions
and can use a small constant amount of storage. That
only two assertions need to be stored during bottom-up
execution is a consequence of the deletion rules for the
connection graph proof procedure [25]. As Bibel ob-
serves, the greater efficiency of bottom-up execution
disappears if similar procedure calls are executed top-
down only once. This strategy is, in fact, an application
of Warren's generalization of the Earley parsing algo-
rithm.

Strategies for Investigating Alternative Procedures

When more than one procedure has a conclusion
which matches a given procedure call, the logic compo-
nent does not determine the manner in which the alter-
native procedures are investigated. Sequential explora-
tion of alternatives gives rise to iterative algorithms.

Although in theory all iterations can be replaced by
top-down execution of recursive definitions, in practice
some iterations might better be thought of as bottom-up
execution of recursive definitions (as in the definition of
factorial). Other iterations can better be regarded as
controlling a sequential search among alternatives.

Assume, for example, that we are given data about
individuals in the parenthood relationship:

C o m m u n i c a t i o n s Ju ly 1979
of V o l u m e 22
the A C M N u m b e r 7

Parent (Zeus, Ares)
Parent (Hera, Ares) ~-
Parent (Ares, Harmonia) ~--
Parent (Semele, Dionisius) ~-
Parent (Zeus, Dionisius)
etc.

Suppose that the problem is to find a grandchild of Zeus

,--- Grandparent (Zeus, u)

using the definition of grandparent. In a conventional
programming language, the parenthood relationship
might be stored in a two-dimensional array. A general
procedure for finding grandchildren (given grandpar-
ents) might involve two iterative loops, one nested inside
the other, with a jump out when a solution has been
found. Similar behavior is obtained by interpreting the
grandparent procedure top-down, executing procedure
calls one at a time, in the sequence in which they are
written, trying alternative procedures (assertions in this
case) one at a time in the order in which they are written.
The logical analysis of the conventional iterative algo-
rithm does not concern recursion but involves sequential
search through a space of alternatives. The sequential
search strategy is identical to the backtracking strategy
for executing nondeterministic programs [18].

Representation of data by means of clauses, as in the
family relationships example, rather than by means of
terms, is similar to the relational model of databases
[10]. In both cases data is regarded as relationships
among individuals. When data is represented by conven-
tional data structures (terms), the programmer needs to
specify in the logic component of programs and queries
both how data is stored and how it is retrieved. When
data is represented relationally (by clauses), the program-
mer needs only to specify data in the logic component;
the control component manages both storage and re-
trieval.

The desirability of separating logic and control is
now generally accepted in the field of databases. An
important advantage is that storage and retrieval schemes
can be changed and improved in the control component
without affecting the user's view of the data as defined
by the logic component.

The suitability of a search strategy for retrieving data
depends upon the structure in which the data is stored.
Iteration, regarded as sequential search, is suitable for
data stored sequentially in arrays or linked lists. Other
search strategies are more appropriate for other data
structures, such as hash tables, binary trees, or semantic
networks. McSkimin and Minker [29], for example,
store clauses in a manner which facilitates both parallel
search and finding all answers to a database query.
Deliyanni and Kowalski [15], on the other hand, propose
a path-finding strategy for retrieving data stored in se-
mantic networks.

Representation of data by means of terms is a com-
mon feature of Horn clause programs written in
PROLOG [12, 33, 38]. Tiirnlund [36], in particular, has
investigated the use of terms as data structures in Horn

432

clause programs. Several PROLOG programs employ a
relational representation of data. Notable among these
are Warren's [37] for plan-formation and those for drug
analysis written in the Ministry of Heavy Industry in
Budapest [14].

Two Analyses of Path-Finding Algorithms

The same algorithm A can often be analyzed in
different ways:

A = L I + C I = L 2 + 6"2.

Some of the behavior determined by the control com-
ponent C1 in one analysis might be determined by the
logic component L2 in another analysis. This has signif-
icance for understanding the relationship between pro-
gramming style and execution facilities. In the short term
sophisticated behavior can be obtained by employing
simple execution strategies and by writing complicated
programs. In the longer term the same behavior may be
obtained from simpler programs by using more sophis-
ticated execution strategies.

The path-finding problem illustrates a situation in
which the same algorithm can be analyzed in different
ways. Consider the problem of finding a path from A to
Z in the following directed graph.

D

r V

In one analysis, we employ a predicate G o (x) which
states that it is possible to go to x. The problem of going
from A to Z is then represented by two clauses. One
asserts that it is possible to go to A. The other denies that
it is possible to go to Z. The arc directed from A to B is
represented by a clause which states that it is possible to
go to B if it is possible to go to A:

Go (.4) ,-- ~ Go (Z)
Go (B) ~-- Go (A) Go (Z) <-- Go (X)
Go (C) ~-- Go (.4) Go (Z) ,--- Go (Y)
Go (D) ~ Go (B) Go (Y) <-- Go (U)
Go (E) <-- Go (B) Go (Y) ~-- Go (V)
Go (X) ",- Go (E) etc.

Different control strategies determine different path-
finding algorithms. Forward search from the initial node
A is bottom-up reasoning from the initial assertion
G o (A) ~-- . Backward search from the goal node Z is
top-down reasoning from the initial goal statement
*-- G o (Z) . Bidirectional search from both the initial
node and the goal node is the combination of top-down
and bottom-up reasoning. Whether the path-finding al-
gorithm investigates one path at a time (depth-first) or
develops all paths simultaneously (breadth-first) is a

Communica t ions July 1979
of Volume 22
the ACM Number 7

matter of the search strategy used to investigate alter-
natives.

In the second analysis, we employ a predicate
Go* (x, y) which states that it is possible to go from x to
y. In addition to the assertions which describe the graph
and the goal statement which describes the problem,
there is a single clause which defines the logic of the
path-finding algorithms:

<--Go* (A, Z)
Go* (A, B) <-- GO* (X, Z) <--
Go* (A, C) *-- Go* (Y, Z) ~-
Go* (B, D) <--- Go* (U, Y) <'-
Go* (B, E) <-- Go* (V, Y) <-

Go* (E, X) <---- etc.

Go* (x, y) <'- Go* (x, z), GO* (z, y)

Here both forward search from the initial node A
and backward search from the goal node Z are top-down
reasoning from the initial goal statement <-- Go* (A, Z) .
The difference between forward and backward search is
the difference in the choice of subproblems in the body
of the path-finding procedure. Solving Go* (x, z) before
Go* (z, y) is forward search, and solving Go* (z, y) before
Go* (x, z) is backward search. Coroutining between the
two subproblems is bidirectional search. Bottom-up rea-
soning from the assertions which define the graph gen-
erates the transitive closure, effectively adding a new arc
to the graph directed from node x to node y, whenever
there is a path from x to y.

Many problem domains have in common with path-
finding that an initial state is given and the goal is to
achieve some final state. The two representations of the
path-finding problem exemplify alternative representa-
tions which apply more generally in other problem do-
mains. Warren's plan-formation program [37], for ex-
ample, is of the type which contains both the given and
the goal state as different arguments of a single predicate.
It runs efficiently with the sequential execution facilities
provided by PROLOG. The alternative formulation,
which employs a predicate having one state as argument,
is easier to understand but more difficult to execute
efficiently.

Even the definition of factorial can be represented in
two ways. The formulation discussed earlier corresponds
to the one-place predicate representation of path-finding.
The formulation here corresponds to the two-place pred-
icate representation. Read

F(x ,y , u, v)

as stating that

the factorial of x is y
given that the factorial of u is v.
F(x,y, x,y) <--
F (x, y, u, v) <-- u plus 1 is u', u' times v is v', F (x, y, u', v').

To find the factorial of an integer represented by a term
t, a single goal statement incorporates both the goal and
the basis of the recursion
,---F(t,y,O, 1).

The new formulation of factorial executed in a simple

433

top-down sequential manner behaves in the same way
as the original formulation executed in a mixed top-
down, bottom-up fashion.

A Notation for Expressing Control Information
The distinction between top-down and bottom-up ex-

ecution can be expressed in a graphical notation which
uses arrows to indicate the flow of control. The same
notation can be used to represent different combinations
of top-down and bottom-up execution. The notation does
not, however, aim to provide a complete language for
expressing useful control information.

Arrows are attached to atoms in clauses to indicate the
direction of transmission of processing activity from
clause to clause. For every pair of matching atoms in the
initial set of clauses (one atom in the conclusion of a
clause and the other among the conditions of a clause),
there is an arrow directed from one atom to the other.

For top-down execution, arrows are directed from
conditions to conclusions. For the grandparent problem,
we have the graph:

<- Grandparent (Zeus,Harmonia)

Grandporent (x , y) Parent (x , z) , Parent (z ,y)

Parent (x , y) ~- Father (x ,y) Parent (x , y) ~- Mother (x , y)

Father (Zeus, Ares) <-- Father (Ar~s,Harmonia} ~- Mother (Hera,Ares) <-

Processing activity starts with the initial goal statement.
It transmits activity to the body of the grandparent
procedure, whose procedure calls, in turn, activate the
parenthood definitions. The database of assertions pas-
sively accepts processing activity without transmitting it
to other clauses.

For bottom-up execution, arrows are directed from
conclusions to conditions:

4- Grandparent (Zeus,Harmonia)

Grandpo~nt (x , y) ~- PQrent (x , z) , Parent (z , y)

Purent (x , y) 4 - Father (x , y) Purent (x ,y) ~" Mother (x ,y)

. . . .

Father (7-eus.Ar~s) ~- leather (Ares,Hormooia) ~- Moth~" (Ftera.Ares) ~-

Communications July 1979
of Volume 22
the ACM Number 7

Processing activity originates with the database of initial
assertions. They transmit activity to the parenthood def-
initions, which, in turn, activate the grandparent defini-
tion. Processing terminates when it reaches all the con-
ditions in the passive initial goal statement.

The grandparent definition can be used in a combi-
nation of top-down and bottom-up methods. Using num-
bers to indicate sequencing, we can represent different
combinations of top-down and bottom-up execution. For
simplicity we only show the control notation associated
with the grandparent definition. The combination of
logic and control indicated by

3

Grandparent (x, y) ~ Parent (x, z), Parent (z, y)

1 2

represents the algorithm which

(l) waits until x is asserted to be parent of z, then
(2) finds a child y of z, and finally
(3) asserts that x is grandparent ofy.

The combination indicated by

2

Grandparent (x, y) ~-- Parent (x, z), Parent (z, y)

1 3

represents the algorithm which

(1) waits until x is asserted to be parent of z, then
(2) waits until it is given the problem of showing that

x is grandparent of y,
(3) which it then attempts to solve by showing that z is

parent ofy.

The algorithm represented by

1
IL

Grandparent (x, y) ~ Parent (x, z), Parent (z, y)

2 3

(1) responds to the problem of showing that x is grand-
parent of y,

(2) by waiting until x is asserted to be parent of z, and
then

(3) attempting to show that z is parent ofy.

Using the arrow notation, we can be more precise
than before about the bottom-up execution of the recur-
sive definition of Fibonacci number. The bottom-up
execution referred to previously is, in fact, a mixture of
bottom-up and top-down execution:

4

the u + 2 Fib is x ~-- the u + 1 Fib is y, the u Fib is z, y plus z is x.

2 1 3

434

Arrow notation can also be used to give a procedural
interpretation of non-Horn clauses. The definition of
subset, for example, "x is a subset of y if, for all z, if z
belongs to x, then z belongs to y," gives rise to a
procedure which shows that x is a subset o fy by showing
that every member of x is a member ofy. It does this by
asserting that some individual belongs to x and by
attempting to show that the same individual belongs to
y. The name of the individual must be different from the
name of any individual mentioned elsewhere, and it
must depend upon x and y (being different for different
x and y). In clausal notation with arrows to indicate
control, the definition of subset becomes

1 2

x is a subset of y, arb (x, y) belongs to x ~-

x is a subset o f y ~ arb (x, y) belongs to y

n
1 2

Given the goal of showing that x is a subset of y, the first
clause asserts that the individual named arb (x,y) belongs
to x and the second clause generates the goal of showing
that arb (x, y) belongs to y.

The grandparent definition illustrates the inadequacy
of the arrow notation for expressing certain kinds of
control information. Suppose that the grandparent defi-
nition is to be used entirely top-down.

Grandparent (x, y) ~ Parent (x, z), Parent (z, y).

The effective sequencing of procedure calls in the body
of the procedure depends upon the parameters of the
activating procedure call:

(1) If the problem is to find a grandchild y of a given
x, then it is more effective (i) first to find a child z
of x; (ii) and then to find a child y of z.

(2) If the problem is to find a grandparent x of a given
y, then it is better (i) first to find a parent z of y; (ii)
and then to find a parent x of z.

Such sequencing of procedure calls depending on the
pattern of input and output cannot be expressed in the
arrow notation.

In relational database query languages, input-sensi-
tive sequencing of procedure calls needs to be determined
by the data retrieval system rather than by the user.
Consider, for example, a database which defines the
following relations:

Supplier (x, y, z)
Part (x, y, z)
Supply (x, y, z)

supplier number x has name y and status z,
part number x has name y and unit cost z,
supplier number x supplies part number y in
quanti ty z.

Given the query

What is the name of suppliers of pens?
Answer (y)

Answer (y) ~-- Supplier (x, y, z), Supply (x, u, v), Part (u, pen, w)

Communicat ions July 1979
of Volume 22
the ACM Number 7

the system needs to determine that, for the sake of
efficiency, the last procedure call should be executed
first; whereas given the query

What is the name of parts supplied by Jones?
• -- Answer (y)
Answer (y) ~ Supplier (x, Jones, z), Supply (x, u, v), Part (u, y, w)

the first procedure call should be executed before the
others.

The arrow notation can be used to control the behav-
ior of a connection graph theorem-prover [12]. The links
of a connection graph are turned into arrows by giving
them a direction. A link may be activated (giving rise to
a resolvent) only if the link is connected to a clause all
of whose links are outgoing. The links of the derived
resolvent inherit the direction of the links from which
they descend in the parent clauses. Connection graphs
controlled in such a manner are similar to Petri nets
[16].

Conclusion

We have argued that conventional algorithms can
usefully be regarded as consisting of two components:

(1) a logic component which specifies what is to be
done and

(2) a control component which determines how it is to
be done.

The efficiency of an algorithm can often be improved
by improving the efficiency of the control component
without changing the logic and therefore without chang-
ing the meaning of the algorithm.

The same algorithm can often be formulated in dif-
ferent ways. One formulation might incorporate a clear
statement, in the logic component, of the knowledge to
be used in solving the problem and achieve efficiency by
employing sophisticated problem-solving strategies in
the control component. Another formulation might pro-
duce the same behavior by complicating the logic com-
ponent and employing a simple problem-solving strat-
egy.

Although the trend in databases is towards the sep-
aration of logic and control, programming languages
today do not distinguish between them. The programmer
specifies both logic and control in a single language
while the execution mechanism exercises only the most
rudimentary problem-solving capabilities. Computer
programs will be more often correct, more easily im-
proved, and more readily adapted to new problems when
programming languages separate logic and control, and
when execution mechanisms provide more powerful
problem-solving facilities of the kind provided by intel-
ligent theorem-proving systems.

Acknowledgments. The author has benefited from
valuable discussions with K. Clark, A. Colmerauer,
M. van Emden, P. Hayes, P. Roussel, S. T~irnlund, and
D. Warren. Special thanks are due to W. Bibel, K. Clark,

435

M. van Emden, P. Hayes, and D. Warren for their
helpful comments on earlier drafts of this paper. This
research was supported by a grant from the Science
Research Council. The final draft of this paper was
completed during a visiting professorship held in the
School of Computer and Information Science at the
University of Syracuse.

Received December 1976; revised February 1978

References
1. Bibel, W., and Schreiber, J. Proof procedures in a Gentzen-like
system of first-order logic. Proc. Int. Comptng. Symp., North-
Holland Pub. Co., Amsterdam, 1975, pp. 205-212.
2. Bibel, W. Programmieren in der Sprache der Pr~idikatenlogik.
Eingereicht als Habibitationsarbeit. Fachbereich Mathematik, Techn.
Miinchen, Jan. 1975. Shorter versions published as: Pr~idikatives
Programmieren. Lecture Notes in Computer Science, 33, GI-2.
Fachtagung fiber Automatentheorie und formale Sprachen, Springer-
Verlag, Berlin, Heidelberg, New York, 1975, pp. 274-283. And as:
Predicative Programming. S6minaires IRIA, th6orie des algorithms,
des languages et de la programmation 1975-1976, IRIA,
Roquencourt, France, 1977.
3. Bibel, W. Syntheses of strategic definitions and their control.
Bericht Nr. 7610, Abt. Mathem., Techn. Miinchen, 1976.
4. Bibel, W. A uniform approach to programming. Bericht Nr.
7633, Abtl. Mathem., Techn. MiJnchen, 1976.
5. Bledsoe, W.W., and Bruell, P. A man-machine theorem-proving
system. Artif. Intell. 5 (Spring 1974), 51-72.
6. Clark, K.L., and T~irnlund, S.A. A first order theory of data and
programs. Information Processing 77, North-Holland Pub. Co.,
Amsterdam, 1977, pp. 939-944.
7. Clark, K., and Sickel, S. Predicate logic: A calculus for the
formal derivation of programs. Proc. Int. Joint Conf. Artif. Intell.,
1977.
8. Clark, K. The synthesis and verification of logic programs. Res.
Rep., Dept. Comptng. and Control, Imperial College, London, 1977.
9. Clark, K., and Darlington, J. Algorithm analysis through
synthesis. Res. Rep., Dept. Comptng. and Control, Imperial College,
London, Oct. 1977.
I0. Codd, E.F. A relational model for large shared databases.
Comm. ACM 13, 6 (June 1970), 377-387.
1 I. Codd, E.F. Relational completeness of data base sublanguages.
In Data Base Systems, R. Rustin, Ed., Prentice-Hall, Englewood
Cliffs, N.J., 1972.
12. Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. Un
systeme de communication homme-machine en francais. Rapport
preliminaire, Groupe de Res. en Intell. Artif., U. d'Aix-Marseille,
Luminy, 1972.
13. Darlington, J., and Burstall, R.M. A system which automatically
improves programs. Proc. of Third Int. Joint Conf. Artif. Intell.,
S.R.I., Menlo Park, Calif., 1973, pp. 437-542.
14. Darvas, F., Futo, I., and Szeredi, P. Logic based program for
predicting drug interactions. To appear in Int. J. Biomedical
Computing.
15. Deliyanni, A., and Kowalski, R.A. Logic and semantic networks.
Comm. ACM 22, 3 (March 1979), 184-192.
16. Earley, J. An efficient context-free parsing algorithm. Comm.
ACM 13, 2 (Feb. 1970), 94-102.
17. van Emden, M.H. Programming in resolution logic. To appear in
Machine Representations of Knowledge published as Machine
Intelligence 8, E.W. Elcock and D. Michie, Eds., Ellis Horwood and
John Wylie.
18. Floyd, R.W. Non-deterministic algorithms. J. ACM 14, 4 (Oct.
1967), 636-644.
19. Hayes, P.J. Computation and deduction. Proc. 2nd MFCS
Symp., Czechoslovak Acad. of Sciences, 1973, pp. 105-118.
20. Hewitt, C. Planner: A language for proving theorems in robots.
Proc. of Int. Joint Conf. Artif. Intell., Washington, D.C., 1969, pp.
295-301.
21. Hogger, C. Deductive synthesis of logic programs. Res. Rep.,
Dept. Comptng. and Control, Imperial College, London, 1977.
22. Kleene, S.C. Introduction to Metamathematics. Van Nostrand,
New York, 1952.

Communications July 1979
of Volume 22
the ACM Number 7

23. K o w a l s k i , R .A. L o g i c for p r o b l e m - s o l v i n g . M e m o No. 75, Dept .
C o m p u t . Logic , U. o f E d i n b u r g h , 1974.
24. K o w a l s k i , R .A. P red i ca t e logic as p r o g r a m m i n g l a n g u a g e .
Information Processing 74, N o r t h - H o l l a n d Pub . Co. , A m s t e r d a m ,
1974, pp. 569-574 .
25. K o w a l s k i , R .A . A p r o o f p r o c e d u r e us ing c o n n e c t i o n g r a p h s .
J. A C M 22, 4 (Oct . 1974), 572-95 .
26. K o w a l s k i , R.A. , a n d K u e h n e r , D. L i n e a r r e so lu t ion wi th se lect ion
func t ion . Artif. IntelL 2 (1971), 227-260 .
27. L o v e l a n d , D . W . A s impl i f i ed f o r m a t for the m o d e l - e l i m i n a t i o n
t h e o r e m - p r o v i n g p rocedu re . J. A C M 16, 3 (Ju ly 1969), 349-363 .
28. M a c C a r t h y , J. A basis fo r a m a t h e m a t i c a l t h e o r y o f
c o m p u t a t i o n . In Computer Programming and Formal Systems, P.
Bra t fo r t a n d D. H i r s c h b e r g , Eds. , N o r t h - H o l l a n d Pub . Co. ,
A m s t e r d a m , 1967.
29. M c S k i m i n , J .R. , a n d M i n k e r , J. T h e use o f a s e m a n t i c n e t w o r k in
a deduc t ive q u e s t i o n - a n s w e r i n g system. Proc. Int. Jo in t Conf . Art i f .
lntel l . , 1977, pp. 50-58 .
30. Petri , C .A. G r u n d s a t z l i c h e s zu r B e s c h r e i b u n g d i sk re te r P r o z e s s e
3. Co l loq . u b e r A u t o m a t h e n t h e o r i e , B i r k h a u s e r Ver lag , Basel,
Swi t ze r l and , 1967.
31. Prat t , V.R. T h e c o m p e t e n c e / p e r f o r m a n c e d i c h o t o m y in
p r o g r a m m i n g . Proc. F o u r t h A C M S I G A C T / S I G P L A N S y m p . o n

Pr inc ip les o f P r o g r a m m i n g L a n g u a g e s , S a n t a M o n i c a , Calif . , J an .
1977, p p 194-200.
32. R o b i n s o n , J .A. A u t o m a t i c d e d u c t i o n w i th h y p e r - r e s o l u t i o n . Int.
J. Comput. Math. 1 (1965), 227-34 .
33. Rousse l , P. M a n u a l de r e fe rence et d 'U t i l i s a t ion . G r o u p e d ' In te l l .
Art i f . , U E R , M a r s e i l l e - L u m i n y , F r a n c e , 1975.
34. S c h w a r z , J. U s i n g a n n o t a t i o n s to m a k e r ecu r s ion e q u a t i o n s
behave . Res. M e m o , Dept . Artif . Intell . , U. o f E d i n b u r g h , 1977.
35. Sickel, S. A sea rch t e c h n i q u e for c lause i n t e r connec t i v i t y g r aphs .
I E E E Trans. Comptrs. (Spec ia l Issue o n A u t o m a t i c T h e o r e m
Prov ing) , Aug . 1976.
36. T~irnlund, S.A. A n in t e rp re t e r fo r the p r o g r a m m i n g l a n g u a g e
p r e d i c a t e logic. Proc. Int . Jo in t Conf . Art i f . Intell . , Tiblisi , 1975, pp.
601 -608 .
37. W a r r e n , D. A sys tem for g e n e r a t i n g p lans . M e m o No. 76, Dept .
C o m p u t . Logic , U. o f E d i n b u r g h , 1974.
38. W a r r e n , D., Pere i ra , L .M. , a n d Pere i ra , F. P R O L O G - - T h e
l a n g u a g e a n d its i m p l e m e n t a t i o n c o m p a r e d wi th LISP. Proc. S y m p .
o n Art i f . Intell . a n d P r o g r a m m i n g L a n g u a g e s ; S I G P L A N Not i ces
(A C M) 12, 8; S I G A R T News le t t e r s (A C M) 64 (Aug . 1977), pp. 109-
115
39. Wir th , N. Algori thms + Data Structures = Programs. Pren t i ce -
Hal l , E n g l e w o o d Cliffs, N.J . , 1976.

Professional Activities:
Calendar of Events

ACM's calendar policy is to list open com-
puter science meetings that are held on a not-for-
profit basis. Not included in the calendar are edu-
cational seminars, institutes, and courses. Sub-
mittals should be substantiated with name of the
sponsoring organization, fee schedule, and chair-
man ' s name and full address.

One telephone number contact for those in-
terested in attending a meeting will be given when
a number is specified for this purpose.

All requests for ACM sponsorship or coop-
eration should be addressed to Chairman, Con-
ferences and Symposia Committee, Seymour J.
Wolfson. 643 MacKenzie Hall, Wayne State Uni-
versity, Detroit, MI 48202, with a copy to Louis
Flora, Conference Coordinator , ACM Head-
quarters, 1133 Avenue of the Americas, New York,
NY 10036; 212 265-6300. Fo r European events, a
copy of the request should also be sent to the
European Representative. Technical Meeting Re-
quest Forms for this purpose can be obtained
from ACM Headquar ters or f rom the European
Regional Representative. Lead time should include
2 months (3 months if for Europe) for processing
of the request, plus the necessary months (mini-
mum 3) for any publicity to appear in Communi-
cations.

• This symbol indicates that the Conferences
and Symposia Committee has given its approval
for ACM sponsorship or cooperation.
In this issue the calendar is given in its entirety.
New Listings are shown ~rst; they will appear
next month as Previous Listings.

NEW LISTINGS
6-8 August 1979
Seventh Conference on Electronic Compu-

tation, Washington University, St. Louis, Mo.
Sponsor: ASCE, Washington University. Contact:
C. Wayne Martin, 212 Bancroft Hall, University
of Nebraska, Lincoln, NE 68588.

7-8 August 1979
Workshop on the Use of Computers in

Teaching Statistics, University of New Hamp-
shire, Durham, NH. Sponsor: University of New
Hampshire. Contact: Office of Academic Com-
puting, University of New Hampshire, 304 Mc-
Connell Hall, Durham, N H 03824; 603 862-1990.

12-14 September 1979
7th S I M U L A Users' Conference, Hotel Re-

gina Olga, Cernobbio, Lake Coma, Italy. Spon-
sor: Association of SIMULA Users. Contact:
Eileen Schreiner, Norwegian Computing Center,
Postboks 335. Blindern, Oslo 3, Norway.

8 November 1979
Annual Western Systems Conference, Los

Angeles, Calif. Sponsor: Association for Systems
Management. Gen. chin: Sylvia Twomey, 18700
Yorba Linda Blvd., Apt. 47, Yorba Linda, CA
92686; 714 993-6730.

27-30 November 1979
CAUSE N a t i o n a l C o n f e r e n c e , P l a n n i n g

Higher Education Information Systems for the
1980s, Orlando, Fla. Sponsor: CAUSE. Contact:
CAUSE, 737 Twenty-Ninth St., Boulder, CO
80303; 303 492-7353.

14-15 February 1980
• A C M SIGCSE Technical Symposium on
Computer Science Education, Kansas City, Mo.

Sponsor: ACM SIGCSE. Conf. chm: William C.
Bulgren, Dept. of Computer Science, The Uni-
versity of Kansas, Lawrence, KS 66044; 913 864-
4482.

12-14 March 1980
International Symposium on Distributed

Databases, Versailles, France. Sponsor: IRIA.
Contact: Symposium Secretariat, IRIA, Services
des Relations Ext&ieures, Domaine de Voluceau-
BP 105, 78150 Le Chesnay, France.

19-21 March 1980
• 13th Annual Simulation Symposium, Tampa,
Fla. Sponsors: ACM SIGSIM, IEEE-CS, SCS.
Sylnp. chin: Harvey Fisher, Alean Products, Box
511, Warren, OH 44482; 216 841-3416.

28 March-3 April 1980
Sixth International ALLC Symposium on

Computers in Literary and Linguistic Research,
University of Cambridge, England. Sponsor: As-
sociation for Literary and Linguistic Research.
Contact: J.L. Dawson, Secretary, 1980 Sympo-
sium, Literary and Linguistic Computing Centre,
Sidgcwick Site, Cambridge CB3 9DA, England.

2 May 1980
• Role of Documentation in the Project Life
Cycle, New York City. Sponsors: ACM SIGDOC,
SIGCOSIM. Conf. chm: Belden Menkus, Box 85,
Middleville, NJ 07855; 201 383-3928.

19-22 May 1980
• NCC 80, Anaheim, Calif. Sponsor: AFIPS.
Contact: Jerry Chriffriller, AFIPS, 210 Summit
Ave.. Montvale, NJ 07645; 201 391-9810.

3-6 June 1980
4th International I F A C Conference on In-

strumentation and Automation in the Paper,
Rubber, Plastics, and Polymerization Industries,
Ghent, Belgium. Sponsor: IFAC. Contact: 4th
IFAC-P.R.P. Automation Conference, Jan Van
Rijswijcklaan, 58, B-2000 Antwerp, Belgium.

16-18 June 1980
I F A C / I F I P Symposium on Automation for

Safety in Shipping and Offshore Operations,
Trondheim, Norway. Sponsors: IFAC, IFIP
SINTEF, Norwegian Petroleum Directorate. Con-
tact: SINTEF, Automatic Control Division, N-
7034 Trondheim-NTH, Norway.

PREVIOUS LISTINGS
15-20 July 1979
International Users' Conference, Cambridge,

Mass. Sponsor: Harvard University Labora tory
for Computer Graphics and Spatial Analysis.
Contact: Kathleen Quigley, Center for Manage-
ment Research (conference coordinators), 850
Boylston St., Chestnut Hill, M A 02167.

16-18 July 1979
1979 Summer Computer Simulation Confer-

ence, Toronto, Ont., Canada . Sponsors: SCS, ISA,
AMS, SHARE. Gen. chin: A.J. Schiewe, c /o The
Aerospace Corp., Box 92957, Los Angeles, CA
90009; 213 648-6120.

16-20 July 1979
Sixth International Colloquium on Auto-

main, Languages, and Programming, Technical
University of Graz, Austria. Sponsor: European
Association for Theoretical Computer Science.
Contact: H. Maurer . Institut flit Informationsver-
arbeitung, Techn. Universit~it Graz. Steyrergasse
17, A-8010-Graz, Austria.

18-20 July 1979
Fifth South African Symposium on Numeri-

cal Mathematics, University of Natal , Durban,
South Africa. Sponsor: University of Natal . Con-
tact: H. Roland Weistroffer, Computer Science

De~t.. University of Natal . King George V Ave-
nue, Durban, 4001, Republic of South Africa.

27-29 July 1979
Seminar on Scientific Go Theory (with Euro-

pean Go Congress 1979) near Bonn, W. Germany.
Contact: Klaus Heine, Kleiststr. 67, 294 Wil-
helmshaven, W. Germany.

6-8 August 1979
1979 Pattern Recognition and Image Proc-

essing Conference, Chicago, IlL Sponsor: 1EEE-
CS. Contact: PRIP79, Box 639, Silver Spring, MD.

6-8 August 1979
Seventh Conference on Electronic Compu-

tation, St. Louis, Mo. Sponsors: ASCE. Washing-
ton University. Contact: C. Wayne Martin, 212
Bancroft Bldg., University of Nebraska, Lincoln,
NE 68588.

6-10 August 1979
• S I G G R A P H 79, Sixth Annual Conference on
Computer Graphics and Interactive Techniques,
Chicago, I11. Sponsor: ACM SIGGRAPH. Conf.
co-chin: Thomas DeFanti . Bruce H. McCormick,
Dept. of Information Engineering, University of
Illinois at Chicago Circle, Box 4348, Chicago, IL
60680; 312 996-2315.

6-10 August 1979
• A C M S I G P L A N Symposium on Compiler
Construction, Brown Palace Hotel, Denver, Colo.
Sponsor: ACM SIGPLAN. Conf. chm: Fran Al-
len, IBM T.J. Watson Research Center, York-
town Heights, NY 10598.

11-12 August 1979
Association for Computational Linguistics

17th Annual Meeting, University of California
(San Diego), La Jolla, Calif. Sponsor: ACL. Con-
tact: Donald E. Walker, A C L See'y-Treas., SRI
International, Menlo Park, CA 94025.

13-15 August 1979
• Conference on Simulation, Measurement,
and Modeling of Computer Systems, Boulder,
Colo. Sponsors: ACM SIGMETRICS, SIGSIM,
NBS. Conf. chin: Paul F. Roth, Nat ional Bureau
of Standards, A-265 Technology Bldg., Washing-
ton. DC 20234.

16-17 August 1979
• SIGCPR 16th Annual Conference on Com-
puter Personnel Research, Princeton, N.J. Spon-
sor: ACM SIGPCR. Conf. chm: T.C. Willoughby,
Management Science. College of Business Ad-
ministration. Ball State University, Muncie, IN
47306; 317 285-1265.

16-18 August 1979
IFAC Symposium on Computer Applications

ill Large Scale Power Systems, Bangalore, India.
Sponsor: International Federat ion of Antonaatic
Control. Contact: Institution of Engineers, 8
Cookhale Road, Calcutta-700020, India.

19-22 August 1979
3rd Rocky Mountain Symposium on Micro-

computers, Pingree Park, Colo. Sponsor: Colorado
State University. Contact: Carolyn Frye, Office
of Conferences and Institutes, Colorado State
University, For t Collins, CO 80523; 303 491-6222.

19-24 August 1979
Seventeenth Annual U R I S A Conference, San

Diego, Calif. Sponsor: Urban and Regional In-
formation Systems Association. Prog. chin: Lee
P. Johnston, URISA Conf. Prog. Chm., 823 Mon-
ticello Drive, Escondido, CA 92025.

20-22 August 1979
Fourth International Conference on Com-

puters and the Humanities, Dar tmouth College,
Hanover. N.H, Sponsors: Dar tmouth College and
the Association for Computers and the Humani-

(Calendar continued on p. 439)

436 C o m m u n i c a t i o n s
o f
the ACM

J u l y 1 9 7 9
V o l u m e 2 2
N u m b e r 7

