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Logic + Control
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An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be.
used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic
component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.
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Introduction

Predicate logic is a high level, human-oriented lanl
guage for describing problems and problem-solving
methods to computers. In this paper, we are concerned
not with the use of predicate logic as a programming
language in its own right, but with its use as a tool for
the analysis of algorithms. Our main aim will be to study
ways in which logical analysis can contribute to improv-
ing the structure and efficiency of algorithms.
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The notion that computation = controlled deduction 
was first proposed by Pay Hayes [19] and more recently 
by Bibel [2] and Vaughn-Pratt [31]. A similar thesis that 
database systems should be regarded as consisting of a 
relational component, which defines the logic of the data, 
and a control component, which stores and retrieves it, 
has been successfully argued by Codd [10]. Hewitt's 
argument [20] for the programming language PLAN- 
NER, though generally regarded as an argument against 
logic, can also be regarded as an argument for the thesis 
that algorithms be regarded as consisting of both logic 
and control components. In this paper we shall explore 
some of the useful consequences of that thesis. 

We represent the analysis of an algorithm A into a 
logic component L, which defines the logic of the algo- 
rithm, and a control component C, which specifies the 
manner in which the definitions are used, symbolically 
by the equation 

A = L + C .  

Algorithms for computing factorials are a simple exam- 
ple. The definition of factorial constitutes the logic com- 
ponent of the algorithms: 

1 is the factor ia l  o f  0; 
u is the factor ia l  o f  x + 1 ~ v is the factor ia l  o f  x a n d  u is v t imes  

x + l .  

The definition can be used bottom-up to derive a se- 
quence of assertions about factorial or it can be used top- 
down to reduce the problem of computing the factorial 
of x + 1 to the subproblems of computing the factorial 
of x and multiplying the result by x + 1. Different ways 
of using the same definition give rise to different algo- 
rithms. Bottom-up use of the definition behaves like 
iteration. Top-down use behaves like recursive evalua- 
tion. 

The manner in which the logic component is used to 
solve problems constitutes the control component. As a 
first approximation, we restrict the control component C 
to general-purpose problem-solving strategies which do 
not affect the meaning of the algorithm as it is deter- 
mined by the logic component L. Thus different algo- 
rithms A1 and Az, obtained by applying different meth- 
ods of  control Cx and C2 to the same logic definitions L, 
are equivalent in the sense that they solve the same 
problems with the same results. Symbolically, if A1 = 

L + C1 and Az = L + C2, then A1 and Az are equivalent. 
The relationship of equivalence between algorithms, be- 
cause they have the same logic, is the basis for using 
logical analysis to improve the efficiency of an algorithm 
by retaining its logic but improving the way it is used. In 
particular, replacing bottom-up by top-down control 
often (but not always) improves efficiency, whereas re- 
placing top-down sequential solution of subproblems by 
top-down parallel solution seems never to decrease effi- 
ciency. 

Both the logic and the control components of an 
algorithm affect efficiency. The logic component ex- 
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presses the knowledge which can be used in solving 
problems and the control component determines the way 
in which that knowledge can be used. The distinction 
between logic and control is not wholly unambiguous. 
The same algorithm A can often be analyzed in different 
ways. 

A = L~ + C~. 
A = L z  + C2. 

One analysis might include in the logic component what 
another analysis includes in the control component. In 
general, we prefer an analysis which places the greatest 
burden for achieving efficiency on the control compo- 
nent. Such an analysis has two advantages: (1) the logic 
component can afford to be a clearer and more obviously 
correct statement of the problem and the knowledge 
which can be used in its solution and (2) the control 
component assumes greater responsibility for the effi- 
ciency of the algorithm, which consequently can be more 
readily improved by upgrading the efficiency of the 
control. 

It is the intention that this paper should be self- 
contained. The first part, accordingly, introduces the 
clausal form of predicate logic and defines the top-down 
and bottom-up interpretations of Horn clauses. The body 
of the paper investigates the following decomposition of 
algorithms into their various components. 

//•ithm cLOg ic . /  \ 

Abstract Oefinitk)ns of ~,~Control component 
procedure data -structures 

def ini t ions represented by / /  ~ 

Direction Strategy for Strategy for Scheme for 
(e.g. top-down execution of investigating storing data 
or bottorn-up) i)rocedure alternative represented 

calls (e.g. procedures relationally 
sequential or 
parallel ) 

We study the affect of altering each of the above com- 
ponents of an algorithm. The final section of the paper 
introduces a graphical notation for expressing, more 
formally than in the rest of the paper, certain kinds of 
control information. Much of the material in this paper 
has been abstracted from lecture notes [23] prepared for 
the advanced summer school on foundations of comput- 
ing held at the Mathematical Centre in Amsterdam in 
May 1974. 

Notation 

We use the clausal form of predicate logic. Simple 
assertions are expressed by clauses: 

Father (Zeus, Ares) ~-- 
Mother (Hera, Ares) 
Father (Ares, Harmonia) ~- 
Mother (Semele, Dionisius) 
Father (Zeus, Dionisius) 
etc. 
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Here Father (x, y) states that x is the father of  y and 
Mother  (x, y) states that x is the mother  ofy .  

Clauses can also express general conditional propo- 
sitions: 

Female (x) *-  Mother (x, y) 
Male (x) ,--- Father (x, y) 
Parent (x, y) ~ Mother (x, y) 
Parent (x, y) ~-- Father (x, y). 

These state that 

x is female / fx  is mother of  y, 
x is m a l e / f x  is father of y, 
x is parent o f y  t fx  is mother of  y, and 
x is parent o f y  t fx  is father ofy.  

The arrow ~ is the logical connective "i f" ;  "x"  and "y"  
are variables representing any individuals; "Zeus," 
"Ares," etc. are constant symbols representing particular 
individuals; "Father ,"  "Mother ,"  "Female ,"  etc. are 
predicate symbols representing relations among individ- 
uals. Variables in different clauses are distinct even if 
they have the same names. 

A clause can have several joint conditions or several 
alternative conclusions. Thus 

Grandparent (x, y) ,--- Parent (x, z), Parent (z, y) 
Male (x), Female (x) ~-- Parent (x, y) 
Ancestor (x, y) ,--- Parent (x, y) 
Ancestor (x, y) ~ Ancestor (x, z), Ancestor (z, y) 

where x, y, and z are variables, state that for all x, y, and 
g 

x is grandparent o f y / f  x is parent of z and  z is parent of  y; 
x is male or x is female t fx  is parent of y;  
x is ancestor o f y  t fx  is parent of  y; and 
x is ancestor o f y  t fx  is ancestor of z and  z is ancestor ofy. 

Problems to be solved are represented by clauses 
which are denials. The clauses 

~-- Grandparent (Zeus, Harmonia) 
Ancestor (Zeus, x) 

• ,-- Male (x), Ancestor (x, Dionisius) 

where x is a variable state that 

Zeus is not grandparent of Harmonia, 
for no x is Zeus ancestor of x, and 
for no x is x male and  is x an ancestor of  Dionisius. 

A typical problem-solver (or theorem-prover) reacts 
to a denial by using other clauses to try to refute the 
denial. I f  the denidl contains variables, then it is possible 
to extract from the refutation the values of  the variables 
which account for the refutation and represent a solution 
of  the problem to be solved. In this example, different 
refutations of  the second denial find different x of  which 
Zeus is the ancestor: 

x = Ares, x = Harmonia, x = Dionisius. 

More generally, we define clauses and their interpre- 
tation as follows. A clause is an expression of  the form 

B h . . . , B m * - - A I , . . . , A , ~  re, n-->0, 

where B~ . . . . .  Bin, A1 . . . . .  An are atoms. The atoms A~, 
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.... An are conditions of  the clause and the atoms B1 .. . .  , 
Bm are alternative conclusions of  the clause. I f  the clause 
contains the variables Xl . . . . .  Xk then interpret it as stating 
that 

for all xl . . . . .  xk 
B1 or ... or Bm if A1 and ... and An. 

I f  n = 0, then interpret it as stating unconditionally that 
for all x~, .... xk 
B~ or ... or Bin. 

I f  m = 0, then interpret it as stating that 

for no x~, ..., xk 
A ~ and ... and A n. 

I f  m = n = O, then interpret the clause as a sentence 
which is always false. 

An atom (or atomic formula) is an expression of  the 
form 

P (h . . . . .  tn) 

where P is an n-place predicate symbol and t~, ..., t,, are 
terms. Interpret the a tom as asserting that the relation 
called P holds among the individuals called t~ . . . . .  tn. 

A term is a variable, a constant symbol, or an expres- 
sion of  the form 

f (h . . . . .  tn) 

where f is an n-place function symbol and tl . . . . .  tn are 
terms. 

The sets of predicate symbols, function symbols, con- 
stant symbols, and variables are any mutually disjoint 
sets. (By convention, we reserve the lower case letters u, 
v, w, x, y, z, with or without adornments,  for variables. 
The type of  other kinds of  symbols is identified by the 
position they occupy in clauses.) 

Clausal form has the same expressive power as the 
standard formulation of  predicate logic. All variables Xl, 
.... Xk which occur in a clause C are implicitly governed 
by universal quantifiers Vxa . . . . .  Vxk (for all xl and ... 
and for all Xk). Thus C is an abbreviation for 

Vx~ ... Vxh C. 

The existential quantifier 3 x  (there exists an x) is avoided 
by using constant symbols or function symbols to name 
individuals. For  example, the clauses 

Father (dad (x), x) ~ Human (x) 
Mother (mum (x), x) <-- Human (x) 

state that for all humans x, there exists an individual, 
called dad (x), who is father of  x, and there exists an 
individual, called m u m  (x), who is mother  of  x. 

Although the clausal form has the same power as the 
standard form, it is not always as natural  or as easy to 
use. The definition of  subset is an example: "x  is a subset 
of  y if  for all z, z belongs to y if  z belongs to x." The 
definition in the standard form of  logic 

x C _ y ~ - - V z [ z ¢ y ' ~ - z ¢ x ]  

_is a direct translation of  the English. The clausal form of  
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the definition can be systematically derived from the 
standard form. It can take considerable effort, however, 
to recognize the notion of subset in the resulting pair of 
clauses: 

x C__y, arb (x, fl) ~ x  
x CC_y ~-- arb ( x , y )  ~y .  

(Here we have used infix notatio 9 for predicate symbols, 
writing xPy instead of P(x, y).) 

In this paper, we shall avoid the awkwardness of the 
clausal definition of subset by concentrating attention on 
clauses which contain at the most one conclusion. Such 
clauses, called Horn clauses, can be further classified into 
four kinds: 

assertions (of  the form) B 
procedure  declarations (of  the form) B *--- A1 .. . .  , An 
denials ~-- A~, . . . ,  A,, 

and  contradiction ~-- 

Assertions can be regarded as the special case of proce- 
dure declarations where n = 0. 

The Horn clause subset of logic resembles conven- 
tional programming languages more closely than either 
the full clausal or standard forms of logic. For example, 
the notion of subset can be defined recursively by means 
of Horn clauses: 

x C y "~- E m p t y  (x) 
x _ y  ~-- Spli t  (x, z, x ' )  z ~y ,  x '  _ y .  

Here it is intended that the relationship Empty (x) holds 
when x is empty, and Split (x, z, x ')  holds when x 
consists of element z and subset x'. Horn clauses used in 
this way, to define relations recursively, are related to 
Herbrand-Grdel recursion equations as described by 
Kleene [22], elaborated by McCarthy [28], employed for 
program transformation by Burstall and Darlington 
[13], and augmented with control annotations by 
Schwarz [34]. 

Top-Down and Bottom-Up Interpretations of Horn 
Clauses 

A typical Horn clause problem has the form of 

(1) a set of clauses which defines a problem domain 
and 

(2) a theorem which consists of (a) hypotheses repre- 
sented by assertions A1 ~ . . . . .  An ~-- and (b) a 
conclusion which is negated and represented by a 
denial ~--B1 . . . . .  Bin. 

In top-down problem-solving, we reason backwards 
from the conclusion, repeatedly reducing goals to 
subgoals until eventually all subgoals are solved directly 
by the original assertions. In bottom-up problem-solving, 
we reason forwards from the hypotheses, repeatedly 
deriving new assertions from old ones until eventually 
the original goal is solved directly by derived assertions. 
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The problem of showing that Zeus is a grandparent 
of Harmonia can be solved either top-down or bottom- 
up. Reasoning bottom-up, we start with the assertions 

Father (Zeus, Ares) ~-- 
Father (Ares, Harmonia) ~-- 

and use the clause Parent (x, y) ~-- Father (x, y) to derive 
new assertions 

Parent (Zeus, Ares) 
Parent (Ares, Harmonia) ~-- 

Continuing bottom-up we derive, from the definition of 
grandparent, the new assertion 

Grandparent (Zeus, Harmonia) *-- 

which matches the original goal. 
Reasoning top-down, we start with the original goal 

of showing that Zeus is a grandparent of Harmonia 

Grandparent (Zeus, Harmonia) 

and use the definition of grandparent to derive two new 
subgoals 

,--- Parent (Zeus, z), Parent (z, Harmonia) 

by denying that any z is both a child of Zeus and a 
parent of Harmonia. Continuing top-down and consid- 
ering both subgoals (either one at a time or both simul- 
taneously), we use the clause Parent (x, y) *-- 
Father (x, y) to replace the subproblem Parent (Zeus, z) 
by Father (Zeus, z) and the subproblem Parent (z, Har- 
monia) by Father (z, Harmonia). The newly derived 
subproblems are solved compatibly by assertions which 
determine "Ares" as the desired value of z. 

In both the top-down and bottom-up solutions of the 
grandparent problem, we have mentioned the derivation 
of only those clauses which directly contribute to the 
eventual solution. In addition to the derivation of rele- 
vant clauses, it is often unavoidable, during the course of 
searching for a solution, to derive assertions or subgoals 
which do not contribute to the solution. For example, in 
the bottom-up search for a solution to the grandparent 
problem, it is possible to derive the irrelevant assertions 

Parent (Hera, Ares) ~-- 
Male (Zeus} 

In the top-down search it is possible to replace the 
subproblem Parent (Zeus, z) by the irrelevant and un- 
solvable subproblem Mother (Zeus, z). 

There are both proof procedures which understand 
logic top-down (e.g. model elimination [17], SL-resolu- 
tion [20], and interconnectivity graphs [35]) as well as 
ones which understand logic bottom-up (notably hyper- 
resolution [35]). These proof procedures operate with the 
clausal form of predicate logic and deal with both Horn 
clauses and non-Horn clauses. Among clausal proof 
procedures, the connection graph procedure [25] is able 
to mix top-down and bottom-up reasoning. Among non- 
clausal proof procedures, Gentzen systems [ 1] and Bled- 
soe's related natural deduction systems [5] provide facil- 
ities for mixing top-down and bottom-up reasoning. 
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The terminology "top-down" and "bottom-up" ap- 
plied to proof procedures derives from our investigation 
of the parsing problem formulated in predicate logic [23, 
25]. Given a grammar formulated in clausal form, top- 
down reasoning behaves as a top-down parsing algo- 
rithm and bottom-up reasoning behaves as a bottom-up 
algorithm. David Warren (unpublished) has shown how 
to define a general proof procedure for Horn clauses, 
which when applied to the parsing problem, behaves like 
the Earley parsing algorithm [16]. 

The Procedural Interpretation of Horn Clauses 

The procedural interpretation is the top-down inter- 
pretation. A clause of the form 

B~----A~ ..... A. n>_O 

is interpreted as a procedure. The name of the procedure 
is the conclusion B which identifies the form of the 
problems which the procedure can solve. The body of 
the procedure is the set o f  procedure calls Ai. A clause of 
the form 

*--Bl ..... Bm m-->O 

consisting entirely of procedure calls (or problems to be 
solved) behaves as a goal statement. A procedure 

B,---A1 ..... A, 

is invoked by a procedure call Bi in the goal statement: 

(1) By matching the call Bi with the name B of the 
procedure; 

(2) By replacing the call Bi with the body of the pro- 
cedure obtaining the new goal statement 

B1 . . . . .  Bi-l, A1, ..., An, Bi+l . . . .  ,Bm 

and; 
(3) By applying the matching substitution 0 

(B1 . . . . .  Bi-1, A1 . . . . .  An, Bi+l . . . . .  Bin) O. 

(The matching substitution 0 replaces variables by terms 
in a manner which makes B and Bi identical: BO = B,O.) 
The part of the substitution 0 which affects variables in 
the original procedure calls B~ . . . . .  Bm transmits output. 

The part which affects variables in the new procedure 
calls A1 . . . . .  An transmits input. 

For example, ihvoking the grandparent procedure by 
the procedure call in 

Grandparent (Zeus, Harmonia) 

derives the new goal statement 

Parent (Zeus, z), Parent (z, Harmonia). 

The matching substitution 
x = Z e u s  

y = Harmonia 

transmits input only. Invoking the assertional procedure 

Father (Zeus, Ares) 
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by the first procedure call in the goal statement 

~-- Father (Zeus, z), Parent (z, Harmonia) 

derives the new goal statement 

~-- Parent (Ares, Harmonia). 

The matching substitution 

z = Ares 

transmits output only. In general, however, a single 
procedure invocation may transmit both input and out- 
put. 

The top-down interpretation of Horn clauses differs 
in several important respects from procedure invocation 
in conventional programming languages: 

(1) The body of a procedure is a set rather than a 
sequence of procedure calls. This means that pro- 
cedure calls can be executed in any sequence or in 
parallel. 

(2) More than one procedure can have a name which 
matches a given procedure call. Finding the "right" 
procedure is a search problem which can be solved 
by trying the different procedures in sequence, in 
parallel, or in other more sophisticated ways. 

(3) The input-output arguments of a procedure are not 
fixed but depend upon the procedure call. A pro- 
cedure which tests that a relationship holds among 
given individuals can also be used to f i nd  individ- 
uals for which the relationship holds. 

The Relationship Between Logic and Control 

In the preceding sections we considered alternative 
top-down and bottom-up control strategies for a fixed 
predicate logic representation of a problem-domain. Dif- 
ferent control strategies for the same logical representa- 
tion generate different behaviors. However, information 
about a problem-domain can be represented in logic in 
different ways. Alternative representations can have a 
more significant effect on the efficiency of an algorithm 
than alternative control strategies for the same represen- 
tation. 

Consider the problem of sorting a list. In one repre- 
sentation, we have the definition 

sorting x gives y ~---y is a permutation of x, y is ordered. 

(Here we have used distributed infix notation for predi- 
cate symbols, writing P l x l P z x 2  ... PnX,P,+I instead of 
P(x1 . . . . .  Xn) where the Pi (possibly empty) are parts of 
P.) As described in [24], different control strategies ap- 
plied to the definition generate different behaviors. None 
of these behaviors, however, is efficient enough to qualify 
as a reasonable sorting algorithm. By contrast, even the 
simplest top-down, sequential control behaves efficiently 
with the logic of  quicksort [17]: 
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sorting x gives y ~-- x is empty,  y is empty  
sorting x g ivesy  ~-- first element o f x  is x~, rest o f x  is xe, 

parti t ioning x~ by x~ gives u and v, 
sorting u gives u',  
sorting v gives v', 
appending  w to u'  gives y, 
first element of  w is xl, 
rest of  w is v'. 

Like the predicates "permutation" and "ordered" before, 
the predicates "empty," "first," "rest," "partitioning," 
and "appending" can be defined independently from the 
definition of "sorting." (Partitioning x2 by Xl is intended 
to give the list u of the elements of x2 which are smaller 
than or equal to xl and the list v of the elements of x2 
which are greater than xl.) 

Our thesis is that, in the systematic development of 
well-structured programs by successive refinement, the 
logic component needs to be specified before the control 
component. The logic component defines the problem- 
domain-specific part of an algorithm. It not only deter- 
mines the meaning of the algorithm but also influences 
the way the algorithm behaves. The control component 
specifies the problem-solving strategy. It affects the be- 
havior of the algorithm without affecting its meaning. 
Thus the efficiency of an algorithm can be improved by 
two very different approaches, either by improving the 
logic component or by leaving the logic component 
unchanged and improving the control over its use. 

Bibel [3, 4], Clark, Darlington, Sickel [7, 8, 9], and 
Hogger [21] have developed strategies for improving 
algorithms by ignoring the control component and using 
deduction to derive a new logic component. Their meth- 
ods are similar to the ones used for transforming formal 
grammars and programs expressed as recursion equa- 
tions [13]. 

In a logic programming system, specification of the 
control component is subordinate to specification of the 
logic component. The control component can either be 
expressed by the programmer in a separate control-spec- 
ifying language, or it can be determined by the system 
itself. When logic, is used, as in the relational calculus, 
for example [11], to specify queries for a database, the 
control component is determined entirely by the system. 
In general, the higher the level of the programming 
language and the less advanced the level of the program- 
mer, the more the system needs to assume responsibility 
for efficiency and to exercise control over the use of the 
information which it is given. 

The provision of a separate control-specifying lan- 
guage is more likely to appeal to the more advanced 
programmer. Greater efficiency can often be achieved 
when the programmer is able to communicate control 
information to the computer. Such information might 
be, for example, that in the relation F(x, y) the value of 
y is a function of the argument x. This could be used by 
a backtracking interpreter to avoid looking for another 
solution to the first goal in the goal statement 

• --F(A,y), G(y) 
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when the second goal fails. Another example of such 
information might be that one procedure 
p e - - Q  

is more likely to solve P than another procedure 

P e - R .  

This kind of information is common in fault diagnosis 
where, on the basis of past experience, it might be known 
that symptom P is more likely to have been caused by Q 
than R. 

Notice, in both of these examples, that the control 
information is problem-specific. However, if the control 
information is correct and the interpreter is correctly 
implemented, then the control information should not 
affect the meaning of the algorithm as determined by its 
logic component. 

Data Structures 

In a well-structured program it is desirable to separate 
data structures from the procedures which interrogate 
and manipulate them. Such separation means that the 
representation of data structures can be altered without 
altering the higher level procedures. Alteration of data 
structures is a way of improving algorithms by replacing 
an inefficient data structure by a more effective one. In 
a large, complex program, the demands for information 
made on the data structures are often fully determined 
only in the final stages of the program design. By sepa- 
rating data structures from procedures, the higher levels 
of the program can be written before the data structures 
have been finally decided. 

The data structures of a program are already included 
in the logic component. Lists for example can be repre- 
sented by terms, where 

nil names  for the empty  list and 
cons ( x , y )  names  the list with first element x and rest which is 

another  list y. 

Thus the term 

cons (2, cons (1, cons (3, nil))) 

names the three-element list consisting of the individuals 
2, 1, 3 in that order. 

The data-structure-free definition of quicksort in the 
preceding section interacts with the data structure for 
lists via the definitions 

nil is empty  ~-- 
first element of  cons (x, y)  is x 
rest of  cons (x, y )  is y 

If the predicates "empty," "first," and "rest" are elimi- 
nated from the definition of quicksort by a preliminary 
bottom-up deduction, then the original data-structure- 
free definition can be replaced by a definition which 
mixes the data structures with the procedures 
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sorting nil gives nil 

sorting cons (x~, x2) g ivesy  ~ parti t ioning x2 by x~ gives u and v, 
sorting u gives u',  
sorting v gives v', 

appending  to u'  the list cons (x~, v') gives 
y. 

Clark and Tarnlund [6] show how to obtain a more 
efficient version of quicksort from the same abstract 
definition with a different data structure for lists. 

Comparing the original data-structure-free definition 
with the new data-structure-dependent one, we notice 
another advantage of data-structure-independence: the 
fact that, with well-chosen names for the interfacing 
procedures, data-structure-independent programs are 
virtually self-documenting. For the conventional pro- 
gram which mixes procedures and data structures, the 
programmer has to provide documentation, external to 
the program, which explains the data structures. For the 
well-structured, data-independent program, such docu- 
mentation is provided by the interfacing procedures and 
is part of the program. 

Despite the arguments for separating data structures 
and procedures, programmers mix them for the sake of 
run-time efficiency. One way of reconciling efficiency 
with good program structure is to use the macroexpan- 
sion facilities provided in some programming languages. 
Macroexpansion flattens the hierarchy of procedure calls 
before run-time and is the computational analog of the 
bottom-up and middle-out reasoning provided by some 
theorem-proving systems. Macro-expansion is also a fea- 
ture of the program improving transformations devel- 
oped by Burstall and Darlington. 

Notice how our terminology conflicts with Wirth's 
[39]: program = algorithm + data structure. In our 
terminology the definition of data structures belongs to 
the logic component of  algorithms. Even more confus- 
ingly, we would like to call the logic component of 
algorithms "logic programs." This is because, given a 
fixed Horn clause interpreter, the programmer need only 
specify the logic component. The interpreter can exercise 
its own control over the way in which the information in 
the logic component is used. Of course, if the program- 
mer knows how the interpreter behaves, then he can 
express himself in a manner which is designed to elicit 
the behavior he desires. 

Top-Down Execution of Procedure Calls 

In the simplest top-down execution strategy, proce- 
dure calls are executed one at a time in the sequence in 
which they are written. Typically an algorithm can be 
improved by executing the same procedure calls either 
as coroutines or as communicating parallel processes. 
The new algorithm 

A 2 =  L + C2 
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is obtained from the original algorithm 

A~ = L +  C1 

by replacing one control strategy by another leaving the 
logic of the algorithm unchanged. 

For example, executing procedure calls in sequence, 
the procedure 

sorting x gives y ~-- y is a permuta t ion  of  x, y is ordered 

first generates permutations of x and then tests whether 
they are ordered. Executing procedure calls as corou- 
tines, the procedure generates permutations, one element 
at a time. Whenever a new element is generated, the 
generation of other elements is suspended while it is 
determined whether the new element preserves the or- 
deredness of the existing partial permutation. This ex- 
ample is discussed in more detail elsewhere [24]. 

Similarly the procedure calls in the body of the 
quicksort definition can be executed either in sequence 
or as coroutines or parallel processes. Executed in par- 
allel, partitioning the rest of x can be initiated as soon as 
the first elements of the rest are generated. Sorting the 
output, u and v, of the partitioning procedure can begin 
and proceed in parallel as soon as the first elements of u 
and v are generated. Appending can begin as soon as the 
first elements of u', the sorted version of u, are known. 

Philippe Roussel [33] has investigated the problem of 
showing that two trees have the same lists of leaves: 

x and y have the same leaves ~ the leaves of  x are z, 
the leaves o f y  are z', 
z and z' are the same 

x and x are the same ~-- 

Executing procedure calls in the sequence in which they 
are written, the procedure first constructs the li.st z of 
leaves of x, then constructs the list z' of leaves of  y, and 
finally tests that z and z' are the same. Roussel has 
argued that a more sophisticated algorithm is obtained, 
without changing the logic of the algorithm, by executing 
the same procedure calls as communicating parallel pro- 
cesses. When one process finds a leaf, it suspends activity 
and waits until the other process finds a leaf. A third 
process then tests whether the two leaves are identical. If 
the leaves are identical, then the first two processes 
resume. If  the leaves are different, then the entire pro- 
cedu~e fails and terminates. 

The parallel algorithm is significantly more efficient 
than the simple sequential one when the two trees have 
different lists of leaves. In this case the sequential algo- 
rithm recognizes failure only after both lists have been 
completely generated. The parallel algorithm recognizes 
failure as soon as the two lists begin to differ. 

The sequential algorithm, whether it eventually suc- 
ceeds or fails, constructs the intermediate lists z and z' 
which are no longer needed when the procedure termi- 
nates. In contrast, the parallel algorithm can be imple- 
mented in such a way that it compares the two lists z 
and z', one element at a time, without constructing and 
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saving the initial lists of those elements already compared 
and found to be identical. 

In a high level programming language like SIMULA 
it is possible to write both the usual sequential algorithms 
and also coroutining ones in which the programmer 
controls when coroutines are suspended and resumed. 
But, as in other conventional programming languages, 
logic and control are inextricably intertwined in the 
program text. It is not possible to change the control 
strategy of an algorithm without rewriting the program 
entirely. 

The arguments for separating logic and control are 
like the ones for separating procedures and data struc- 
tures. When procedures are separated from data struc- 
tures, it is possible to distinguish (in the procedures) 
what functions the data structures fulfill from the manner 
in which the data structures fulfill them. When logic is 
separated from control, it is possible to distinguish (in 
the logic) what the program does from how the program 
does it (in the control). In both cases it is more obvious 
what the program does, and therefore it is easier to 
determine whether it correctly does what it is intended 
to do. 

The work of Clark and Tarnlund [6] (on the correct- 
ness of sorting algorithms) and the unpublished work of 
Warren and Kowalski (on the correctness of plan-for- 
mation algorithms) supports the thesis that correctness 
proofs are simplified when they deal only with the logic 
component and ignore the control component of algo- 
rithms. Similarly, ignoring control simplifies the deriva- 
tion of programs from specifications [3, 4, 7, 8, 9, 21]. 

Top-Down vs. Bottom-Up Execution 

Recursive definitions are common in mathematics 
where they are more likely to be understood bottom-up 
rather than top-down. Consider, for example, the defi- 
nition of factorial 

The  factor ia l  o f  0 is 1 ~-- 
The  factor ia l  o f  x is u <--y plus  1 is x, 

the factor ia l  o f y  is v, 
x t imes v is u. 

The mathematician is likely to understand such a defi- 
nition bottom-up, generating the sequence of assertions 

The  factor ia l  o f  0 is 1 <--- 
The  factor ia l  o f  1 is 1 <-- 
The  factor ia l  o f  2 is 2 <-- 
The  factor ia l  o f  3 is 6 <-- 
etc. 

Conventional programming language implementations 
understand recursions top-down. Programmers, accord- 
ingly, tend to identify recursive definitions with top- 
down execution. 

An interesting exception to the rule that recursive 
definitions are more efficiently executed top-down than 
bottom-up is the definition ofa  Fibonacci number, which 
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is both more intelligible and efficient when interpreted 
bottom-up: 

the 0 - t h  F ibonacc i  n u m b e r  is 1 ~-- 
the l - t h  F ibonacc i  n u m b e r  is 1 
the u + 2 - th  F ibonacc i  n u m b e r  is x 

the u + l - t h  F ibonacc i  n u m b e r  is y, 
the u - t h  F ibonacc i  n u m b e r  is z, 
y plus  z is x. 

(Here the terms u + 2 and u + 1 are expressions to be 
evaluated rather than terms representing data structures. 
This notation is an abbreviation for the one which has 
explicit procedure calls in the body to evaluate u + 2 
and u + 1.) 

Interpreted top-down, finding the u + l - th  Fibonacci 
number reintroduces the subproblem of finding the u-th 
Fibonacci number. The top-down computation is a tree 
whose nodes are procedure calls, the number of which is 
an exponential function of u. Interpreting the same 
definition bottom-up generates the sequence of assertions 

the 0 - t h  F ibonacc i  n u m b e r  is 1 ~-- 
the l - t h  F ibonacc i  n u m b e r  is 1 
the 2 - th  F ibonacc i  n u m b e r  is 2 ~-- 
the 3 - th  F ibonacc i  n u m b e r  is 3 ~-- 
etc. 

The number of computation steps is a linear function of 
l/. 

In this example, bottom-up execution is also less 
space-consuming than top-down execution. Top-down 
execution uses space which is proportional to u, whereas 
bottom-up execution needs to store only two assertions 
and can use a small constant amount of storage. That 
only two assertions need to be stored during bottom-up 
execution is a consequence of the deletion rules for the 
connection graph proof procedure [25]. As Bibel ob- 
serves, the greater efficiency of bottom-up execution 
disappears if similar procedure calls are executed top- 
down only once. This strategy is, in fact, an application 
of Warren's generalization of the Earley parsing algo- 
rithm. 

Strategies for Investigating Alternative Procedures 

When more than one procedure has a conclusion 
which matches a given procedure call, the logic compo- 
nent does not determine the manner in which the alter- 
native procedures are investigated. Sequential explora- 
tion of alternatives gives rise to iterative algorithms. 

Although in theory all iterations can be replaced by 
top-down execution of recursive definitions, in practice 
some iterations might better be thought of as bottom-up 
execution of recursive definitions (as in the definition of 
factorial). Other iterations can better be regarded as 
controlling a sequential search among alternatives. 

Assume, for example, that we are given data about 
individuals in the parenthood relationship: 
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Parent (Zeus, Ares) 
Parent (Hera, Ares) ~-  
Parent (Ares, Harmonia)  ~-- 
Parent (Semele, Dionisius) ~-  
Parent (Zeus, Dionisius) 
etc. 

Suppose that the problem is to find a grandchild of Zeus 

,--- Grandparent  (Zeus, u) 

using the definition of grandparent. In a conventional 
programming language, the parenthood relationship 
might be stored in a two-dimensional array. A general 
procedure for finding grandchildren (given grandpar- 
ents) might involve two iterative loops, one nested inside 
the other, with a jump out when a solution has been 
found. Similar behavior is obtained by interpreting the 
grandparent procedure top-down, executing procedure 
calls one at a time, in the sequence in which they are 
written, trying alternative procedures (assertions in this 
case) one at a time in the order in which they are written. 
The logical analysis of the conventional iterative algo- 
rithm does not concern recursion but involves sequential 
search through a space of alternatives. The sequential 
search strategy is identical to the backtracking strategy 
for executing nondeterministic programs [ 18]. 

Representation of data by means of clauses, as in the 
family relationships example, rather than by means of 
terms, is similar to the relational model of databases 
[10]. In both cases data is regarded as relationships 
among individuals. When data is represented by conven- 
tional data structures (terms), the programmer needs to 
specify in the logic component of programs and queries 
both how data is stored and how it is retrieved. When 
data is represented relationally (by clauses), the program- 
mer needs only to specify data in the logic component; 
the control component manages both storage and re- 
trieval. 

The desirability of separating logic and control is 
now generally accepted in the field of databases. An 
important advantage is that storage and retrieval schemes 
can be changed and improved in the control component 
without affecting the user's view of the data as defined 
by the logic component. 

The suitability of a search strategy for retrieving data 
depends upon the structure in which the data is stored. 
Iteration, regarded as sequential search, is suitable for 
data stored sequentially in arrays or linked lists. Other 
search strategies are more appropriate for other data 
structures, such as hash tables, binary trees, or semantic 
networks. McSkimin and Minker [29], for example, 
store clauses in a manner which facilitates both parallel 
search and finding all answers to a database query. 
Deliyanni and Kowalski [ 15], on the other hand, propose 
a path-finding strategy for retrieving data stored in se- 
mantic networks. 

Representation of data by means of terms is a com- 
mon feature of Horn clause programs written in 
PROLOG [12, 33, 38]. Tiirnlund [36], in particular, has 
investigated the use of terms as data structures in Horn 
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clause programs. Several PROLOG programs employ a 
relational representation of data. Notable among these 
are Warren's [37] for plan-formation and those for drug 
analysis written in the Ministry of Heavy Industry in 
Budapest [14]. 

Two Analyses of Path-Finding Algorithms 

The same algorithm A can often be analyzed in 
different ways: 

A = L I +  C I = L 2 +  6"2. 

Some of the behavior determined by the control com- 
ponent C1 in one analysis might be determined by the 
logic component L2 in another analysis. This has signif- 
icance for understanding the relationship between pro- 
gramming style and execution facilities. In the short term 
sophisticated behavior can be obtained by employing 
simple execution strategies and by writing complicated 
programs. In the longer term the same behavior may be 
obtained from simpler programs by using more sophis- 
ticated execution strategies. 

The path-finding problem illustrates a situation in 
which the same algorithm can be analyzed in different 
ways. Consider the problem of finding a path from A to 
Z in the following directed graph. 

D 

r V  

In one analysis, we employ a predicate G o  ( x )  which 
states that it is possible to go to x. The problem of going 
from A to Z is then represented by two clauses. One 
asserts that it is possible to go to A. The other denies that 
it is possible to go to Z. The arc directed from A to B is 
represented by a clause which states that it is possible to 
go to B if it is possible to go to A: 

Go (.4) ,-- ~ Go (Z)  
Go (B) ~-- Go (A) Go (Z) <-- Go (X) 
Go (C) ~-- Go (.4) Go (Z) ,--- Go (Y) 
Go (D) ~ Go (B) Go (Y) <-- Go (U) 
Go (E) <-- Go (B) Go (Y)  ~-- Go (V) 
Go (X) ",- Go (E) etc. 

Different control strategies determine different path- 
finding algorithms. Forward search from the initial node 
A is bottom-up reasoning from the initial assertion 
G o  ( A )  ~-- . Backward search from the goal node Z is 
top-down reasoning from the initial goal statement 
*-- G o  ( Z ) .  Bidirectional search from both the initial 
node and the goal node is the combination of top-down 
and bottom-up reasoning. Whether the path-finding al- 
gorithm investigates one path at a time (depth-first) or 
develops all paths simultaneously (breadth-first) is a 

Communica t ions  July 1979 
of  Volume 22 
the ACM Number  7 



matter of the search strategy used to investigate alter- 
natives. 

In the second analysis, we employ a predicate 
Go* (x,  y )  which states that it is possible to go from x to 
y. In addition to the assertions which describe the graph 
and the goal statement which describes the problem, 
there is a single clause which defines the logic of  the 
path-finding algorithms: 

<--Go* (A, Z) 
Go* (A, B) <-- GO* (X, Z) <-- 
Go* (A, C) *-- Go* ( Y, Z) ~- 
Go* (B, D) <--- Go* (U, Y) <'- 
Go* (B, E) <-- Go* (V, Y) <- 

Go* (E, X) <---- etc. 

Go* (x, y) <'- Go* (x, z), GO* (z, y) 

Here both forward search from the initial node A 
and backward search from the goal node Z are top-down 
reasoning from the initial goal statement <-- Go* (A, Z) .  
The difference between forward and backward search is 
the difference in the choice of  subproblems in the body 
of the path-finding procedure. Solving Go* (x,  z)  before 
Go* (z, y )  is forward search, and solving Go* (z, y )  before 
Go* (x,  z)  is backward search. Coroutining between the 
two subproblems is bidirectional search. Bottom-up rea- 
soning from the assertions which define the graph gen- 
erates the transitive closure, effectively adding a new arc 
to the graph directed from node x to node y, whenever 
there is a path from x to y. 

Many problem domains have in common with path- 
finding that an initial state is given and the goal is to 
achieve some final state. The two representations of  the 
path-finding problem exemplify alternative representa- 
tions which apply more generally in other problem do- 
mains. Warren's plan-formation program [37], for ex- 
ample, is of  the type which contains both the given and 
the goal state as different arguments of  a single predicate. 
It runs efficiently with the sequential execution facilities 
provided by PROLOG.  The alternative formulation, 
which employs a predicate having one state as argument, 
is easier to understand but more difficult to execute 
efficiently. 

Even the definition of  factorial can be represented in 
two ways. The formulation discussed earlier corresponds 
to the one-place predicate representation of  path-finding. 
The formulation here corresponds to the two-place pred- 
icate representation. Read 

F(x ,y ,  u, v) 

as stating that 

the factorial of x is y 
given that the factorial of u is v. 
F(x,y,  x,y)  <-- 
F (x, y, u, v) <-- u plus 1 is u', u' times v is v', F (x, y, u', v'). 

To find the factorial of  an integer represented by a term 
t, a single goal statement incorporates both the goal and 
the basis of  the recursion 
,---F(t,y,O, 1). 

The new formulation of  factorial executed in a simple 
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top-down sequential manner behaves in the same way 
as the original formulation executed in a mixed top- 
down, bottom-up fashion. 

A Notation for Expressing Control Information 
The distinction between top-down and bottom-up ex- 

ecution can be expressed in a graphical notation which 
uses arrows to indicate the flow of  control. The same 
notation can be used to represent different combinations 
of  top-down and bottom-up execution. The notation does 
not, however, aim to provide a complete language for 
expressing useful control information. 

Arrows are attached to atoms in clauses to indicate the 
direction of  transmission of  processing activity from 
clause to clause. For  every pair of  matching atoms in the 
initial set of  clauses (one atom in the conclusion of  a 
clause and the other among the conditions of  a clause), 
there is an arrow directed from one atom to the other. 

For top-down execution, arrows are directed from 
conditions to conclusions. For  the grandparent problem, 
we have the graph: 

<- Grandparent (Zeus,Harmonia) 

Grandporent ( x , y )  Parent ( x , z ) ,  Parent (z ,y )  

Parent ( x , y )  ~- Father (x ,y )  Parent ( x , y )  ~- Mother ( x , y )  

Father (Zeus, Ares) <-- Father (Ar~s,Harmonia} ~- Mother (Hera,Ares) <- 

Processing activity starts with the initial goal statement. 
It transmits activity to the body of  the grandparent 
procedure, whose procedure calls, in turn, activate the 
parenthood definitions. The database of  assertions pas- 
sively accepts processing activity without transmitting it 
to other clauses. 

For bottom-up execution, arrows are directed from 
conclusions to conditions: 

4- Grandparent (Zeus,Harmonia) 

Grandpo~nt  ( x , y )  ~- PQrent ( x , z ) ,  Parent ( z , y )  

Purent ( x , y )  4 -  Father ( x , y )  Purent (x ,y )  ~" Mother (x ,y )  

. . . .  

Father (7-eus.Ar~s) ~-  leather (Ares,Hormooia) ~- Moth~" (Ftera.Ares) ~- 
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Processing activity originates with the database of initial 
assertions. They transmit activity to the parenthood def- 
initions, which, in turn, activate the grandparent defini- 
tion. Processing terminates when it reaches all the con- 
ditions in the passive initial goal statement. 

The grandparent definition can be used in a combi- 
nation of top-down and bottom-up methods. Using num- 
bers to indicate sequencing, we can represent different 
combinations of top-down and bottom-up execution. For 
simplicity we only show the control notation associated 
with the grandparent definition. The combination of 
logic and control indicated by 

3 

Grandparent  (x, y) ~ Parent (x, z), Parent (z, y) 

1 2 

represents the algorithm which 

(l) waits until x is asserted to be parent of z, then 
(2) finds a child y of z, and finally 
(3) asserts that x is grandparent ofy.  

The combination indicated by 

2 

Grandparent  (x, y) ~-- Parent (x, z), Parent (z, y) 

1 3 

represents the algorithm which 

(1) waits until x is asserted to be parent of z, then 
(2) waits until it is given the problem of showing that 

x is grandparent of y, 
(3) which it then attempts to solve by showing that z is 

parent ofy.  

The algorithm represented by 

1 
IL 

Grandparent  (x, y) ~ Parent (x, z), Parent (z, y)  

2 3 

(1) responds to the problem of showing that x is grand- 
parent of y, 

(2) by waiting until x is asserted to be parent of z, and 
then 

(3) attempting to show that z is parent ofy.  

Using the arrow notation, we can be more precise 
than before about the bottom-up execution of the recur- 
sive definition of Fibonacci number. The bottom-up 
execution referred to previously is, in fact, a mixture of 
bottom-up and top-down execution: 

4 

the u + 2 Fib is x ~-- the u + 1 Fib is y, the u Fib is z, y plus z is x. 

2 1 3 
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Arrow notation can also be used to give a procedural 
interpretation of non-Horn clauses. The definition of 
subset, for example, "x is a subset of y if, for all z, if z 
belongs to x, then z belongs to y," gives rise to a 
procedure which shows that x is a subset o fy  by showing 
that every member of x is a member ofy.  It does this by 
asserting that some individual belongs to x and by 
attempting to show that the same individual belongs to 
y. The name of the individual must be different from the 
name of any individual mentioned elsewhere, and it 
must depend upon x and y (being different for different 
x and y). In clausal notation with arrows to indicate 
control, the definition of subset becomes 

1 2 

x is a subset of  y, arb (x, y) belongs to x ~-  

x is a subset o f y  ~ arb (x, y) belongs to y 

n 
1 2 

Given the goal of showing that x is a subset of y, the first 
clause asserts that the individual named arb (x,y) belongs 
to x and the second clause generates the goal of showing 
that arb (x, y) belongs to y. 

The grandparent definition illustrates the inadequacy 
of the arrow notation for expressing certain kinds of 
control information. Suppose that the grandparent defi- 
nition is to be used entirely top-down. 

Grandparent  (x, y) ~ Parent (x, z), Parent (z, y). 

The effective sequencing of procedure calls in the body 
of the procedure depends upon the parameters of the 
activating procedure call: 

(1) If  the problem is to find a grandchild y of a given 
x, then it is more effective (i) first to find a child z 
of x; (ii) and then to find a child y of z. 

(2) If  the problem is to find a grandparent x of a given 
y, then it is better (i) first to find a parent z of y; (ii) 
and then to find a parent x of z. 

Such sequencing of procedure calls depending on the 
pattern of input and output cannot be expressed in the 
arrow notation. 

In relational database query languages, input-sensi- 
tive sequencing of procedure calls needs to be determined 
by the data retrieval system rather than by the user. 
Consider, for example, a database which defines the 
following relations: 

Supplier (x, y, z) 
Part (x, y, z) 
Supply (x, y, z) 

supplier number  x has  name  y and status z, 
part number  x has name  y and unit cost z, 
supplier number  x supplies part number  y in 
quanti ty z. 

Given the query 

What  is the name of  suppliers of  pens? 
Answer (y) 

Answer (y) ~-- Supplier (x, y, z), Supply (x, u, v), Part (u, pen, w) 
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the system needs to determine that, for the sake of 
efficiency, the last procedure call should be executed 
first; whereas given the query 

What is the name of parts supplied by Jones? 
• -- Answer (y) 
Answer (y) ~ Supplier (x, Jones, z), Supply (x, u, v), Part (u, y, w) 

the first procedure call should be executed before the 
others. 

The arrow notation can be used to control the behav- 
ior of a connection graph theorem-prover [12]. The links 
of a connection graph are turned into arrows by giving 
them a direction. A link may be activated (giving rise to 
a resolvent) only if the link is connected to a clause all 
of whose links are outgoing. The links of the derived 
resolvent inherit the direction of the links from which 
they descend in the parent clauses. Connection graphs 
controlled in such a manner are similar to Petri nets 
[16]. 

Conclusion 

We have argued that conventional algorithms can 
usefully be regarded as consisting of two components: 

(1) a logic component which specifies what is to be 
done and 

(2) a control component which determines how it is to 
be done. 

The efficiency of an algorithm can often be improved 
by improving the efficiency of the control component 
without changing the logic and therefore without chang- 
ing the meaning of the algorithm. 

The same algorithm can often be formulated in dif- 
ferent ways. One formulation might incorporate a clear 
statement, in the logic component, of the knowledge to 
be used in solving the problem and achieve efficiency by 
employing sophisticated problem-solving strategies in 
the control component. Another formulation might pro- 
duce the same behavior by complicating the logic com- 
ponent and employing a simple problem-solving strat- 
egy. 

Although the trend in databases is towards the sep- 
aration of logic and control, programming languages 
today do not distinguish between them. The programmer 
specifies both logic and control in a single language 
while the execution mechanism exercises only the most 
rudimentary problem-solving capabilities. Computer 
programs will be more often correct, more easily im- 
proved, and more readily adapted to new problems when 
programming languages separate logic and control, and 
when execution mechanisms provide more powerful 
problem-solving facilities of the kind provided by intel- 
ligent theorem-proving systems. 
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Professional Activities: 
Calendar of Events 

ACM's  calendar policy is to list open com- 
puter science meetings that  are held on a not-for- 
profit basis. Not included in the calendar are edu- 
cational seminars, institutes, and courses. Sub- 
mittals should be substantiated with name of the 
sponsoring organization, fee schedule, and chair- 
man ' s  name and full address. 

One telephone number contact  for  those in- 
terested in attending a meeting will be given when 
a number is specified for this purpose. 

All requests for  ACM sponsorship or coop- 
eration should be addressed to Chairman,  Con- 
ferences and Symposia Committee, Seymour J. 
Wolfson. 643 MacKenzie Hall, Wayne State Uni- 
versity, Detroit,  MI 48202, with a copy to Louis 
Flora,  Conference Coordinator ,  ACM Head-  
quarters, 1133 Avenue of the Americas,  New York,  
NY 10036; 212 265-6300. Fo r  European events, a 
copy of the request should also be sent to the 
European Representative. Technical Meeting Re- 
quest Forms for  this purpose can be obtained 
from ACM Headquar ters  or f rom the European 
Regional Representative. Lead time should include 
2 months (3 months if for Europe)  for processing 
of the request, plus the necessary months (mini- 
mum 3) for  any publicity to appear  in Communi- 
cations. 

• This symbol indicates that  the Conferences 
and Symposia Committee has given its approval 
for ACM sponsorship or cooperation.  
In this issue the calendar is given in its entirety. 
New Listings are shown ~rst; they will appear 
next month as Previous Listings. 

NEW LISTINGS 
6-8 August  1979 
Seventh Conference on Electronic Compu- 

tation, Washington University, St. Louis, Mo. 
Sponsor: ASCE, Washington University. Contact: 
C. Wayne Martin, 212 Bancroft  Hall, University 
of Nebraska,  Lincoln, NE 68588. 

7-8 August  1979 
Workshop on the Use of Computers in 

Teaching Statistics, University of New Hamp- 
shire, Durham, NH.  Sponsor: University of New 
Hampshire.  Contact: Office of Academic Com- 
puting, University of New Hampshire,  304 Mc- 
Connell Hall, Durham, N H  03824; 603 862-1990. 

12-14 September 1979 
7th S I M U L A  Users' Conference, Hotel  Re- 

gina Olga, Cernobbio,  Lake Coma,  Italy. Spon- 
sor: Association of SIMULA Users. Contact: 
Eileen Schreiner, Norwegian Computing Center, 
Postboks 335. Blindern, Oslo 3, Norway.  

8 November 1979 
Annual Western Systems Conference, Los 

Angeles, Calif. Sponsor: Association for Systems 
Management.  Gen. chin: Sylvia Twomey, 18700 
Yorba  Linda Blvd., Apt. 47, Yorba Linda, CA 
92686; 714 993-6730. 

27-30 November 1979 
CAUSE N a t i o n a l  C o n f e r e n c e ,  P l a n n i n g  

Higher Education Information Systems for the 
1980s, Orlando, Fla. Sponsor: CAUSE.  Contact: 
CAUSE, 737 Twenty-Ninth St., Boulder, CO 
80303; 303 492-7353. 

14-15 February 1980 
• A C M  SIGCSE Technical Symposium on 
Computer Science Education, Kansas City, Mo. 

Sponsor: ACM SIGCSE. Conf. chm: William C. 
Bulgren, Dept. of Computer  Science, The Uni- 
versity of Kansas, Lawrence, KS 66044; 913 864- 
4482. 

12-14 March 1980 
International Symposium on Distributed 

Databases, Versailles, France.  Sponsor: IRIA. 
Contact: Symposium Secretariat, IRIA, Services 
des Relations Ext&ieures, Domaine de Voluceau- 
BP 105, 78150 Le Chesnay, France.  

19-21 March 1980 
• 13th Annual Simulation Symposium, Tampa, 
Fla. Sponsors: ACM SIGSIM, IEEE-CS, SCS. 
Sylnp. chin: Harvey Fisher, Alean Products, Box 
511, Warren,  OH 44482; 216 841-3416. 

28 March-3 April  1980 
Sixth International ALLC Symposium on 

Computers in Literary and Linguistic Research, 
University of Cambridge,  England. Sponsor: As- 
sociation for  Literary and Linguistic Research. 
Contact: J.L. Dawson, Secretary, 1980 Sympo- 
sium, Literary and Linguistic Computing Centre, 
Sidgcwick Site, Cambridge CB3 9DA, England. 

2 May 1980 
• Role of Documentation in the Project Life 
Cycle, New York City. Sponsors: ACM SIGDOC, 
SIGCOSIM. Conf. chm: Belden Menkus, Box 85, 
Middleville, NJ 07855; 201 383-3928. 

19-22 May 1980 
• NCC 80, Anaheim, Calif. Sponsor: AFIPS. 
Contact: Jerry Chriffriller, AFIPS,  210 Summit 
Ave.. Montvale, NJ 07645; 201 391-9810. 

3-6 June 1980 
4th International I F A C  Conference on In- 

strumentation and Automation in the Paper, 
Rubber, Plastics, and Polymerization Industries, 
Ghent, Belgium. Sponsor: IFAC. Contact: 4th 
IFAC-P.R.P.  Automation Conference, Jan Van 
Rijswijcklaan, 58, B-2000 Antwerp,  Belgium. 

16-18 June 1980 
I F A C / I F I P  Symposium on Automation for 

Safety in Shipping and Offshore Operations, 
Trondheim, Norway.  Sponsors: IFAC, IFIP 
SINTEF, Norwegian Petroleum Directorate.  Con- 
tact: SINTEF, Automatic  Control  Division, N- 
7034 Trondheim-NTH, Norway.  

PREVIOUS LISTINGS 
15-20 July 1979 
International Users' Conference, Cambridge, 

Mass. Sponsor: Harvard  University Labora tory  
for  Computer  Graphics and Spatial Analysis. 
Contact: Kathleen Quigley, Center  for  Manage- 
ment Research (conference coordinators),  850 
Boylston St., Chestnut Hill, M A  02167. 

16-18 July 1979 
1979 Summer Computer Simulation Confer- 

ence, Toronto,  Ont., Canada .  Sponsors: SCS, ISA, 
AMS, SHARE.  Gen. chin: A.J.  Schiewe, c /o  The 
Aerospace Corp.,  Box 92957, Los Angeles, CA 
90009; 213 648-6120. 

16-20 July 1979 
Sixth International Colloquium on Auto- 

main, Languages, and Programming, Technical 
University of Graz, Austria. Sponsor: European 
Association for  Theoretical Computer  Science. 
Contact: H. Maurer .  Institut flit Informationsver- 
arbeitung, Techn. Universit~it Graz.  Steyrergasse 
17, A-8010-Graz, Austria.  

18-20 July 1979 
Fifth South African Symposium on Numeri-  

cal Mathematics, University of Natal ,  Durban,  
South Africa.  Sponsor: University of Natal .  Con- 
tact: H.  Roland Weistroffer, Computer  Science 

De~t.. University of Natal .  King George V Ave- 
nue, Durban,  4001, Republic  of South Africa.  

27-29 July 1979 
Seminar on Scientific Go Theory (with Euro-  

pean Go Congress 1979) near  Bonn, W. Germany.  
Contact: Klaus Heine, Kleiststr. 67, 294 Wil- 
helmshaven, W. Germany.  

6-8 August  1979 
1979 Pattern Recognition and Image Proc- 

essing Conference, Chicago, IlL Sponsor: 1EEE- 
CS. Contact:  PRIP79, Box 639, Silver Spring, MD. 

6-8 August  1979 
Seventh Conference on Electronic Compu- 

tation, St. Louis, Mo. Sponsors: ASCE. Washing- 
ton University. Contact:  C. Wayne Martin, 212 
Bancroft  Bldg., University of Nebraska,  Lincoln, 
NE 68588. 

6-10 August 1979 
• S I G G R A P H  79, Sixth Annual Conference on 
Computer Graphics and Interactive Techniques, 
Chicago, I11. Sponsor: ACM SIGGRAPH.  Conf. 
co-chin: Thomas DeFanti .  Bruce H.  McCormick,  
Dept. of Information Engineering, University of 
Illinois at Chicago Circle, Box 4348, Chicago, IL 
60680; 312 996-2315. 

6-10 August  1979 
• A C M  S I G P L A N  Symposium on Compiler 
Construction, Brown Palace Hotel, Denver, Colo. 
Sponsor: ACM SIGPLAN.  Conf. chm: Fran  Al- 
len, IBM T.J. Watson Research Center, York- 
town Heights, NY 10598. 

11-12 August  1979 
Association for Computational Linguistics 

17th Annual Meeting, University of California 
(San Diego), La  Jolla, Calif. Sponsor: ACL.  Con- 
tact: Donald  E. Walker,  A C L  See'y-Treas., SRI 
International,  Menlo Park,  CA 94025. 

13-15 August  1979 
• Conference on Simulation, Measurement, 
and Modeling of Computer Systems, Boulder, 
Colo. Sponsors: ACM SIGMETRICS,  SIGSIM, 
NBS. Conf. chin: Paul  F. Roth, Nat ional  Bureau 
of Standards, A-265 Technology Bldg., Washing- 
ton. DC 20234. 

16-17 August 1979 
• SIGCPR 16th Annual Conference on Com- 
puter Personnel Research, Princeton, N.J.  Spon- 
sor: ACM SIGPCR. Conf. chm: T.C. Willoughby, 
Management  Science. College of Business Ad- 
ministration. Ball State University, Muncie, IN 
47306; 317 285-1265. 

16-18 August  1979 
IFAC Symposium on Computer Applications 

ill Large Scale Power Systems, Bangalore,  India. 
Sponsor: International  Federat ion of Antonaatic 
Control.  Contact:  Institution of Engineers, 8 
Cookhale Road,  Calcutta-700020, India. 

19-22 August  1979 
3rd Rocky Mountain Symposium on Micro- 

computers, Pingree Park, Colo. Sponsor: Colorado 
State University. Contact:  Carolyn Frye,  Office 
of Conferences and Institutes, Colorado State 
University, For t  Collins, CO 80523; 303 491-6222. 

19-24 August  1979 
Seventeenth Annual U R I S A  Conference, San 

Diego, Calif. Sponsor: Urban  and Regional  In- 
formation Systems Association. Prog. chin: Lee 
P. Johnston, URISA Conf.  Prog.  Chm., 823 Mon- 
ticello Drive, Escondido, CA 92025. 

20-22 August  1979 
Fourth International Conference on Com- 

puters and the Humanities, Dar tmouth  College, 
Hanover.  N.H,  Sponsors: Dar tmouth  College and 
the Association for  Computers  and the Humani-  

(Calendar continued on p. 439) 
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