Argument and Reconciliation

Robert A. Kowalski, Francesca Toni
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, UK
{rak,ft}0@doc.ic.ac.uk

Abstract

We outline a formal theory of argumentation-
theoretic reasoning which unifies and generalises
many existing approaches to default reasoning,
and which promises to be useful for practical rea-
soning in general and legal reasoning in particular.
We discuss an extension of the argumentation the-
ory to the problem of reconciling conflicting argu-
ments.

1 Introduction

The purpose of this paper 1s to outline a for-
mal theory of argumentation-theoretic reasoning,
which promises to have relevance for practical rea-
soning in general and for legal reasoning in partic-
ular. The theory originates from research on the
semantics of logic programming [9]; but its main
accomplishment until now has been to provide a
unifying framework for many previous approaches
to the formalisation of default reasoning [4, 1, 2].

The theory is based on the conventional notion
of a formal deductive system, but focuses on the
problem of determining what “assumptions” can
acceptably be used to extend a given set of “facts”
formulated within the language of the deductive
system. Some of the more noteworthy character-
istics of the theory are that

e A given set of facts may have several, alter-
native, mutually incompatible extensions.

e An acceptable extension need not take a stand
on every issue.

e For an extension to be acceptable, it is not
sufficient for the set simply to be consistent

with the facts. It must be able to “defend”
itself against attack from other extensions.

Each of these characteristics of the theory dis-
tinguishes it from some other theories of default
reasoning and argumentation. In particular, most
previous approaches to the formalisation of default
reasoning (including stable models [7] for logic
programs, extensions [14] for default logic, stable
expansions [11] for autoepistemic logic and fixed
points [10] for non-monotonic modal logic) can be
understood in terms of the theory as postulating
that

e An extension is acceptable if it does not attack
itself and attacks every assumption not in the
extension.

2 Possible implications for
legal theory

Classical, mathematical logic is concerned with
reasoning about truths that hold universally, with-
out exception and for all time. Attempts to apply
such logic to the formalisation of human reasoning
in Artificial Intelligence have long been the subject
of discussion and criticism. Largely in response
to these criticisms, a number of so-called “non-
monotonic” logics have been developed to capture
the default nature of human reasoning. It is from
an attempt to capture the underlying similarities
between these different non-monotonic logics that
the argumentation theory we present in this paper
arises.

Similar conflicts over the relevance of logic have
arisen in jurisprudence; between legal formalism
and legal scepticism. Legal formalism holds that
legal decisions can and should be reached by a

strictly logical chain of arguments using author-
itative legal rules. Scepticism holds, in contrast,
that legal decisions are made on the basis of per-
sonal value preferences and are merely rationalised
by reference to precedents and legal rules.

The argumentation theory of this paper poten-
tially reconciles these two conflicting views. Tt
uses classical forms of logic to construct arguments
which derive conclusions from given facts extended
by means of assumptions. It evaluates alternative
extensions and therefore the arguments they sup-
port, by comparing their relative ability to defend
themselves against attack. It differs from popular
conceptions of logic in that it does not aim to de-
termine a unique collection of truths that follow
deductively from a given set of facts and rules.
It allows the possibility that several alternative,
but mutually incompatible extensions and the ar-
guments they support might be equally acceptable.

3 Theorist

Poole’s Theorist [13] is probably the simplest ex-
ample of the kind of argumentation system we con-
sider in this paper. In Theorist there are two kinds

of “beliefs”:

e “facts” which are ordinary sentences of first-
order logic, and

e “assumptions”, which are formulae of first-
order logic.

Default reasoning within a given consistent set of
facts T (also called a “theory”) is performed by
constructing a maximally consistent extension £
of T', where E 1is the set of all logical consequences
of TUA, and A consists of variable-free instances
of the given candidate assumptions. An argu-
ment supporting a conclusion (' is a deductive
proof of C' from F.

In general, there will be many different, mu-
tually incompatible extensions of a given theory
T. Dafferent extensions can allow different argu-
ments with conflicting conclusions that contradict
one another.

Example 3.1 Consider the case of the wealthy
businessman who makes a valid will leaving all his
estate to his wicked grandson. The grandson, be-
ing wicked, murders the grandfather to inherit the
estate. The grandson is arrested and sentenced to

15 years imprisonment. Does the grandson inherit
the estate? Under a literal interpretation of the
law, he does, because there is a valid will. Under
a liberal interpretation, which takes into account
the intention of the law, that no man profits from
committing a crime, he does not.

The case, greatly simplified, can be formalised
in the theorist framework by means of the theory

mherit if

valid-will and literal-interpretation
not inherit if

murder and liberal-interpretation
valid-well

murder

where the only candidate assumptions are the
predicates

literal-interpretation, and

liberal-interpretation.

The case i1s a “hard” one, because there are two
mutually incompatible, maximally consistent ex-
tensions. In one extension, containing the first as-
sumption, the grandson inherits the estate. In the
other, containing the second assumption, he does
not. It is possible, of course, to argue on other
grounds that the second extension and the conclu-
sion it supports is preferable to the first.

The identification of candidate assumptions to use
for extending a given theory is critical to the The-
orist approach and to argumentation in general.
One common criterion, explored implicitly or ex-
plicitly in many approaches to default reasoning is
to treat all negations of atomic predicates as can-
didate assumptions. This is the underlying con-
vention in relational databases and logic program-
ming, in particular, where a negative statement,
not p, is deemed to hold if its positive contrary p,
can not be shown to hold.

Example 3.2 Consider, for example, the simpli-
fied theory consisting of the following “facts”:

X isinnocent if not X is guilty
Xisqguilty if X confesses and X has a motive

john has a motive.

Assume that the candidate assumptions are all the
(variable-free) instances of the negative predicates

not X isinnocent

not X is guilty
not X con fesses

not X has a motive

and consider only those instances in which X is
john. Perhaps somewhat surprisingly, there are
two maximally consistent extensions. Both con-
tain the assumption

not john confesses.
One contains the assumption
not john is guilty

which supports the conclusion that john is inno-
cent. The other contains the assumption

not john is innocent

which supports the conclusion that john is guilty.
Clearly the second conclusion and the extension
that justifies it are not in accord with the intended
understanding of the first sentence in the theory as
meaning that

a person 1s innocent if
the person is not proven to be guilty.

To eliminate the undesired extension, different log-
ics for default reasoning use different techniques.

Theorist uses integrity constraints to prevent
the use of contrapositives. Logic programming and
default logic also prevent the use of contraposi-
tives: logic programming by restricting all uses of
“if” to the application of modus ponens; and de-
fault logic by allowing a choice between interpret-
ing “if” as classical material implication, which
allows contrapositive reasoning, and interpreting
“if” as signalling a theory-specific inference rule,
to which only modus ponens applies.

Autoepistemic logic and non-monotonic modal
logic retain the interpretation of “if” as classical
material implication, but interpret default nega-
tion

not p

in effect, as

where L i1s a modal operator which can be un-
derstood as “it is believed that” or “it is proved
that” and — is classical negation. The candidate
assumptions include all negative sentences of the

form = Lp. Contrapositive reasoning is allowed for
classical negation, but not for default negation.
Thus given

p—Lq

we can derive teh contrapositive
Lqg — —p

but not
Lq — —Lp.

Therefore, in particular, if we represent the belief
that a person is innocent if not proved guilty by
the sentence

X isinnocent — =L X is guilty
then we can derive the contrapositive
L X is guilty — =X isinnocent
but from the assumption
L X tsinnocent
we can derive neither
—X isinnocent

nor
L X is gquilty

nor
X is guilty.

We shall return to autoepistemic logic and non-
monotonic modal logic briefly later in this paper.

4 Logic Programming

Logic programs can be understood as argumenta-
tion systems in which, similar to Theorist, beliefs
are of two kinds:

e “facts” which are rules of the form
not r,

pif qp and ... q, and not r1 and ...

where p, q1,...,qn, 71,...,7m are all atomic
formulae, n > 0 and m > 0, and

e “assumptions”, which are all the negations of
atomic predicates.

A variety of semantics have been defined for logic
programs understood in these terms. Interestingly,
none of these semantics is equivalent to the maxi-
mal consistency semantics of Theorist.

Example 4.1 Consider example 3.2 again. This
has the syntax of a logic program and the same as-
sumptions, consisting of all negative atomic predi-
cates. As in the Theorist case, there are two max-
imally consistent extensions. Both contain the as-
sumption

not john confesses.

One contains the assumption
not john is guilty

which supports the conclusion that john is inno-
cent. The other contains the assumption

not john is innocent.

But, because the law of contrapositives does not
hold, this second extension does not support the
conclusion that john i1s guilty. Nonetheless, the
second extension is undesirable. It is not allowed
in any of the standard semantics of logic program-
ming, all of which impose a more restrictive re-
quirement on extensions than simple consistency.
Perhaps the simplest of these is the stable model
semantics [7].

Given an inconsistent extension and several ways
of restoring consistency, the stable model seman-
tics in effect restores consistency by removing as-
sumptions which are attacked by the rest of the
extension in preference to removing assumptions
which are not so attacked. In general, an exten-
sion F attacks another extension E’ if and only
if £ attacks some assumption « in ', and an ex-
tension E attacks an assumption « if and only if
E contains the contrary of «. In logic program-
ming the contrary of an assumption not p is p. In
general,

An extension 1s stableif and only if it does not
attack itself, but does attack every assumption
which is not in the extension.

Stable extensions, therefore, classify all candidate
assumptions into two kinds: “those who are with
us” and “those we are against”. In the case of
logic programs, where the set of candidate assump-

tions is the set of all negations of atomic sentences,

this classification can be understood as determin-
ing the “truth value” of every atomic sentence as
either “true” or “false”. Therefore, every stable
extension for a given logic program determines a
unique interpretation in which the program itself
is evaluated as “true”. This interpretation is called
a stable model.

In the case of example 3.2, stable model seman-
tics allows only the extension containing the two
assumptions

not john confesses

not john is guilty
which attacks the two assumptions

not john has a motive

not john is innocent

which are not in the extension. The second exten-
sion containing

not john confesses

not john is innocent

1s not stable because 1t does not attack the as-
sumption
not john is guilty

which is not in the extension.
But stable model semantics is too restrictive, as
the following variant of example 3.1 shows.

Example 4.2 Let the given logic program be

mherit if valid-will and
not liberal-interpretation
disinherit if murder and
not literal-interpretation
liberal-interpretation if
tnherit and disinherit
literal-interpretation if
tnherit and disinherit
valid-well

murder.

Here the positive assumptions of example 3.1 have
been renamed as negative assumptions, and the
negative conclusion of the second rule has been
renamed as a positive predicate. The facts that
inherit and disinherit are contradictory and that

a contradiction implies any conclusion in classi-
cal logic are partially simulated by the third and
fourth rules. The program has no stable extension.
This 1s because any extension that contains both
of the assumptions

not liberal-interpretation

not literal-interpretation

attacks itself. But the only way to attack either
of these two assumptions is to derive both inherit
and disinherit, which in turn requires the use of
the same two assumptions.

Of course, there are two maximally consistent
extensions, one containing

not liberal-interpretation

not disitnherit
the other containing

not literal-interpretation

not inherit
neither one of which 1s stable.

There is, however, an alternative semantics which
sanctions both of these extensions. In general,

an extension F is acceptable if and only if it
does not attack itself and, for every extension
E’ that attacks F,

E defends itself against E’.

The notion of defence can be understood more or
less liberally. In the admissibility semantics [3],

FE defends itself against £’ if and only if
F attacks E'.

In the stable theory semantics [8],

FE defends itself against £’ if and only if
the extension consisting of all logical conse-
quences of F'U FE’ attacks the extension con-
sisting of all logical consequences of E' — F.

The logic program of example 4.2 has no stable
models and no acceptable extensions in the sense
of the admissibility semantics. However, the two
maximally consistent extensions are acceptable in
the sense of the stable theory semantics.

In this example there are three additional ac-
ceptable extensions in the sense of the stable the-
ory semantics, namely the extensions consisting of

all logical consequences of the program augmented
by the the empty set of assumptions, by the set

{not liberal-interpretation}
and by the set
{not literal-interpretation}

respectively. Neither of these extensions provides
a “total” interpretation of the program in the sense
of stable extensions, where each sentence is either
“true” or “false”. For instance, the third addi-
tional

extension contains neither liberal-interpretation
nor not liberal-interpretation. Therefore, an ac-
ceptable extension need not take a stand on every
issue.

This feature of the acceptability semantics fa-
cilitates the computation of acceptable extensions
supporting a given conclusion. Given a program,
the computation first uses the underlying mono-
tonic logic to find an extension Ey containing the
given conclusion, and then generates an extension
E containing Ey such that E is acceptable. F is
contructed incrementally in such a way that it de-
fends Fy against all attacks and it is acceptable.

For the logic program of example 4.2, the con-
clusion disinherit holds in the extension Ey con-
taining the assumption not literal-interpretation.
However, Fy is attacked by the extension E’ con-
taining the assumptions

not literal-interpretation and

not liberal-interpretation.

Because the extension consisting of all logical con-
sequences of Ey U E’ attacks E’', Fy is accept-
able in the sense of the stable theory semantics.
Therefore, the computation returns the extension
F given by EqU{. This procedure is a generalisa-
tion of the Eshghi-Kowalski procedure that com-
putes admissible extensions for logic programming

[5].

5 The Abstract Argumenta-
tion Theory

The terminology we have used for Theorist
and logic programming in the previous section,

to describe different argumentation-theoretic no-
tions, can be used more generally for other non-
monotonic logics. The definitions of extension, at-
tack, defence, stable extension, acceptable exten-
sion (both in the sense of admissibility semantics
and in the sense of stable theory semantics) apply
to any theory formulated in any monotonic logic.
Similarly, the proof procedure for computing ac-
ceptable extensions can also be applied more ab-
stractly. In general, it is necessary only to identify

e the underlying language in which theories
are formulated;

e the candidate set of assumptions that can
be used to extend any theory;

e the notion of what it means to be the con-
trary of an assumption.

In the case of Theorist these are
e any first-order language;
e any set of sentences in the language;

e the notion that —« 1s the contrary of an as-
sumption .

In the case of logic programming they are
e the language of rules, defined in section 4;
e the set of negations of atomic sentences;

e the notion that pis the contrary of an assump-
tion not p.

Default logic, autoepistemic logic and non-
monotomic modal logic can be characterised simi-
larly in argumentation-theoretic terms. The stan-
dard semantics of these logics can then be shown
to be special cases of stable extension semantics in
general [2].

In the case of default logic

e The language is any first-order language aug-
mented with sentences of the form

p—qaAN... ANg. AMriN...NMr,

where p,q1,...qn,71...7y are all first-order
formulae, n > 0, m > 0, — 1s a new logical
symbol, for which only the rule of modus po-
nens applies, A stands for “and” and M is a
new logical symbol not used elsewhere in the
language.

e The set of candidate assumptions is the set of
all sentences of the form M, where r 1s any
sentence in the underlying language.

e The contrary of an assumption Mr 1s the sen-
tence —r.

In the case of autoepistemic logic

e The language is any propositional first-order
language with a modal operator L, where,
however, the underlying semantics of the lan-
guage 1is classical logic.

e The set of candidate assumptions is the set
of all sentences of the form Lr or of the form
= Lr, where r is any sentence of the underlying
language.

e The contrary of an assumption Lr is —Lr.
The contrary of an assumption =Lr is r.

In the case of non-monotonic modal logic

e The language is any first-order language, with
a modal operator L, where, differently from
autoepistemic logic, the semantics of the lan-
guage is modal logic, with the necessitation
rule of inference:

r

Lr

e The set of candidate assumptions is the set of
all sentences of the form —Lr, where r is any
sentence of the underlying language.

e The contrary of an assumption —Lr is r.

The argumentation-theoretic characterisation of
these different logics clarifies their underlying sim-
ilarities and differences. Some of these differences
are relatively trivial. For example the assump-
tions not p in logic programming, Mr in default
logic and —Lr in auto-epistemic logic and non-
monotonic modal logic can all be mapped into one
another by syntactic renaming of positive expres-
sions as negative expressions and vice versa.

The argumentation theory also shows that, de-
spite their differences, all of these logics can be
understood in the same terms, as sanctioning an
extension if and only if it 13 stable. As we have seen
in example 4.2, stable semantics is too restrictive
for logic programming. However, the same exam-
ple can also be formulated in each of the other

logics, and shows, therefore, that stable semantics
is too restrictive in general. It also shows that
the notion of acceptable extension (especially in
the sense of stable theory semantics) is generally
preferable to stable semantics.

A number of other argumentation-theoretic for-
malisms for non-monotonic reasoning have been
proposed. These include the formalisms of Dung
[4], Pollock [12], Simari and Loui [15] and Geffner
[6]. Dung’s formalism [4] differs from ours in the
higher level of abstraction with which it treats the
notions of assumptions, arguments and attacks.
The other three formalisms differ from ours both
in their being more concrete and in their justify-
ing sceptical rather than credulous forms of non-
monotonic reasoning.

All of the semantics we have considered until
now are credulous in the sense that they justify
a conclusion as a non-monotonic consequence of a
given theory if and only if it holds in at least one
extension sanctioned by the semantics. Sceptical
semantics, on the other hand, justifies a conclu-
sion if and only if, in some sense, it belongs to the
common ground on which all credulous semantics
agree. The argumentation theory can also be used
to define a sceptical semantics in general.

6 Sceptical Semantics

The sceptical semantics justifies holding a conclu-
sion if and only if it belongs to the smallest ex-
tension which does not attack itself and contains
every assumption it can defend. This extension is
called the grounded extension. As in the case of
acceptable extensions, the notion of defence can be
understood in different ways. If we use the notion
of defence in the sense of the admissibility seman-
tics, then the grounded extension corresponds to
the well-founded model in logic programming [17].

In example 3.2, the unique grounded extension
contains the two assumptions

not john confesses

not john is guilty

neither of which is attacked by any set of assump-
tions.

In example 4.2, the unique grounded extension
is the set of all logical consequences of the program
augmented by the empty set of assumptions.

7 A Relationship with Belief
Revision

The argumentation-theoretic approach also allows
us to define other semantics. We have already seen
that we can define different notions of defence for
the acceptability semantics. Similarly, we can de-
fine different notions of attack. For example, in
the spirit of stable theory semantics, we can say
that

an extension F attacks another extension E’
if and only if the extension consisting of all
logical consequences of F U E’ contains the
contrary of some assumption o« in E’.

This new notion of attack has a natural reinter-
pretation in belief revision terms:

an extension F attacks another extension E’
if and only if the extension consisting of all
logical consequences of EUE’ contains a con-
flict (in the form of an assumption « and its
contrary) which can be removed by removing
ain B,

The notions of conflict and of removing a conflict,
in the belief revision notion of attack, can be de-
fined, without the notion of contrariness, in terms
of integrity constraints with retractibles [16].
Namely, a conflict between an assumption « and
its contrary @&, which can be removed by removing
«, can be represented as a violation of the integrity
constraint
Sla A @]

in which « has been identified as retractible.

Integrity constraints can also be used to define
more general notions of attack, as in the case of
abductive logic programming [16]. Another use of
integrity constraints will be illustrated in the next
section.

8 Conflict Resolution

We have used the argumentation theory, until now,
to formalise different ways in which an agent can
use assumptions to justify its beliefs. In particu-
lar, we have seen that an agent can “aggressively”
take a stand on every issue (stable semantics), “lib-
erally” hold a belief by defending it against all
possible attacks (acceptability semantics), or “cau-
tiously” hold only those beliefs that are also held

by every other agent (grounded semantics). In
each of these cases the agent justifies its beliefs by
attacking other beliefs held by other, hypothetical
agents. Another important, but more difficult case
is the one in which the other agents are real and
the goal is to reconcile conflicts between the dif-
ferent agents. In this section we outline an initial
proposal for an argumentation-theoretic approach
to such conflict resolution.

Suppose that two agents hold conflicting beliefs
which represent different conflicting actions they
intend to carry out in the future. Our proposal is
first to try to identify a set of goals and shared be-
liefs upon which the two agents can agree and then
to try to find a solution of the shared goals which
is compatible with the shared beliefs. The first of
these two steps is the most important and requires
the greater creativity. Typically, it involves iden-
tifying the agents’ possibly conflicting goals and
generalising them to a more abstract level where
they no longer conflict.

In the simplest case, the agents’ goals might not
conflcit at all and there is a solution to the com-
bined goals, alternative to the original conflicting
solutions, which 1s acceptable to both agents. In
other cases, the original goals may need to be gen-
eralised before a shared solution can be found. The
following case study illustrates this second, more
typical case.

In a recent head-of-sections committee meet-
ing in our Department, we discussed the compo-
sition of a new resources committee. Two con-
flicting arguments were put forward. The Direc-
tor of Administration argued that, in the interests
of efficiency, the members of the new committee
should consist of himself and the other principal
administrative officers of the Department. The Di-
rector of Research argued, in opposition to him,
that, in the interests of democracy, the commit-
tee should also contain members elected by the
Department. During the course of the discussion
it became clear that the two sides were focussing
on different assumptions about the purpose of the
new committee: the Director of Administration
on its purely administrative function, and the Di-
rector of Research on its presumed policy making
nature. These two assumptions could be viewed as
conflicting solutions to the more general goals of
deciding, on the one hand, which group should ad-
minister resources, and on the other hand, which
group should make policy about resources.

By focussing on the more general goals, it was
possible to identify a new solution which was ac-
ceptable to both parties: the resources commit-
tee will administer resources, whereas the head-
of-sections committee will make policy about re-
sources. In the interests of efficiency, the members
of the resources committee will consist of adminis-
trative officers only. In the interests of democracy,
the head-of-sections committee will represent the
views and interests of the various Department sec-
tions on matters concerning policy about the allo-
cation of resources.

The process of reconciliation can be rationally
reconstructed more formally:

Original goal
composition of res-c is of type X.
Original candidate assumptions

composition of res-c is of type non-elected

composition of res-c is of type elected.

Each assumption attacks the other.

Solution one
composition of res-c is of type non-elected.
This is “supported” by the additional assumption
res-c administers resources
by the integrity constraint
X isefficient if X administersY
and by the rule
X isefficient if
composition of X is of type non-elected.

Notice that the integrity constraint expresses a
property that should be satisfied independently of
the integrity constraint: if an entity administers
something then that entity should be efficient. The
obligation of efficiency, however, needs to be satis-
fied by some means other than the integrity con-
straint. In this case, the rule expresses one such
way. Presumably, another way might be to have
no committee at all.

Solution two

composition of res-c is of type elected.

This is supported by the additional assumption
res-c makes policy about resources
by the integrity constraint
X is democratic if X makes policy about Y
and by the rule

X is democratic if

composition of X is of type elected.

Another way of achieving democracy is expressed
by the additional rule

X is democratic if

composition of X is of type representative.

Refined goals

X administers resources and
composition of X is of type Y and
U makes policy about resources and

composttion of U is of type V.

These goals generalise the original explicitly for-
mulated goal, as well as the original implicit goals
of the two agents.

Refined solution

res-c administers resources
composition of res-c is of type non-elected

h-of-s-¢ makes policy about resources.

These three assumptions solve the first three sub-
goals. The fourth goal is solved by the fact

composition of h-of-s-c is of type representative.

The refined solution achieves the refined goals of
both, originally conflicting agents. It builds upon
the fact that each agent accepts the other agent’s
integrity constraints and rules. It relies upon each
agent’s willingness to entertain the other agent’s
goals and to agree upon a refined set of goals,
which takes the two original, different sets of goals
into account. It also relies upon the second agent’s
willingness to agree upon a different solution from
the one he originally proposed.

9 Conclusion

In this paper we have sketched a theory of argu-
mentation which has proved useful for unifying
and generalising different approaches to default
reasoning. We have observed that the standard,
stability semantics of most approaches to default
reasoning is undesirably and unnecessarily intol-
erant; whereas admissibility and stable theory se-
mantics, which were first proposed as semantics for
logic programming, are more appropriate seman-
tics for practical reasoning in general. We have
also proposed an extension of the argumentation
theory to a theory of conflict resolution. We hope
that this initial proposal might eventually provide
the basis for a practical and systematic approach
to the reconciliation of conflicts in the future.

Acknowledgements

This research was supported by Fujitsu Research
Laboratories. The authors are grateful to Phan
Minh Dung for many helpful discussions.

References

[1] A. Bondarenko, F. Toni, R. A. Kowal-
ski, An assumption-based framework for
non-monotonic reasoning. Proc. 2nd Interna-
tional Workshop on Logic Programming and
Non-monotonic Reasoning, (A. Nerod and L.

Pereira eds.) MIT Press (1993)
[2] A. Bondarenko, P. M. Dung, R. A. Kowal-

ski, F. Toni, An abstract, argumentation-
theoretic framework for default reasoning. In
preparation (1994)

[3] P. M. Dung, Negation as hypothesis: an
abductive foundation for logic programming.

Proc. 8th International Conference on Logic
Programming, Paris, MIT Press (1991)

[4] P.M. Dung, The acceptability of arguments
and its fundamental role in non-monotonic
reasoning and logic programming. Proc. IJ-

CAI93 (1993)
[5] K. Eshghi; R.A. Kowalski, Abduction com-

pared with negation as failure. Proc. 6th
International Conference on Logic Program-
ming, Lisbon, Portugal, MIT Press (1989)

[6] H. Geffner, Beyond negation as failure. Proc.
2nd International Conference on Principles
of Knowledge Representation and Reasoning,

Cambridge, Mass. (1991) 218-229
[7] M. Gelfond, V. Lifschitz, The stable model

semantics for logic programming. Proc. 5th
International Conference and Symposium on

Logic Programming, Washington, Seattle,
MIT Press (1988)

[8] A. C. Kakas, P. Mancarella, Stable theories
for logic programs. Proc. ISLP’91, San Diego
(1991)

[9] A. C. Kakas, R. A. Kowalski, F. Toni, Ab-
ductive logic programming. Journal of Logic

and Computation 2(6) (1993)

[10] D. McDermott, Nonmonotonic logic II:
non-monotonic modal theories. JACM 29(1)
(1982)

[11] R. Moore, Semantical considerations on
non-monotonic logic. Artificial Intelligence 25

(1985)

[12] J.L. Pollock, Defeasible reasoning. Cognitive
Science, Vol. 11 (1987) 481-518

[13] D. Poole, A logical framework for default rea-
soning. Artificial Intelligence 36 (1988)

[14] R. Reiter, A logic for default reasoning. Arti-
ficial Intelligence 13 (1980)

[15] G.R., Simari, R.P. Loui, A mathemati-
cal treatment of defeasible reasoning and its
implementation. Artificial Intelligence (53)
(1992) 125-157

[16] F. Toni, R.A. Kowalski, Reduction of abduc-
tive logic programs to normal logic programs.
Imperial College Technical Report, London
(1994)

[17] A. Van Gelder, K.A. Ross, J.S. Schlipf, Un-
founded sets and the well-founded seman-
tics for general logic programs. Proc. ACM
SIGMOD-SIGACT, Symposium on Princi-
ples of Database Systems (1988)

10

