
The Semantics of Predicate Logic as a Programming Language

M. H. VAN EMDEN AND R. A. K O WA L SK I

Umverslty of Edinburgh, Edmburgh. Scotland

ABSTRACT Sentences in first-order predicate logic can be usefully interpreted as programs In this paper the
operational and fixpomt semantics of predicate logic programs are defined, and the connections with the proof
theory and model theory of logic are investigated It is concluded that operational semantics is a part of proof
theory and that fixpolnt semantics is a special case of model-theoret:c semantics

KEY WORDS AND PHRASES predicate logic as a programming language, semantics of programming languages,
resolution theorem proving, operaUonal versus denotatlonal semantics, SL-resoluuon, flxpomt characteriza-
tion

CR CATEGORIES' 4 22, 5 21, 5 24

1. Introduct:on

Predicate logic plays an important role m many formal models of computer programs [3,
14, 17]. Here we are concerned with the interpretation of predicate logic as a program-
ming language [5, 10]. The PROLOG system (for PROgramming in LOGic), based upon
the procedural interpretation, has been used for several ambitious programming tasks
(including French language question answermg]5, 18], symbolic mtegration [9], plan
formation [24], theorem provmg, speech recognmon, and picture interpretation). In this
paper we ignore the practical aspects of programming m logic and investigate instead the
semantics of predicate logic regarded as a programming language. We compare the
resulting semantics with the classical semantics studied by logicians.

Two kinds of semantics [22], operational and fixpomt, have been defined for program-
mmg languages. Operational semantics defines the input-output relation computed by a
program m terms of the mdivldual operations evoked by the program inside a machine.
The meaning of a program ts the mput-output relation obtained by executing the
program on the machine. As a machine independent alternative to operational seman-
tics, fixpoint semantics [1,6, 17, 22] defines the meamng of a program to be the input-
output relation which ts the mimmal fixpoint of a transformation assooated with the
program. Fixpomt semantics has been used [6, 7, 15, 17] to justify existing methods for
proving properties of programs and to motivate and justify new methods of proof.

Logicians &stinguish between the syntax and the semantics of formal languages.
Syntax deals with the formal part of language m abstraction from its meaning. It deals
not only with the definition of well-formed formulas, syntax in its narrow sense, but also
w~th the broader study of axioms, rules of reference, and proofs, which constitutes proof
theory. Semantics, on the other hand, deals with the interpretation of language and
includes such notions as meaning, logical implication, and truth. Church's Introduction to
Mathematical Logic [4] contains a thorough discussion of the respectwe roles of syntax
and semantics.

Copyright © 1976, Association for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this material ~s granted provided that ACM's copyright notice is given and that reference is
made to the publication, to its date of ~ssue. and to the fact that reprinting prlvdeges were granted by
permlss~on of the Association for Computing Machinery

This work was supported by the U K Science Research Council

Authors" present addresses M H van Emden, Department of Computer Science, Umvers~ty of Waterloo,
Waterloo, Ontario, Canada N2L 3G1, R A Kowalskl, Department of Computation & Control, Imperial
College, 180 Queens Gate. London SW7, Umted Kingdom

Journal of the AssooaUon for Computing Machinery, Vol 23, No 4, October 1976, pp 733-742

734 M. H . V A N E M D E N A N D R. A . K O W A L S K I

el

We use the interpretat ion of predicate logic as a programming language in o rder to
compare the notions of operat ional and fixpomt semantics of programming languages
with the notions of syntax and semantics of predicate logic. We show that opera t ional
semantics is included in the part of syntax concerned with proof theory and that f ixpomt
semantics ~s a specml case of model- theoret ic semantics. With this in terpreta t ion of
operat ional semantics as syntax and fixpoint semanncs as semantics, the eqmvalence of
operat ional and fixpoint semantics becomes a special case of Gode l ' s completeness
theorem.

This paper is concerned with the analysis and comparison of some of the most basic
notions of logic and computa tmn As a by-product it is virtually self-contained and
requires only a general knowledge of logic but no special famihari ty with the opera t ional
and fixpoint semantics of programming languages.

2. A Syntax of Well-Formed Formulas

It is convement to restrict at tention to predicate logic programs written m clausal form.
Such programs have an especially simple syntax but retain all the expressive power of the
full predicate logic.

A sentence Is a finite set of clauses.
A clause is a disjunction Li V " • • V Ln of literals L,, which are atomtc formulas

P (t l , . . . , tin) or the negations of atomic formulas P(tl t i n) , where P is a predicate
symbol and t, are terms. Atomic formulas are positive literals. Negatmns of atomic
formulas are negative literals.

A term is ei ther a variable or an expression f(tl tin) where f is a function symbol
and t, are terms. Constants are 0-ary function symbols.

A set of clauses {C1 , C,,} is in terpreted as the conjunct ion, C1 a n d . . , and Cn. A
clause C containing just the v a n a b l e s x ~ , . . . , xm Is regarded as universally quantified:

for all x~, . . . , x,n C

For every sentence S~ m predicate logm there exists a sentence Sz in clausal form which is
satisfiable ff and only ff S~ is. For this reason, all questmns concerning the validity or
satisfmbility of sentences m predmate logm can be addressed to sentences m clausal form.
Methods for transforming sentences into clausal form are described m [16].

We have defined that part of the syntax of predmate loDc which is concerned with the
specification of well-formed formulas. Aspects of syntax concerned with proof theory are
dealt with m the next two sections.

3. The Procedural lnterpretauon

It is easiest to interpret procedural ly sets of clauses which contain at most one posmve
hteral per clause. Such sets of clauses are called Horn sentences. We distinguish three
kinds of Horn clauses.

(1) [] the empty clause, containing no hterals and denoting the truth value false, is
in terpreted as a halt statement.

(2) B~ V • • • V Bn a clause consisting of no positive hterals and n -> 1 negative hterals
~s interpreted as a goal statement.

(3) A V B1 V • - • V B,, a clause consisting of exactly one positive hteral and n >- 0
negatwe literals ~s interpreted as a procedure declaration. The posmve hteral A is the
procedure name and the negative literals are the procedure body. Each negative
literal B, in the procedure body is in terpreted as a procedure call. When n = 0 the
procedure declaratmn has an empty body and ~s interpreted as an unquahfied
assertion of fact

In the procedural mterpreta tmn a set of procedure declaratmns ~s a program. Compu-
tatmn ~s inmated by an mitml goal s ta tement , proceeds by using procedure declaratmns

The Semanttcs o f Predtcate Logtc as a Programmtng Language 735

to derive new goal statements from old goal s tatements, and terminates with the
derivation of the halt s tatement Such der ivanon of goal statements is accomplished by
resolution [20], which is interpreted as procedure invocatton. Gwen a selected procedure
call A, reside the body of a goal s tatement

A~ V " " VA,_~ V,a., VA,+l V " ' " V-4n
and given a procedure declaranon

A ' V B ~ V . . . V B , , , m > - O

whose name matches the selected procedure call (m the sense that some most general
substitution 0 of terms for variables makes A, and A ' identical), resolution derives the
new goal s tatement

(A , V . . . VA,_, V B, V . . . V/~m VA,+, V """ VA,)O.
In general , any derivation can be regarded as a computat ion and any refutation (i.e.

derivation of D) can be regarded as a successfully terminating computat ion. However
only goal oriented resolution derivations correspond to the standard notion of computa-
tion. Such a goal-orwnted denvatton from an initial set of Horn clauses A and from an
mitml goal s tatement C~ in A ~s a sequence of goal statements C1, • • . , Cn such that each
C, contains a single selected procedure call and C,+1 is obtained from C, by procedure
mvocat~on relatwe to the selected procedure call in C, using a procedure declarat ion m
A

In model ehmlnatlon [131, ordered linear resolution [19], and SL-resolutlon [12], the
selection of procedure calls ~s governed by the last m/first out rule: A goal s ta tement is
t reated as a stack of procedure calls. The selected procedure call must be at the top of the
stack. The new procedure calls which by procedure lnvocanon replace the selected
procedure call are inserted at the top of the stack. The more general notion of goal
oriented derivation defined above corresponds to computat ion with coroutines [10].
Computat ion with asynchronous parallel processes is obta ined by using the sphttmg rule
[2, 8, 231.

Pre&cate logic is a nondetermmistic programming language: Given a single goal
statement, several procedure declarat ions can have a name which matches the selected
procedure call. Each declaratton gwes rise to a new goal s tatement. A proof procedure
which sequences the generanon of derivations m the search for a refutation behaves as an
mterpreter for the program incorporated in the initml set of clauses. These and other
aspects of the procedural interpretat ion of Horn clauses are investigated m greater detad
elsewhere [10]

The procedural interpretat ion has also been investigated for non-Horn clauses [11].
However, m this paper we restrict ourselves to Horn clauses.

Example The following two clauses constitute a program for appending two lists.
The term cons(x,y) is interpreted as a list whose first element, the head, Is x and whose
tad, y, ~s the rest of the list. The constant nil denotes the empty list. The terms u, x, y,
and z are varmbles. Append(x,y,z) denotes the relationship: Z is obtained by appending
y t o x .

(1) Appen(nd,x,x) .
(2) Append(cons(x ,y)~z ,cons(x ,u))V Append(y ,z ,u)

To compute the result of appending the list cons(b,ni l) to the list cons(a ,ni l) , the
program is actwated by the goal s tatement

(3) A p p ~ (c o n s (a ,nll),cons(b ,nil),v),
where v is a varmble and a and b are constants, the "a toms" of the hsts With this goal
s tatement the program is deterministic. With a goal directed theorem prover as inter-
preter , the following computat ion ensues:

C1 = Append(cons(a,nil),cons(b,ml),v),
C~ = App-~d(ni l ,cons(b,ni l) ,w) 01,
C3 = E/0z,

736 M. H. VAN EMDEN AND R. A. KOWALSKI

where 0~ is the substitution v "= c o n s (a , w) and 0z is w := cons(b,nil). The result of the
computation is the value of v in the substltuUon 0102, which is v := cons(a,cons(b,nd)) .

4. Opera t iona l Semant tcs

To define an operational semantics [22] for a programming language is to define an
implementation independent interpreter for it For predicate logic the proof procedure
behaves as such an interpreter

We regard the terms containing no variables which can be constructed from the
constants and other function symbols occurring m a set of clauses A as the data s tructures
which the program, incorporated m A, mampulates. The set of all such terms is called
the H e r b r a n d universe H determined by A. Every n-ary predicate symbol P occurring in
A denotes an n-ary relation over the Herbrand universe of A We call the n-tuples which
belong to such relations m p u t - o u t p u t tuples and the relaUons themselves i npu t -ou tpu t
relat ions.

Given a specific inference system, the operational semantics determines a unique
denotation for P: The n-tuple (tl, • • . , tin) belongs to the denotation of P in A iff A ~-
P (q , . . . , tn), where X ~- Y means that there exists a derivation of Y from X. For
resolution systems we employ the convention that X I- Y means that there exists a
refutation of the sentence in clausal form corresponding to X & l(. We use the notation

D, (P) = {(t, tn) : A F P (t , , . . . , tn)}

for the denota t ton of P in A as determined by opera t iona l semant tcs
It needs to be emphasized that only goal oriented Inference systems correspond to the

standard notion of operational semantics, where procedure calls are replaced by proce-
dure bodies. In theory, however, any inference system for predicate logic specifies,
implicitly at least, an abstract machine which generates exactly those derivations which
are determined by the given inference system

Notice that in our treatment predicate logic programs compute relations. The relations
computed are denoted by predicate symbols in the defining set of clauses A. Those
special relations which are functions are also denoted by predicate symbols The function
symbols occurring m A do not denote functions computed by the program but construct
the data structures which are the input and output objects of the relations (or functions)
computed.

It Is a significant application of the proof theory of resolution systems to the computa-
tion theory of predicate logic programs that if A is consistent and A ~- P(t l , . . . , tn) then
there exists a resolution refutation of A & P(x~, . . . , x,) in which the vanablesx~, . . . , x ,
are eventually mstantiated to terms which have t~ , tn as an instance. More generally,
if A I- P(t~, . . . , t ,) , then for any subset of the arguments tl, . . . , t , of P there exists a
computation which accepts those arguments of P as input and computes the remaining
arguments as output. A useful practical consequence of this fact is that a predicate logic
program can first be written to test that a given relationship holds among the members of
an n-tuple of objects but can later be used to generate, from some subset of objects in the
n-tuple given as input, the remaining objects in the n-tuple as output. See, for example,
the goal statement 3(a) below. Another important consequence is that variables occur-
ring m input or output can be used to represent incompletely specified data See, for
example, the goal statement 3(b) below. It is these considerations which motivate the
terminology "input-output relation" for the relation denoted by a predicate symbol in a
set of clauses.

Given a consistent set of clauses A representing a program and given a goal statement
C, the Herbrand universe for A can be different from the Herbrand unwerse for the set
of clauses AO{C}. Although this is an interesting case to consider, we assume for
simphcity that it does not arise and that C contains only constant symbols and function
symbols occurring in A. Similarly we assume that A always contains at least one constant
symbol.

The Semanttcs o f Predtcate Logtc as a Programming Language 737

Example. The program for appending lists can be activated by the goal s tatement:
(3a) Append(x ,cons(a,y) ,cons(a ,cons(b ,cons(a,nil)))) ,

where a, b, and nil are constants, and x and y are variables. With this goal s ta tement the
program behaves nondeterminist icaily: There are two computat ions, one ends with x :=
nil, y := cons(b ,cons(a ,n i l)) , and the other ends with x := cons(a ,cons(b ,nil)), y := nil.
Act ivated by a goal s tatement with this pat tern of constants and variables, the program
checks whether a part icular item occurs in the given list and gives a different computat ion
for each different occurrence. For each occurrence of the i tem, it determines the list of
items preceding the given occurrence as well as the list following it.

Example. The program for appending can also be activated by the goal s tatement:
(3b) Append(cons(b ,n l l) ,y , z) ,

where b and nil are constants and y and z are variables. Starting from this goal s ta tement
there is one computat ion. It ends with z := cons(b,y) , which can be interpreted as stating
that z is the list whose head is b and whose tail is the unspecified input y .

5. Model- Theorettc Semanttcs

There is general agreement among logicians concerning the semantics of predicate logic.
This semantics provides a simple method for determining the denotat ion of a predicate
symbol P in a set of clauses A:

D2(P) = {(t, t ,) : A I = P(t, t,)},

where X ~ Y means that X logically implies Y. Dz(P) is the denotation of P as
determined by model-theorettc semantics.

The completeness of first-order logic means that there exist Inference systems such
that derivabdity co inodes with logical imphcatton; i .e. for such reference systems X I- Y
i f f S l = Y.

The equivalence of operat ional and model- theoret ic semantics D i (P) = Dz(P) is an
immediate consequence of the completeness of the inference system which determines
Dl .

In order to make a comparison of the fixpoint and model- theoret ic semantics, we need
a more detailed definition of D2. For this purpose we define the notions of Herbrand
interpretat ion and Herbrand model.

An expression (term, literal, clause, set of clauses) isground if it contains no variables.
The set of all ground atomic formulas P(tl , . . . , t ,) , where P occurs in the set of clauses

• A and t~ tn belong to the Herbrand universe H of A , is called the Herbrand base ~t
of A. A Herbrand interpretation I of A is any subset of the Herbrand base of A . A
Herbrand interpretat ion simultaneously associates, with every n-ary predicate symbol in
A , a unique n-ary relation over H . The relation {(tl tn) : P(t l tn) ~ I} is
associated by I with the predicate symbol P in A.

(1) A ground atomic formula A is true In a Herbrand interpretat ion I i f fA E I .
(2) A ground negative literal .A is true in I iff A ~ 1.
(3) A ground clause L~ V • • • V Lm is true in I iff at least one literal L, is true in I .
(4) In general a clause C is true in I Iff every ground instance Co" of C Is true in I . (Co" is

obtained by replacing every occurrence of a variable in C by a term in H . Different
occurrences of the same variable are replaced by the same term.)

(5) A set of clauses A is true in I iff each clause in A is true m I .

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I , then we
say that I is a Herbrand model of A and we write I=1 A. It is a simple version of the
Skolem-Lowenheim theorem that a sentence A in clausal form has a model t f f it has a
Herbrand model.

We can now formulate an explicit definition of the denotat ion determined by the
model-theoretic semantics. Let M(A) be the set of all Herbrand models of A; then
NM(A) , the intersection of all Herbrand models of A , is itself a Herbrand interpreta t ion

738 M. H. VAN EMDEN AND R. A. KOWALSKI

of A . If A contains the predicate symbol P , then the denotauon D2(P) is the relat ion
associated with P by the Herbrand interpreta t ion A M (A) . In symbols,

D2(P) = {(t, tn) : P (t l In) ~ OM(A)}

for any set of clauses A .
PROOF. (q, . . . , t,) E D2(P)

iff A J= P(t j tn),
iff A U {P(tl t,)} has no model ,
lff A U {P(q t~)} has no Herbrand model ,
iff P (t l t~) is false in all Herbrand models of A,
iff P(q t~) as true in all Herbrand models of A ,
iff P(t, t .) E AM(A).

Notice that the above equahty holds for any set of clauses A even if A is inconsistent.
If A as a consistent set of Horn clauses then r i M (A) is itself a Herbrand model of A .
More generally, Horn clauses have the model mtersectton property: If L is any nonempty
set of Herbrand models of A then A L is also a model of A .

PROOF. Assume AL is not a model of A . Then ML falsifies some ground instance Ctr
of a clause C E A.

If C as a procedure declarat ion, then

Ctr = A V A i V " " VAin , m - > 0 , A ~ OL, and A1 Am E n L .

Therefore for some I E L, A ~ I and Aa Am E I . C is false in I , contrary to
assumption that I E L.

If C is a goal s ta tement , then

C t r = A 1 V " " VAm, m > 0 , A a , . . . , A m E A L .

Therefore for all I E L, A1 , Am E I. C is false in I , contrary to assumption that
I E L .

{P(a) V P(b)}, where a and b are constants, is an example of a non-Horn sentence
which does not have the model- intersect ion proper ty: {{P(a)}, {P(b)}} is a nonempty set
of models, yet its intersection Q5 is a Herbrand interpretataon which is not a model .

6. Flxpomt Semanttcs

In the fixpoint semantics, the denotat ion of a recursively defined procedure is defined to
be the minimal fixpomt of a t ransformation associated with the procedure definition.
Here we propose a samdar def inmon of fixpomt semantacs for predacate logic programs.
In order to justify our def lnmon we first desq;ibe the fixpomt semantacs as it has been
formulated for more conventaonally defined recurswe procedures. Our description fol-
lows the one gaven by de Bakker [6]

Let P ~ B(P) be a procedure declarat ion in an Algol- l ike. language, where the first
occurrence of P as the procedure name, where B(P) is the procedure body, and where the
occurrence of P in B(P) dlstmgmshes all calls to P in the body of the procedure.
Associated with B as a t ransformation T which maps sets I of input-output tuples into
other such sets J = T(I). When the transformation T is monotonac (which means that
T(I~) C T(I2) whenever I~ C lz) the denotahon of P as defined as

n{l : T(I) C 1},

which is adenhcal to the antersection of all fixpolnts of T,

n { ~ : T(1) = I } ,

and which is atself a fixpomt (the least such) of T.
In a similar way a transformation T can be assocmted with a finite set of mutually

recursive procedure declarat ions

The Semantics o f Predicate Logic as a Programmmg Language

P, ,~: B , (P , P .)

739

' The minimal flxpoint of T, which exists when T is monotonic, can be decomposed into
components, the ,th of which is the denotation of the procedure P,.

By means of the procedural interpretation, the fixpoint semantics of predicate logic is
defined similarly. A set of Horn clauses of the formA VA~ V • " • V A I n , where m >/0 ,
is interpreted as a set of mutually recursive, possibly nondetermlmstlc, procedure
declarations We restrict the definlhon of the fixpolnt semantics of predicate logic
programs to sentences A which are sets of such procedure declarations. Associated with
every such sentence A ts a transformation T which maps Herbrand interpretations to
Herbrand interpretations. Suppose that P1, • •, Pn are the predicate symbols occurring
in A. The transformation T can be defined in terms of individual transformations T,
associated with the individual predicate symbols P,. T, maps Herbrand interpretations I
to Herbrand interpretations J, = T,(1) which contain only atomic formulas beginning with
the predicate symbol P,:

J, = T,(I) contains a ground atomic formula A E H iff A begins with the predicate
symbol P, and, for some ground instance Co- of a clause C in A, Co- = A V Ai
V • • ..V./~m and Ax Am E l , m i> O.

The transformation T associated with A is defined by T(I) = Ti(I) U . . . U Tn(I).
The input-output relation associated by J, = T,(/) with P, can be regarded as the

relation obtained by "substituting," for the procedure calls in the declarations of P, in A,
the appropriate input-output relations associated by I. This interpretation of T, is
analogous to the corresponding definition for conventionally defined recursive proce-
dures. A simpler definition of T, which is less directly analogous to the conventional
definition, is the following:

T(/) contains a ground atomtc formula A E H iff for some ground instance Co- of a
clause C in A, Co. = A V A 1 V " • " V.,4m andA~ Am E I , m >- O.

Notice that, independently of I, T(/) always contains all ground instances Ao. of
unquahfied assertions A in A (corresponding to the case m = 0 in the definition of T(/)).

Let C(A) be the set of all Hcrbrand interpretations closed under the transformation T,
i.e. I E C(A) fff T(/) C 1. The denotatton of a predicate symbol P occurring in a set of
procedure declarations A, as determined by the f ixpomt semanncs, Is

D3(P) = {(t, tn) : e(t~ tn) ~ NC(A)}.

As a corollary of the theorem below, NC(A) is itself closed under T and therefore D3(P)
is the smallest set of input-output tuples closed under T. In conventional fixpomt theory
this fact is proved by using the monotonicity of T.

7. Model-Theorettc and Fixpomt Semanttcs

We shall show that for sets of procedure declarations A, model-theoretic and fixpoint
semantics coincide: D2 = Ds. It would be sufficient to show that NM(A) = AC(A), but it
is easy to prove that even M(A) = C(A).

In other words, a Herbrand interpretation I of A is a model of A iff I is closed under
the transformation T assocmted with A.

THEOREM. I f A is a set o f procedure declarations, then M(A) = C(A), Le. ~r A lff
T(1) C 1, for all Herbrand interpretations 1 o f A

PROOF. (~=~ A lmphes T(/) C_ 1.) Suppose that I is a model of A. We waflt to show J =
T(/) _C 1, Le. that if A E J then A E I.

740 M . H . VAN EMDEN AND R. A. KOWALSKI

Assume that A ~ J ; then by the definition of T, for some C E A and for some ground
instance Co- of C,

Co" = A V A l V • • " V A , a n d A 1 An E I .

Because I is a model of A , Ctr is true in I . But then A is true in I , because A~ and A
are false in I. Therefore A E I.

(T(/) C I imphes 1=~ A). Suppose that I is not a model of A. We want to show that T(/)
~ 1. But I falsifies some ground instance Co" of a clause C in A , where Co" = A V A i
V • " " k/Am, m >- 0. Because I falsifies Co", A ~ I andA~ Am ~ / . But then, be-
cause A~ Am E / , it follows that A E T(1). Therefore T(1) ~ I.

COROLLARY. l f A is a set o f procedure declarations, then f"IC(A)/s closed under T.
PROOF. NC(A) = tqM(A) by the model-intersection proper ty is a model of A and by

the theorem is therefore closed under T.

8. Operational and Fixpomt Semantics, Hyperresolutton

The eqmvalence Di = D3 between operat ional and fixpoint semantics, which follows
from the equivalences 1)1 = D2 and D2 = D3, has different interpretat ions depending
upon the reference system which determines D~. Here we investigate the interpreta t ion
associated with a part icular inference system based upon hyperresolut lon [21].

For ground procedure declarat ions the definition of hyperresolut lon is very simple:

A n atomic formula A is the hyperresolvent of ground clauses A x / A 1 V" " "V-'~ m and
A1 A m . A is said to be obtained f r o m A v A 1 V • " " VAIn a n d A l Am by
hyperresolution .

The connection with fixpomt semantics is obvious: If T Is the transformation assooa ted
with the set of procedure declarat ions A and if I is a Herbrand interpretat ion of A , then
T(/) is the set of all ground instances of assertions in A together with all hyperresolvents
derivable in one step from ground instances of clauses in A and from assertions in 1. It
follows that -

A is derivable by means of a hyperresolut ion derivation from ground instances of
clauses in A iff A E t.,l~=0 T m (0) where 7'0(0) = O and T'n+l(O) = T(Tm(O)).

Let D~ n be the operat ional semantics associated with the two inferences rules of ground
instantlation of clauses in A and ground hyperresolut lon, i.e define

(t t tn) ~ O~n(P) iff P(q tn) ~ ~1 Tm((~).
m=0

The equivalence of Djn and the model- theoret ic semantics D2 is the completeness, for
Horn clauses, of the inference system whose inference rules are ground mstantiat ion of
input clauses and ground hyperresolut ion. Completeness can be proved using s tandard
resolution-theoretic arguments. Here we present an al ternative direct proof that for any
set of declarat ions A with associated transformation T, U~=0 Tin(O) = A M (A) .

PROOF. Let U abbrevia te UTn=0 Tin(O).
(U C AM(A)) . Suppose that A E U. Then A is derivable by means of a hyperresolu-

tion derivation from ground instances of clauses in A. By the correctness of hyperresolu-
tion and instantiation, A ~ A and therefore A E NM(A).

(NM(A) C U). We show that U is closed under T, because then U ~ M(A) , and
therefore NM(A) C U. Suppose that A G T(U). By the definition of T , ei ther A is an
instance of an unqualified assertion in A or some clause A V~A] V " • " V A n is an instance
of a clause in A and A 1 An E U. In the first case A ~ U, because A E Tin(O), m > O.
In the second case A 1 An ~ TN(O) for some N _> 0, and therefore A E TN+~(~) and
A ~ U. Therefore U is closed under T.

Therefore for sets of declarat ions, D~ n = D2.
Because of the eqmvalence between model- theoret ic and fixpoint semantics, we also

have that D~ H = D3, i.e. U~=o T 'n(o) = f3{l : T(I) C_ I}.

The Semant i c s o f Predicate L o g i c as a P r o g r a m m i n g L a n g u a g e 7 4 1

Th i s last fact is usual ly p r o v e d m the f ixpoin t t h e o r y by d e m o n s t r a t i n g the c o n t i n u i t y o t
the t r a n s f o r m a t i o n T.

9. Conc lus ion

For a rb i t r a ry s e n t e n c e s X a n d Y of f i r s t -o rde r p r ed i ca t e logic, p r o o f t h e o r y d e t e r m i n e s
w h e n X ~- Y a n d m o d e l t h e o r y d e t e r m i n e s w h e n X ~ Y. W e have a r g u e d t h a t m the
p r o c e d u r a l i n t e r p r e t a t i o n , o p e r a t i o n a l s e m a n t t c s ~s p r o o f t h e o r y a n d f ixpo in t s e m a n t i c s
is m o d e l t heo ry . O n the o t h e r h a n d , o p e r a t i o n a l a n d f ixpoin t s e m a n t i c s on ly dea l wi th the
case whe re Y is a set of g r o u n d a t o m i c fo rmulas . M o r e o v e r , f ixpoin t s e m a n t i c s on ly dea ls
wi th X, a set of p r o c e d u r e dec l a r a t i ons . We be l ieve t h a t the a d d e d gene ra l i t y of p r o o f
t heo ry and m o d e l t h e o r y has useful c o n s e q u e n c e s .

The c o m p l e t e n e s s t h e o r e m of f i r s t -o rde r logic s ta tes t ha t the r e l a t ions b of d e r i v a b i h t y
and ~ of logical l m p h c a t i o n are e q u i v a l e n t . Fo r goal o r i e n t e d i n f e r ence sys t ems this

equ iva l ence e s t ab l i shes tha t va r ious c o m p u t a t i o n rules c o m p u t e the r e l a t i on d e t e r m i n e d
by the f ixpoin t s eman t i c s . M o r e gene ra l ly , th is e q u i v a l e n c e can be used to jus t i fy va r ious
rules (such as Sco t t ' s i nduc t i on rule [6]) for p rov ing p r o p e r t i e s of p r o g r a m s .

W e have a r g u e d t ha t va r ious n o t i o n s of the c o n v e n t t o n a l t h e o r y of c o m p u t i n g can be
u n d e r s t o o d in t e r m s of the classical t h e o r y of p red ica t e logic. W e b e h e v e m o r e o v e r t ha t
the p red ica te logic t heo ry has f u r t h e r c o n t r i b u t i o n s to m a k e b o t h to the t h e o r y a n d to the
prac t ice of c o m p u t i n g .

ACKNOWLEDGMENTS. We are i n d e b t e d to Michae l G o r d o n for his m t e r e s t a n d useful
cr i t ic ism of work lead ing to this p a p e r . T h a n k s are due also to Ke t th C la rk , A l a i n
C o l m e r a u e r , G e r a r d H u e t , Dav id Pa rk , and Wl l l em-Pau l de R o e v e r for t he i r he lpful
c o m m e n t s on e a r h e r ve r s ions of the p a p e r . Sugges t ions f rom the r e f e r ee s h a v e also b e e n
i n c o r p o r a t e d m the pape r .

REFERENCES

1 BEKI(:, H Definable operaUons m general algebra, and the theory of automata and flow charts IBM Res
Rep , Vienna, 1971

2 BLEDSOE, W W Splitting and reduction heuristics in automatic theorem proving Arnf lntel 2 (1971),
55-77

3 BURSTALL, R M Formal description of program structure and semantics in first order logic. In Machine
Intelhgence 5, B Meltzer and D Mtchle, Eds , Edinburgh U Press, Edinburgh, 1969, pp 79-98

4 CHURCH, A Introducnon to Mathemat:cal Logic, Vol 1 Princeton U Press, Princeton, N J , 1956
5 COLM~RAUER, A , KANOUI, H , PASERO, R., AND ROUSSEL, P. Un syst6me de communication homme-

machine en franqals. Groupe d'lntelhgence Artdiclelle, U E R de Lummy, Umverstt6 d'Aix-Marsedle,
Lummy, 1972

6 DE BAKKER, J W Recurslve procedures Tract No 24, Mathematical Centre, Amsterdam, 1971
7 DE BAKKER, J W , AND DE ROEVER, W P A calculus of recurswe program schemes. In Automata,

Languages and Programming, M Nlvat, Ed , North-Holland Pub Co , Amsterdam, 1973, pp 167-
196

8 ERNST, G W The uUhty of independent subgoals m theorem proving Inform Contr 18, 3 (Aprd 1971),
237-252

9 KANOUI, H Apphcat~on de la demonstration automat~que aux mampulauons algebrnques et ~ l'mt~gratlon
formelle sur ordmateur Groupe d'Intelhgence Artlficielle, U E R de Lummy, Umverslt6 d'AIx-
Marsedle, Lummy, 1973.

10 KOWALSKL R Predicate logic as programming language Proc |FIP Cong 1974, North-Holland Pub
Co , Amsterdam, 1974, pp 569-574

11 KOWALSKL R Logic for problem-solving DCL Memo 75, Dep Arttficml Intelligence, U. of Edinburgh,
Edinburgh, 1974

12 KOWALSKI, R , AND KUEHNER, D Linear resolution with select2on functmn Art:f Intel 2 (1971), 227-
260

13. LOWLAND, D.W A simplified format for the model elnmmatmn theorem-proving procedure. J. A CM 16,
3 (July 1969), 349-363

14 MANNA, Z Properties of programs and the first-order predicate calculus J ACM 16, 2 (Aprd 1969),
244-255

15 MILNER, R lmplementatmn and apphcatlons of Scott's logic for computable functions. Proc. ACM Conf
on Prowng Assertmns About Programs, Jan 1972, pp 1-6

742 M . H . VAN EMDEN AND R. A. KOWALSKI

16. NILSSON, N J Problem Solving Methods m Arttjictal lntelhgence. McGraw-Hill, New York, 1971
17 PARK, D Fixpolnt Induction and proofs of program properties In Machme Intelhgence 5, B Meltzer and

D Michie, Eds , Edinburgh U Press, Edinburgh, 1969, pp 59-78
18 PAS~RO, R. Repr6sentat~on du fran~ms en loglque du premier ordre en vue de dlaloguer avec un

ordlnateur Group d'lntelhgence ArtlflClelle, U.E R de Lummy, Unlvers~t6 d'Alx-Marsedle, Lumlny,
1973.

19 REITER, R Two results on ordermg for resolution with merging and hnear format J ACM 18, 4 (Oct
1971), 630-646

20. ROalNSON, J A A machine-oriented logic based on the resolution principle. J ACM 12, 1 (Jan. 1965),
23-41.

21 ROBINSON,J A Automatic deduction with hyper-resolut,on Int J Comptr Math 1 (1965), 227-234
22 SCOTT, D Outhne of a mathematical theory of computation Tech Monog PRG-2, Comptg Lab ,

Oxford U , Oxford, England
23 SLAGLE, J R , AND KONIVER, P Finding resolution graphs and using duphcate goals m AND/OR trees

Inform Scl 3 (1971), 315-342
24 WARREN, D H D WARPLAN A system for generating plans DCL Memo 76, Dep. of Artlflcml Intelh-

gence, U of Edinburgh, Edinburgh, 1974

RECEIVED MARCH 1974, REVISED APRIL 1976

Journal of the Association for Computing Machinery. Vol 23. No 4, October 1976

