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Feigenbaum C4], commenting on the Fifth Gerieration 
Project, has said that logic is not important, 
but knowledge is. I agree that knowledge is more 
important than logic. But logic is important too. 
Knowledge-based systems need both knowledge and 
formalism. Although knowledge is more important 
than formalism, formalism is important because the 
use of a poor formalism can interfere with the 
representation of knowledge and can restrict the 
uses to which that knowledge can be put. I 
believe that logic is the least restrictive and 
most appropriate formalism for knowledge-based 
systems. 

Knowledge-based systems combine both complex 
knowledge and sophisticated formalisms. I believe 
that this combination of knowledge and formalism 
accounts for some of the difficulty practicioners 
have had in explaining what knowledge-based 
systems are. Problems arise because we confuse 
knowledge with formalism. Many characterizations 
of expert systems for example concentrate simply 
on formalism, on rule-based languages for example 
and say very little about  what makes such 
formalisms particularly appropriate for expressing 
and reasoning with knowledge. 

Logic is strong on formalism but weak on concepts. 
It contains no knowledge, and is all form and no 
content. Indeed the significance of the model 
theoretic semantics of logic is precisely that: 
Model theory defines as valid precisely those 
sentences which are true in any interpretation. 
As a consequence, logic tells us nothing about the 
actual world itself. 

To use logic to represent knowledge we have to 
identify a useful vocabulary of symbols to 
represent concepts. We have to f o r m u l a t e  
appropriate sentences, with the aid of that 
vocabulary, to represent the knowledge itself. 
Logic can help us to test an initial choice of 
vocabulary and sentences, by helping us to derive 
logical consequences and identify the assumptions 

which participate in t h e  derivation of those 
consequences. It provides us with no help, 
however, in identifying the right concepts and 
knowledge in the first place. 

A typical AI knowledge representation scheme, such 
as semantic networks or frames, combines concepts 
and formalism at the same time. It provides a 
built-in framework of ready-made concepts to help 
with the initial representation of knowledge. But 
it also provides a formalism to go along with the 
concepts. In the same way that a computer 
salesman might try to convince us that to run a 
particular piece of software we need to buy the 
appropriate hardware, a LISP machine for example, 
the developer of an AI system typically tries to 
convince us that to use a particular collection of 
concepts we need to buy an associated formalism. 
My thesis is that, in the same we can separate 
software from the hardware on which it is 
implemented, we can also separate concepts from 
formalisms. The same concepts can be implemented 
in other formalisms, including the formalism of 
logic. 

Semantle Wetworks 

Semantic networks, for example, combine the 
concepts of events and hierarchies with a 
graphical formalism in which nodes represent 
individuals and arcs represent binary 
relationships. The same concepts, however, can be 
represented in other formalisms. Of particular 
importance, in my opinion, is the prominence given 
in semantic networks to the notion of event. The 
event calculus, whleh my colleague Marek Sergot 
and I [11] have developed, borrows concepts about 
events from semantic networks and implements them 
within a logic programming framework. I n s t e a d  of 
representing the semantics of a sentence 
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"John gives the book to Mary" 

by means of a network 

John 

Gives 
E 

Book 

Mary 

we represent the same "knowledge" either by means 
of binary relationships 

Actor(E John) 
Act(E Gives) 
Object(E book) 
Recipient(E Mary) 

or by means of a single relationship 

Event(E John gives book Mary). 

The contribution of semantic networks here has 
been the identification of events as a concept for 
building knowledge representations. Of some 
importance also is its identification of networks 
as a convenient user-friendly notation. (We shall 
discuss the relationship between formalism and 
notation later). 

Semantic networks also focus attention on the 
concept of hierarchy. The concept of hierarchy, 
however, can be abstracted from the graphical 
notation and can be represented in other 
formalisms. For example, the hierarchy fragment 

• hing 

concrete-object ~ b abstract-object 

Isa / ~Isa 

animate-object ~ b inanimate-object 

vertebrai~a / ~ I-~ver tebrate 

can be represented in logic either by means of 
binary relationships or by means of general rules: 

Isa(vertebrate anlmate-object) 
Isa(invertebrate inanimate-object) 
Isa(animate-obJect concrete-object) 
Isa(concrete-obJect thing) 
etc. 

or 

Isa(x animate-object) if Isa(x vertebrate) 
Isa(x animate-object) if Isa(x invertebrate) 
Isa(x concrete-object) if Isa(x animate-object) 
Isa(x thing) if Isa(x concrete-object) 

Notice that An the first representation 
transitivity of "Isa" needs to be expressed by a 
general rule. 

Isa(x y) if Isa(x z) and Isa(z y), 

whereas in the second representation it comes for 
free. In both cases the inheritance of 
"mortality" by anything which is classified as an 
animate-object is represented by the rule 

Mortal(x) if Isa(x animate-object) 

Entity - relatlonshlps 

Object-oriented programming, abstract data types, 
and the entity-relationship database model, like 
semantic networks, promote the concept of object 
as a way of organislng knowledge. Whereas object- 
oriented programming and abstract datatypes 
single-mindedly force all knowledge to be stored 
with and accessed through objects, the entitly- 
relationship model allows entities to enter into 
relationships with other entities. Although the 
entlty-relationshlp model may seem to conflict 
with the relational model, it now seems to be the 
consensus in the database community that the two 
models deal with different levels of knowledge 
representation and are not in conflict. Relations 
in the relational model can be used at a lower 
level as a formalism to implement the concepts of 
both properties and relationships in the higher 
level entity-relationship model. For example, the 
entity John with the properties of being 24 years 
old, male and born in the U.K. and with the 
relationship of being married to the entity Mary 
can all be represented as relationships, which can 
in turn be expressed in the formalism of logic: 

Age(John 24) 
Birth-place(John U.K.) 
Sex(John Male) 
Married(John Mary) 

(Note that object-oriented programming, in 
contrast with the entity-relationship model, would 
force the "married" relationship either to be 
duplicated for both John and Mary or to be made 
into a separate entity with husband and wife 
properties). 

Thus the entlty-relationship model and the allied 
object-orlented programming and abstract data type 
models can be regarded as contributing primarily 
to the level of concepts, whereas the relational 
model and formal loglc operate primarily at the 
lower level of formalism. 

Frames 

Frames are another example. Besides the concepts 
of hierarchy borrowed from semantic networks and 
of objects taken from object-oriented programming, 
frames focus attention on the concepts of 
stereotypes and default reasoning. 



Frames encourage us, instead of reasoning from 
first principles on every occasion, to reason by 
comparing new occasions with preconceived 
stereotypes. Default assumptions about the new 
occasion are made in the absence of 
countradlctions and are withdrawn if contradictory 
information is later made known. 

The concepts of stereotype and default reasoning 
are useful for building knowledge-based systems. 
But in the context of frame-based systems they are 
generally combined with rather loosely defined 
formalisms associated with forms, slots and 
fillers. As Pat Hayes has pointed out [6], in 
many ways these formalisms are closer to logic 
than many of their predecessors, because a slot is 
like an argument place of a relation and a filler 
is like an argument. It should not be surprising 
therefore ifi we can implement stereotypes and 
default reasoning in other formalisms. 

Consider, for example, the frame for "bird", 
represented as a form with slots for holding 
properties of birds. In the absence of 
information to the contrary, certain properties 
may have default values. 

[ 
bird frame I Isa vertebrate 

m 

primary locomotion = ~ flight 

number of legs = default 2 

etc. 

This might be represented in logic programming 
formalism by the sentences 

Isa(x vertebrate) If Isa(x bird) 
Prlmary-locomotlon(x flight) if Isa(x bird) 

and not [Primary-locomotlon(x y) and y ~ flight] 
Number-of-legs(x 2) if Isa(x bird) 

and not [Number-of-legs(x y) and y ~ 2] 

Here the negation symbol "not" is interpreted as 
negation by failure [2]. This gives a good 
approximation to default reasoning (though, in 
this case, if executed by PROLOG, would give rise 
to an infinite loop, which can, however, be 
eliminated by program transformation techniques 
[8]). 

Notice that another characteristic of the frame- 
based representation is the use of forms as a 
notation. This is undoubtedly  more user-friendly 
than the notation of symbolic 1ogle. Our defence 
of logic as a formalism, therefore, is not a 
defenoe of its notation but rather a defence of 
its abstract syntax, its semantics and its proof 
procedures. 

Thus, to'be more precise, I would have to argue 
that non-loglc-based systems contribute to the 
identification beth of useful concepts and of 
useful, user-frlendly notations. Other 
formalisms, such as formal logic, can be used to 
implement the same concepts and notations. 

In each of the preeeedlng examples, semantic 
networks, entlty-relatlonshlps and frames, 
concepts are combined with formallem to a lesser 
or greater extent. The resulting formalisms and 
their associated notations facilitate expressing 
those particular concepts, but often hinder the 
expression of other concepts. The alternative to 
tying concepts and formalism so closely together 
is to employ a single universal formalism within 
which different and even competing concepts can be 
expressed and integrated. First-order predicate 
logic with certain embelllsbments seems to be the 
best candidate for such a formalism. 

Some other systems with concepts which can 
usefully be reformulated in logic are Hewitt's 
Open Systems [7] and Schank's Conceptual 
Dependency Theory [12]. 

Open Systems 

Hewitt regards the requirements of open systems as 
conflicting with the constraints of logic and 
logic programming. I believe that he has 
correctly identified an important class of 
problems previously neglected by students of 
logic. But, in my opinion, this neglect is not 
the result of any inherent limitation of logic. 

Open systems consist of multl-actor knowledge- 
based systems, each with their own internal goals 
and able to perform actions to accompllsh those 
goals. An actor's goals may be internally 
incompatible or con/liot with the goals of other 
actors. 

Actors in an open system dynamlcally change both 
their beliefs and their goals as a result of 
interacting with other actors and the changing 
environment. Such changing systems have been 
studied within the framework of knowledge 
assimilation in loglo-based systems [9]. Logical 
deduction can assist the process of knowledge 
assimilation by focussing attention on the logical 
r~latlonshlps between new knowledge and the 
current state of the knowledge-base. It can be 
used to determine whether the new knowledge 
loglcally implies existing knowledge, is implled 
by it, is inconsistent with it or is logically 
independent. The detection of these relationships 
is constrained by the amount of resources which 
can be expended. 

To improve the efflcleney of performing 
deductions, proof procedures attempt to avoid the 
derivation of irrelevant consequences. As a 
result an inconsistent set of beliefs can still be 
useful in practice - both because inconsistencies 
may not be detected and because the derivation of 
inconsistency need not lead to the derivation of 
irrelevant further consequences. 

To achieve the power of open systems, however, 
such 1ogle-based systems need to be augmented with 
their own internal goals and need to construct and 
execute plans of aotlon to acccaplish their goals 
[10]. For this purpose an actor needs to have a 
model of the current state of the environment and 
of the expected effect its aotlons have upon it. 
Both of these can be represented by sentences 
expressed in formal logic. An actor can use 



logical deduction to construct a plan of action to 
accomplish one or more of its goals. Several such 
systems of plan-formation have been developed 
within the formalism of logic. The degree of 
success of failure of these systems, however, has 
depended more on the appropriateness of the world 
model than on its representation in logical 
formalism. This can be taken as further evidence 
for the thesis that knowledge is more important 
than logic. 

Actors in open systems need to be able to perform 
actions to accomplish their own goals. Such an 
actor can be represented logically by means of a 
metalevel predicate 

Process(input-stream knowledge-base output-stream) 

For example, the (over-simplified) case where an 
actor processes an item of "input" which is at the 
head of an input-stream 

cons(input rest-input-stream) 

and 
from 
rule 

does nothing to it if the input is derivable 
the knowledge base can be represented by the 

Process(cons(input rest-input-stream) 
knowledge-base output-stream) 
if Process(rest-input-stream 

knowledge-base output-steam) 

The parallel interaction of many such actors can 
be represented by a metalevel sentence executed by 
a parallel logic-programming interpreter, such as 
PARLOG [3] or concurrent PROLOG [13]. Loglc-based 
systems of this kind have been proposed and 
investigated by Shapiro and Takeuchi [14] and 
Furukawa et al [5]. To a large extent these 
investigations have been motivated by the attempt 
to implement in logical formalism concepts first 
identified and highlighted in other, non-loglc- 
based systems. They are an example of the 
benefits to logic of borrowing concepts from other 
formalisms. 

Co n cep tu a l  Dependenc7 Theor7 

Conceptual dependency theory combines concepts 
about reducing the semantics of complex events to 
the semantics of a few primitive acts with a 
pictorial formalism. To take a specific example, 
the acts of "giving" and "taking" can both be 
reduced to special cases of the primitive act of 
transferrlng possession. In the case of "giving", 
the actor is the donor; in the case of "taking", 
the actor is the recipient. Schank describes 
these reductions of "giving" and "taking" in 
English and implements them in LISP. He uses his 
graphical formalism for representing concrete 
events, but has no formalism other than LISP for 
describing the reduction of events in general. 

The reduction of "giving" and "taking" to 
"transfer-possession" can, however, be represented 
by means of logic programs which have both 
declarative and procedural interpretations: 

Act(x transfer-posseslon) if Act(x giving) 
Donor(x y) if Act(x giving) and Actor(x y) 
Actor(x y) if Act(x giving) and Donor(x y) 
Act(x transfer-posseslon) if Act(x taking) 
Reclplent(x y) if Act(x taking) and Actor(x y) 
Actcr(x y) if Act(x taking) and Reclplent(x y) 

Interpreted as logic programs these rules will be 
used backwards only when needed. Like many other 
declarative programs, however, when executed by 
PROLOG, they can go into infinite loops. These 
loops can be avoided by program transformations, 
or by applying more sophisticated proof procedures 
(employlng loop-detection perhaps). In any case, 
by separating the declarative knowledge from its 
mode of use we obtain potentlally greater 
flexibility and power than we have with the 
corresponding LISP routines, which can use the 
same knowledge in only one,  previously 
anticipated, way. 

Notice that rules which express properties of 
"transfer possession" such as 

Possesses(y z after(e)) if Act(x transfer- 
possession) 

and Recipient(x y) 
and Object(x z) 

Start(after(e) e) 

i.e. "The recipient of an event of "transfer 
possession" possesses the object of the event 
for some, possibly indeterminate period of time 
after(e), which starts at e". 

are automatically inherited by "giving" and 
"taking". 

Thus concepts which have been originally 
introduced within the context of systems with non- 
logical formalisms can be rationally reconstructed 
in logical formalism and gain greater clarity and 
power as a result. Once knowledge has been 
represented explicitly in logical terms, it can be 
used to derive arbitrary logical consequences, in 
ways not originally anticipated and not catered 
for in the original non-loglcal formalisms. The 
price that sometimes has to be paid for this 
greater power, however, is that more flexible uses 
of the knowledge may require the application of 
more powerful proof procedures than are currently 
a v a i l a b l e .  Th i s  can be p a r t i a l l y  a l l e v i a t e d  by 
t h e  use  of  program t r a n s f o r m a t i o n s ,  bu t  i n  t h e  
longer term will require the development of more 
powerful and more efficient proof procedures. 

The practice of logic itself benefits from such 
borrowing of concepts from non-loglcal systems. 
Non-loglcal systems, by comparison with logic, are 
more concept-orlented and can tell us therefore 
about the kinds of knowledge which need to be 
represented in any formalism. Logic can not 
progress without applications. Non-loglcal systems 
can help IdentIDg the concepts that are needed for 
building such applications. 

~n-elass£eml Logic 

The combination of concept and formalism which is 
characteristic of A.I. systems not based on logic 
is also a feature of non-classlcal logics. 
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Logicians themselves can  be as inclined as A.I. 
practitioners to invent different formalisms for 
different concepts. Thus we have temporal logics 
for dealing with time, relevance logics for 
relevant implication and fuzzy logics for 
uncertainty. According to the methodology 
associated with non-classical logic, to determine 
what logic is needed for a given application, it 
is necessary to analize the application in detail, 
identify the concepts needed and find a logic 
which formalizes those concepts. If the analysis 
is mistaken or a change needs to be made to the 
application for some other reason, then the entire 
application may need to be reformulated in 
another, more appropriate logic. Even if the 
better logic has already been developed and is 
available for the purpose, the process of complete 
reformalization creates an intolerable 
discontinuity in the knowledge representation 
process. This methodology is the complete 
opposite of the process of formalisation by top- 
down, successive refinement which is the hallmark 
of good practice in software engineering. 

The inadequacy of this methodology is even more 
apparent with complex applications which require a 
multiplicity of different concepts associated with 
different logics. There are only two ways of 
tackling such applications - either by developing 
a methodology which allows different formalisms to 
be combined within a single application; or by 
abandoning special-purpose logics for the right 
universal formalism in the first place. The 
first alternative is workable for many 
applications of intermediate complexity where the 
problem can be decomposed into relatively self- 
contained subproblems each of which can be tackled 
with a single formalism. It will not work, 
however, for more complex problems, where several 
different concepts are intimately connected, as 
they might be, for example, within a single 
natural language sentence involving time, 
uncertainty and obligation: 

"/~9_~F-QH I will probably need to change my mind". 

In my opinion the second alternative is better. 
We need a universal formalism, which is not tied 
to specific concepts, but within which different 
concepts can be represented and integrated. These 
concepts can be borrowed from other more 
specialized logics, extracted from non-logical 
systems or formulated specially for the problem at 
hand.  

Classical I~gle 

There may be several candidates for the universal 
language; and it may not be obvious how to choose 
between them. My own belief is that the best 
candidate is classical first-order logic. Some 
extensions and even some restrictions will 
undoubtably be necessary. The Horn clause subset 
of first-order logic augmented with negation by 
failure, upon which logic programming is based, is 
such a restriction; the amalgamation of object 
language and metalanguage is such an extension. 
Amalgamation logic, however, does not really go 
beyond first-order logic, but simply gives more of 
it - at both the object language and metalanEuage 
levels. 

First-order logic makes a good candidate for the 
universal language, because it is the only logic 
which has been extensively applied, both inside 
and outside computing. It is the only formalism 
which has demonstrated its adequacy for 
formalising the foundations of mathematics. In 
computer science it is the only formalism which 
has been used not only for knowledge 
representation and problem-solving in Artificial 
Intelligence, but also for progrem specifications, 
databases, formal grammars and computer programs. 

Building flrst-order logic on top of systems which 
efficiently implement the Horn clause subset of 
logic has an advantage, because the procedural 
interpretation of Horn clauses potentially gives 
such systems the efficiency of a computer 
programming languages. 

Negation as failure: 

not P holds if P fails to bold 

for example, can be implemented very simply and 
very efficiently on top of Horn clause proof 
procedures. It gives a correct implementation of 
classical negation [2] under the assumption that 
the formalization contains a comple t e  
characterisation of the predicate P. Even with 
this assumption, however, negation as failure does 
not always give a complete implementation of 
classical negation. Nonetheless it can be used to 
implement conditions which have the expressive 
power of full flrst-order logic (even if they do 
not necessarily have its full deductive power). 
Consider for example, the definition of the subset 
relation: 

x subset of y if for all z 
z is in y If z is in x. 

can be reduced to Horn clause form augmented with 
negation as failure: 

x st~bset of y if not exists z 
z is in x and not z is in y. 

Executed backwards, logic programming style, with 
negation interpreted as failure, this behaves as a 
procedure which shows 

x is a subset of y by 
testing each element z in x and 
showing each such z is in y. 

This is a correct interpretation of the original 
definition of "subset", provided the "knowledge- 
base" contains a complete characterization of the 
"is in" relation. However, as it stands, the 
interpretation is incomplete because it can only 
be used to test whether x is a subset of y and not 
to generate subsets x of y or supersets y of x 

The use of first-order logic at both the object 
level and the metalevel adds greatly to 
expressiveness and problem solving power. It can 
be used, not only at the ordinary object level, 
but also at the metalevel for programs and 
databases which manipulate and describe object 
level programs and databases. It can be used, in 
particular, to describe and implement knowledge 
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assimilation and multl-actor belief systems. It 
is even possible to devise an amalgamation of 
o b j e c t  language and metalanguage [1] which can 
self-referentlally apply  to itself - for an editor 
which can be used to edit itself or a compiler 
which will compile itself. 

Classical first-order 1ogle as presented in 
traditional logic books, however, is not 
necessarily the best starting point for its 
practical application. Indeed it might even be 
argued that the very success of symbolic logic 
applied to mathematics has contributed to its 
failure to be applied more widely outside of 
mathematics. The style of logic which has proved 
useful for foundations of mathematics, is bottom- 
up and reductionist, with all concepts reduced to 
the bare minimum. This is the opposite of the 
approach needed f o r  most knowledge-based  
a p p l i c a t i o n s ,  which i s  top-down and c o n c e p t - r i c h .  

The bottom-up, reductionist use of logic, which is 
adequate for foundations of mathematics is not 
even useful for its practice. The notion of 
subset, for example, which is so central to the 
mathematical practice of set theory and which is 
the mathematical basis of ISA-hierchies is 
eliminated in the foundations of set theory in 
favour of the primitive membership relation. 
Logic as it has been applied to the foundations of 
mathematics teaches us not to worry about 
identifying useful concepts, but rather to 
eliminate them in favour of primitive concepts. 
Such primitives, however, are virtually impossible 
to use in practice. 

The tradition of mathematical logic has other 
characteristics which can make it ill-suited for 
complex non-mathematical applications. It places 
inordinate emphasis on consistency and 
completeness and inhibits the process of trial and 
error, which is needed for developing such 
applications and which is an essential ingredient 
of expert systems methodology in particular. 

The mathematical tradition of logic, however, is 
not an inherent characteristic of logic itself. 
Logic is sufficiently neutral with respect to both 
concepts and methodologies that it can integrate 
different concepts and it can adapt itself to 
different methodologies including t h a t  associated 
with top-down, trial and error development of 
knowledge. 

The universal formalism whose adoption I have 
advocated is an elaboration of classical first- 
order logic. I have argued in its favour on 
theoretical grounds. Until recently the 
theoretical arguments might have been overshadowed 
by problems of efficiency. Advances in logic 
programming technology, however, have reached the 
stage where logic-based implementations of 
c o n c e p t s  a r e  o f t e n  a s  l e a s t  a s  e f f i c i e n t  a s  
im p lemen ta t i ons  i n  s p e c i a l - p u r p o s e  l anguages .  The 
a p p l i c a t i o n  o f  compi le r  t echno logy  to  t h e  
imp lemen ta t i on  o f  I S A - h i e r c h i e s  and i n h e r i t a n c e  
f o r m u l a t e d  in logic, for example, compares well 
with their implementation in conventional 
programming languages. 

Finally, we should note that the adoption of 
flrst-order logic as a universal formalism does 
not  p r ec l u d e  t h e  c o n t i n u i n g  use  of  o t h e r  
l anguages .  F i r s t - o r d e r  l o g i c  can c o e x i s t  w i t h  
o t h e r  fo rma l i sms  and can l n t e r o p e r a t e  w i t h  them. 
Existing applications implemented in o t h e r  
formalisms can be incorporated within larger 
systems implemented in flrst-order logic, provided 
such applications can be viewed logically from the 
o u t s i d e .  Taking a w e l l - s t r u c t u r e d ,  top-down 
p o i n t - o f - v i e w ,  t h e r e  i s  no need t o  look  i n s i d e .  
The a c t u a l  i m p l e m e n t a t i o n  i t s e l f  can be viewed a s  
a compi led  v e r s i o n  o f  i t s  r a t i o n a l  r e c o n s t r u c t i o n  
f o r m u l a t e d  i n  f i r s t - o r d e r  l o g i c .  

30, t he  u n i v e r s a l  l o g i c  language can c o e x i s t  w i t h  
o t h e r  l anguages ,  e s p e c i a l l y  i n  t he  s h o r t  te rm.  I t  
can even  b e n e f i t  from them by bor rowing  t h e i r  
c o n c e p t s  t o  f a c L l i t a t e  t he  f o r m a l i z a t i o n  o f  
knowledge i n  l o g i c a l  te rms.  I t  can a l s o  be of  
b e n e f i t  t o  o t h e r  l anguages  by h e l p i n g  t o  l i b e r a t e  
t h e i r  c o n c e p t s  from t h e i r  fo rma l i sms  and, by 
r e p r e s e n t i n g  them i n  t h e  fo rma l i sm o f  l o g i c ,  
enabling those concepts to interoparate with other 
concepts liberated from other formalisms. 

Ao~le~ents 

An earlier version of this paper was presented at 
The Workshop on Knewledge Base Management Systems, 
held in ChaDia, Crete, June 1985, to be published 
by Springer Verlag. 

Be£erenems 

[1] Bowen K. A. and Kowalski R. A.,  [1982] .  
"Amalgamating language  and meta language  i n  
l o g i c  programming", i n  Logic  ~ g ,  
(K. L. Clark and S-A. Tara lund,  E d s . ) ,  
Academic P r e s s ,  London. 

[s] Clark K. L., [1978]. "Negation as failure", 
in LQEI~ pata Bases, (H. Gallaire and J. 
Minker, Eds.), Plenum Press, New York. 

[3] 

[.] 

Clark K. L. and Gregory S., [1985]. 
"PARLOG : parallel programming in logic", to 
appear in ~QH Trans. ~ 
J ~ K K g K ~  and.~.y..~/.~.~, 1986. 

Felgenbaum E. A., [1982]. "Innovation and 
symbol manipulation in Fifth Generation 
Computer Systems", in ~ ~eneratlon 
.Q~PJA~.~E~x~JH~, PP. 223-22~, (T. Moto-Oka, 
Eds.), North Holland, Amsterdam. 

[5] Furukawa K. et al., [1984]. "Mandala : A 
logic based knowledge programming system", 
in Proee~dln~s ~ the ~ E ~  

~ F i f t h  Generation 
• X~.~, Pp. 613-622, Ohmsha Ltd., Tokyo. 

[6] Hayes P. J., [1979]. "The Logic of Frames"t 
in ~ Coneentions and Text 
J ~ . ~ d ~ d ~ g ,  PP- 46-61,  (D. He tz lng ,  
Eds.). Walter de Gruyter and Co.. Berlin. 

[7] Hewitt C., [1985]. "The Challer~e of Open 
~ystems". BYTE, April 1985, pp. 223-242. 

12 



[8] 

[9 ] 

[10] 

[11] 

[12] 

[133 

[14] 

Hogger C. J., [1984]. "Introduction to 
Logic Programming". Academic Press. London. 

Kowalski R. A., [1979]. "Logic for Problem 
Solving". Elsevier North-Holland. New York. 

Kowalski R. A., [1985]. "Logic-based Open 
Systems", Department of Computing, Imperial 
College, London. 

Kowalski R. A. and Sergot M. J., [1984]. 
"Towards a loglc-based calculus of events", 
to appear in~_~g Generation g_~p_~i~g, Vol. 
4, No. I, February 1986, Ohmsha Ltd., 
Tokyo, and Springer Verlag, Berlin. 

Schank R. C., [1975]. "Conceptual 
Information Processing", North Holland, 
Amsterdam. 

Shapiro E. Y., [1983]. "A subset of 
Concurrent Prolog and its interpreter", in 
ICOT Technical RePort TR-OOR, Institute 
New Generation Computing Technology, Tokyo. 

Shapiro E. Y. and Takeuchi A., [1983]. 
"Object oriented programming in Concurrent 
Prolog", in New ~ ~ I, 
Springer Verlag. Berlin. 

13 


