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1. Introduct:on 

Predicate logic plays an important role m many formal models of computer programs [3, 
14, 17]. Here we are concerned with the interpretation of predicate logic as a program- 
ming language [5, 10]. The PROLOG system (for PROgramming in LOGic), based upon 
the procedural interpretation, has been used for several ambitious programming tasks 
(including French language question answermg ]5, 18], symbolic mtegration [9], plan 
formation [24], theorem provmg, speech recognmon, and picture interpretation). In this 
paper we ignore the practical aspects of programming m logic and investigate instead the 
semantics of predicate logic regarded as a programming language. We compare the 
resulting semantics with the classical semantics studied by logicians. 

Two kinds of semantics [22], operational and fixpomt, have been defined for program- 
mmg languages. Operational semantics defines the input-output relation computed by a 
program m terms of the mdivldual operations evoked by the program inside a machine. 
The meaning of a program ts the mput-output relation obtained by executing the 
program on the machine. As a machine independent alternative to operational seman- 
tics, fixpoint semantics [1,6,  17, 22] defines the meamng of a program to be the input- 
output relation which ts the mimmal fixpoint of a transformation assooated with the 
program. Fixpomt semantics has been used [6, 7, 15, 17] to justify existing methods for 
proving properties of programs and to motivate and justify new methods of proof. 

Logicians &stinguish between the syntax and the semantics of formal languages. 
Syntax deals with the formal part of language m abstraction from its meaning. It deals 
not only with the definition of well-formed formulas, syntax in its narrow sense, but also 
w~th the broader study of axioms, rules of reference, and proofs, which constitutes proof 
theory. Semantics, on the other hand, deals with the interpretation of language and 
includes such notions as meaning, logical implication, and truth. Church's Introduction to 
Mathematical Logic [4] contains a thorough discussion of the respectwe roles of syntax 
and semantics. 
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We use the interpretat ion of predicate logic as a programming language in o rder  to 
compare the notions of operat ional  and fixpomt semantics of programming languages 
with the notions of syntax and semantics of predicate logic. We show that opera t ional  
semantics is included in the part  of syntax concerned with proof  theory and that f ixpomt 
semantics ~s a specml case of model- theoret ic  semantics.  With  this in terpreta t ion of 
operat ional  semantics as syntax and fixpoint semanncs  as semantics,  the eqmvalence of 
operat ional  and fixpoint semantics becomes a special case of Gode l ' s  completeness  
theorem.  

This paper  is concerned with the analysis and comparison of some of the most basic 
notions of logic and computa tmn As a by-product  it is virtually self-contained and 
requires only a general  knowledge of logic but no special famihari ty with the opera t ional  
and fixpoint semantics of programming languages.  

2. A Syntax of  Well-Formed Formulas 

It is convement  to restrict at tention to predicate  logic programs written m clausal form. 
Such programs have an especially simple syntax but retain all the expressive power  of the 
full predicate logic. 

A sentence Is a finite set of clauses. 
A clause is a disjunction Li  V " • • V Ln of literals L,, which are atomtc formulas 

P ( t l ,  . . . , tin) or the negations of atomic formulas P(tl . . . . .  t i n ) ,  where P is a predicate 
symbol and t, are terms. Atomic  formulas are positive literals. Negatmns of  atomic 
formulas are negative literals. 

A term is ei ther a variable or an expression f(tl . . . . .  tin) where f is a function symbol 
and t, are terms. Constants are 0-ary function symbols.  

A set of clauses {C1 . . . .  , C,,} is in terpreted as the conjunct ion,  C1 a n d . . ,  and Cn. A 
clause C containing just the v a n a b l e s x ~ , . . . ,  xm Is regarded as universally quantified: 

for all x~, . . . ,  x,n C 

For  every sentence S~ m predicate logm there exists a sentence Sz in clausal form which is 
satisfiable ff and only ff S~ is. For  this reason,  all questmns concerning the validity or  
satisfmbility of sentences m predmate logm can be addressed to sentences m clausal form. 
Methods for transforming sentences into clausal form are described m [16]. 

We have defined that part  of the syntax of predmate loDc which is concerned with the 
specification of well-formed formulas.  Aspects  of syntax concerned with proof  theory are 
dealt  with m the next two sections. 

3. The Procedural lnterpretauon 

It is easiest to interpret  procedural ly sets of  clauses which contain at most one posmve 
hteral  per  clause. Such sets of clauses are called Horn sentences. We distinguish three 
kinds of Horn clauses. 

(1) [] the empty clause, containing no hterals and denoting the truth value false, is 
in terpreted as a halt statement. 

(2) B~ V • • • V Bn a clause consisting of no positive hterals and n -> 1 negative hterals  
~s interpreted as a goal statement. 

(3) A V B1 V • - • V B,, a clause consisting of exactly one positive hteral  and n >- 0 
negatwe literals ~s interpreted as a procedure declaration. The posmve hteral  A is the 
procedure name and the negative literals are the procedure body. Each negative 
literal B, in the procedure  body is in terpreted as a procedure call. When n = 0 the 
procedure  declaratmn has an empty body and ~s interpreted as an unquahfied 
assertion of fact 

In the procedural  mterpreta tmn a set of procedure  declaratmns ~s a program.  Compu-  
tatmn ~s inmated  by an mitml goal s ta tement ,  proceeds by using procedure  declaratmns 
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to derive new goal statements from old goal s tatements,  and terminates with the 
derivation of the halt s tatement Such der ivanon of goal statements is accomplished by 
resolution [20], which is interpreted as procedure invocatton. Gwen a selected procedure  
call A,  reside the body of a goal s tatement 

A~ V " "  VA,_~ V,a., VA,+l  V " ' "  V-4n 
and given a procedure  declaranon 

A ' V B ~ V . . .  V B , , ,  m > - O  

whose name matches the selected procedure call (m the sense that some most general  
substitution 0 of terms for variables makes A,  and A '  identical),  resolution derives the 
new goal s tatement 

( A , V  . . .  VA,_, V B, V . . .  V/~m VA,+, V """ VA,)O. 
In general ,  any derivation can be regarded as a computat ion and any refutation (i.e. 

derivation of D) can be regarded as a successfully terminating computat ion.  However  
only goal oriented resolution derivations correspond to the standard notion of computa-  
tion. Such a goal-orwnted denvatton from an initial set of Horn clauses A and from an 
mitml goal s tatement  C~ in A ~s a sequence of goal statements C1, • • . ,  Cn such that each 
C, contains a single selected procedure call and C,+1 is obtained from C, by procedure  
mvocat~on relatwe to the selected procedure  call in C, using a procedure  declarat ion m 
A 

In model ehmlnatlon [131, ordered linear resolution [19], and SL-resolutlon [12], the 
selection of procedure calls ~s governed by the last m/first out rule: A goal s ta tement  is 
t reated as a stack of procedure calls. The selected procedure call must be at the top of the 
stack. The new procedure calls which by procedure lnvocanon replace the selected 
procedure call are inserted at the top of the stack. The more general notion of goal 
oriented derivation defined above corresponds to computat ion with coroutines [10]. 
Computat ion with asynchronous parallel  processes is obta ined by using the sphttmg rule 
[2, 8, 231. 

Pre&cate logic is a nondetermmistic programming language: Given a single goal 
statement,  several procedure declarat ions can have a name which matches the selected 
procedure call. Each declaratton gwes rise to a new goal s tatement.  A proof procedure 
which sequences the generanon of derivations m the search for a refutation behaves as an 
mterpreter for the program incorporated in the initml set of clauses. These and other  
aspects of the procedural  interpretat ion of Horn clauses are investigated m greater  detad 
elsewhere [10] 

The procedural  interpretat ion has also been investigated for non-Horn clauses [11]. 
However,  m this paper  we restrict ourselves to Horn clauses. 

Example The following two clauses constitute a program for appending two lists. 
The term cons(x,y)  is interpreted as a list whose first element,  the head, Is x and whose 
tad, y,  ~s the rest of the list. The constant nil denotes the empty list. The terms u, x, y, 
and z are varmbles. Append(x,y,z) denotes  the relationship: Z is obtained by appending 
y t o x .  

(1) Appen(nd,x,x) .  
(2) Append(cons(x ,y)~z ,cons(x ,u) )V Append(y ,z ,u)  

To compute the result of appending the list cons(b,ni l)  to the list cons(a ,ni l ) ,  the 
program is actwated by the goal s tatement  

(3) A p p ~ ( c o n s (  a ,nll ),cons( b ,nil),v ), 
where v is a varmble and a and b are constants,  the "a toms"  of the hsts With this goal 
s tatement the program is deterministic.  With a goal directed theorem prover  as inter- 
preter ,  the following computat ion ensues: 

C1 = Append(cons(a,nil),cons(b,ml),v), 
C~ = App-~d(ni l ,cons(b,ni l) ,w) 01, 
C3 = E/0z, 
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where 0~ is the substitution v "= c o n s ( a , w )  and 0z is w := cons(b,nil). The result of the 
computation is the value of v in the substltuUon 0102, which is v := cons(a,cons(b,nd)) .  

4. Opera t iona l  Semant tcs  

To define an operational semantics [22] for a programming language is to define an 
implementation independent interpreter for it For predicate logic the proof procedure 
behaves as such an interpreter 

We regard the terms containing no variables which can be constructed from the 
constants and other function symbols occurring m a set of clauses A as the data s tructures 
which the program, incorporated m A,  mampulates. The set of all such terms is called 
the H e r b r a n d  universe  H determined by A. Every n-ary predicate symbol P occurring in 
A denotes an n-ary relation over the Herbrand universe of A We call the n-tuples which 
belong to such relations m p u t - o u t p u t  tuples  and the relaUons themselves i npu t -ou tpu t  
relat ions.  

Given a specific inference system, the operational semantics determines a unique 
denotation for P: The n-tuple (tl, • • . ,  tin) belongs to the denotation of P in A iff A ~- 
P ( q ,  . . . ,  tn), where X ~- Y means that there exists a derivation of Y from X. For 
resolution systems we employ the convention that X I- Y means that there exists a 
refutation of the sentence in clausal form corresponding to X & l(. We use the notation 

D, (P)  = {(t, . . . . .  tn) : A F P ( t , ,  . . . ,  tn)} 

for the denota t ton  of P in A as determined by opera t iona l  semant tcs  
It needs to be emphasized that only goal oriented Inference systems correspond to the 

standard notion of operational semantics, where procedure calls are replaced by proce- 
dure bodies. In theory, however, any inference system for predicate logic specifies, 
implicitly at least, an abstract machine which generates exactly those derivations which 
are determined by the given inference system 

Notice that in our treatment predicate logic programs compute relations. The relations 
computed are denoted by predicate symbols in the defining set of clauses A.  Those 
special relations which are functions are also denoted by predicate symbols The function 
symbols occurring m A do not denote functions computed by the program but construct 
the data structures which are the input and output objects of the relations (or functions) 
computed. 

It Is a significant application of the proof theory of resolution systems to the computa- 
tion theory of predicate logic programs that if A is consistent and A ~- P( t l ,  . . . ,  tn) then 
there exists a resolution refutation of A & P(x~, . . . ,  x,)  in which the vanablesx~, . . . ,  x ,  
are eventually mstantiated to terms which have t~ . . . .  , tn as an instance. More generally, 
if A I- P(t~, . . . ,  t , ) ,  then for any subset of the arguments tl, . . . ,  t ,  of P there exists a 
computation which accepts those arguments of P as input and computes the remaining 
arguments as output.  A useful practical consequence of this fact is that a predicate logic 
program can first be written to test that a given relationship holds among the members of 
an n-tuple of objects but can later be used to generate, from some subset of objects in the 
n-tuple given as input, the remaining objects in the n-tuple as output.  See, for example, 
the goal statement 3(a) below. Another  important consequence is that variables occur- 
ring m input or output can be used to represent incompletely specified data See, for 
example, the goal statement 3(b) below. It is these considerations which motivate the 
terminology "input-output relation" for the relation denoted by a predicate symbol in a 
set of clauses. 

Given a consistent set of  clauses A representing a program and given a goal statement 
C, the Herbrand universe for A can be different from the Herbrand unwerse for the set 
of clauses AO{C}. Although this is an interesting case to consider, we assume for 
simphcity that it does not arise and that C contains only constant symbols and function 
symbols occurring in A.  Similarly we assume that A always contains at least one constant 
symbol. 
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Example. The program for appending lists can be activated by the goal s tatement:  
(3a) Append(x  ,cons(a,y ) ,cons(a ,cons(b ,cons(a,nil) ) ) ) , 

where a, b, and nil are constants, and x and y are variables.  With this goal s ta tement  the 
program behaves nondeterminist icaily:  There  are two computat ions,  one ends with x := 
nil, y := cons(b ,cons(a ,n i l ) ) ,  and the other  ends with x := cons( a ,cons( b ,nil)), y := nil. 
Act ivated by a goal s tatement with this pat tern of constants and variables,  the program 
checks whether  a part icular  item occurs in the given list and gives a different computat ion 
for each different occurrence.  For  each occurrence of the i tem, it determines the list of 
items preceding the given occurrence as well as the list following it. 

Example.  The program for appending can also be activated by the goal s tatement:  
(3b) Append(cons(b ,n l l ) ,y , z ) ,  

where b and nil are constants and y and z are variables. Starting from this goal s ta tement  
there is one computat ion.  It ends with z := cons(b,y) ,  which can be interpreted as stating 
that z is the list whose head is b and whose tail is the unspecified input y .  

5. Model- Theorettc Semanttcs 

There is general agreement  among logicians concerning the semantics of predicate logic. 
This semantics provides a simple method for determining the denotat ion of a predicate 
symbol P in a set of clauses A:  

D2(P) = {(t, . . . . .  t ,) : A I = P(t, . . . . .  t,)}, 

where X ~ Y means that X logically implies Y. Dz(P) is the denotation of P as 
determined by model-theorettc semantics. 

The completeness of first-order logic means that there exist Inference systems such 
that derivabdity co inodes  with logical imphcatton; i .e.  for such reference systems X I- Y 
i f f S l  = Y. 

The equivalence of operat ional  and model- theoret ic  semantics D i ( P )  = Dz(P)  is an 
immediate consequence of the completeness of the inference system which determines  
Dl .  

In order  to make a comparison of the fixpoint and model- theoret ic  semantics, we need 
a more detailed definition of D2. For  this purpose we define the notions of Herbrand  
interpretat ion and Herbrand model.  

An  expression ( term, literal, clause, set of clauses) isground if it contains no variables.  
The set of all ground atomic formulas P(tl ,  . . . ,  t , ) ,  where P occurs in the set of clauses 

• A and t~ . . . . .  tn belong to the Herbrand universe H of A ,  is called the Herbrand base ~t 
of A.  A Herbrand interpretation I of A is any subset of the Herbrand base of A .  A 
Herbrand interpretat ion simultaneously associates, with every n-ary predicate symbol in 
A ,  a unique n-ary relation over H .  The relation {(tl . . . . .  tn) : P(t l  . . . . .  tn) ~ I} is 
associated by I with the predicate symbol P in A.  

(1) A ground atomic formula A is true In a Herbrand interpretat ion I i f fA  E I .  
(2) A ground negative literal .A is true in I iff A ~ 1. 
(3) A ground clause L~ V • • • V Lm is true in I iff at least one literal L,  is true in I .  
(4) In general a clause C is true in I Iff every ground instance Co" of C Is true in I .  (Co" is 

obtained by replacing every occurrence of a variable in C by a term in H .  Different  
occurrences of the same variable are replaced by the same term.)  

(5) A set of clauses A is true in I iff each clause in A is true m I .  

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I ,  then we 
say that I is a Herbrand model of A and we write I=1 A.  It is a simple version of the 
Skolem-Lowenheim theorem that a sentence A in clausal form has a model t f f  it has a 
Herbrand model. 

We can now formulate an explicit definition of the denotat ion determined by the 
model-theoretic semantics. Let M(A)  be the set of all Herbrand models of A;  then 
NM(A) ,  the intersection of all Herbrand  models of A ,  is itself a Herbrand  interpreta t ion 
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of A .  If A contains the predicate symbol P ,  then the denotauon D2(P) is the relat ion 
associated with P by the Herbrand  interpreta t ion A M ( A ) .  In symbols,  

D2(P) = {(t, . . . . .  tn) : P ( t l  . . . . .  In) ~ OM(A)} 

for any set of clauses A .  
PROOF. (q,  . . . ,  t,) E D2(P) 

iff A J= P( t j  . . . . .  tn), 
iff A U {P(tl . . . . .  t,)} has no model ,  
lff A U {P(q . . . . .  t~)} has no Herbrand  model ,  
iff P ( t l  . . . . .  t~) is false in all Herbrand  models  of A,  
iff P(q . . . . .  t~) as true in all Herbrand  models  of A ,  
iff P(t, . . . . .  t . )  E AM(A). 

Notice that the above equahty holds for any set of clauses A even if A is inconsistent.  
If A as a consistent set of Horn  clauses then r i M ( A )  is itself a Herbrand  model  of A .  
More generally,  Horn  clauses have the model mtersectton property: If L is any nonempty  
set of Herbrand  models  of A then A L  is also a model  of A .  

PROOF. Assume AL is not a model  of A .  Then ML falsifies some ground instance Ctr 
of a clause C E A.  

If C as a procedure  declarat ion,  then 

Ctr = A  V A i V " "  VAin ,  m - > 0 ,  A ~ OL,  and A1 . . . . .  Am E n L .  

Therefore  for some I E L,  A ~ I and Aa . . . . .  Am E I .  C is false in I ,  contrary to 
assumption that I E L. 

If C is a goal s ta tement ,  then 

C t r = A 1 V " "  VAm,  m > 0 ,  A a , . . . , A m E A L .  

Therefore  for all I E L, A1 . . . .  , Am E I. C is false in I ,  contrary to assumption that 
I E L .  

{P(a) V P(b)},  where a and b are constants,  is an example of a non-Horn  sentence 
which does not have the model- intersect ion proper ty:  {{P(a)}, {P(b)}} is a nonempty  set 
of models,  yet  its intersection Q5 is a Herbrand  interpretataon which is not a model .  

6. Flxpomt Semanttcs 

In the fixpoint semantics,  the denotat ion of a recursively defined procedure is defined to 
be the minimal fixpomt of a t ransformation associated with the procedure definition. 
Here  we propose a samdar def inmon of  fixpomt semantacs for predacate logic programs.  
In order  to justify our def lnmon we first desq;ibe the fixpomt semantacs as it has been 
formulated for more conventaonally defined recurswe procedures.  Our  description fol- 
lows the one gaven by de Bakker  [6] 

Let  P ~ B(P) be a procedure declarat ion in an Algol- l ike. language,  where the first 
occurrence of P as the procedure name,  where B(P) is the procedure  body,  and where the 
occurrence of P in B(P) dlstmgmshes all calls to P in the body of the procedure.  
Associated with B as a t ransformation T which maps sets I of input-output  tuples into 
other such sets J = T(I). When the transformation T is monotonac (which means that 
T(I~) C T(I2) whenever I~ C lz) the denotahon of P as defined as 

n{l : T(I) C 1}, 

which is adenhcal to the antersection of all fixpolnts of T, 

n { ~ :  T(1) = I } ,  

and which is atself a fixpomt (the least such) of T. 
In a similar way a transformation T can be assocmted with a finite set of mutually 

recursive procedure declarat ions 
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' The minimal flxpoint of T, which exists when T is monotonic,  can be decomposed into 
components,  the ,th of which is the denotation of the procedure P,. 

By means of the procedural interpretation, the fixpoint semantics of predicate logic is 
defined similarly. A set of Horn clauses of the formA VA~ V • " • V A I n ,  where m >/0 ,  
is interpreted as a set of mutually recursive, possibly nondetermlmstlc, procedure 
declarations We restrict the definlhon of the fixpolnt semantics of predicate logic 
programs to sentences A which are sets of such procedure declarations. Associated with 
every such sentence A ts a transformation T which maps Herbrand interpretations to 
Herbrand interpretations. Suppose that P1, • •, Pn are the predicate symbols occurring 
in A. The transformation T can be defined in terms of individual transformations T, 
associated with the individual predicate symbols P,. T, maps Herbrand interpretations I 
to Herbrand interpretations J, = T,(1) which contain only atomic formulas beginning with 
the predicate symbol P,: 

J, = T,(I) contains a ground atomic formula A E H iff A begins with the predicate 
symbol P, and, for some ground instance Co- of a clause C in A, Co- = A V Ai 
V • • ..V./~m and Ax . . . . .  Am E l ,  m i> O. 

The transformation T associated with A is defined by T(I) = Ti(I) U . . .  U Tn(I). 
The input-output relation associated by J, = T,(/) with P, can be regarded as the 

relation obtained by "substituting," for the procedure calls in the declarations of P, in A, 
the appropriate input-output relations associated by I.  This interpretation of T, is 
analogous to the corresponding definition for conventionally defined recursive proce- 
dures. A simpler definition of T, which is less directly analogous to the conventional 
definition, is the following: 

T(/) contains a ground atomtc formula A E H iff for some ground instance Co- of a 
clause C in A, Co. = A V A 1 V  " • " V.,4m andA~ . . . . .  Am E I ,  m >- O. 

Notice that, independently of I, T(/) always contains all ground instances Ao. of 
unquahfied assertions A in A (corresponding to the case m = 0 in the definition of T(/)). 

Let C(A) be the set of all Hcrbrand interpretations closed under the transformation T, 
i.e. I E C(A) fff T(/) C 1. The denotatton of a predicate symbol P occurring in a set of 
procedure declarations A, as determined by the f ixpomt semanncs, Is 

D3(P) = {(t, . . . . .  tn) : e(t~ . . . .  tn) ~ NC(A)}. 

As a corollary of the theorem below, NC(A) is itself closed under T and therefore D3(P) 
is the smallest set of input-output tuples closed under T. In conventional fixpomt theory 
this fact is proved by using the monotonicity of T. 

7. Model-Theorettc and Fixpomt Semanttcs 

We shall show that for sets of procedure declarations A, model-theoretic and fixpoint 
semantics coincide: D2 = Ds. It would be sufficient to show that NM(A) = AC(A),  but it 
is easy to prove that even M(A) = C(A). 

In other words, a Herbrand interpretation I of A is a model of A iff I is closed under 
the transformation T assocmted with A. 

THEOREM. I f  A is a set o f  procedure declarations, then M(A) = C(A),  Le. ~r A lff 
T(1) C 1, for  all Herbrand interpretations 1 o f  A 

PROOF. (~=~ A lmphes T(/) C_ 1.) Suppose that I is a model of A. We waflt to show J = 
T(/) _C 1, Le. that if A E J then A E I. 
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Assume that A ~ J ;  then by the definition of T, for some C E A and for some ground 
instance Co- of C, 

Co" = A V A l  V • • " V A ,  a n d A 1  . . . . .  An E I .  

Because I is a model  of A ,  Ctr is true in I .  But then A is true in I ,  because A~ . . . . .  and A 
are false in I. Therefore  A E I. 

(T(/) C I imphes 1=~ A).  Suppose that I is not a model  of A.  We want to show that T(/) 
~ 1. But I falsifies some ground instance Co" of  a clause C in A ,  where Co" = A V A i  
V • " " k/Am, m >- 0. Because I falsifies Co", A ~ I andA~ . . . . .  Am ~ / .  But then,  be- 
cause A~ . . . . .  Am E / ,  it follows that A E T(1). Therefore  T(1) ~ I. 

COROLLARY. l f  A is a set o f  procedure declarations, then f"IC(A)/s closed under T. 
PROOF. NC(A) = tqM(A) by the model-intersection proper ty  is a model  of A and by 

the theorem is therefore closed under  T. 

8. Operational and Fixpomt Semantics, Hyperresolutton 

The eqmvalence Di = D3 between operat ional  and fixpoint semantics,  which follows 
from the equivalences 1)1 = D2 and D2 = D3, has different interpretat ions depending 
upon the reference system which determines  D~. Here  we investigate the interpreta t ion 
associated with a part icular inference system based upon hyperresolut lon [21]. 

For ground procedure declarat ions the definition of hyperresolut lon is very simple: 

A n  atomic formula A is the hyperresolvent of ground clauses A x / A  1 V"  " "V-'~ m and 
A1 . . . . .  A m . A  is said to be obtained f r o m A v A 1  V • " " VAIn a n d A l  . . . . .  Am by 
hyperresolution . 

The connection with fixpomt semantics is obvious: If T Is the transformation assooa ted  
with the set of procedure declarat ions A and if I is a Herbrand  interpretat ion of A ,  then 
T(/) is the set of all ground instances of assertions in A together  with all hyperresolvents 
derivable in one step from ground instances of clauses in A and from assertions in 1. It 
follows that - 

A is derivable by means of a hyperresolut ion derivation from ground instances of 
clauses in A iff A E t.,l~=0 T m ( 0 )  where 7'0(0) = O and T'n+l(O) = T(Tm(O)). 

Let  D~ n be the operat ional  semantics associated with the two inferences rules of ground 
instantlation of clauses in A and ground hyperresolut lon,  i.e define 

(t t . . . . .  tn) ~ O~n(P) iff P(q . . . . .  tn) ~ ~1 Tm((~). 
m=0 

The equivalence of Djn and the model- theoret ic  semantics D2 is the completeness,  for 
Horn clauses, of the inference system whose inference rules are ground mstantiat ion of 
input clauses and ground hyperresolut ion.  Completeness  can be proved using s tandard 
resolution-theoretic arguments.  Here we present  an al ternative direct proof  that for any 
set of declarat ions A with associated transformation T, U~=0 Tin(O) = A M ( A ) .  

PROOF. Let U abbrevia te  UTn=0 Tin(O). 
(U C AM(A)) .  Suppose that A E U. Then A is derivable by means of a hyperresolu-  

tion derivation from ground instances of clauses in A.  By the correctness of hyperresolu- 
tion and instantiation,  A ~ A and therefore A E NM(A).  

(NM(A)  C U). We show that U is closed under T, because then U ~ M(A) ,  and 
therefore NM(A) C U. Suppose that A G T(U). By the definition of T ,  ei ther A is an 
instance of an unqualified assertion in A or  some clause A V~A ] V " • " V A n  is an instance 
of a clause in A and A 1 . . . . .  An E U. In the first case A ~ U,  because A E Tin(O), m > O. 
In the second case A 1 . . . . .  An ~ TN(O) for some N _> 0, and therefore  A E TN+~(~) and 
A ~ U. Therefore  U is closed under  T. 

Therefore  for sets of declarat ions,  D~ n = D2. 
Because of the eqmvalence between model- theoret ic  and fixpoint semantics,  we also 

have that D~ H = D3, i.e. U~=o T 'n(o)  = f3{l : T(I) C_ I}. 
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Th i s  last  fact  is usual ly  p r o v e d  m the  f ixpoin t  t h e o r y  by  d e m o n s t r a t i n g  the  c o n t i n u i t y  o t  
the  t r a n s f o r m a t i o n  T. 

9. Conc lus ion  

For  a rb i t r a ry  s e n t e n c e s  X a n d  Y of  f i r s t -o rde r  p r ed i ca t e  logic,  p r o o f  t h e o r y  d e t e r m i n e s  
w h e n  X ~- Y a n d  m o d e l  t h e o r y  d e t e r m i n e s  w h e n  X ~ Y. W e  have  a r g u e d  t h a t  m the  
p r o c e d u r a l  i n t e r p r e t a t i o n ,  o p e r a t i o n a l  s e m a n t t c s  ~s p r o o f  t h e o r y  a n d  f ixpo in t  s e m a n t i c s  
is m o d e l  t heo ry .  O n  the  o t h e r  h a n d ,  o p e r a t i o n a l  a n d  f ixpoin t  s e m a n t i c s  on ly  dea l  wi th  the  
case whe re  Y is a set  of  g r o u n d  a t o m i c  fo rmulas .  M o r e o v e r ,  f ixpoin t  s e m a n t i c s  on ly  dea ls  
wi th  X,  a set  of  p r o c e d u r e  dec l a r a t i ons .  We  be l ieve  t h a t  the  a d d e d  gene ra l i t y  of  p r o o f  
t heo ry  and  m o d e l  t h e o r y  has  useful  c o n s e q u e n c e s .  

The  c o m p l e t e n e s s  t h e o r e m  of  f i r s t -o rde r  logic s ta tes  t ha t  the  r e l a t ions  b of  d e r i v a b i h t y  
and  ~ of  logical  l m p h c a t i o n  are  e q u i v a l e n t .  Fo r  goal  o r i e n t e d  i n f e r ence  sys t ems  this  

equ iva l ence  e s t ab l i shes  tha t  va r ious  c o m p u t a t i o n  rules  c o m p u t e  the  r e l a t i on  d e t e r m i n e d  
by the  f ixpoin t  s eman t i c s .  M o r e  gene ra l ly ,  th is  e q u i v a l e n c e  can  be  used  to jus t i fy  va r ious  
rules  ( such  as Sco t t ' s  i nduc t i on  rule  [6]) for  p rov ing  p r o p e r t i e s  of  p r o g r a m s .  

W e  have  a r g u e d  t ha t  va r ious  n o t i o n s  of  the  c o n v e n t t o n a l  t h e o r y  of  c o m p u t i n g  can  be  
u n d e r s t o o d  in t e r m s  of  the  classical t h e o r y  of  p red ica t e  logic.  W e  b e h e v e  m o r e o v e r  t ha t  
the  p red ica te  logic t heo ry  has  f u r t h e r  c o n t r i b u t i o n s  to  m a k e  b o t h  to the  t h e o r y  a n d  to the  
prac t ice  of  c o m p u t i n g .  
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