The Role of Abduction in Logic Pro-
gramming

A.C. Kakas

Department of Computer Science,
University of Cyprus,

75 Kallipoleos Street,

Nicosia P.O. Box 537, Cyprus.
antonis@turing.cs.ucy.ac.cy

R.A. Kowalski, F. Toni
Department of Computing,

Imperial College of Science, Technology and Medicine,
180 Queen’s Gate,

London SW7 2B7, UK.

{rak,ft}@doc.ic.ac.uk

Abstract

This paper is a survey and critical overview of recent work on the extension of Logic Pro-
gramming to perform Ahductive Reasoning (Ahductive Logic Programming). It updates
the earlier paper “Abductive Logic Programming” [88]. We outline the general framework
of Abduction and its applications to Knowledge Assimilation and Default Reasoning; we
describe the argumentation-theoretic approach to the use of abduction as an interpre-
tation for Negation as Failure, introduced in the earlier version [88] of this paper; and
we present recent work on the generalisation of the argumentation-theoretic approach to
provide a framework for default reasoning in general. We also analyse the links between
Abduction and Constraint Logic Programming, as well as between Abduction and the
extension of Logic Programming obtained by adding a form of explicit negation. Finally
we discuss the relation between Abduction and Truth Maintenance.

Contents

1 Introduction
1.1 Abduction inlogic
1.2 Integrity Constraints Lo
1.3 Applications

2 Knowledge Assimilation
3 Default Reasoning viewed as Abduction

4 Negation as Failure as Abduction
4.1 Logic programs as abductive frameworks00
4.2 An abductive proof procedure for LP 0000 L.
4.3 An argumentation-theoretic interpretation
4.4 An argumentation-theoretic interpretation of the abductive proof procedure

5 Abductive Logic Programming

5.1 Generalised stable model semantics
5.2 An abductive proof procedure for ALP00
5.3 An argumentation-theoretic interpretation of the abductive proof proce-

dure for ALPo
5.4 Computation of abduction through TMS
5.5 Simulation of abduction oL oo
Abduction through deduction from the completion.
Abduction and Constraint Logic Programming

6 Extended Logic Programming
6.1 Answer set semanticso Lo
6.2 Restoring consistency of answer sets 0000
6.3 Rules and exceptionsin LPo 0o
6.4 (Extended) Logic Programming without Negation as Failure
6.5 An argumentation-theoretic approach to ELP
6.6 A methodology for default reasoning with explicit negation
6.7 ELP with abduction Lo o

7 An Abstract Argumentation-based Framework for Default Reasoning

8 Abduction and Truth Maintenance
8.1 Justification-based truth maintenance
8.2 Assumption-based truth maintenance

9 Conclusions and Future Work

Bibliography

38
40
40

46

48
48
50
52
54
35

58

58

61

62

64

67

1 Introduction

This paper extends and updates our earlier survey and analysis of work on the extension
of logic programming to perform abductive reasoning [88]. The purpose of the paper is
to provide a critical overview of some of the main research results, in order to develop
a common framework for evaluating these results, to identify the main unresolved prob-
lems, and to indicate directions for future work. I'he emphasis is not on technical details
but on relationships and common features of different approaches. Some of the main
issues we will consider are the contributions that abduction can make to the problems of
reasoning with incomplete or negative information, the evolution of knowledge, and the
semantics of logic programming and its extensions. We also discuss recent work on the
argumentation-theoretic interpretation of abduction, which was introduced in the earlier
version of this paper.

The philosopher Pierce first introduced the notion of abduction. In [133] he identified
three distinguished forms of reasoning.

Deduction, an analytic process based on the application of general rules to particular
cases, with the inference of a result.

Induction, synthetic reasoning which infers the rule from the case and the result.

Abduction, another form of synthetic inference, but of the case from a rule and a result.

Peirce further characterised abduction as the “probational adoption of a hypothesis™ as
explanation for observed facts (results), according to known laws. “It is however a weak
kind of inference, because we cannot say that we believe in the truth of the explanation,
but only that it may be true”[133].

Abduction is widely used in common-sense reasoning, for instance in diagnosis, to reason
from effect to cause [22, 142]. We consider here an example drawn {rom [131].

Example 1.1

Consider the following theory 7'
grass-1s-wel «— rained-last-night
grass-is-wet «— sprinkler-was-on

shoes-are-wet «— grass-is-wet.

Tf we observe that our shoes are wet, and we want to know why thisis so, {rained-last-night}

is a possible explanation, i.e. a set of hypotheses that together with the explicit knowledge
in T implies the given observation. {sprinkler-was-on} is another alternative explana-
tion.

Abduction consists of computing such explanations for observations. Tt is a form of
non-monotonic reasoning, because explanations which are consistent with one state of a
knowledge base may become inconsistent with new information. In the example above the
explanation rained-last-night may turn out to be false, and the alternative explanation
sprinkler-was-on may be the true cause for the given observation. The existence of mul-
tiple explanations is a general characteristic of abductive reasoning, and the selection
of “preferred” explanations is an important problem.

1.1 Abduction in logic

Given a set of sentences T (a theory presentation), and a sentence (& (observation), to a
first approximation, the abductive task can be characterised as the problem of finding a
set of sentences A (abductive explanation for) such that:

(1) TUA = G,
(2) T UA is consistent.

This characterisation of abduction is independent of the language in which 1", (G and A
are formulated. The logical implication sign |= in (1) can alternatively be replaced by a
deduction operator . The consistency requirement in (2) is not explicit in Peirce’s more
informal characterisation of abduction, but it is a natural further requirement.

In fact, these two conditions (1) and (2) alone are too weak to capture Peirce’s notion. Tn
particular, additional restrictions on A are needed to distinguish abductive explanation:
from inductive generalisations [27]. Moreover, we also need to restrict A so that it conveys
some reason why the observations hold, e.g. we do not want to explain one effect in terms
of another effect, but only in terms of some cause. For both of these reasons, explanations
are often restricted to belong to a special pre-specified, domain-specific class of sentences
called abducible. In this paper we will assume that the class of abducibles is always given.

Additional criteria have also been proposed to restrict the number of candidate explana-
tions:

e Once we restrict the hypotheses to helong to a specified set of sentences, we can
further restrict, without loss of generality, the hypotheses to atoms (that “name”
these sentences) which are predicates explicitly indicated as abducible, as shown by
Poole [145].

e In section 1.2 we will discuss the use of integrity constraints to reduce the numben
of possible explanations.

e Additional information can help to discriminate between different explanations, by
rendering some of them more appropriate or plausible than others. For example
Sattar and Goebel [173] use “crucial literals” to discriminate between two mutu-
ally incompatible explanations. When the crucial literals arve tested, one of the
explanations is rejected. More generally Evans and Kakas [56] use the notion of cor-
roboration to select explanations. An explanation fails to be corroborated if some
of its logical consequences are not observed. A related technique is presented by
Sergot in [175], where information is obtained from the user during the process of
query evaluation.

e Moreover various (domain specific) criteria of preference can be specified. They
impose a (partial) order on the sets of hypotheses which leads to the discriminatior

of explanations [13, 22, 61, 77, 143, 148, 180].

Cox and Pietrzykowski [29] identify other desirable properties of abductive explanations.
For instance, an explanation should be basic, i.e. should not he explainable in terms ol

other explanations. For instance, in example 1.1 the explanation
{grass-is-wet}

for the ohservation
shoes-are-wet

is not basic, whereas the alternative explanations

{rained-last-night}

{sprinkler-was-on}
are.

An explanation should also be minimal, i.e. not subsumed by another one. For example,
in example 1.1 the explanation

{rained-last-night, sprinkler-was-on}

for the ohservation

shoes-are-wet

is not minimal, while the explanations

{rained-last-night}

{sprinkler-was-on}
are.

So far we have presented a semantic characterisation of abduction and discussed some
heuristics to deal with the multiple explanation problem. but we have not described any
proof procedures for computing abduction. Various authors have suggested the use of
top-down, goal-oriented computation. based on the use of deduction to drive the genera-
tion of abductive hypotheses. Cox and Pietrzykowski [29] construct hypotheses from the
“dead ends” of linear resolution proofs. Finger and Genesereth [57] generate “deductive
solutions to design problems™ using the “residue” left behind in resolution proofs. Poole,
Goebel and Aleliunas [150] also use linear resolution to generate hypotheses.

In contrast, the ATMS [102] computes abductive explanations bottom-up. The ATMS
can be regarded as a form of hyper-resolution, augmented with subsumption, for propo-
sitional logic programs [162]. Lamma and Mello [115] have developed an extension of the
ATMS for the non-propositional case. Resolution-based techniques for computing abduc-
tion have also been developed by Demolombe and Farinas del Cerro [31] and Gaifman

and Shapiro [64].

Abduction can also be applied to logic programming (LP). A (general) logic program
is a set of Horn clauses extended by negation as failure [24], i.e. clauses of the form:

Ae L. Ly

where each I; is either an atom A; or its negation ~ A4; !, A is an atom and each vari-
able occurring in the clause is implicitly universally quantified. A is called the head and
Ly, ..., L, is called the body of the clause. A logic program where each literal L; in the
body of every clause is atomic is said to be definite.

Abduction can be computed in LP by extending SLD and SLDNF [23, 53, 54, 91, 94, 34,
181]. Tnstead of failing in a proof when a selected subgoal fails to unify with the head ol
any rule, the subgoal can be viewed as a hypothesis. This is similar to viewing abducibles
as “askable” conditions which are treated as qualifications to answers to queries [175]. In
the same way that it is useful to distinguish a subset of all predicates as “askable”™, it i
useful to distinguish certain predicates as abducible. In fact. it is generally convenient
to choose, as ahducible predicates, ones which are not conclusions of any clause. As we
shall remark at the beginning of section 5, this restriction can be imposed without loss of
generality, and has the added advantage of ensuring that all explanations will be basic.

Abductive explanations computed in LP are guaranteed to be minimal, unless the program
itself encodes non-minimal explanations. For example, in the propositional logic program

p = q

p = qr

both the minimal explanation {q} and the non-minimal explanation {¢q,r} are computed
for the observation p.

The abductive task for the logic-based approach has been proved to be highly intractable:
it is NP-hard even if T is a set of acyclic [7] propositional definite clauses [174, 48], and
is even harder if 7" is a set of any propositional clauses [48]. These complexity results
hold even if explanations are not required to be minimal. However, the abductive task is
tractable for certain more restricted classes of logic programs (see for example [52]).

There are other formalisations of abduction. We mention them for completeness, but in
the sequel we will concentrate on the logic-based view previously described.

o Allemand, Tanner, Bylander and Josephson [6] and Reggia [155] present a mathe-
matical characterisation, where abduction is defined over sets of observations and
hypotheses, in terms of coverings and parsimony.

e Levesque [117] gives an account of abduction at the “knowledge level”. He charac-
terises abduction in terms of a (modal) logic of beliefs, and shows how the logic-based
approach to abduction can be understood in terms of a particular kind of belief.

In the previous discussion we have briefly described both semantics and proof proce-
dures for abduction. The relationship between semantics and prool procedures can be
understood as a special case of the relationship between program specifications and pro-
grams. A program specification characterises what is the intended result expected from
the execution of the program. In the same way semantics can be viewed as an abstract,

"In the sequel we will represent negation as failure as ~.

possibly non-constructive definition of what is to be computed by the proof procedure.
From this point of view, semantics is not so much concerned with explicating meaning in
terms of truth and falsity, as it is with providing an abstract specification which “declar-
atively” expresses what we want to compute. This specification view ol semantics is
effectively the one adopted in most recent work on the semantics of LP, which restricts
interpretations to Herbrand interpretations. The restriction to Herbrand interpretations
means that interpretations are purely syntactic objects, which have no bearing on the cor-
respondence between language and “reality”. A purely syntactic view of semantics, based
upon the notion of knowledge assimilation described in section 2 below, is developed in

[110].

One important alternative way to specify the semantics of a language, which will be used
in the sequel, is through the translation of sentences expressed in one language into
sentences of another language, whose semantics is already well understood. For example
if we have a sentence in a typed logic language of the form “there exists an object of
type ¢ such that the property p holds” we can translate this into a sentence of the form
x (p(x) A t(x)), where ¢ is a new predicate to represent the type t, whose semantics is
then given by the familiar semantics of first-order logic. Similarly the typed logic sentence
“for all ohjects of type ¢ the property p holds” becomes the sentence Va(p(z) « t(z)).
Hence instead of developing a new semantics for the typed logic language, we apply the
translation and use the existing semantics of first-order logic.

1.2 Integrity Constraints

Abduction as presented so far can be restricted by the use of integrity constraints. In-
tegrity constraints are useful to avoid unintended updates to a database or knowledge
base. They can also be used to represent desired properties of a program [116].

The concept of integrity constraints first arose in the field of databases and to a lesser
extent in the field of Al knowledge representation. The basic idea is that only certain
knowledge base states are considered acceptable, and an integrity constraint is meant to
enforce these legal states. When abduction is used to perform updates (see section 2), we
can use integrity constraints to reject abductive explanations.

Given a set of integrity constraints, /, of first-order closed formulae, the second condition
(2) of the semantic definition of abduction (see section 1.1) can be replaced by:

(2) T U A satisfies T.

As previously mentioned, we also restrict A to consist of atoms drawn from predicates
explicitly indicated as abducible. Until the discussion in section 5.7, we further restrict
A to consist of variable-free atomic sentences.

In the sequel an abductive framework will be given as a triple (T, A, I), where T' is
a theory, A is the set of ahducible predicates, i.e. A C A ? and T is a set of integrity
constraints.

2Here and in the rest of this paper we will use the same symbol A to indicate both the set of abducible
predicates and the set of all their variable-free instances.

=~

There are several ways to define what it means for a knowledge base KB (T'U A in our
case) to satisfy an integrity constraint ¢ (in our framework ¢ € 7). The consistency
view requires that:

K B satisfies ¢ iff KB U ¢ is consistent.

Alternatively the theoremhood view requires that:
K B satisfies ¢ iff KB = 4.

These definitions have been proposed in the case where the theory is a logic program P
by Kowalski and Sadri [165] and Lloyd and Topor [118] respectively, where KB is the
Clark completion [24] of P.

Another view of integrity constraints [85, 90, 107, 160, 161] regards these as epistemic
or metalevel statements about the content of the database. In this case the integrity
constraints are understood as statements at a different level from those in the knowledge
base. They specify what must be true about the knowledge base rather than what is true
about the world modelled by the knowledge base. When later we consider abduction in
LP (see sections 4.5), integrity satisfaction will be understood in a sense which is stronger
than consistency, weaker than theoremhood, and arguably similar to the epistemic o
metalevel view.

For each such semantics, we have a specification of the integrity checking problem. Al-
though the different views of integrity satisfaction are conceptually very different, the
integrity checking procedures based upon these views are not very different in practice
(e.g. [30, 165, 118]). They are mainly concerned with avoiding the inefficiency which arises
if all the integrity constraints are retested after each update. A common idea of all these
procedures is to render integrity checking more efficient by exploiting the assumption that
the database before the update satisfies the integrity constraints, and therefore if integrity
constraints are violated after the update, this violation should depend upon the update
itself. Tn [165] this assumption is exploited by reasoning forward from the updates. This
idea is exploited for the purpose of checking the satisfaction of abductive hypotheses in
[54, 93, 94]. Although this procedure was originally formulated for the consistency view
of constraint satisfaction, it has proved equally appropriate for the semantics of integrity
constraints in abductive logic programming.

1.3 Applications

In this section we briefly describe some of the applications of abduction in Al In general,
abduction is appropriate for reasoning with incomplete information. The generation of
abducibles to solve a top-level goal can be viewed as the addition of new information to
make incomplete information more complete.

Abduction can be used to generate causal explanations for fault diagnosis (see for exam-
ple [25,151]). In medical diagnosis, for example, the candidate hypotheses are the possible
causes (diseases), and the observations are the symptoms to be explained [146, 155]. Ab-
duction can also be used for model-based diagnosis [51, 159]. In this case the theory
describes the “normal” behaviour of the system, and the task is to find a set of hypothe-
ses of the form “some component A is not normal” that explains why the behaviour of

the system is not normal.

Abduction can be used to perform high level vision [29]. The hypotheses are the objects
to be recognised, and the ohservations are partial descriptions of objects.

Abduction can be used in natural language understanding to interpret ambiguous
sentences [22, 62, 78, 179]. The abductive explanations correspond to the various possible
interpretations of such sentences.

In planning problems, plans can be viewed as explanations of the given goal state to be

reached [50, 176].

These applications of abduction can all be understood as generating hypotheses which are
causes for observations which are effects. An application that does not necessarily have
a direct causal interpretation is knowledge assimilation [94, 105, 114, 125], described
in greater detail below. The assimilation of a new datum can be performed by adding to
the theory new hypotheses that are explanations for the datum. Knowledge assimilation
can also be viewed as the general context within which abduction takes place. Database
view updates [17, 91, 28] are an important special case of knowledge assimilation. Up-
date requests are interpreted as observations to be explained. The explanations of the
observations are transactions that satisfy the update request.

Another important application which can be understood in terms of a “non-causal” use
of abduction is default reasoning. Default reasoning concerns the use of general rules
to derive information in the absence of contradictions. In the application of abduction
to default reasoning, conclusions are viewed as observations to be explained by means
of assumptions which hold by default unless a contradiction can be shown [53, 145]. As
Poole [145] argues, the use of abduction avoids the need to develop a non-classical, non-
monotonic logic for default reasoning. In section 3 we will further discuss the use of
abduction for default reasoning in greater detail. Because negation as failure in LP is a
form of default reasoning, its interpretation by means of abduction will he discussed in
section 4.

Some authors (e.g. Pearl [132]) advocate the use of probability theory as an alternative
approach to common sense reasoning in general, and to many of the applications listed
above in particular. However, Poole [149] shows how abduction can be used to simulate
(discrete) Bayesian networks in probability theory. He proposes the language of proba-
bilistic Horn abduction: in this language an abductive framework is a triple (T, A, I),
where T is a set of Horn clauses, A is a set of abducibles without definitions in T (with-
out loss of generality, see section 5), and [is a set of integrity constraints in the form of
denials of abducibles only. In addition, for each integrity constraint, a probability value is
assigned to each abducible, so that the sum of all the values of all the abducibles in each
integrity constraint is 1. If the abductive framework satisfies certain assumptions, e.g. T’
is acyclic [7], the bodies of all the clauses defining each non-abducible atom are mutu-
ally exclusive and these clauses are “covering”, and ahducibles in A are “probabilistically
independent”, then such a probabilistic Horn abduction theory can be mapped onto a
(discrete) Bayesian network and vice versa.

2 Knowledge Assimilation

Abduction takes place in the context of assimilating new knowledge (information, belief or
data) into a theory (or knowledge bhase). There are four possible deductive relationships
between the current knowledge base (KB), the new information, and the new KB which
arises as a result [105, 110].

1. T'he new information is already deducible from the current KB. The new KB, as a
result, is identical with the current one.

2. The current KB = KB; U KB, can be decomposed into two parts. One part KBy
together with the new information can be used to deduce the other part KBy. The
new KB is KBy together with the new information.

3. The new information violates the integrity of the current KB. Integrity can be
restored by modifying or rejecting one or more of the assumptions which lead to the
contradiction.

4. The new information is independent from the current KB. The new KB is obtained
by adding the new information to the current KB.

In case (4) the KB can, alternatively, be augmented by an explanation for the new datum
(94, 105, 114]. In [114] the authors have developed a system for knowledge assimilation
(KA) based on this use of abduction. They have identified the basic issues associated
with such a system and proposed solutions for some of these.

Various motivations can be given for the addition of an abductive explanation instead
of the new datum in case (4) of the process of KA. For example, in natural language
understanding or in diagnosis, the assimilation of information naturally demands an ex-
planation. In other cases the addition of an explanation as a way of assimilating new data
is forced by the particular way in which the knowledge is represented in the theory. This
is the case, for instance, for the formulation of temporal reasoning in the Kvent Calculus

[113, 108], as illustrated by the following example.

Example 2.1
The simplified version of the event calculus we consider contains an axiom that expresses
the persistence of a property P from the time Ty that it is initiated by an event I to a
later time 7Y:
holds_at(P, Ty) «— happens(F,Ty),

Tl < Tz.

inttiates(l, P),

persists(Ty, P, Ty).

New information that a property holds at a particular time point can be assimilated
by adding an explanation in terms of the happening of some event that initiates this
property at an earlier point of time together with an appropriate assumption that the
property persists from one time to the other [50, 89, 176, 186]. This has the additional
effect that the new KB will imply that the property holds until it is terminated in the
future by the happening of some event [176]. The fact that a property P cannot persist

10

from a time T} to a later time T, if an event E happens at a time T between Ty and T,
such that K terminates P is expressed by the following integrity constraint:

=[persists(Ty, P, Ty) A happens(FE. T) A terminates(F, PY ATy < T < T;).

Assimilating new information by adding explanations that satisfy the integrity constraints
has the further effect of resolving conflicts between the current KB and the new informa-
tion [89, 176]. For example, suppose that KB contains the facts *

happens(takes_book(mary),to)
initiates(takes_book(X), has_book(X))
terminates(gives book(X,Y), has_book(X))
initiates(gives book(X,Y'), has_book(Y))

Then, given tg < t; < t3, the persistence axiom predicts holds_at(has_book(mary).t;) by
assuming persists(lo, has_book(mary), i), and holds_at(has_book(mary),ts) by assuming
persists(to, has_book(mary),t;). Both these assumptions are consistent with the integrity
constraint. Suppose now that the new information holds_at(has_book(john).t;) is added
to KB. This conflicts with the prediction holds_at(has_book(mary),t,). However, the new
information can be assimilated by adding to KB the hypotheses
happens(gives_book(mary, john),t;) and persists(ty, has_book(john),t;) and by retract-

ing the hypothesis persists(to, has_book(mary),ls). Therefore, the earlier prediction

holds_at(has_book(mary),t;) can no longer be derived from the new KB.
Note that in this example the hypothesis happens(gives_book(mary,john),t;) can be
added to KB since it does not violate the further integrity constraint

=[happens(E, T) A precondition(FE, T, P)\ ~ holds_at(P,T))

expressing that an event /£ cannot happen at a time 1" if the preconditions P of £ do not
hold at time 7'. In this example, we may assume that KB also contains the fact

precondition(gives_book(X,Y), has_book(X)).

Once a hypothesis has been generated as an explanation for an external datum, it itsell
needs to be assimilated into the KB. In the simplest situation, the explanation is just
added to the KB, i.e. only case (4) applies without further abduction. Case (1) doesn’t
apply, il abductive explanations are required to be basic. However case (2) may apply, and
can be particularly useful for discriminating between alternative explanations for the new
information. For instance we may prefer a set of hypotheses which entails information
already in the KB, i.e. hypotheses that render the KB as “compact” as possible.

Example 2.2
Suppose the current KB contains

P =4
P

o q
T S

3Note that here KB contains a definition for the abducible predicate happens. In section 5 we will
see that new predicates and clauses can be added to K B so that abducible predicates have no definitions
in the transformed K B.

11

and r is the new datum to be assimilated. The explanation {q} is preferable to the
explanation {s}, because ¢ implies both r and p, but s only implies r. Namely, the
explanation {¢} is more relevant.

Notice however that the use of case (2) to remove redundant information can cause prob-

lems later. Tf we need to retract previously inserted information, entailed information
which is no longer explicitly in the KB might be lost.

It is interesting to note that case (3) can be used to check the integrity of abductive
hypotheses generated in case (4).

Any violation of integrity detected in case (3) can be remedied in several ways [105]. The
new input can be retracted as in conventional databases. Alternatively the new input
can be upheld and some other assumptions can be withdrawn. This is the case with
view updates. The task of translating the update request on the view predicates to an
equivalent update on the extensional part (as in case (4) of KA) is achieved by finding
an abductive explanation for the update in terms of variable-free instances of extensional
predicates [91]. Any violation of integrity is dealt with by changing the extensional part
of the database.

Example 2.3
Suppose the current KB consists of the clauses

sibling(X.,Y) « parent(Z,X), parent(Z.Y)
parent(X,Y) — father(X,Y)

parent(X,Y) « mother(X,Y)
father(john, mary)

mother(jane, mary)
together with the integrity constraints

X =Y « father(X.,Z), father(Y,Z)

X =Y « mother(X,Z), mother(Y, Z)
X £Y — mother(X,7), father(Y,W)

where sibling and parent are view predicates. father and mother are extensional, and
=, # are “built-in” predicates such that

X =X and

s # t for all distinct variable-free terms s and ¢.

Suppose the view update
insert sibling(mary, bob)

is given. This can be translated into either of the two minimal updates

insert father(john, bob)

insert mother(jane, bob)

12

on the extensional part of the KB. Both of these updates satisfy the integrity constraints.
However, only the first update satisfies the integrity constraints if we are given the further
update

insert molher(sue, bob).

The general problem of beliel revision has heen studied formally in [65, 128, 129, 37].
Gardenfors proposes a set of axioms for rational belief revision containing such constraints
on the new theory as “no change should occur to the theory when trying to delete a fact
that is not already present” and “the result of revision should not depend on the syn-
tactic form of the new data”. These axioms ensure that there is always a unique way of
performing belief revision. However Doyle [37] argues that, for applications in A, this
uniqueness property is too strong. He proposes instead the notion of “economic ratio-
nality”, in which the revised sets of beliefs are optimal, but not necessarily unique, with
respect to a set of preference criteria on the possible heliefs states. This notion has been
used to study the evolution of databases by means of updates [86]. It should be noted
that the use of abduction to perform belief revision in the view update case also allows
results which are not unique, as illustrated in example 2.3. Aravindan and Dung [8] have
given an abductive characterisation of rational belief revision and have applied this result
to formulate belief revision postulates for the view update problem.

A logic-based theory of the assimilation of new information has also been developed in
the Relevance Theory of Sperber and Wilson [178] with special attention to natural lan-
guage understanding. Gabbay, Kempson and Pitts [63] have investigated how ahductive
reasoning and relevance theory can be integrated to choose between different abductive
interpretations of a natural language discourse.

KA and belief revision are also related to truth maintenance systems. We will discuss
truth maintenance and its relationship with abduction in section 8.

3 Default Reasoning viewed as Abduction

Default reasoning concerns the application of general rules to draw conclusions provided
the application of the rules does not result in contradictions. Given, for example, the
general rules “birds fly” and “penguins are birds that do not fly” and the only fact about
Tweety that Tweety is a bird, we can derive the default conclusion that Tweety flies.
However, if we are now given the extra information that 'I'weety is a penguin, we can also
conclude that Tweety does not fly. In ordinary, common sense reasoning, the rule that
penguins do not fly has priority over the rule that birds fly, and consequently this new
conclusion that Tweety does not fly causes the original conclusion to be withdrawn.

One of the most important formalisations of default reasoning is the Default Logic of
Reiter [158]. Reiter separates beliefs into two kinds, ordinary sentences used to express
“facts” and default rules of inference used to express general rules. A default rule is an
inference rule of the form

a(X) : MB(X), ..., MB,(X)
Y(X)

13

which expresses, for all variable-free instances ¢ of X *, that 4(f) can be derived if «(t)
holds and each of §;(1) is consistent, where a(X), 3;(X). v(X) are first-order formulae
Default rules provide a way of extending an underlying incomplete theory. Different ap-
plications of the defaults can yield different extensions.

As already mentioned in section 1, Poole, Goebel and Aleliunas [150] and Poole [145]
propose an alternative formalisation of default reasoning in terms of abduction. Like
Reiter, Poole also distinguishes two kinds of beliefs:

o beliefs that belong to a consistent set of first order sentences F representing “facts”,
and

e beliefs that belong to a set of first order formulae 1) representing defaults.

Perhaps the most important difference between Poole’s and Reiter’s formalisations is that
Poole uses sentences (and formulae) of classical first order logic to express defaults, while
Reiter uses rules of inference. Given a Theorist framework (F, D), default reasoning can
be thought of as theory formation. A new theory is formed by extending the existing
theory F with a set A of sentences which are variable-free instances of formulae in D.
The new theory F U A should be consistent. This process of theory formation is a form
of abduction, where variable-free instances of defaults in D are the candidate abducibles.
Poole [145] shows that the semantics of the theory formation framework (F, D) is equiv-
alent to that of an abductive framework (F’, A, @) (see section 1.2) where the default
formulae are all atomic. The set of abducibles A consists of a new predicate

Pu()

for each default formula

w(a)
in D with free variables . The new predicate is said to “name” the default. The set F
is the set F angmented with a sentence

VX [pu(X) — w(X)]
for each default in D.

The theory formation framework and its correspondence with the abductive {ramework
can be illustrated by the flying-birds example.

Example 3.1
In this case, the framework (F, D) is ®

F ={ penguin(X) — bird(X),

4“We use the notation X to indicate a tuple of variables X7,..., X,, and ¢ to represent a tuple of terms
Uyl

5Here, we use the conventional notation of first-order logic, rather than LP form. We use — for the
usual implication symbol for first-order logic in contrast with «— for LP. However, as in LP notation
variables occurring in formulae of F are assumed to be universally quantified. Formulae of 1), on the
other hand, should be understood as schemata standing for the set of all their variable-free instances.

14

penguin(X) — = fly(X),
penguin(tweety),
bird(john)}
Do={ bird(X) — fly(X)}. (1)

The priority of the rule that penguins do not fly over the rule that birds fly is obtained
by regarding the first rule as a fact and the second rule as a default. The atom fly(john)
is a default conclusion which holds in F U A with

A = {bird(john) — fly(john)}.

We obtain the same conclusion by naming the default (1) by means of a predicate
birds- fly(X), adding to F the new “fact”

birds-fly(X) — [bird(X) — fly(X)] (2)

and extending the resulting augmented set of facts F’ with the set of hypotheses
A" = {birds-fly(john)}. On the other hand, the conclusion fly(tweety) cannot he
derived, because the extension

A = {bird(lweety) — [ly(lweely) }
is inconsistent with F. and similarly the extension
A" = { birds- fly(tweety) }
is inconsistent with F".

Poole shows that normal defaults without prerequisites in Reiter’s default logic

s MB(X)
BX)
can be simulated by Theorist (abduction) simply by making the predicates 8(X) ab-
ducible. He shows that the default logic extensions in this case are equivalent to maximal
sets of variable-free instances of the default formulae (X)) that can consistently be added
to the set of facts.

Maximality of abductive hypotheses is a natural requirement for default reasoning, he-
cause we want to apply defaults whenever possible. However, maximality is not appro-
priate for other uses of abductive reasoning. In particular, in diagnosis we are generally
interested in explanations which are minimal. Later, in section 5.1 we will distinguish be-
tween default and non-default abducibles in the context of abductive logic programming.

In the attempt to use abduction to simulate more general default rules, however, Poole
needs to use integrity constraints. The new theory F U A should be consistent with these
constraints. Default rules of the form:

a(X) : MBy(X),. .., MB,(X)

are translated into “facts”, which are implications
a(X)A Mg (X)N ... A Mg (X)) — ~(X)

where Mg, is a new predicate, and Mz, (X) is a default formula (abducible), for all 7 =
1,....n. Integrity constraints

= Bi(X) = ~ Mg (X)

are needed to link the new predicates Mg, appropriately with the predicates 3;, for all
i =1,...,n. A further integrity constraint

~(X) = = Mg, (X),
for any 2 = 1,....n. is needed to prevent the application of the contrapositive
SY(X)A M (X)A ... A Mg (X) = —a(X)

of the implication, in the attempt to make the implication behave like an inference rule.
This use of integrity constraints is different from their intended use in abductive frame-
works as presented in section 1.2.

Poole’s attempted simulation of Reiter’s general default rules is not exact. He presents
a number of examples where the two formulations differ and argues that Reiter’s default
logic gives counterintuitive results. In fact, many of these examples can be dealt with
correctly in certain extensions of default logic, such as Cumulative Default Logic [121].
and it is possible to dispute some of the other examples. But, more importantly, there are
still other examples where the Theorist approach arguably gives the wrong result. The
most important of these is the now notorious Yale shooting problem of [73, 74]. This can
be reduced to the propositional logic program

alive-a fler-load-wail-shool — alive-after-load-wait,
~ abnormal-alive-shoot

loaded-a fter-load-wait — loaded-after-load.,

~ abnormal-loaded-wait
abnormal-alive-shoot «— loaded-a fter-load-wail
alive-a fter-load-wait

loaded-after-load.

As argued in [127], these clauses can be simplified further: First, the facts
alive-a fter-load-wait and loaded-a fter-load can be eliminated by resolving them against
the corresponding conditions of the first two clauses, giving

alive-a fter-load-wait-shoot <+ ~ abnormal-alive-shoot
loaded-a fler-load-wail «— ~ abnormal-loaded-watt
abnormal-alive-shoot «— loaded-after-load-wart

Then the atom loaded-a fter-load-wait can be resolved away from the second and third
clauses leaving the two clauses

16

alive-a fter-load-wait-shoot «— ~ abnormal-alive-shoot
abnormal-alive-shoot «— ~ abnormal-loaded-wait

The resulting clauses have the form
p—=~yq
g —~T.
Hanks and McDermott showed, in effect, that the default theory, whose facts consist of
—q = p
-r — g

and whose defaults are the normal defaults

M=-¢q :M-r

—-q -r

has two extensions: one in which —r, and therefore ¢ holds; and one in which — ¢, and
therefore p holds. The second extension is intuitively incorrect under the intended in-
terpretation. Hanks and Mc Dermott showed that many other approaches to default
reasoning give similarly incorrect results. However, Morris [127] showed that the default
theory which has no facts but contains the two non-normal defaults

M=¢q :M-r
p q

yields only one extension, containing ¢, which is the correct result. In contrast, all natural
representations of the problem in Theorist give incorrect results.

As Eshghi and Kowalski [53], Evans [55] and Apt and Bezem [7] observe, the Yale shoot-
ing problem has the form of a logic program, and interpreting negation in the problem as
negation as failure yields only the correct result. This is the case for both the semantics
and the proof theory of LP. Moreover, [53] and [89] show how to retain the correct result
when negation as failure is interpreted as a form of abduction.

On the other hand, the Theorist framework does overcome the problem that some default
theories do not have extensions and hence cannot be given any meaning within Reiter’s
default logic. In the next section we will see that this problem also occurs in LP, but that
it can also be overcome by an abductive treatment of negation as failure. We will also see
that the resulting abductive interpretation of negation as failure allows us to regard LP
as a hybrid which treats defaults as abducibles in Theorist but treats clauses as inference
rules in default logic.

The inference rule interpretation of logic programs, makes LP extended with abduc-
tion especially suitable for default reasoning. Integrity constraints can be used, not for
preventing application of contrapositives, but for representing negative information and
exceptions to defaults.

17

Example 3.2
The default (1) in the flying-hirds example 3.1 can be represented by the logic program

Fly(X) — bird(X), birds-fly(X),

with the ahducible predicate birds-fly(X). Note that this clause is equivalent to the
“fact” (2) obtained by renaming the default (1) in Theorist. The exception can be repre-
sented by an integrity constraint:

= fly(X) < penguin(X).

The resulting logic program, extended by means of abduction and integrity constraints,
gives similar results to the Theorist formulation of example 3.1.

In sections 4, 5 and 6 we will see other ways of performing default reasoning in LP. In sec-
tion 4 we will introduce negation as failure as a form of abductive reasoning. In section 7
we will discuss abductive logic programming with default and non-default abducibles and
domain-specific integrity constraints. In section 6 we will consider an extended 1P frame-
work that contains clauses with negative conclusions and avoids the use of explicit integrity
constraints in many cases. In section 7 we will present an abstract argumentation-based
framework for default reasoning which unifies the treatment of ahduction, default logic.
LP and several other approaches to default reasoning.

4 Negation as Failure as Abduction

We noted in the previous section that default reasoning can be performed by means of
abduction in LP by explicitly introducing abducibles into rules. Default reasoning can
also be performed with the use of negation as failure (NAF) [24] in general logic pro-
grams. NAF provides a natural and powerful mechanism for performing non-monotonic
and default reasoning. As we have already mentioned, it provides a simple solution to the
Yale shooting problem. The abductive interpretation of NAF that we will present helow
provides further evidence for the suitability of abduction for default reasoning.

To see how NAF can be used for default reasoning, we return to the flying-birds example.

Example 4.1
The NAF formulation differs from the logic program with abduction presented in the last
section (example 3.2) by employing a negative condition

~ abnormal-bird(X)
instead of a positive abducible condition
birds- fly(X)
and by employing a positive conclusion

abmormal-bird(X')

18

in an ordinary program clause, instead of a negative conclusion
- fly(X)

in an integrity constraint. The two predicates abnormal-bird and birds- fly are opposite
to one another. Thus in the NAT formulation the default is expressed by the clause

fly(X) « bird(X), ~ abnormal-bird(X)
and the exception by the clause
abnormal-bird(X) «— penguin(X).

In this example, both the abductive formulation with an integrity constraint and the
NAF formulation give the same result. We will see later in section 5.5 that there exists
a systematic transformation which replaces positive abducibles by NAF and integrity
constraints by ordinary clauses. This example can be regarded as an instance of that
transformation.

4.1 Logic programs as abductive frameworks

The similarity between abduction and NAF can be used to give an abductive interpreta-
tion of NAF. This interpretation was presented in [53] and [54], where negative literals
are interpreted as abductive hypotheses that can be assumed to hold provided that, to-
gether with the program, they satisfy a canonical set of integrity constraints. A general
logic program P is thereby transformed into an abductive framework (P*, A* T*) (see
section 1) in the following way.

e A new predicate symbol p* (the opposite of p) is introduced for each p in P, and
A* is the set of all these predicates.

e P*is P where each negative literal ~ p(1) has been replaced by p*(1).
o " is a set of all integrity constraints of the form ©

VX =[p(X) A p*(X)] and
VX [p(X) Vv pr(X)].

Sn the original paper the disjunctive integrity constraints were written in the form
Demo(P*U A, p(t)) V Demo(P*U A, p* (1)),

where # is any variable-free term. This formulation makes explicit a particunlar (meta-level) interpretation
of the disjunctive integrity constraint. The simpler form

VX [p(X) Vv p (X)]

is nentral with respect to the interpretation of integrity constraints and allows the meta-level interpreta-
tion as a special case.

19

The semantics of the abductive framework (P, A*, T*), in terms of extensions * P*U A
of P*, where A C A*, gives a semantics for the original program . A conclusion) holds
with respect to P if and only if the query @*, obtained by replacing each negative literal
~ p(t) in @ by p*(t), has an abductive explanation in the framework (P>, A* T*). This
transformation of P into (P*, A*, I} is an example of the method, described at the end
of section 1.1. of giving a semantics to a language by translating it into another language
whose semantics is already known.

The integrity constraints in I* play a crucial role in capturing the meaning of NAF. The
denials express that the newly introduced symbols p* are the negations of the correspond-
ing p. They prevent an assumption p*(t) if p(¢) holds. On the other hand the disjunctive
integrity constraints force a hypothesis p*(¢) whenever p(t) does not hold.

Hence we define the meaning of the integrity constraints [* as follows: An extension
P*U A (which is a Horn theory) of P* satisfies 7* if and only if for every variable-free
atom p,

P*UA £ pAp*, and

PPUA |E p or PPUA | p-

Eshghi and Kowalski [54] show that there is a one to one correspondence between stable
models [68] of P and abductive extensions of P*. We recall the definition of stable model

Let P be a general logic program, and assume that all the clauses in P are variable-free ®
For any set M of variable-free atoms, let Pys be the Horn program obtained by deleting

from P:
i) each rule that contains a negative literal ~ A, with A € M,
ii) all negative literals in the remaining rules.

If the minimal (Herbrand) model of Py coincides with M, then M is a stable model for
P.

The correspondence between the stable model semantics of a program P and abductive
extensions of * is given by:

¢ For any stable model M of P, the extension P*U A satisfies [*, where

A = {p”|pis a variable-free atom,p ¢ M}.

e For any A such that P*U A satisfies 7", there is a stable model M of P, where
M = {p]|pis a variable-free atom,p* & A}.

Notice that the disjunctive integrity constraints in the abductive framework correspond
to a totality requirement that every atom must be either true or false in the stable model

“This use of the term “extension” is different from other uses. For example, in default logic an extension
is formally defined to be the deductive closure of a theory “extended” by means of the conclusions of
default rules. Tn this paper we also use the term “extension” informally (as in example 3.1) to refer to A
alone.

8If P is not variable-free, then it is replaced by the set of all its variable-free instances.

20

semantics. Several authors have argued that this totality requirement is too strong, be-
cause it prevents us from giving a semantics to some programs, for example p «— ~ p. We
would like to be able to assign a semantics to every program in order to have modularity,
as otherwise one part of the program can affect the meaning of another unrelated part.
We will see below that the disjunctive integrity constraint also causes problems for the
implementation of the abductive framework for NAF.

Notice that the semantics of NAF in terms of abductive extensions is syntactic rather than
model-theoretic. It is a semantics in the sense that it is a non-constructive specification.
Similarly, the stable model semantics, as is clear from its correspondence with abductive
extensions, is a semantics in the sense that it is a non-constructive specification of what
should be computed. The computation itself is performed by means of a proof procedure.

4.2 An abductive proof procedure for LP

In addition to having a clear and simple semantics for abduction, it is also important to
have an effective method for computing abductive explanations. Any such method will
be very useful in practice in view of the many diverse applications of abductive reason-
ing, including default reasoning. The Theorist framework of [145, 150] provides such an
implementation of abduction by means of a resolution hased proof procedure.

In their study of NAF through abduction Eshghi and Kowalski [54] have defined an ab-
ductive proof procedure for NAF in logic programming. We will describe this procedure
in some detail as it also serves as the basis for computing abductive explanations more
generally within logic programming with other abducibles and integrity constraints (see
section 5). In this section we will refer to the version of the abductive proof procedure
presented in [39]. °

The abductive proof procedure interleaves two types of computation. The first type.
referred to as the abductive phase, is standard SLD- resolution, which generates (neg-
ative) hypotheses and adds them to the set of abducibles being generated, while the
second type, referred to as the consistency phase ', incrementally checks that the hy-
potheses satisfy the integrity constraints 7™ for NAF. Integrity checking of a hypothesis
p*(t) reasons forward one step using a denial integrity constraint to derive the new denial
—p(t), which is then interpreted as the goal « p(t). Thereafter it reasons backward in
SLD-fashion in all possible ways. Integrity checking succeeds if all the branches of the
resulting search space fail finitely, in other words, if the contrary of p*(¢), namely p(t).
finitely fails to hold. Whenever the potential failure of a branch of the consistency phase
search space is due to the failure of a selected abducible, say ¢*(s), a new abductive phase
of SLD-resolution is triggered for the goal «— ¢(s), to ensure that the disjunctive integrity
constraint ¢*(s) V ¢(s) is not violated by the failure of both ¢*(s) and ¢(s). This attempt
to show ¢(s) can require in turn the addition of further abductive assumptions to the set
of hypotheses which is being generated.

9As noticed by Dung [39], the procedure presented in [54] contains a mistake, which is not present,
however, in the earlier unpublished version of the paper.

10We use the term “consistency phase” for historical reasons. However, in view of the precise definition
of integrity constraint satisfaction, some other term might be more appropriate.

21

— S
A ={p}
N — p

. g — q
| A=)
= —

" |

= []

Figure 1: computation for example 4.2

To illustrate the procedure consider the following logic program, which is a minor elabo-
ration of the propositional form of the Yale shooting problem discussed in section 3.

Example 4.2

5 — ~p

p = ~49q

G — ~7r
The query «— s succeeds with answer A = {p*, r*}. The computation is shown in figure 1.
Parts of the search space enclosed by a double box show the incremental integrity checking
of the latest abducible added to the explanation A. For example, the outer double hox
shows the integrity check for the abducible p*. For this we start from «— p = -y
(resulting from the resolution of p* with the integrity constraint = (p A p*) = —p V =p*)
and resolve backwards in SLD-fashion to show that all branches end in failure, depicted
here by a black box. During this consistency phase for p* a new abductive phase (shown
in the single box) is generated when ¢~ is selected since the disjunctive integrity constraint
¢* V q implies that failure of ¢* is only allowed provided that ¢ is provable. The SLD
prool of ¢ requires the addition of 7 to A, which in turn generates a new consistency
phase for 7 shown in the inner double box. The goal « r fails trivially because there are
no rules for r and so * and the enlarged explanation A = {p*, r*} satisly the integrity
constraints. Tracing the computation backwards, we see that ¢ holds, therefore ¢* fails
and, therefore p* satisfies the integrity constraints and the original query « s succeeds.

In general, an abductive phase succeeds if and only if one of its branches ends in a white
box (indicating that no subgoals remain to he solved). It fails finitely if and only if all

22

branches end in a black box (indicating that some subgoal cannot be solved). A consis-
tency phase fails if and only if one of its branches ends in a white box (indicating that
integrity has been violated). It succeeds finitely if and only if all branches end in a black
box (indicating that integrity has not been violated).

It is instructive to compare the computation space of the abductive proof procedure with
that of SLDNF. Tt is easy to see that these are closely related. In particular, in both
cases negative atoms need to be variable-free before they are selected. On the other hand,
the two proof procedures have some important differences. A successful derivation of the
abductive proof procedure will produce, together with the usual answer obtained from
SLDNF, additional information, namely the abductive explanation A. This additional
information can be useful in different ways, in particular to avoid recomputation of neg-
ative subgoals. More importantly, as the next example will show, this information will
allow the procedure to handle non-stratified programs and queries for which SLDNF is
incomplete. In this way the abductive proof procedure generalises SLDNF. Furthermore,
the abductive explanation A produced by the procedure can be recorded and used in
any subsequent revision of the beliefs held by the program, in a similar fashion to truth
maintenance systems [94]. In fact, this abductive treatment of NAF allows us to identify
a close connection between logic programming and truth maintenance systems in general
(see section 8). Another important difference is the distinction that the abductive proof
procedure for NAF makes between the abductive and consistency phases. This allows
a natural extension of the procedure to a more general {ramework where we have other
hypotheses and integrity constraints in addition to those for NAF [91, 92, 93] (see sec-
tion 5.2).

To see how the abductive proof procedure extends SLDNF, consider the following pro-

gram.
Example 4.3
§ — ¢
s — p
p = ~q
q — ~p

The Tast two clauses in this program give rise to a two-step loop via NAF, in the sense
that p (and, similarly, ¢) “depends”™ negatively on itself through two applications of NAF.
This causes the SLDNF proof procedure, executing the query « s, to go into an infinite
loop. Therefore, the query has no SLDNT refutation. However, in the corresponding
abductive framework the query has two answers, A = {p*} and A = {¢*}, corresponding
to the two stable models of the program. The computation for the first answer is shown
in figure 2. The outer abductive phase generates the hypothesis p* and triggers the
consistency phase for p* shown in the double box. In general, whenever a hypothesis is
tested for integrity, we can add the hypothesis to A either at the beginning or at the end of
the consistency phase. When this addition is done at the beginning (as originally defined
in [54]) this extra information can be used in any subordinate abductive phase. In this
example, the hypothesis p* is used in the subordinate abductive proof of ¢ to justify the
failure of ¢* and consequently to render p* acceptable. In other words, the acceptability

23

— s
A ={p}
— q
= p
— p g ‘
— p
] | |
[}

Figure 2: computation for example 4.3

of p* as a hypothesis is proved under the assumption of p*. The same abductive proof
procedure, but where each new hypothesis is added to A only at the successful completior
of its consistency phase, provides a sound proof procedure for the well-founded semantics

187,

Example 4.4
Consider the query < p with respect to the abductive framework corresponding to the
following program

ro— ~7T
ro«— q

p o= ~q
g — ~p.

Note that the first clause of this program give rise to a one-step loop via NAF, in the
sense that r “depends” negatively on itself through one application of NAF. The abductive
proof procedure succeeds with the explanation {¢*}, but the only set of hypotheses which
satisfies the integrity constraints is {p*}.

So, as Kshghi and Kowalski [54] show by means of this example, the abductive proof
procedure is not always sound with respect to the above abductive semantics of NAF. In
fact, following the result in [39], it can be proved that the prool procedure is sound for
the class of order-consistent logic programs defined by Sato [168]. Intuitively, this is the
class of programs which do not contain clauses giving rise to odd-step loops via NAF.

For the overall class of general logic programs, moreover, it is possible to argue that it

is the semantics and not the proof procedure that is at fault. Indeed, Sacca and Zaniolc
[164]. Przymusinski [153] and others have argued that the totality requirement of stable

24

models is too strong. They relax this requirement and consider partial or three-valued
stable models instead. In the context of the abductive semantics of NAF this is an argu-
ment against the disjunctive integrity constraints.

An abductive semantics of NAF without disjunctive integrity constraints has been pro-
posed by Dung [39] (see section 4.3 helow). The abductive proof procedure is sound with
respect to this improved semantics.

An alternative abductive semantics of NAF without disjunctive integrity constraints has
been proposed by Brewka [14], following ideas presented in [104]. He suggests that the
set which includes both accepted and refuted NAF hypotheses be maximised. For each
such set of hypotheses, the logic program admits a “model” which is the union of the sets
of accepted hypotheses together with the “complement”
example 4.4 the only “model” is {p*, ¢, 7}. Therefore, the abductive proof procedure is still
unsound with respect to this semantics. Moreover, this semantics has other undesirable

of the refuted hypotheses. For

consequences. For example, the program
pe=~p.~q

admits both {~ ¢} and {~ p} as “models”, while the only intuitively correct “model” is

{~dq}.

An alternative three-valued semantics for NAF has been proposed by Giordano, Martelli
and Sapino [72]. According to their semantics, given the program

pep

p and p* are both undefined. In contrast, p* holds in the semantics of [39], as well as in
the stable model [68] and well-founded semantics [187]. Giordano, Martelli and Sapino
[72] modify the ahductive proofl procedure so that the modification is sound and complete
with respect to their semantics.

Satoh and Twayama [171], on the other hand, show how to extend the abductive proof pro-
cedure of [54] to deal correctly with the stable model semantics. Their extension modifies
the integrity checking method of [165] and deals more generally with arbitrary integrity
constraints expressed in the form of denials.

Casamayor and Decker [20] also develop an abductive proof procedure for NAF. Their
proposal combines features of the Eshghi-Kowalski procedure with ancestor resolution.

Finally, we note that, to show that ~ p holds for programs such as p « p, it is possible
to define a non-effective extension of the proof procedure, that allows infinite failure in
the consistency phases.

4.3 An argumentation-theoretic interpretation

Dung [39] replaces the disjunctive integrity constraints by a weaker requirement similar
to the requirement that that the set of negative hypotheses A be a maximally consistent

25

set. Unfortunately, simply replacing the disjunctive integrity constraints by maximality
does not work, as shown in the following example.

Example 4.5
With this change the program

pe—~yq

has two maximally consistent extensions A; = {p*} and Ay = {¢*}. However, only
the second extension is computed both by SLDNF and by the abductive proof procedure.
Moreover, for the same reason as in the case of the propositional Yale shooting problem
discussed before, only the second extension is intuitively correct.

To avoid such problems Dung’s notion of maximality is a more subtle. He associates
with every logic program P an abductive framework (P*, A*| T*) where T* contains only
denials

Y X = [p(X) A p(X)]

as integrity constraints. Then, given sets A, K of (negative) hypotheses, i.e. A C A*
and £ C A*, E can be said to attack A (relative to (P, A*, I*))if P* U E F p for
some p* € A. M Dung calls an extension P*U A of P* preferred if

o P* U A is consistent, with /* and

e A is maximal with respect to the property that for every attack £ against A, A
attacks 2 (i.e. A “counterattacks”™ F or “defends” itself against I7).

Thus a preferred extension can be thought of as a maximally consistent set of hypotheses
that contains its own defence against all attacks. Tn [39] a consistent set of hypotheses
A (not necessarily maximal) satisfying the property of containing its own defence against
all attacks is said to be admissible (to P*). In fact, Dung’s definition is not formulated
explicitly in terms of the notions of attack and defence, but is equivalent to the one just
presented.

Preferred extensions solve the problem with disjunctive integrity constraints in exam-
ple 4.4 and with maximal consistency semantics in example 4.5. In example 4.4 the
preferred extension semantics sanctions the derivation of p by means of an abductive
derivation with generated hypotheses {¢*}. Tn fact, Dung proves that the abductive
proof procedure is sound with respect to the preferred extension semantics. In exam-
ple 4.5 the definition of preferred extension excludes the maximally consistent extension
{p* }. because there is no defence against the attack ¢*.

The preferred extension semantics provides a unifying framework for various approaches
to the semantics of negation in LP. Kakas and Mancarella [95] show that it is equivalent
to Sacca and Zaniolo’s partial stable model semantics [164]. Like the partial stable model
semantics, it includes the stable model semantics as a special case.

Dung [39] also defines the notion of complete extension. An extension P*UA is complete

if

" Alternatively, instead of the symbol = we could use the symbol F, here and elsewhere in the paper
where we define the notion of “attack”.

26

e P* U A is consistent with 7* and

o A = {p*|for each attack K against {p*}, A attacks K}
(i.e. A is admissible and it contains all hypotheses it can defend against all attacks).

Stationary expansions [154] are equivalent to complete extensions, as shown in [16]. More-
over, Dung shows that the well-founded model [187] is the smallest complete extension
that can bhe constructed hottom-up from the empty set of negative hypotheses, by adding
incrementally all admissible hypotheses. Thus the well-founded semantics is minimalist
and sceptical, whereas the preferred extension semantics is maximalist and credulous.
The relationship between these two semantics is further investigated in [17], where the
well-founded model and preferred extensions are shown to correspond to the least fixed
point and greatest fixed point, respectively, of the same operator.

Kakas and Mancarella [96, 97] propose an improvement of the preferred extension seman-
tics. Their proposal can be illustrated by the following example.

Example 4.6
Consider the program

p = ~4q

q = ~dq.
Similarly to example 4.4, the last clause gives rise to a one-step loop via NAF, since ¢
“depends” negatively on itsell through one application of NAF. In the abductive frame-
work corresponding to this program consider the set of hypotheses A = {p*}. The only
attack against A is £ = {¢"}, and the only attack against £ is F itself. Thus A is not
an admissible extension of the program according to the preferred extension semantics,
because A cannot defend itself against £. The empty set is the only preferred extension.
However, intuitively A should be admissible because the only attack F against A attacks
itself, and therefore should not be regarded as an admissible attack against A.

To deal with this kind of example, Kakas and Mancarella [96, 97] modify Dung’s semantics,
increasing the number of ways in which an attack £ can be defeated. Whereas Dung only
allows A to defeat an attack F, they also allow F to defeat itself. They call a set of
hypotheses A weakly stable if

o for every attack & against A, K U A attacks £ — A.

Moreover, they call an extension P*UA of P* a stable theory if A is maximally weakly
stable. Note that here the condition “P* U A is consistent with I*” of the definition of
preferred extensions and admissible sets of hypotheses is subsumed by the new condition.
This is a consequence of another difference between [96, 97] and [39]., namely that for
each attack E against A the counter-attack is required to be against £ — A rather than
against . Tn other words, the defence of A must be a genuine attack that does not at
the same time also attack A. Therefore, if A is inconsistent, it contains as a subset an
attack E, which can not be counterattacked because £ — A is empty. In [97], Kakas and
Mancarella show how these notions can also be used to extend the sceptical well-founded
model semantics. In example 4.6 above this extension of the well-founded model will
contain the negation of p.

27

Like the original definition of admissible sets of hypotheses and preferred extension, the
definition of weakly stable sets of hypotheses and stable theories was not originally for-
mulated in terms of attack, but is equivalent to the one presented here.

Kakas and Mancarella [97] argue that the notion of defeating an attack needs to be
liberalised further. They illustrate their argument with the following example.

Example 4.7
Consider the program P

§ — ~p
p o= ~49q
¢ = ~r
ro— ~ D

The last three clauses give rise to a three-step loop via NAF, since p (and. similarly, ¢ and
r) “depends” negatively on itself through three application of NAF. In the corresponding
abductive framework, the only attack against the hypothesis s* is £ = {p*}. But although
P~ U{s*} U E does not attack E, E is not a valid attack because it is not stable (or
admissible) according to the definition above.

To generalise the reasoning in this example so that it gives an intuitively correct semantics
to any program with clauses giving rise to an odd-step loop via NAF, we need to liberalise
further the conditions for defeating . Kakas and Mancarella suggest a recursive definition
in which a set of hypotheses is deemed acceptable if no attack against it is acceptable.
More precisely, given an initial set of hypotheses Aq, a set of hypotheses A is acceptable

to AO iff
for every attack F against A — Ag, E is not acceptable to A U Ag.

The semantics of a program P can be identified with any A which is maximally acceptable
to the empty set of hypotheses). As before with weak stability and stable theories, the
consideration of attacks only against A — Ag ensures that attacks and counterattacks are
genuine, i.e. they attack the new part of A that does not contain Ay.

Notice that, as a special case, we obtain a basis for the definition:
A is acceptable to Ag if A C A,.
Therefore, il A is acceptable to §§ then A is consistent.

Notice, too, that applying the recursive definition twice, and starting with the base case,
we obtain an approximation to the recursive definition

A is acceptable to Ag if for every attack /£ against A — Ag,
E U A U Ag attacks E — (AU Ay).

Thus, the stable theories are those which are maximally acceptable to }, where accept-
ability is defined by this approximation to the recursive definition.

28

A related argumentation-theoretic interpretation for the semantics of NAF in LP has also
been developed by Geffner [67]. This interpretation is equivalent to the well-founded se-
mantics [43]. Based upon Geffner’s notion of argumentation, Torres [185] has proposed an
argumentation-theoretic semantics for NAF that is equivalent to Kakas and Mancarella’s
stable theory semantics [96, 97|, but is formulated in terms of the following notion of
attack: F attacks A (relative to P*) if P U EU A F p for some p* € A.

Alferes and Pereira [4] apply the argumentation-theoretic interpretation introduced in [88]
to expand the well-founded model of normal and extended logic programs (see section 5).
In the case of normal logic programming, their semantics gives the same result as the
acceptability semantics in example 4.7.

Simari and Loui [177] define an argumentation-theoretic framework for default reasoning
in general. They combine a notion of acceptability with Poole’s notion of “most specific”
explanation [143], to deal with hierarchies of defaults.

In section 7 we will present an ahstract argumentation-theoretic framework which is based
upon the framework for I.P but unifies many other approaches to default reasoning.

4.4 An argumentation-theoretic interpretation of the abduc-
tive proof procedure

As mentioned above, the incorrectness (with respect to the stable model semantics) of the
abductive proof procedure can be remedied by adopting the preferred extension, stable
theory or acceptability semantics. This reinterpretation of the original abductive proofl
procedure in terms of an improved semantics, and the extension of the proof procedure to
capture further improvements in the semantics, is an interesting example of the interac-
tion that can arise between a program (proof procedure in this case) and its specification
(semantics).

To illustrate the argumentation-theoretic interpretation of the proof procedure, consider
again figure 1 of example 4.2. The consistency phase for p*, shown in the outer-most
double hox, can be understood as searching for any attack against {p*}. The only attack,
namely {¢*}, is counterattacked (thereby defending {p*}) by assuming the additional hy-
pothesis r*, as this implies g. Hence the set A = { p*, v } is admissible, i.e. it can defend
itself against any attack, since all attacks against {p*} are counterattacked by {r*} and
there are no attacks against {r*}.

In general, the proof procedure constructs an admissible set of negative hypotheses in two
steps. First, it constructs a set of hypotheses which is sufficient to solve the original goal.
Then, it augments this set with the hypotheses necessary to defend the first set against
attack.

The argumentation-theoretic interpretation suggests how to extend the proof procedure
to capture more fully the stable theory semantics and more generally the semantics given
by the recursive definition for acceptability. The extension, presented in [182], involves
temporarily remembering a (selected) attack F and using F itself together with the subset

29

A ={p}
— p n
B ={q}
O g ‘
— ¢
n
O

Figure 3: computation for example 4.6 with respect to the revisited proofl procedure

of A generated so far, to counterattack F, in the subordinate abductive phase.

For example 4.6 of section 4.3, as shown in figure 3, to defend against the attack ¢* on
p*. we need to temporarily remember ¢* and use it in the subordinate abductive phase to
prove g and therefore to attack ¢* itself.

In the original abductive proof procedure of [54], hypotheses in defences are always added
to A. However, in the proof procedure for the acceptability semantics defences D can not
always be added to A, because even though 1) might be acceptable to A; AU might not
be acceptable to §. This situation arises for the three step loop program of example 4.7
where D = {¢*} is used to defend A = {s*} against the attack £ = {p*}, but AU D is
not acceptable to ().

To cater for this characteristic of the acceptability semantics, the extended proof proce-
dure non-deterministically considers two cases. For each hypothesis in a defence 1) against
an attack F against A, the hypothesis either can be added to A or can be rememberec
temporarily to counterattack any attack ' against D, together with A and F. In gen-
eral, a sequence of consecutive attacks and defences K, D, K', [, ... can be generated
before an acceptable abductive explanation A is found, and the same non-deterministic
consideration of cases is applied to D' and all successive defences in the sequence.

The definitions of admissible, stable and acceptable sets A of hypotheses all require that
every attack against A be counterattacked. Although every superset of an attack is alsc
an attack, the abductive proof procedure in [54] only considers those “minimal” attacks

generated by ST.D, 2 without examining superset attacks. This is possible because all
supersets of an attack can be counterattacked in exactly the same way as the attack it-
self, which is generated by SLD. For this reason, the proof procedure of [54] is sound for
the admissibility semantics. Unfortunately, supersets of attacks need to be considered to
guarantee soundness of the proof procedure for the acceptability semantics. In [182], how-
ever, Toni and Kakas prove that only certain supersets of “minimally generated” attacks
need to be considered.

The additional features required for the proof procedure to capture more fully the accept-
ability semantics render the proof procedure considerably more complex and less efficient
than proof procedures for simpler semantics. However, this extra complexity is due to
the treatment of any odd-step loops via NAF and such programs seem to occur very
rarely in practice. Therefore, in most cases it is sufflicient to consider the approximation
of the proof procedure which computes the preferred extension and stable theory seman-
tics. This approximation improves upon the Eshghi-Kowalski proof procedure, since in
the case of finite failure it terminates earlier, avoiding unnecessary computation.

5 Abductive Logic Programming

Abductive Logic Programming (ALP), as understood in the remainder of this paper, is
the extension of LP to support abduction in general, and not only the use of abduction
for NAF. This extension was introduced already in section 1, as the special case of an
abductive framework (7', A, 1), where 1" is a logic program. In this paper we will assume,
without loss of generality, that abducible predicates do not have definitions in T, i.e. do
not appear in the heads of clauses in the program T . This assumption has the advan-
tage that all explanations are thereby guaranteed to be basic.

Semantics and proof procedures for ALP have been proposed by Eshghi and Kowalski
[53], Kakas and Mancarella [90] and Chen and Warren [23]. Chen and Warren extend
the perfect model semantics of Przymusinski [152] to include abducibles and integrity
constraints over abducibles. Here we shall concentrate on the proposal of Kakas and
Mancarella, which extends the stable model semantics.

5.1 Generalised stable model semantics

Kakas and Mancarella [90] develop a semantics for ALP hy generalising the stable model
semantics for LP. Let (P, A, T) be an abductive framework, where P is a general logic

12As illustrated in section 1, these attacks are genuinely minimal unless the logic program encodes
non-minimal explanations.

13In the case in which abducibile predicates have definitions in 7', auxiliary predicates can be introduced
in such a way that the resulting program has no definitions for the abducible predicates. This can be done
by means of a transformation similar to the one used to separate extensional and intensional predicates
in deductive databases [124]. For example, for each abducible predicate a(X) in 7" we can introduce a
new predicate 8,(X) and add the clause

a(X) — 64(X).

The predicate a(X) is no longer abducible, whereas 6,(X) is now abducible.

31

program, and let A be a subset of A. M(A) is a generalised stable model of (P, A, T)
iff

e M(A) is a stable model of P U A, and
o M(A) |= T.

Here the semantics of the integrity constraints [is defined by the second condition in the
definition above. Consequently, an abductive extension P U A of the program P satis-
fies I if and only if there exists a stable model M(A) of P U A such that I is true in M(A).

Note that in a similar manner, it is possible to generalise other model-theoretic semantics
for logic programs, by considering only those models of P U A (of the appropriate kind.
e.g. partial stable models, well-founded models etc.) in which the integrity constraints
are all true.

Generalised stable models are defined independently from any query. However, given a
query @, we can define an abductive explanation for @ in (P, A, I} to be any subset A
of A such that

o M(A)is a generalised stable model of (P, A, T), and
e M(A) E Q.

Example 5.1
Consider the program P
p—a

q(—h

with A = {a, b} and integrity constraint [
p—q.

The interpretations M(A;) = {a, p} and M(A;) = {a,b,p, ¢} are generalised stable
models of (P, A, T). Consequently, both Ay = {a} and A; = {a, b} are abductive
explanations of p. On the other hand, the interpretation {b, ¢}. corresponding to the
set of abducibles {b}, is not a generalised stable model of (P, A, I}, because it is not a
model of I as it does not contain p. Moreover, the interpretation {b, ¢, p}, although it is
a model of P U [/ and therefore satisfies / according to the consistency view of constraint
satisfaction, is not a generalised stable model of (P, A, I), because it is not a stable model
of P. This shows that the notion of integrity satisfaction for ALP is stronger than the
consistency view. It is also possible to show that it is weaker than the theoremhood view
and to argue that it is similar to the metalevel or epistemic view.

An alternative, and perhaps more fundamental way of understanding the generalised
stable model semantics is by using abduction both for hypothetical reasoning and for
NATF. The negative literals in (P, A, T) can be viewed as further abducibles according to
the transformation described in section 4. The set of abducible predicates then becomes
AU A*, where A* is the set of negative abducibles introduced by the transformation. This
results in a new ahductive framework (P*, A U A*, [U I*), where 1" is the set of special

32

integrity constraints introduced by the transformation of section 4 1. The semantics
of the abductive framework (P*, A U A*, 1 U I*) can then be given by the sets A* of

hypotheses drawn from A UA* which satisfy the integrity constraints I U I*.

Example 5.2

Consider P
p — a,~gq
g «— b

with A = {a, b} and I = . If Q is « p then A* = {a, ¢*, b"} is an explanation for
Q* =Q in (P*, AU A*, T*). Note that b* is in A* because I* contains the disjunctive

integrity constraint b vV b*.

Kakas and Mancarella show a one to one correspondence between the generalised stable
models of {P, A, T) and the sets of hypotheses A~ that satisfy the transformed framework
(P*. A UA* I U I*). Moreover they show that for any ahductive explanation A* for
a query @ in (P*, A UA*, T U I*), A =A*"NAisan abductive explanation for @ in
(P, A, I).

Example 5.3

Consider the framework (P, A, I) and the query @ of example 5.2. We have already seen
that A* = {a, ¢*, b*} is an explanation for @* in (P*, A U A*, I*). Accordingly the
subsett A = {a} is an explanation for Q in (P, A, T).

Note that the generalised stable model semantics as defined above requires that for each
abducible a, either a or ¢* holds. This can be relaxed by dropping the disjunctive in-
tegrity constraints @ V «* and defining the set of abducible hypotheses A to include both
a and a*. Such a relaxation would be in the spirit of replacing stable model semantics by
admissible or preferred extensions in the case of ordinary LP.

Generalised stable models combine the use of abduction for default reasoning (in the
form of NAF) with the use of abduction for other forms of hypothetical reasoning. In the
generalised stable model semantics, abduction for default reasoning is expressed solely
by NAF. However, in the event calculus persistence axiom presented in section 2 the
predicate persists is a positive abducible that has a default nature. Therefore, instances
of persists should be abduced unless some integrity constraint is violated. Indeed, in
standard formulations of the persistence axiom the positive atom persists(Ty, P,T5) is
replaced by a negative literal ~ clipped(T,, P, T3) [176, 35]. In contrast, the abduction of
happens is used for non-default hypothetical reasoning. The distinction between default
reasoning and non-default abduction is also made in Konolige’s proposal [103], which
combines abduction for non-default hypothetical reasoning with default logic [158] for
default reasoning. This proposal is similar, therefore, to the way in which generalised
stahle models combine abduction with NAF. Poole [147], on the other hand, proposes an
abductive framework where abducibles can he specified either as default. like persists, or

Note that the transformation described in section 4 also needs to be applied to the set T of integrity
constraints. For notational convenience, however, we continue to use the symbol 7 to represent the result
of applying the transformation to T (otherwise we would need to use the symbol 7*, conflicting with the
use of the symbol I* for the special integrity constraints introduced in section 4).

33

non-default, like happens. In [183], Toni and Kowalski show how both default and non-
default abducibles can be reduced to NAF. This reduction is discussed in section 5.5 helow.

The knowledge representation problem in ALP is complicated by the need to decide
whether information should be represented as part of the program, as an integrity con-
straint, or as an observation to be explained, as illustrated by the following example taken
from [9].

Example 5.4

fly(X) — bird(X), ~ abnormal_bird(X)
abnormal bird(X) « penguin(X)

has_beak(X) « bird(X).
Suppose that bird is abducible and consider the three cases in which

Sfly(tweety)

is either added to the program, added to the integrity constraints, or considered as the
observation to be explained. In the first case, the abducible bird(tweety) and, as a
consequence, the atom has_beak(tweety) belong to some, but not all, generalised stable
models. Instead, in the second case every generalised stable model contains bird(tweety’
and has_beak(tweely). In the last case, the observation is assimilated by adding the
explanation {bird(tweety)} to the program, and therefore has_beak(tweety) is derived in
the resulting generalised stable model. Thus, the last two alternatives have similar effects.
Denecker and DeSchreye [35] argue that the second alternative is especially appropriate
for knowledge representation in the temporal reasoning domain.

5.2 An abductive proof procedure for ALP

In [91, 92, 93], a proof procedure is given to compute abductive explanations in ALP. This
extends the abductive proof procedure for NAF [54] described in section 4.2, retaining
the basic structure which interleaves an abductive phase that generates and collects ab-
ductive hypotheses with a consistency phase that incrementally checks these hypotheses
for integrity. We will illustrate these extended proof procedure by means of examples.

Example 5.5

Consider again example 4.2. The abductive proof procedure for NAF fails on the query
— p. Ignoring, for the moment. the construction of the set A, the computation is that
shown inside the outer double box of figure 1 with the abductive and consistency phases
interchanged, i.e. the type of each box changed from a double box to a single box and vice-
versa. Suppose now that we have the same program and query but in an ALP setting
where the predicate r is abducible. The query will then succeed with the explanation
A = {q¢*, v} as shown in figure 4. As before the computation arrives at a point where r
needs to be proved. Whereas this failed before, this succeeds now by abducing r. Hence
by adding the hypothesis r to the explanation we can ensure that ¢* is acceptable.

34

‘ A ={q}
— q
— q ‘
s PR — 7
‘ A= {qﬂzr}
o o
|
|

Figure 4: extended proof procedure for example 5.5

An important feature of the abductive prool procedures is that they avoid performing a
full general-purpose integrity check (such as the forward reasoning procedure of [111]).
In the case of a negative hypothesis, ¢* for example, a general-purpose forward reasoning
integrity check would have to use rules in the program such as p « ¢* to derive p. The
optimised integrity check in the abductive proof procedure avoids this inference and only
reasons forward one step with the integrity constraint = (¢ A ¢*), deriving the resolvent
— g, and then reasoning backward from the resolvent.

Similarly, the integrity check for a positive hypothesis, r for example, avoids reasoning
forward with any rules which might have r in the body. Indeed, in a case, such as ex-
ample 5.5 above, where there are no domain specific integrity constraints, the integrity
check for a positive abducible, such as r, simply consists in checking that its complement,
in our example r*, does not belong to A.

To ensure that this optimised form of integrity check is correct, the proof procedure
is extended to record those positive abducibles it needs to assume absent to show the
integrity of other abducibles in A. So whenever a positive abducible, which is not in A, is
selected in a branch of a consistency phase, the procedure fails on that branch and at the
same time records that this abducible needs to be absent. This extension is illustrated by
the following example.

Example 5.6
Consider the program

35

—p
A={} A={q}
. — q

— g,

A={g.r}

— T «— r

m [

A={q.r}

Figure 5: extended proof procedure for example 5.6

where 7 is abducible and the query is « p (see figure 5). The acceptability of ¢* requires
the absence of the abducible r. The simplest way to ensure this is by adding »* to
A. This, then, prevents the abduction of r and the computation fails. Notice that the
proof procedure does not reason forward from r to test its integrity. This test has been
performed backwards in the earlier consistency phase for ¢*, and the addition of r* to A
ensures that it is not necessary to repeat it.

The way in which the absence of abducibles is recorded depends on how the negation
of abducibles is interpreted. Under the stable and generalised stable model semantics
as we have assumed in example 5.6 above, the required failure of a positive abducible is
recorded by adding its complement to A. However, in general it is not always appropri-
ate to assume that the absence of an abducible implies its negation. On the contrary, it
may be appropriate to treat abducibles as open rather than closed (see section 6.1), and
correspondingly to treat the negation of abducible predicates as open. As we shall argue
later, this might be done by treating such a negation as a form of explicit negation, which
is also abducible. In this case recording the absence of a positive abducible by adding its
complement to A is too strong, and we will use a separate (purely computational) data
structure to hold this information.

Integrity checking can also be optimised when there are domain specific integrity con-
5 ..

15 containing at least one

literal whose predicate is abducible. In this case the abductive proof procedure needs

straints, provided the constraints can be formulated as denials

I5Notice that any integrity constraint can be transformed into a denial (possibly with the introduction
of new auxiliary predicates). For example:

p—q=-[gA-pl

36

— 8
A = {a}
— a /\
= p = q
|
— q* — b
—q
‘ A ={a, b}
] — b : O
| .
O

Figure 6: extended computation for example 5.7

only a minor extension [92, 93]: when a new hypothesis is added to A, the proof proce-
dure resolves the hypothesis against any integrity constraint containing that hypothesis,
and then reasons backward from the resolvent. To illustrate this extension consider the
following example.

Example 5.7
Let the abductive framework be:

P: s+a I: =la A p
P~ —[a A dl
q(—h

where a, b are abducible and the query is « s (see figure 6).

Assume that the integrity check for a is performed Prolog-style, by resolving first with the
first integrity constraint and then with the second. The first integrity constraint requires
the additional hypothesis b as shown in the inner-most single box. The integrity check for
b is trivial, as b appears only in the integrity constraint =[b A b*] in I*, and the goal « b*
trivially fails, given A = {a, b} (inner-most double box). But A = {a, b} violates the
integrity constraints, as can be seen by reasoning forward from b to ¢ and then resolving
with the second integrity constraint —[a A ¢]. However, the proof procedure does not
perform this forward reasoning and does not detect this violation of integrity at this stage.

pVg=-[apA-gql

Nevertheless the proof procedure is sound because the violation is found later by backward
reasoning when a is resolved with the second integrity constraint.

In summary, the overall effect of additional integrity constraints is to increase the size
of the search space during the consistency phase, with no significant change to the hasic
structure of the backward reasoning procedure.

Fven if the absence of abducibles is not identified with the presence of their complement.
the abductive proof procedure [91, 92, 93] described ahove suffers from the same sound-
ness problem shown in section 4 for the abductive proof procedure for NAF. This problem
can he solved similarly, by replacing stable models with any of the non-total semantics
for NAF mentioned in section 4 (partial stable models, preferred extensions, stable the-
ories or acceptability semantics). Replacing the stable models semantics by any of these
semantics requires that the notion of integrity satisfaction be revised appropriately. This
is an interesting problem for future work.

The soundness problem can also be addressed by providing an argumentation-theoretic
semantics for ALP which treats integrity constraints and NAF uniformly via an appropri-
ately extended notion of attack. Tn section 5.3 we will see that this alternative approach
arises naturally from an argumentation-theoretic re-interpretation of the abductive proof

procedure for ALP.

The proof procedure can be also modified to provide a sound computational mechanism
for the generalised stable model semantics. This approach has been followed by Satoh
and Twayama [170], as we illustrate in section 5.4.

5.3 An argumentation-theoretic interpretation of the abduc-
tive proof procedure for ALP

Similarly to the LP case, the abductive proof procedure for ALP can be reinterpreted
in argumentation-theoretic terms. For the ALP procedure, attacks can be provided as
follows:

o via NAF:
Relative to (P*, A U A*, [U [*), I attacks A via NAF if

I attacks A as in section 4.3, i.e. P* U K F pfor some p* € A, or

a* is in E, for some abducible a in A;

e via integrity constraints:
Relative to (P*, A U A*,] U I*), K attacks A via an integrity constraint
(Ly A ANLy)in T PPUE b Ly, Licy, Liga,. .., Ly, for some L; in A, 16

To illustrate the argumentation-theoretic interpretation of the proof procedure for ALP,
consider again figure 6 of example 5.7. The consistency phase for a. shown in the outer
double box, can be understood as searching for attacks against {a}. There are two such

'6Recall that the abductive proof procedure for ALP employs the restriction that each integrity con-
straint contains at least one literal with an abducible predicate.

38

attacks, {¢*} and {b}, shown by the two branches in the figure. {¢*} attacks {a} via the
integrity constraint =(a A p) in [, since ¢* implies p. Analogously, {b} attacks {a} via the
integrity constraint =(aA¢q) in I, since b implies ¢. The first attack {¢*} is counterattacked
by {b}, via NAF (as in section 4.3), since this implies ¢. This is shown in the single box.
The hypothesis b is added to A since the attack {b*} against {b}, via NAF, is trivially
counterattacked by {b}, via NAT, as sketched in the inner double box. However, {b}
attacks {a}, as shown by the right branch in the outer double box. Therefore, A attacks
itself, and this causes failure of the proof procedure.

T'he analysis of the proof procedure in terms of attacks and counterattacks suggests the
following argumentation-theoretic semantics for ALP. A set of hypotheses A is KM-
admissible if

o for every attack ¥ against A,
A attacks (E — A) via NAF alone.

In section 6.5 we will see that the notion of KM-admissible set of hypotheses is similar
to the notion of admissibility proposed by Dung [45] for extended logic programming, in
that only attacks via NAT are allowed to counterattack.

The argumentation-theoretic interpretation of ALP suggests several ways in which the
semantics and proof procedure for ALP can be modified. Firstly, the notion of attack
itself can be modified, e.g. following Torres” equivalent formulation of the stable theory
semantics [185] (see section 4.3). Secondly, the notion of admissibility can be changed to
allow counterattacks via integrity constraints, as well as via NAF. Finally, as in the case
of standard LP, the notion of admissibility can be replaced by other semantic notions such
as weak stability and acceptability (see section 4.3). The proof procedure for ALP can
be modified appropriately to rveflect each of these modifications. Such modifications of
the semantics and the corresponding modifications of the proof procedure require further
investigation.

Using the definition of well-founded semantics given in section 4.3, (non-default) ab-
ducibles are always undefined, and consequently fulfill no function, in the well-founded
semantics of ALP, as illustrated by the following example.

Example 5.8
Consider the propositional abductive framework (P, A, I) where P is

pe—a
A = {a}, and I = 0. The well-founded model of (P, A, I) is §.

Tn [136], Pereira, Aparicio and Alferes define an alternative, generalised well-founded
semantics for ALP where first programs are extended by a set of abducibles as in the case
of generalised stable models, and then the well-founded semantics (rather than stable
model semantics) is applied to the extended programs. As a result, the well-founded
models of an abductive framework are not unique. In the example above, 0, {p*, a*} and
{p.a} are the generalised well-founded models of (P, A, I). Note that in this application
of the well-founded semantics, if an abducible is not in a set of hypotheses A then its

39

negation does not necessarily belong to A. Thus the negation of an abducible is not
interpreted as NAF. Moreover, since abducible predicates can be undefined some of the
non ahdicible predicates can also be undefined.

5.4 Computation of abduction through TMS

Satoh and Iwayama [170] present a method for computing generalised stable models for
logic programs with integrity constraints represented as denials. The method is a bottom-
up computation based upon the TMS procedure of [36]. Although the computation is not
goal-directed, goals (or queries) can he represented as denials and be treated as integrity
constraints.

Compared with other bottom-up procedures for computing generalised stable model se-
mantics, which first generate stable models and then test the integrity constraints, the
method of Satoh and Twayama dynamically uses the integrity constraints during the pro-
cess of generating the stable models. in order to prune the search space more efficiently.

Example 5.9

Consider the program P
p = 4
ro— ~gq

q — ~7

and the set of integrity constraints 7 = {=p}. P has two stable models My = {p, ¢}
and M, = {r}, but only M, satisfies /. The proof procedure of [170] deterministically
computes only the intended model M,, without first computing and then rejecting M;.

In section 8§ we will see more generally that truth maintenance systems can be regarded

as a form of ALP.

5.5 Simulation of abduction

Satoh and Iwayama [170] also show that an abductive logic program can be transformed
into a logic program without abducibles but where the integrity constraints remain. For
each abducible predicate p in A, a new predicate p’ is introduced, which intuitively rep-

resents the complement of p, and a new pair of clauses '”

p(X) —~p(X)

P(X) ~p(X)

is added to the program. Tn effect abductive assumptions of the form p(f) are thereby
transformed into NAF assumptions of the form ~ p/(t). Satoh and Iwayama apply the
generalised stable model semantics to the transformed program. However, the transforma-
tional semantics, which is effectively employed by Satoh and lwayama, has the advantage
that any semantics can be used for the resulting transformed program.

17Satoh and Twayama use the notation p* instead of p’ and explicitly consider only propositional
programs.

40

Example 5.10
Consider the abductive framework (P, A,) of example 5.1. The transformation generates
a new theory P’ with the additional clauses

1’
a «—~a

o —~ua
b —~V
b —~b

P’ has two generalised stable models that satisfy the integrity constraints, namely M’y =
M(A) UV} ={a, p, '}, and M’y = M(A;) = {a, b, p, ¢} where M(A;) and M(A,)

are the generalised stable models seen in example 5.1.

An alternative way of viewing abduction, which emphasises the defeasibility of abducibles.
is retractability [70]. Instead of regarding abducibles as atoms to be consistently added
to a theory, they can be considered as assertions in the theory to be retracted in the
presence of contradictions until consistency (or integrity) is restored (c.f. section 6.2).

One approach to this understanding of abduction is presented in [111]. Here, Kowalski and
Sadri present a transformation from a general logic program P with integrity constraints
I, together with some indication of how to restore consistency, to a new general logic
program P’ without integrity constraints. Restoration of consistency is indicated by
nominating one atom as retractable in each integrity constraint '®. Integrity constraints
are represented as denials, and the atom to be retracted must occur positively in the
integrity constraint. The (informally specified) semantics is that whenever an integrity
constraint of the form
=[p A4

has been violated, where the atom p has been nominated as retractable, then consistency
should be restored by retracting the instance of the clause of the form

p%r

which has been used to derive the inconsistency.

The transformation of [111] replaces a program P with integrity constraints / by a pro-
gram P’ without integrity constraints which is always consistent with I; and if P is
inconsistent with 7, then P’ represents one possible way to restore consistency (relative
to the choice of the retractable atom).

Given an integrity constraint of the form

=[p A4l

where p is retractable, the transformation replaces the integrity constraints and every
clause of the form

p =

"8Many different atoms can be retractable in the same integrity constraint. Alternative ways of nomi-
nating retractable atoms correspond to alternative ways of restoring consistency in P.

41

by

p = r~g
where the condition ~ ¢ may need to be transformed further, if necessary, into general
logic program form, and where the transformation needs to he repeated for every integrity
constraint. Kowalski and Sadri show that if P is a stratified program with appropriately
stratified integrity constraints /, so that the transformed program P’ is stratified, then
P’ computes the same consistent answers as P with 1.

Notice that retracting abducible hypotheses is a special case where the abducibility of a
predicate « is represented by an assertion

a(X).

The following example illustrates the behaviour of the transformation when applied to

ALP.

Example 5.11
Consider the simplified version of the event calculus presented in example 2.1. If the
integrity constraint

=[persists(Ty, P, T5) A happens(E, T) A terminates(E, P) ATy <T < T

is violated, then it is natural to restore integrity by retracting the instance of
persists(Ty, P, Ty) that has led to the violation. Thus, persists(Ti, P, Ty) is the re-
tractible in this integrity constraint. By applying the transformation sketched above, the
integrity constraint and the use of abduction can be replaced by the clauses obtained by
further transforming

persists(Ty, P, Tp) <~ (happens(E, T), terminates(E, P), Ty <T < Ty)
into general LP form.

One problem with the retractability semantics is that the equivalence of the original pro-
gram with the transformed program was proved only in the case where the resulting
transformed program is locally stratified. Moreover the proof of equivalence was based on
a tedious comparison of search spaces for the two programs. This problem was addressed
in a subsequent paper [112] in which integrity constraints are re-expressed as extended
clauses and the retractable atoms become explicitly negated conclusions. This use of
extended clauses in place of integrity constraints with retractibles is discussed later in
section 6.3.

The transformation of [111], applied to ALP, treats all abducibles as default abducibles.
In particular, abducibles which do not occur as retractibles in integrity constraints are
simply asserted in the transformed program P’. Therefore, this transformation can only
be used to eliminate default abducibles together with their integrity constraints. A more
complete transformation [183] can be obtained by combining the use of retractibles to
eliminate integrity constraints with the transformation of [170] for reducing non-default
abducibles to NAF. The new transformation is defined for abductive frameworks where
every integrity constraint has a retractible which is either an abducible or the NAF of an

42

abducible.

As an example, consider the propositional abductive logic program (P, A, I) where P
contains the clause
p—a

aisin A, and [contains the integrity constraint
—[a A q]

where a is retractible. If @ is a default abhducible, the transformation generates the logic
program P’

p<—~(1l
’
a — q

GHNLI/

where, as before, @’ stands for the complement of a. The first clause in P’ is obtained
by replacing the positive condition « in the clause in P by the NAF literal ~ a’. The
second clause replaces the integrity constraint in 7. Note that this replaces “a should
be retracted” if the integrity constraint —[a A ¢] is violated by “the complement o’ of a
should be asserted”. Finally, the last clause in P’ expresses the nature of @ as a default
abducible. Namely, « holds by default, unless some integrity constraint is violated. In
this example, a holds if ¢ does not hold.

If a is a non-default abducible, then the logic program P’ obtained by transforming the
same abductive program (P, A, I) also contains the fourth clause

7
a <~ a

that, together with the third clause, expresses that neither ¢ nor ' need hold, even if no
integrity constraint is violated. Note that the last two clauses in P’ are those used by
Satoh and Iwayama [170] to simulate non-default abduction by means of NAF.

Toni and Kowalski [183] prove that the transformation is correct and complete in the sense
that there is a one-to-one correspondence between attacks in the framework (P, A, I) and
in the framework corresponding to the transformed program P’. Thus, for any semantics
that can be defined argumentation-theoretically there is a one-to-one correspondence be-
tween the semantics for an abductive logic program and the semantics of the transformed
program. As a consequence, any proof procedure for LP which is correct for one of these
semantics provides a correct proof procedure for ALP for the analogous semantics (and,
less interestingly, vice versa).

In addition to the transformations from ALP to general LP, discussed above, transforma-
tions between ALP and disjunctive logic programming (DLP) have also been investigated.
Tnoue et al. [83] ', in particular, translate ALP clauses of the form

p = qa

197 description of this work can also be found in [76].

43

where « is abducible, into DLP clauses
(pAha)Vd «—gq

where a’ is a new atom that stands for the complement of a, as expressed by the integrity
constraint

=(a A a). (3)

A model generation theorem-prover (such as SATCHMO or MGTP [58]) can then be
applied to compute all the minimal models that satisfy the integrity constraints (3). This
transformation is related to a similar transformation [82] for eliminating NAF.

Elsewhere [167], Sakama and Inoue demonstrate a one-to-one correspondence hetween
generalised stable models for ALP and possible models [166] for DLP. Consider, for ex-

ample, the abductive logic program (P, A, I} where P is
p—a

A = {a} and T is empty. My = 0 and My = {a, p} are the generalised stable models of
(P, A, I). The program can be transformed into a disjunctive logic program Pp

p—a

aVe.

Pp has possible models M| = {e}, M) = {a,p} and M} = {¢, a, p}, such that M] — {e} =
My and M} — {e} = M§ — {e} = M,.

Conversely, [167] shows how to transform DLP programs into ALP. Tor example, consider
the disjunctive logic program FPp

aVb—c

C

whose possible models are M; = {c,a}, My = {c,b} and M3 = {c,a,b}. It can he
transformed into an abductive logic program (P, A, T) where P consists of

a—c,a
be—c.b

c
a’ and b are new atoms, A = {a’,b'}, and [consists of
S[eA ~an ~ bl.

a,a’,b,b'}, such that, if HB is the Herbrand base of P, M! N HB = M,, for each

(P, A, T) has generalised stable models M] = {c,a,a’}, M) = {¢, 0,0/} and M} =
{e
P=1.2.3.

44

Whereas the transformation of [167] deals with inclusive disjunction, Dung [41] presents a
simpler transformation that deals with exclusive disjunction, but works only for the case
of acyclic programs. For example, the clause

pVy
can be replaced by the two clauses

p—=~4q
q —~ p.

With this transformation, for acyclic programs, the Kshghi-Kowalski procedure presented
in section 4.2 is sound. For the more general case, Dung [42] represents disjunction ex-
plicitly and extends the Eshghi-Kowalski procedure by using resolution-based techniques
similar to those employed in [57].

5.6 Abduction through deduction from the completion

In the approaches presented so far, hypotheses are generated by backward reasoning with
the clauses of logic programs used as inference rules. An alternative approach is presented
by Console, Dupre and Torasso [26]. Here clauses of programs are interpreted as if-halves
of if-and-only-if definitions that are obtained from the completion of the program [24]
restricted to non-abducible predicates. Abductive hypotheses are generated deductively
by replacing atoms by their definitions, starting from the observation to be explained.

Given a propositional logic program P with abducible predicates A without definitions in
P, let Pz denote the completion of the non-abducible predicates in P. An explanation
formula for an observation O is the most specific formula F' such that

P- U {0} E F,

where F' is formulated in terms of abducible predicates only, and F is more specific

than F’iff |= F — F'and £ ' — F.

Based on this specification, a proof procedure that generates explanation formulas is de-
fined. This proof procedure replaces atoms by their definitions in Pg, starting from a
given observation O. Termination and soundness of the proof procedure are ensured for
hierarchical programs. The explanation formula resulting from the computation char-
acterises all the different abductive explanations for O, as exemplified in the following
example.

Example 5.12
Consider the following program P

wobbly-wheel broken-spokes
wobbly-wheel

Sflat-tyre
flat-tyre

[flat-tyre
punctured-tube
leaky-valve,

where the predicates without definitions are considered to be abducible. The completior
Po is:
wobbly-wheel < broken-spokes Vv flat-tyre

flat-tyre < punctured-tube V leaky-valve.

If O is wobbly-wheel then the most specific explanation I is
broken-spokes V punctured-tube V leaky-valve,
corresponding to the abductive explanations

Ay = {broken-spokes},

Il

{punctured-tube},

;E)
|

= {leaky-valve}.

Console, Dupre and Torasso extend this approach to deal with propositional abductive
logic programs with integrity constraints I in the form of denials of abducibles and of
clauses expressing taxonomic relationships among abducibles. An explanation formula
for an observation O is now defined to be the most specific formula F, formulated in
terms of abducible predicates only, such that

PoUTU{O} E F

The proof procedure is extended by using the denial and taxonomic integrity constraints
to simplify K.

In the more general case of non-propositional abductive logic programs, the Clark equal-
ity theory CET [24], is used; the notion that F is more specific than F’ requires that
F — F' be a logical consequence of CET and that F’ — F not be a consequence of
CET. The explanation formula is unique up to equivalence with respect to CET. The
proof procedure is extended to take into account the equality theory CET.

Denecker and De Schreye [33] compare the search space obtained by reasoning backward
using the if-hall of the if-and-only-if form of a definite program with that obtained by
reasoning forward using the only-if-half. They show an equivalence between the search
space for SLD-resolution extended with abduction and the search space for model gener-
ation with SATCHMO [122] augmented with term rewriting to simulate unification.

5.7 Abduction and Constraint Logic Programming

ALP has many similarities with constraint logic programming (CLP). Recognition of these
similarities has motivated a number of recent proposals to unify the two frameworks.

Both frameworks distinguish two kinds of predicates. The first kind is defined by ordinary
LP clauses, and is eliminated during query evaluation. The second kind is “constrained”
either by integrity constraints in the case of ALP or by means of a built-in semantic
domain in the case of CLP. In both cases, an answer to a query is a “satisfiable” formula

46

involving only the second kind of predicate.

Certain predicates, such as inequality, can be treated either as abducible or as constraint
predicates. Treated as abducible, they are constrained by explicitly formulated integrity
constraints such as

X<Z Z<Y X<V
S[X <Y AY < X].

Treated as constraint predicates, they are tested for satisfiability by using specialised
algorithms which respect the semantics of the underlying domain. Constraints can also
be simplified, replacing, for example,

2<tN3 <t

by
3 <t

Such simplification is less common in abductive frameworks.

A number of proposals have been made recently to unify the treatment of abducibles and
constraints. Several of these, [50, 176, 120, 100] in particular, have investigated the im-
plementation of specialised constraint satisfaction and simplification algorithms of CLP
(specifically for inequality) by means of general-purpose integrity checking methods ap-
plied to domain-specific integrity constraints as in the case of ALP.

Kowalski [109] proposes a general framework which attempts to unify ALP and CLP us-
ing if-and-only-if definitions for ordinary LP predicates and using integrity constraints for
abducible and constraint predicates. Abduction is performed by means of deduction in
the style of [26] (see section 5.6). This framework has been developed further by Fung
[60] and has been applied to job-shop scheduling by Toni [184]. A related proposal, to
include user-defined constraint handling rules within a CLP framework, has been made
by Frithwirth [75].

Biirchert, [18] and Biirchert and Nutt [19]. on the other hand, define a framework for
general clausal resolution and show how abduction without integrity constraints can be
treated as a special case of constrained resolution.

Another approach, which integrates both frameworks while preserving their identity, has
been developed by Kakas and Michael [101]. In this approach, the central notions of
the two frameworks are combined, so that abduction and constraint handling cooperate
to solve a common goal. Typically, the goal is reduced first by abduction to ahducible
hypotheses whose integrity checking reduces this further to a set of constraints to be sat-
isfied in CLP.

Constructive abduction is the generation of non-ground abductive explanations, such as
A = {3X a(X)}. The integrity checking of such abducible hypotheses involves the in-

troduction of equality assumptions, which can naturally be understood in CLP terms. A

47

procedure for performing constructive abduction within a framework that treats equality
as an abducible predicate and the Clark equality theory as a set of integrity constraint
was first proposed by Eshghi [50]. Building upon this proposal, Kakas and Mancarella
[98] extend the abductive proof procedure for LP in [54] (see section 4.2) to combine con-
structive negation with constructive abduction in a uniform way, by reducing the former
to the latter using the abductive interpretation of NAF.

The problem of constructive abduction has also been studied within the completion se-
mantics. Denecker and De Schreye [34] define a proof procedure for constructive abduc-
tion, SLDNFA, which they show is sound and complete. Teusink [181] extends Drabent’s
[38] procedure, SLDNA, for constructive negation to perform constructive abduction and
uses three-valued semantics to show soundness and completeness. In both proposals, [34]
and [181], integrity constraints are dealt with by means of a transformation, rather than
explicitly.

6 Extended Logic Programming

Extended Logic Programming (KLP) extends general LP by allowing, in addition to NAF.
a second, explicit form of negation. Explicit negation can be used, when the definition of
a predicate is incomplete. to explicitly define negative instances of the predicate, instead
of having them inferred implicitly using NAF.

Clauses with explicit negation in their conclusions can also serve a similar function to
integrity constraints with retractibles. For example, the integrity constraint

=[persists(Ty, P, Ty) A happens(E, T) A terminates(E, P)AT; <T < Ty

with persists(Ty. P, Ty) retractible can be reformulated as a clause with explicit negation
in the conclusion

—persists(Ty, P, Ty) « happens(E. T), terminates(E, P), Ty <T < T,.

6.1 Answer set semantics

In general logic programs, negative information is inferred by means of NAF. This is
appropriate when the closed world assumption [157], that the program gives a complete
definition of the positive instances of a predicate, can safely be applied. It is not appro-
priate when the definition of a predicate is incomplete and therefore “open”, as in the
case of abducible predicates.

For open predicates it is possible to extend logic programs to allow explicit negation
in the conclusions of clauses. Tn this section we will discuss the extension proposed by
Gelfond and Lifschitz [69]. This extension is based on the stable model semantics, and
can be understood, therefore, in terms of abduction, as we have already seen.

Gelfond and Lifschitz define the notion of extended logic programs, consisting of
clauses of the form:

Lo — Ly..ooo Ly ~ I-"m+1 ey~ i,

48

where n > m > 0 and each L; is either an atom (A) or the explicit negation of an atom
(= A). This negation denoted by “=" is called “classical negation” in [69]. However, as
we will see below, because the contrapositives of extended clauses do not hold, the term
“classical negation” can be regarded as inappropriate. For this reason we use the term
“explicit negation”™ instead.

A similar notion has been investigated by Pearce and Wagner [130], who develop an ex-
tension of definite programs by means of Nelson’s strong negation. They also suggest the
possibility of combining strong negation with NAF. Akama [1] argues that the semantics
of this combination of strong negation with NAF is equivalent to the answer set semantics
for extended logic programs developed by Gelfond and Lifschitz.

The semantics of an extended program is given by its answer sets, which are like stable
models but consist of both positive and (explicit) negative literals. Perhaps the casiest
way to understand the semantics is to transform the extended program P into a general
logic program P’ without explicit negation, and to apply the stable model semantics to
the resulting general logic program. The transformation consists in replacing every oc-
currence of explicit negation = p(¢) by a new (positive) atom p'(¢). The stable models of
P’ which do not contain a ontradiction of the form p(t) and p/(1) correspond to the con-
sistent answer sets of P. The corresponding answer sets of P contain explicit negative
literals = p(1) wherever the stable models contain p/(1). Tn [69] the answer sets are defined
directly on the extended program by modifying the definition of the stable model seman-
tics. The consistent answer sets of P also correspond to the generalised stable models
(see section 5.1) of P’ with a set of integrity constraints VX = [p(X) A p/(X)], for every
predicate p.

Tn the general case a stable model of P/ might contain a contradiction of the form p(#) and
p'(t). In this case the corresponding inconsistent answer set is defined to be the set of
all the variable-free (positive and explicit negative) literals. It is in this sense that explicit
negation can be said to be “classical”. The same effect can be obtained by explicitly
augmenting P’ by the clauses

o(X) « p(X), p'(X)

for all predicate symbols ¢ and p in P’. Then the answer sets of P simply correspond
to the stable models of the augmented set of clauses. If these clauses are not added, then
the resulting treatment of explicit negation gives rise to a paraconsistent logic, i.e. one
in which contradictions are tolerated.

Notice that, although Gelfond and Lifschitz define the answer set semantics directly with-
out transforming the program and then applying the stable model semantics, the transfor-
mation can also be used with any other semantics for the resulting transformed program.
Thus Przymusinski [153] for example applies the well-founded semantics to extended logic
programs. Similarly any other semantics can also be applied. As we have seen before,
this is one of the main advantages of transformational semantics in general.

An important problem for the practical use of extended programs is how to distinguish
whether a negative condition is to be interpreted as explicit negation or as NAF. This

49

problema will be addressed in sections 6.4 and 9.

6.2 Restoring consistency of answer sets

The answer sets of an extended program are not always consistent.

Example 6.1
The extended logic program:

= [ly(X) =~ bird(X)
Fly(X) « bat(X)
bat(tom)

has no consistent answer set.

As mentioned in section 6.1, this problem can be dealt with by employing a paraconsistent
semantics. Alternatively, in some cases it is possible to restore consistency hy removing
some of the NAF assumptions implicit in the answer set. In the example above we can
restore consistency by rejecting the NAF assumption ~ bird(tom) even though bird(tom)
does not hold. We then get the consistent set {bat(tom), fly(tom)}. This problem has
been studied in [46] and [137]. Both of these studies are primarily concerned with the
related problem of inconsistency of the well-founded semantics when applied to extended
logic programs [153].

To deal with the problem of inconsistency in extended logic programs, Dung and Ru-
amviboonsuk [46] apply the preferred extension semantics to a new abductive framework
derived from an extended logic program. An extended logic program P is first trans-
formed into an ordinary general logic program P’ by renaming explicitly negated literals
= p(t) by positive literals p'(¢). The resulting program is then further transformed intc
an abductive framework by renaming NAF literals ~ ¢(1) hy positive literals ¢*(#) and
adding the integrity constraints

VX =[g(X) A ¢ (X)]

as described in section 4.3. Thus if p’ expresses the explicit negation of p the set A* will
contain p™ as well as p*. Moreover Dung includes in 7* additional integrity constraints of
the form

YX = [p(X) A pI(X)]

to prevent contradictions.

Extended preferred extensions are then defined by modifying the definition of preferred
extensions in section 4 for the resulting abductive framework with this new set 7* of
integrity constraints. The new integrity constraints in /* have the effect of removing a
NAF hypothesis when it leads to a contradiction. Clearly, any other semantics for logic
programs with integrity constraints could also be applied to this framework.

Pereira, Aparicio and Alferes [137] employ a similar approach within the context of Przy-
muszynski’s extended stable models [153]. It consists in identifying explicitly all the

50

possible sets of NAT hypotheses which lead to an inconsistency and then restoring consis-
tency by removing at least one hypothesis from each such set. This method can be viewed
as a form of belief revision, where if inconsistency can be attributed to an abducible hy-
pothesis or a retractable atom (see below section 5.5), then we can reject the hypothesis
to restore consistency. In fact Pereira, Aparicio and Alferes have also used this method to
study counterfactual reasoning [139]. Alferes and Pereira [5] have shown that this method

of restoring consistency can also be viewed in terms of inconsistency avoidance.

This method [137] is not able to restore consistency in all cases, as illustrated by the
following example.

Example 6.2
given the extended logic program

pPe4q
q¢—7p
=~

—r e~ p
the method of [137] is unable to restore consistency by withdrawing the hypothesis p*.

Tn [134] and [140], Pereira and Alferes present two different modifications of the method
of [137] to deal with this problem. For the program in example 6.2, the method in [134]
restores consistency by letting p undefined, while the method in [140] restores consistency
by assigning p to truth. This second method is more suitable for diagnosis applications.

Both methods, [46] and [137, 134, 140]

attributed to NAF hypotheses. as shown by the following example.

can deal only with inconsistencies that can be

Example 6.3
It is not possible to restore consistency by removing NAF hypotheses given the program:

P
=,

However, Inoue [81. 80] suggests a general method for restoring consistency, which is
applicable to this case. This method (see also section 6.3) is based on [66] and [145] and
consists in isolating inconsistencies by finding maximally consistent subprograms. In this
approach a knowledge system is represented by a pair (P, H), where:

1. P and H are hoth extended logic programs,
2. P represents a set of facts,

3. H represents a set of assumptions.

The semantics is given using abduction as in [145] (see section 3) by means of theory
extensions P U A of P, with A C H maximal with respect to set inclusion, such that
P U A has a consistent answer set.

In this approach, whenever the answer set of an extended logic program P is inconsistent.
it is possible to restore consistency by regarding it as a knowledge system of the form

(0,).
For example 6.3 this will give two alternative semantics, {p} or {—p}.
A similar approach to restoring consistency follows also from the work in [87, 99] (see

section 7), where argumentation-based semantics can be used to select acceptable (and
hence consistent) subsets of an inconsistent extended logic program.

6.3 Rules and exceptions in LP

Another way of restoring consistency of answer sets is presented in [112], where sentences
with explicitly negated conclusions are given priority over sentences with positive conclu-
sions. In this approach, extended clauses with negative conclusions are similar to integrity
constraints with retractibles.

Example 6.4
Consider the program

Sly(X) — bird(X)
walk(X) « ostrich(X)
bird(X) « ostrich(X)
ostrich(john)

and the integrity constraint
S [FIy(X) A walk(X)]

with fly(X) retractable. The integrity constraint is violated, because both walk(john)
and fly(john) hold. Following the approach presented in section 5.5, integrity can he
restored by retracting the instance

fly(john) «— bird(john)

of the first clause in the program. Alternatively, the integrity constraint can be formulated
as a clause with an explicit negative conclusion

= fly(X) « walk(X).

In the new formulation it is natural to interpret clauses with negative conclusions as
exceptions, and clauses with positive conclusions as default rules. In this example, the
extended clause

= fly(X) — walk(X)

52

can be interpreted as an exception to the “general” rule
Fly(X) « bird(X).

To capture the intention that exceptions should override general rules, Kowalski and Sadri
[112] modify the answer set semantics, so that instances of clauses with positive conclu-
sions are retracted if they are contradicted by explicit negative information.

Kowalski and Sadri [112] also present a transformation, which preserves the new seman-
tics, and is arguably a more elegant form of the transformation presented in [111] (see
section 5.5). In the case of the flying-birds example described above the new transforma-
tion gives the clause

JIy(X) — bird(X), ~ ~ [ly(X).

This can be further transformed by “macroprocessing” the call to = fly(X), giving the
result of the original transformation in [111]

Sly(X) « bird(X), ~ walk(X).
In general. the new transformation introduces a new condition

~ =p(t)

into every clause with a positive conclusion p(t). The condition is vacuous if there are
no exceptions with = p in the conclusion. The answer set semantics of the new program
is equivalent to the modified answer set semantics of the original program, and both are
consistent. Moreover, the transformed program can be further transformed into a general
logic program by renaming explicit negations = p by new positive predicates p’. Because
of this renaming, positive and negative predicates can be handled symmetrically, and
therefore, in effect, clauses with positive conclusions can represent exceptions to rules
with (renamed) negative conclusions. Thus, for example, a negative rule such as

= fly(X) — walk(X)
with a positive exception
Sly(X) — super_ostrich(X)

can be transformed into a clause
= fly(X) — walk(X), ~ fly(X)

and all occurrences of the negative literal = fly(X) can be renamed by a new positive
literal fly’(X). This is not entirely adequate for a proper treatment of exceptions to
exceptions. However, this approach can be extended, as we shall see in section 6.6.

More direct approaches to the problem of treating positive and negative predicates sym-
metrically in default reasoning are presented in [81, 80], following the methods of [66] and
[145] (see section 6.2 for a discussion), and in [87, 99], based on an argumentation-theoretic
framework (see sections 6.4 and 7).

53

6.4 (Extended) Logic Programming without Negation as Fail-
ure

Kakas, Mancarella and Dung [99] show that the Kowalski-Sadri transformation presented
in section 6.3 can be applied in the reverse direction, to replace clauses with NAF by
clauses with explicit negation together with a priority ordering hetween extended clauses.
Thus, for example,

fly(X) « bird(X), ~ walk(X)
can be transformed “back”™ to

Sly(X) « bird(X)
= fly(X) «— walk(X)

together with an ordering that indicates that the second clause has priority over the first.
In general. the extended clauses

TP 040

Tk @ TP Sk
generated by transforming the clause
P Gn, ™~ St Sk

are ordered so that r; > r for 1 < j < k. In [99], the resulting prioritised clauses are
formulated in an ELP framework (with explicit negation) without NATF but with an or-
dering relation on the clauses of the given program.

This new framework for ELP is proposed in [99] as an example of a general theory of the
acceptability semantics (see section 4.3) developed within the argumentation-theoretic
framework introduced in [88] (see section 7). Its semantics is based upon an appropriate
notion of attack between subtheories consisting of partially ordered extended clauses in a
theory T'. Informally, for any subsets K and A of 7" such that £UA have a contradictory
consequence, IV attacks A if and only if either 2 does not contain a clause which is lower
than some clause in A or if F does contain such a clause, it also contains some clause
which is higher than a clause in A. Thus, the priority ordering is used to break the
symmetry between the incompatible sets £/ and A. Hence in the example above, if we
have a bird that walks, then the subtheory which, in addition to these two facts, consists
of the second clause
=fly(X) « walk(X)
attacks the subtheory consisting of the clause

Tly(X) < bird(X)

and the same two facts, but not vice versa; so, the first subtheory is acceptable whereas
the second one is not.

54

Kakas, Mancarella and Dung show that, with this notion of attack in the new framework
with explicit negation but without NAF, it is possible to capture exactly the semantics of
NAF in LP. This shows that, if LP is extended with explicit negation, then NAF can be
simulated by introducing a priority ordering hetween clauses. Moreover, the new frame-
work of ELP is more general than conventional ELP as it allows any ordering relation on
the clauses of extended logic programs.

In the extended logic program which results from the transformation described above.
if =p holds then ~ p holds in the corresponding general logic program, for any atom
p. We can argue, therefore, that the transformed extended logic program satisfies the
coherence principle, proposed by Pereira and Alferes [135], namely that whenever —p
holds then ~ p must also hold. They consider the satisfaction of this principle to be
a desirable property of any semantics for ELP, as illustrated by the following example,
taken from [3].

Example 6.5
Given the extended logic program

—drivers_strike

take_bus «—~ drivers_sirike
one should derive the conclusion take_bus.

The coherence principle automatically holds for the answer set semantics. Pereira and
Alferes [135] and Alferes, Dung and Pereira [3] have defined new semantics for ELP that
incorporates the coherence principle. These semantics are adaptations of Przymuszynski’s
extended stable model semantics [153] and Dung’s preferred extension semantics [39],
respectively, to ELP. Alferes, Damasio and Pereira [2] provide a sound and complete
proof procedure for the semantics in [135]. The proof procedure is implemented in Prolog
by means of an appropriate transformation from ELP to general LP.

6.5 An argumentation-theoretic approach to ELP
The Dung and Ruamviboonsuk semantics for ELP [46] in effect reduces ELP to ALP by

renaming the explicit negation —p of a predicate p to a new predicate p’ and employing
integrity constraints

VX [p(X) A p(X)]
for all predicates p in the program. This reduction automatically provides us with an
argumentation-theoretic interpretation of KILP, where attacks via these integrity con-
straints become attacks via explicit negation. Such notions of attack via explicit
negation have heen defined by Dung [45] and Kakas, Mancarella and Dung [99]. Dung’s
notion can be formulated as follows: a set of NAF literals /£ 29 attacks another such set
A via explicit negation (relative to a program P’) 2! if

20Note that, for simplicity, here we use NAF literals directly as hypotheses, without renaming them as
positive atoms.

2! P’ stands for the extended logic program P where all explicitly negated literals of the form —p(t) are
rewritten as atoms p’(1).

e PPUFE U A F p,p, for some atom p, and
P'UEEpp.and PPU ALY pp, for all atoms p.

Kakas, Mancarella and Dung’s notion can be formulated as follows: £ attacks a non-
empty set A via explicit negation (relative to a program P’) if

o PPUFK Fland PPUA F I for some literal /,

where 5 = p’ and p’ = p.

Augmenting the notion of attack via NAF by either of these new notions of attack via
explicit negation, we can define admissibility, weak stability and acceptability semantics
similarly to the definitions in section 4.3. However, the resulting semantics might give
unwanted results, as illustrated by the following example given in [45].

Example 6.6
Given the extended logic program

Sly(X) — bird(X), ~ ab_bird(X)

= fly(X) — penguin(X), ~ ab_penguin(X)
bird(X) « penguin(X)

penguin(lweety)

abbird(X) — penguin(X), ~ ab_penguin(X)

{ab_penguin*(tweety)} attacks {ab_bird*(tweety)} via NAF. However, {ab_bird*(tweety)}
attacks {ab_penguin*(tweety)} via explicit negation (and vice versa). Therefore.
{abbird*(tweely)} counterattacks all attacks against it, and is admissible. As a con-
sequence, fly(tweety) holds in the extension given by {ab_bird*(tweety)}. However, in-
tuitively fly(tweety) should hold in no extension.

To cope with this problem, Dung [45] suggests the following semantics, while keeping the
definition of attack unchanged. A set of hypotheses is D-admissible if

o A does not attack itself, either via explicit negation or via NAF, and

o for every attack F against A, either via explicit negation or via NAF. A attacks F
via NAF.

Note that. if ELP is seen as a special instance of ALP, then D-admissibility is very simila
to KM-admissibility, presented in section 5.3 for ALP, in that the two notions share the
feature that counterattacks can only be provided by means of attacks via NAF.

It can be argued, however, that the problem in this example lies not so much with the
semantics but with the representation itself. The last clause

-

abbird(X) — penguin(X), ~ ab_penguin(X)

can be understood as attempting to assign a higher priority to the second clause of the
program over the first. This can be done, without this last clause, explicitly in the ELP
framework with priorities of [99] (section 6.4) or in the rules and exceptions approach

56

[112] (section 6.3).

An argumentation-theoretic interpretation for ELP has also been proposed by Bondarenko,
Toni and Kowalski [11]. Their proposal, which requires that P’ U A be consistent with
the integrity constraints

VX [p(X) Ap(X)]
for each predicate p, instead of using a separate notion of attack via explicit negation. has
certain undesirable consequences, as shown in [4]. For example, the program

pe=~p.~q

admits both {~ ¢} and {~ p} as admissible extensions, while the only intuitively correct
extension is {~ ¢}.

Alferes and Pereira [4] use argumentation-theoretic notions to extend the well-founded
semantics for ELP in [135]. Kakas, Mancarella and Dung [99] also define a well-founded
semantics for ELP based upon argumentation-theoretic notions.

6.6 A methodology for default reasoning with explicit negation

Compared with other authors, who primarily focus on extending or modifying the seman-
tics of LP to deal with default reasoning, Pereira, Aparicio and Alferes [136] develop a
methodology for performing default reasoning with extended logic programs. Defaults of
the form “normally if ¢ then p” are represented by an extended clause

p — ¢, ~ Tnameqp, ~ TP (4)

where the condition namegp can be understood as a name given to the default. The
condition ~ —p deals with exceptions to the conclusion of the rule, whilst the condition
~ —nameqgp deals with exceptions to the rule itself. An exception to the rule would be
represented by an extended clause of the form

- namegp — 1

where the condition r represents the conditions under which the exception holds. In the
flying-birds example, the second clause of

fly(X) — bird(X), ~ —birds_fly, ~ = fly(X) (5)
—birds_fly(X) « penguin(X) (6)
expresses that the default named birds_fly does not apply for penguins.
The possibility of expressing both exceptions to rules as well as exceptions to predicates
is useful for representing hierarchies of exceptions. Suppose we want to change (6) to the

default rule “penguins usually don’t fly”. This can be done by replacing (6) by

= fly(X) « penguin(X), ~ —penguins_don’t_fly(X), ~ fly(X) (M)

It
-1

where penguins_don't_fly is the name assigned to the new rule. To give preference to
the more specific default represented by (7) over the more general default (5), we add the
additional clause

—birds_fly(X) « penguin(X), ~ = penguins_don’t_fly(X).
Then to express that superpenguins fly, we can add the rule:
—penguins_don't_fly(X) « superpenguin(X).

Pereira, Aparicio and Alferes [136] use the well-founded semantics extended with explicit
negation to give a semantics for this methodology for default reasoning. However it i
worth noting that any other semantics of extended logic programs could also be used. For
example Inoue [81, 80] uses an extension of the answer set semantics (see section 6.2), but
for a slightly different transformation.

6.7 ELP with abduction

Inoue [80] (see also section 6.3) and Pereira, Aparicio and Alferes [136] investigate ex-
tended logic programs with abducibles but without integrity constraints. They transform
such programs into extended logic programs without abduction by adding a new pair of
clauses

p(X) =~ =p(X)
—p(X) —~ p(X)

for each abducible predicate p. Notice that the transformation is identical to that of
Satoh and Twayama [170] presented in section 5.5, except for the use of explicit negation
instead of new predicates. Inoue [80] and Pereira, Aparicio and Alferes [136] assign differ-
ent semantics to the resulting program. Whereas Inoue applies the answer set semantics
Pereira, Aparicio and Alferes apply the extended stable model semantics of [153]. Pereira.
Aparicio and Alferes [138] have also developed proof procedures for this semantics.

As mentioned above, Pereira, Aparicio and Alferes [136] understand the transformed
programs in terms of (three-valued) extended stable models. This has the advantage that
it gives a semantics to every logic program and it does not force abducibles to be either
believed or dishelieved. But the advantage of the transformational approach, as we have
already remarked, is that the semantics of the transformed program is independent of
the transformation. Any semantics can be used for the transformed program (including
even a fransformational one, e.g. replacing explicitly negated atoms — p(1) by a new atom

P(1))-

7 An Abstract Argumentation-based Framework fot
Default Reasoning

Following the argumentation-theoretic interpretation of NAF introduced in [88], Kakas

[87] generalised the interpretation and showed how other logics for default reasoning can

58

be based upon a similar semantics. In particular, he showed how default logic can be
understood in such terms and proposed a default reasoning framework based on the
argumentation-theoretic acceptability semantics (see section 4.3) as an alternative to de-
fault logic.

Dung [44] proposed an abstraction of the argumentation-theoretic interpretation of NAT
introduced in [88], where arguments and the notion of one argument attacking another
are treated as primitive concepts which can be superimposed upon any monotonic logic
and can even be introduced into non-linguistic contexts. Stable, admissible, preferred,
and well-founded semantics can all be defined in terms of sets of arguments that are able
to attack or defend themselves against attack by other arguments. Dung shows that many
problems from such different areas as Al, game theory and economics can be formulated
and studied within this argumentation-theoretic framework.

Bondarenko, Toni and Kowalski [11] modified Dung’s notion of an abstract argumentation-
theoretic framework by defining an argument to be a monotonic derivation from a set of
abductive assumptions. This new framework, like that of [87], can he understood as a
natural abstraction and extension of the Theorist framework in two respects. First, the
underlying logic can be any monotonic logic and not just classical first-order logic. Sec-
ond, the semantics of the non-monotonic extension can be formulated in terms of any
argumentation-theoretic notion, and not just in terms of maximal consistency.

To give an idea of this framework, we show here how a simplified version of the framework
can be used to define an abstract notion of stable semantics which includes as special cases
stable models for logic programs and extensions for default logic [158], autoepistemic logic
[126] and non-monotonic logic 1T [119]. We follow the approach of Bondarenko, Dung,
Kowalski and Toni [12] (see also [87]).

Let T' be a set of sentences in any monotonic logic, - the provability operator for that
logic and A a set of candidate abducible sentences. For any « € A, let @ be some sentence
that represents the “contrary”™ of a. Then, a set of assumptions K is said to attack a set
of assumptions A iff

o TUFEF @ for some o € A.

Note that the notion a sentence @ heing the contrary of an assumption « can be regarded
as a special case of the more general notion that « is retractible in an integrity constraint

[A] (here 3 is “a contrary” of «).
This more general notion is useful for capturing the semantics of ALP.

To cater for the semantics of LP, T' is a general logic program, is modus ponens and A
is the set of all negative literals. The contrary of ~ p is p.

For default logic. default rules are rewritten as sentences of the form

y(x) — alz) AMBi(x) AN ... AMB,(X)

39

(similarly to Poole’s simulation of default logic, section 3), where the underlying language
is first-order logic augmented with a new symbol "M” which creates a sentence from a
sentence not containing M, and with a new implication symbol « in addition to the
usual implication symbol for first-order logic. The theory T is F U D, where F is the set
of "facts” and D is the set of defaults written as sentences. is ordinary provability for
classical logic augmented with modus ponens for the new implication symbol. (This is
different from Poole’s simulation, which treats « as ordinary implication.) The set A is
the set of all sentences of the form Ma. The contrary of Ma is —a.

For autoepistemic logic, the theory 1" is any set of sentences written in modal logic. How-
ever, I is provability in classical (non-modal) logic. The set A is the set of all sentences
of the form =L¢ or L¢. The contrary of —=L¢ is ¢, whereas the contrary of L¢ is =Lo.

For non-monotonic logic 11, 7" is any set of sentences of modal logic, as in the case of
autoepistemic logic, but F is provability in modal logic (including the inference rule ol
necessitation, which derives L¢ from ¢). The set A is the set of all sentences of the form
—L¢. The contrary of =L¢ is ¢.

Given any theory 1" in any monotonic logic, candidate assumptions A and notion of the
“contrary” of an assumption. a set of assumptions A is stable iff

o A does not attack itself and
o A attacks all {a} such that @ € A — A.

This notion of stability includes as special cases stable models in LP and extensions in
default logic, autoepistemic logic and non-monotonic logic II.

Based upon this abductive interpretation of default logic, Satoh [169] proposes a sound
and complete proof procedure for default logic, by extending the proof procedure for ALP
of [172].

At a similar level of abstraction, Kakas, Mancarella and Dung [99] also propose a general
argumentation-theoretic framework based primarily on the acceptability semantics. As
with LP, other semantics such as preferred extension and stable theory semantics can be
obtained as approximations of the acceptability semantics. A sceptical form of semantics
analogous to the well-founded semantics for LP, is also given in [99], based on a strong
form of acceptability.

Kakas, Mancarella and Dung define a notion of attack between conflicting sets of sen-
tences, but these can be any subtheories of a given theory, rather than being subtheories
drawn from a pre-assigned set of assumption sentences as in [11, 12]. Also as in the special
case of LP (see section 4.3) this notion of attack together with the acceptability semantics
ensures that defences are genuine counterattacks, i.e. that they do not at the same time
attack the theory that we are trying to construct.

60

Because this framework does not separate the theory into facts and candidate assump-
tions, the attacking relation would be symmetric. To avoid this, a priority relation can be
given on the sentences of the theory. As an example of this approach, Kakas, Mancarella
and Dung propose a framework for ELP where programs are accompanied by a priority
ordering on their clauses and show how in this framework NAF can be removed from
the object-level language (see also section 6.4). More generally, this approach provides a
framework for default reasoning with priorities on sentences of a theory, viewed as default
rules. It also provides a framework for restoring consistency in a theory 7' by using the
acceptable subsets of T' (see sections 6.2 and 6.3).

Brewka and Konolige [15] also propose an abductive framework which unifies and pro-
vides new semantics for LP, autoepistemic logic and default logic, but does not use
argumentation-theoretic notions. This semantics generalises the semantics for LP given

in [14].

& Abduction and Truth Maintenance

In this section we will consider the relationship between truth maintenance (TM) and
abduction. TM systems have historically been presented from a procedural point of view.
However, we will be concerned primarily with the semantics of I'M systems and the rela-
tionship to the semantics of abductive logic programming,.

A 'I'M system is part of an overall reasoning system which consists of two components: a
domain dependent problem solver which performs inferences and a domain independent
TM system which records these inferences. Inferences are communicated to the TM
system by means of justifications, which in the simplest case can be written in the form

expressing that the proposition p can be derived from the propositions py,...,p,. Jus-
tifications include premises, in the case n = 0, representing propositions which hold in
all contexts. Propositions can depend upon assumptions which vary from context to
context.

TM systems can also record nogoods, which can be written in the form

meaning that the propositions p1,....p, are incompatible and therefore cannot hold to-
gether.

Given a set of justifications and nogoods, the task of a TM system is to determine which
propositions can be derived on the basis of the justifications, without violating the no-

goods.

For any such 'I'M system there is a straight-forward correspondence with abductive logic
programs:

61

e justifications correspond to propositional Horn clause programs,
e nogoods correspond to propositional integrity constraints,

e assumptions correspond to abducible hypotheses, and

e contexts correspond to acceptable sets of hypotheses.

The semantics of a TM system can accordingly be understood in terms of the semantics of
the corresponding propositional logic program with abducibles and integrity constraints.

The two most popular systems are the justification-based TM system (JTMS) of Doyle
[36] and the assumption-based TM system (ATMS) of deKleer [102].

8.1 Justification-based truth maintenance

A justification in a JTMS can be written in the form

expressing that p can be derived (i.e. is IN in the current set of beliefs) il py,....p, can
be derived (are IN) and p,y1. ..., pn cannot be derived (are OUT).

For each proposition occurring in a set of justifications, the JTMS determines an IN o1
OUT label, taking care to avoid circular arguments and thus ensuring that each propo-
sition which is labelled IN has well-founded support. The JTMS incrementally revises
beliefs when a justification is added or deleted.

The JTMS uses nogoods to record contradictions discovered by the problem solver and to
perform dependency-directed backtracking to change assumptions in order to restore
consistency. In the JTMS changing an assumption is done by changing an OUT label to
IN.

Suppose, for example, that we are given the justifications
b K <

pen~q
G —n~r

corresponding to the propositional form of the Yale shooting problem. As Morris [127]
observes, these correctly determine that ¢ is labelled IN and that r and p are labelled
OUT. If the JTMS is subsequently informed that p is true, then dependency-directed
backtracking will install a justification for r, changing its label from OUT to IN. Notice
that this is similar to the behaviour of the extended abductive proof procedure described
in example 5.5, section 5.2.

Several authors have observed that the JTMS can be given a semantics corresponding
to the semantics of logic programs, by interpreting justifications as propositional logic
program clauses, and interpreting ~ p; as NAT of p;. The papers [49, 71, 92, 141], in
particular, show that a well-founded labelling for a JTMS corresponds to a stable model

62

of the corresponding logic program. Several authors [49. 59, 92, 156], exploiting the inter-
pretation of stable models as autoepistemic expansions [68]. have shown a correspondence
between well-founded labellings and stable expansions of the set of justifications viewed
as autoepistemnic theories.

The JTMS can also be understood in terms of abduction using the abductive approach to
the semantics of NAF, as shown in [40, 71, 92]. This has the advantage that the nogoods
of the JTMS can be interpreted as integrity constraints of the abductive framework. The
correspondence between abduction and the JTMS is reinforced by [170], which gives a
proof procedure to compute generalised stable models using the JTMS (see section 5.4).

8.2 Assumption-based truth maintenance

Justifications in ATMS have the more restricted Horn clause form

P = Pis-oesPne

However, whereas the JTMS maintains only one implicit context of assumptions at a time,
the ATMS explicitly records with every proposition the different sets of assumptions which
provide the foundations for its belief. In ATMS, assumptions are propositions that have
been pre-specified as assumable. Each record of assumptions that supports a proposition
p can also be expressed in Horn clause form

P = A1,...;0n

and can be computed from the justifications, as we illustrate in the following example.

Example 8.1
Suppose that the ATMS contains justifications
p — ab
p — b d
¢ «— a,c
g «— d,e

and the single nogood
= (a, b, €)
where a, b, ¢, d, e are assumptions. Given the new justification
T pg
the ATMS computes explicit records of r’s dependence on the assumptions:

r o« a b c
r «— byc d e

The dependence

r «— a, b, d, e

63

is not recorded because its assumptions violate the nogood. The dependence
r«— a,b e d
is not recorded because it is subsumed by the dependence

r < a, b, c.

Reiter and deKleer [162] show that, given a set of justifications, nogoods, and candi-
date assumptions, the ATMS can be understood as computing minimal and consistent
abductive explanations in the propositional case (where assumptions are interpreted as
abductive hypotheses). This abductive interpretation of ATMS has been developed fur-
ther by Tnoue [79], who gives an abductive prool procedure for the ATMS.

Given an abductive logic program P and goal (7, the explicit construction in ALP of a
set of hypotheses A, which together with P implies (¢ and together with P satisfies any
integrity constraints [, is similar to the record

G — A

computed by the ATMS. There are, however, some obvious differences. Whereas ATMS
deals only with propositional justifications, relying on a separate problem solver to in-
stantiate variables, ALP deals with general clauses, combining the functionalities of both
a problem solver and a TM system.

The extension of the ATMS to the non-propositional case requires a new notion of mini-
mality of sets of assumptions. Minimality as subset inclusion is not sufficient, but needs tc
be replaced by a notion of minimal consequence from sets of not necessarily variable-frec
assumptions [115].

Ignoring the propositional nature of a T'M system, ALP can be regarded as a hybrid
of JTMS and ATMS, combining the non-monotonic negative assumptions of JTMS and
the positive assumptions of ATMS, and allowing both positive and negative conditions
in both justifications and nogoods [92]. Other non-monotonic extensions of ATMS have

been developed in [84, 163].

It should be noted that one difference between ATMS and ALP is the requirement in
ATMS that only minimal sets of assumptions be recorded. This minimality of assumptions
is essential for the computational efficiency of the ATMS. However, it is not essential for
ALP, but can be imposed as an additional requirement when it is needed.

9 Conclusions and Future Work
In this paper we have surveyed a number of proposals for extending L.P to perform ahduc-

tive reasoning. We have seen that such extensions are closely linked with other extensions
including NAF. integrity constraints. explicit negation, default reasoning, belief revisior

64

and argumentation.

Perhaps the most important link, from the perspective of LP, is that between default ah-
duction and NAF. On the one hand, we have seen that default abduction generalises NAF,
to include not only negative but also positive hypotheses. and to include general integrity
constraints. On the other hand, we have seen that logic programs with abduction and
integrity constraints can be transformed into logic programs with NAF without integrity
constraints. We have also seen that, in the context of ELP with explicit negation, that
NAF can be replaced by a priority ordering between clauses. The link between abduction
and NAF includes both their semantics and their implementations.

The use of default abduction for NAF is a special case of abduction in general. The dis-
tinction between default and non-default abduction has been clarified. Semantics, proofl
procedures and transformations that respect this distinction have all been defined. How-
ever, more work is needed to study the integration of these two kinds of abduction in
a common framework. The argumentation-based approach seems to offer a promising
framework for such an integration.

We have seen the importance of clarifying the semantics of abduction and of defining a
semantics that helps to unify the different forms of abduction, NAF. and default reason-
ing within a common framework. We have seen, in particular, that a proof procedure
which is incorrect under one semantics (e.g. [54]) can be correct under another improved
semantics (e.g. [39]). We have also introduced an argumentation-theoretic interpretation
for the semantics of abduction applied to NAF, and we have seen that this interpretation
can help to understand the relationships between different semantics.

The argumentation-theoretic interpretation of NAF has been abstracted and shown to
unify and simplify the semantics of such different formalisms for default reasoning as
default logic, autoepistemic logic and non-monotonic logic. In each case the standard
semantics of these formalisms has been shown to be a special instance of a single abstract
notion that a set of assumptions is a (stable) semantics if it does not attack itself but
does attack all other assumptions it does not contain. The stable model semantics, gener-
alised stable model semantics and answer set semantics are other special cases. We have
seen that stable model semantics and its extensions have deficiencies which are avoided
with admissibility, preferred extension., complete scenaria, weak stability, stable theory
and acceptability semantics. Because these more refined semantics for P can be defined
abstractly for any argumentation-based framework, they automatically and uniformly
provide improvements for the semantics of other formalisms for default reasoning.

Despite the many advances in the application of abduction to LLP and to non-monotonic
reasoning more generally, there is still much scope for further development. Important
problems in semantics still need to be resolved. These include the problem of clarifying
the role of integrity constraints in providing attacks and counterattacks in ALP.

The further development, clarification and simplification of the abstract argumentation-

theoretic framework and its applications both to existing formalisms and to new for-
malisms for non-monotonic reasoning is another important direction for future research.

65

Of special importance is the problem of relating circumsecription and the if-and-only-if
completion semantics to the argumentation-theoretic approach. An important step in
this direction may be the “common sense” axiomatisation of NAF [188] by Van Gelder
and Schlipf, which augments the if-and-only-if completion with axioms of induction. The
inclusion of induction axioms relates this approach to circumscription, whereas the rewrit-
ing of negative literals by new positive literals relates it to the abductive interpretation
of NAT.

The development of systems that combine ALP and CLP is another important area that
is still in its infancy. Among the results that might be expected from this development
are more powerful systems that combine constructive abduction and constructive nega-
tion, and systems in which user-defined constraint handling rules might be formulated
and executed efficiently as integrity constraints.

It is an important feature of the abductive interpretation of NAF that it possesses ele-
gant and powerful proof procedures, which significantly extend SLDNF and which can
be extended in turn to accommodate other abducibles and other integrity constraints.
Different semantics for NAF require different proof procedures. It remains to be seen
whether the inefficiency of proof procedures for the acceptability semantics, in particular.
can somehow be avoided in practice.

We have seen that abductive prool procedures for LP can be extended to ALP. We have
also seen that ALP can be reduced to LP by transformations. The comparative efficiency
of the two different approaches to the implementation of ALP needs to he investigated
further.

We have argued that the implementation of abduction needs to be considered within
a broader framework of implementing knowledge assimilation (KA). We have seen that
abduction can be used to assist the process of KA and that abductive hypotheses them-
selves need to be assimilated. Moreover, the general process of checking for integrity in
KA might be used to check the acceptability of abductive hypotheses.

It seems that an efficient implementation of KA can be based upon combining two pro-
cesses: backward reasoning both to generate ahductive hypotheses and to test whether
the input is redundant and forward reasoning both to test input for consistency and tc
test whether existing information is redundant. Notice that the abductive prool proce-
dure for ALP already has this feature of interleaving backward and forward reasoning.
Such implementations of KA need to be integrated with improvements of the abductive
proof procedure considered in isolation.

We have seen that the process of belief revision also needs to be considered within a KA
context. In particular, it could be useful to investigate relationships hetween the heliel
revision frameworks of [37, 65, 128, 129] and various integrity constraint checking and
restoration procedures.

The extension of LP to include integrity constraints is useful both for abductive LP and
for deductive databases. We have seen, however, that for many applications the use of

66

integrity constraints with retractibles can be replaced by clauses with explicitly negated
conclusions with priorities. Moreover, the use of explicit negation with priorities seems
to have several advantages, including the ability both to represent and derive negative
information, as well as to obtain the effect of NAF.

The relationship between integrity constraints with retractibles and explicit negation with
priorities needs to be investigated further: To what extent does this relationship, which
holds for abduction and default reasoning, hold for other uses of integrity constraints,
such as those employed in deductive databases; and what are the implications of this
relationship on the semantics and implementation of integrity constraints?

We have remarked upon the close links between the semantics of LP with abduction and
the semantics of truth maintenance systems. The practical consequences of these links,
both for building applications and for efficient implementations, need further investiga-
tion. What is the significance, for example, of the fact that conventional TMSs and
ATMSs correspond only to the propositional case of logic programs?

We have seen the rapid development of the abduction-based argumentation-theoretic ap-
proach to non-monotonic reasoning. But argumentation has wider applications in areas
such as law and practical reasoning more generally. It would be useful to see to what
extent the theory of argumentation might be extended to encompass such applications.
It would be especially gratifying, in particular, if such an extended argumentation theory
might be used, not only to understand how one argument can defeat another, but also to
indicate how conflicting arguments might be reconciled.

Acknowledgements

This research was supported by Fujitsu Research Laboratories and by the Esprit Basic
Research Action Compulog II. The authors are grateful to Katsumi Inoue and Ken Satoh
for helpful comments on an earlier draft, and to José Julio Alferes, Phan Minh Dung,
Paolo Mancarella and Luis Moniz Pereira for many helpful discussions.

References

[1] Akama, S., Answer set semantics and constructive logic with strong negation. Tech-
nical Report (1992)

[2] Alferes, J.J., Damasio, C.V., Pereira, .M., Top-down query evaluation for well-
founded semantics with explicit negation. Proc. Furopean Conference on Arlificial

Intelligence, ECAI "94,John Wiley, Amsterdam (1994)

[3] Alferes, J.J.. Dung, P.M., Pereira, ..M., Scenario semantics of extended logic pro-
grams. Proc. 2nd International Workshop on Logic Programming and Nonmonotonic

Reasoning MIT press (Pereira and Nerode eds.), Lisbon (1993) 334 348

67

4]

[9

10

(1]

)

—
[

Alferes, J.J., Pereira, .M., An argumentation-theoretic semantics based on non-
refutable falsity. Proc. International Conference on Logic Programming, MI'I" Press.
Workshop on Non-monotonic Extensions of Logic Programming (Dix, Pereira, Przy-
musinski eds.) Santa Margherita Ligure, Ttaly (1994)

Alferes, J.J., Pereira, L..M., Contradiction in logic programs: when avoidance equal
removal, Parts I and II. Proc. fth Int. Workshop on Extensions of Logic Program-
ming (R. Dyckhoff ed.), (1993) 7-26, Lecture Notes in AT 798, Springer-Verlag

Allemand, D., Tanmer, M., Bylander. T.. Josephson, J., The computational com-
plexity of abduction. Artificial Intelligence 49 (1991) 25 60

Apt, K.R., Bezem, M., Acyclic programs. Proc. 7th International Conference or
Logic Programming. MIT Press, Jerusalem (1990) 579-597

Aravindan, C., Dung, P.M., Belief dynamics, abduction and databases. Proc. 4if
Furopean Workshop on Logics in Al, (1994), To appear in Lecture Notes in Al
Springer Verlag

Baral, C., Gelfond, M.. Logic programming and knowledge representation. To ap-
pear in Journal of Logic Programming (1994)

Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F., A transformational approach
to negation in logic programming. Journal of Logic Programming 8 (1990) 201 228

Bondarenko, A.. Toni, F., Kowalski, R. A., An assumption-based framework for
non-monotonic reasoning. Proc. 2nd International Workshop on Logic Programming
and Nonmonotonic Reasoning MIT press (Pereira and Nerode eds.), Lisbon (1993)
171-189

Bondarenko, A., Dung, P.M., Kowalski, R. A., Toni, F., An abstract.
argumentation-theoretic framework for default reasoning. In draft (1995)

Brewka, G.. Preferred subtheories: an extended logical framework for default rea-
soning. Proc. 11th International Joint Conference on Artificial Intelligence, Detroit.

Mi (1989) 1043 1048

Brewka, G., An abductive framework for generalised logic programs. Proc. 2nc
International Workshop on Logic Programming and Nonmonotonic Reasoning MIT
press (Pereira and Nerode eds.), Lishon (1993) 349-364

Brewka, G., Konolige, K., An abductive framework for general logic programs and
other non-monotonic systems. Proc. 13th International Joint Conference on Artifi-
cial Intelligence, Chambery, France (1993) 9-15

A. Brogi, K. Lamma, P. Mello, P. Mancarella, Normal logic programs as open

positive programs. Proc. ICSLP 92 (1992)

Bry, F., Intensional updates: abduction via deduction. Proc. 7th International Con-
[rd<

Jerence on Logic Programming, MIT Press, Jerusalem (1990) 561-575

68

(18]

[19]

[20]

(21]

[22]

(23]

[24]

28]

[29]

[30]

31

32]

Biirchert, H.-J., A resolution principle for constrained logics. Artificial Intelligence
66 (1994) 235 271

Biirchert, H.-J., Nutt, W., On abduction and answer generation through constraint
resolution. Technical Report DFKI, Kaiserslautern (1991)

Casamayor, J., Decker, H., Some proofl procedures for computational first-order
theories, with an abductive flavour to them. Proc. 1st Compulog-Net Workshop on
Logic Programming in Artificial Intelligence, Imperial College, London (1992)

Chan, D., Constructive negation based on the completed database. Proc. 5th Inter-
national Conference and Symposium on Logic Programming, Washington, Seattle

(1988) 111 125

Charniak, E., McDermott, D.. Introduction to artificial intelligence. (Addison-
Wesley, Menlo Park, Ca,1985)

Chen, W., Warren, 1).5.. Abductive logic programming. Technical Report Dept. of
Comp. Science, State Univ. of New York at Stony Brook (1989)

Clark,K.L., Negation as failure. Logic and Data Bases, Gallaire and Minker eds.,
Plenum, New York(1978) 293-322

Console, I.., Theseider Dupré, 1., Torasso, P. A Theory for diagnosis for incomplete
causal models. Proc. 11th International Joint Conference on Artificial Intelligence,
Detroit, Mi (1989) 1311 1317

Console, L., Theseider Dupré, D)., Torasso, P. On the relationship between abduction

and deduction. Journal of Logic and Computation 2(5) (1991) 661 690

Console, L., Saitta, L., Abduction, induction and inverse resolution. Proc. 1st
Compulog-Net. Workshop on Logic Programming in Artificial Intelligence, Tmperial

College, London (1992)

Console, L., Sapino. M.L., Theseider Dupré. D., The role of abduction in database
view updating. To appear in Journal of Intelligent Information Systems (1994)

Cox, P. T., Pietrzykowski, T.. Causes for events: their computation and appli-
cations. Proc. 8th International Conference on Automated Deduction, CADE 86
(1992) 608 621

Decker, H., Integrity enforcement on deductive databases. Proc. FEDS ’86,
Charleston, SC (1986) 271 285

Demolombe, R.. Farifias del Cerro, .., An inference rule for hypotheses generation.
Proc. 12th International Joint Conference on Artificial Intelligence, Sidney (1991)
152-157

Denecker, M., De Schreye, ., Temporal reasoning with abductive event calculus.
Proc. 1st Compulog-Net Workshop on Logic Programming in Artificial Intelligence,
Imperial College, London (1992)

69

[33]

34

[35]

39]

[0

[41

[42

43]

(44]

Denecker, M., De Schreye, D., On the duality of abduction and model genera-
tion. Proc. International Conference on Fifth Generation Computer Systems, Tokyc

(1992) 650 657

Denecker, M., De Schreye, D., SLDNFA: an abductive procedure for normal abduc-
tive programs. Proc. International Conference and Symposium on Logic Program.

ming, (1992) 686 700

Denecker, M., De Schreye, D., Representing incomplete knowledge in abductive
logic programming. Proc. ILSP’93, Vancouver (1993)

Doyle, J., A truth maintenance system. Artificial Intelligence 12 (1979) 231-272

Doyle, J., Rational belief revision. Proc. 2nd International Conference on Principles
of Knowledge Representation and Reasoning, Cambridge, Mass. (1991) 163-174

Drabent, W., What is failure? An approach to constructive negation. To appear in

Acta Informatica (1994)

Dung, P.M., Negation as hypothesis: an abductive foundation for logic programming
Proc. 8th International Conference on Logic Programming, MIT Press, Paris (1991)
3-17

Dung, P.M., An abductive foundation for non-monotonic truth maintenance. Proc.
1st World Conference on Fundamentals of Artificial Intelligence, Paris, de Glas ed.
(1991)

Dung, P.M., Acyclic disjunctive logic programs with abductive procedure as proof
procedure. Proc. International Conference on Fifth Generation Computer Systems.
Tokyo (1992) 555 561

Dung, P.M., An abductive procedure for disjunctive logic programming. Technical
Report Dept. of Computing, Asian Institute of Technology (1992)

Dung, P.M., Personal Communication (1992)

Dung, P.M., On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming. To appear in Arlificial Tntelligence
(1994) (Extended Abstract in Proc. International Joint Conference on Artificia
Intelligence, (1993), 852 859)

Dung, P.M., An argumentation semantics for logic programming with explicit nega-
tion. Proc. 10th International Conference on Logic Programming, MI'T' Press, Bu-

dapest (1993)

Dung, P.M., Ruamviboonsuk, P., Well-founded reasoning with classical negation.
Proc. 1st International Workshop on Logic Programming and Nonmonotonic Rea-

soning (Nerode, Marek and Subrahmanian eds.), Washington DC (1991) 120 135

Dung, P.M., Kakas. A.C., Mancarella, P., Negation as failure revisited. Technical
Report (1992)

(48]

[19]

[50]

[51]

54

[60]

[61

[62]

Eiter, T., Gottlob, G., The complexity of logic-based abduction. Proc. 10th Sym-
posium on Theoretical Aspects of Computing (STACS-93), Springer Verlag lecture
Notes on Computer Science 665, eds. Enjalbert, P.. Finkel, A., Wagner, K.W. (1993)
70-79 (Ixtended paper to appear in Journal of the ACM)

KElkan, C., A rational reconstruction of non-monotonic truth maintenance systems.

Artificial Intelligence 43 (1990) 219 234

Eshghi, K., Abductive planning with event calculus. Proc. 5th International Con-

ference and Symposium on Logic Programming, Washington, Seattle (1988) 562-57

kshghi, K., Diagnoses as stable models. Proc. st International Workshop on Prin-

ciples of Diagnosis, Menlo Park, Ca (1990)

Eshghi, K., A tractable set of abduction problems. Proc. 13th International Joint
Conference on Arlificial Intelligence, Chambery, France (1993) 3-8

Eshghi, K., Kowalski, R.A., Abduction through deduction. Technical Report De-
partment of Computing, Imperial College, London (1988)

Eshghi, K., Kowalski, R.A., Abduction compared with negation by failure. Proc. 6th
International Conference on Logic Programming, MIT Press, Lishon (1989) 234-255

Fvans, C.A., Negation as failure as an approach to the Hanks and McDermott
problem. Proc. 2nd International Symposium on Artificial intelligence, Monterrey,
Mexico (1989)

Fvans, C.A., Kakas, A.C., Hypothetico-deductive reasoning. Proc. International

Conference on Fifth Generation Computer Systems, Tokyo (1992) 546 554

Finger, J.J., Genesereth, M.R., RESIDUE: a deductive approach to design synthesis.
Technical Report no. CS-85-1035, Stanford University (1985)

Fujita, M., Hasegawa, R., A model generation theorem prover in KL1 using a
ramified-stack algorithm. Proc. 8th International Conference on Logic Programming,
MIT Press, Paris (1991) 535-548

Fujiwara, Y., Honiden, S., Relating the TMS to Autoepistemic Logic. Proc. 11ih
International Joint Conference on Artificial Intelligence, Detroit, Mi (1989) 1199
1205

Fung, T. H., Theorem proving approach with constraint handling and its applications

on databases. MSc Thesis, Tmperial College, London (1993)

Gabbay, D.M., Abduction in lahelled deductive systems. A conceptual ahstract.
Proc. of the European Conference on Symbolic and Quantitative Approaches for
uncertainty ‘91, Springer Verlag lecture Notes on Computer Science 548, eds. R.

Kruse and P. Siegel (1991) 3 12

Gabbay, D.M., Kempson, R.M., Labelled abduction and relevance reasoning. Work-
shop on Non-Standard Queries and Non-Standard Answers, Toulose, France (1991)

71

[63]

(64]

Gabbay, D.M., Kempson, R.M., Pitts, J., Labelled abduction and relevance rea-
soning. Non-standard queries and answers, R.Demolombe and ‘T. Imielinski, eds..

Oxford University press (1994) 155 185

Gaifman, H., Shapiro, E., Proof theory and semantics of logic programming. Proc.
LICS°89, IEEE Computer Society Press (1989) 50-62

Gardenfors, P., Knowledge in fluz: modeling the dynamics of epistemic states. (MIT
Press, Cambridge, Ma,1988)

Geffner, H., Casual theories for non-monotonic reasoning. Proc. AAAT 90 (1990)

Geffner, H., Beyond negation as failure. Proc. 2nd Inlernational Conference on
Principles of Knowledge Representation and Reasoning, Cambridge, Mass. (1991)
218-229

Gelfond, M., Lifschitz, V., The Stable model semantics for logic programs. Proc
Sth International Conference and Symposium on Logic Programming, Washington,

Seattle (1988) 1070 1080

Gelfond, M., Lifschitz, V.. Logic programs with classical negation. Proc. 7th Inter-
national Conference on Logic Programming, MI'T Press, Jerusalem (1990) 579-597

Goebel, R., Furukawa, K., Poole, D)., Using definite clauses and integrity constraints
as the basis for a theory formation approach to diagnostic reasoning. Proc. 3rd In-
ternational Conference on Logic Programming, MIT Press, London (1986) Springer
Verlag Lecture Notes in Computer Science 225, 211-222

Giordano, L., Martelli, A., Generalized stable model semantics, truth maintenance
and conflict resolution. Proc. 7th International Conference on Logic Programming
MIT Press, Jerusalem (1990) 427-411

Giordano, L., Martelli, A., Sapino, M. L., A semantics for Eshghi and Kowalski’s
abductive procedure. Proc. 10th International Conference on Logic Programming
MIT Press, Budapest (1993) 586-600

Hanks. S., McDermott, D., Default reasoning, non-monotonic logics, and the frame

problem. Proc. 8th AAAI ’86, Philadelphia (1986) 328 333

Hanks, 5., McDermott, D., Non-monotonic logics and temporal projection. Arlificia
Intelligence 33 (1987)

Frithwirth, T., Constraint simplification rules. Technical Report ECRC-92-18 (1992)

Hasegawa, R., Fujita, M., Parallel theorem provers and their applications. Proc. In-
ternational Conference on Fifth Generation Computer Systems, Tokyo (1992) 132
154

Hobbs, J.R., Stickel, M., Appelt, D.. Martin, P., Interpretation as abduction. Tech-
nical Report 499, Artificial Intelligence Center, Computing and Engineering Sciences
Division, Menlo Park, Ca (1990)

72

[78]

[79]

[89]

[90]

1]

[92]

Hobbs, J.R., An integrated abductive framework for discourse interpretation. Proc.
AAAT Symposium on Automated Abduction, Stanford (1990) 10 12

Inoue, K., An abductive procedure for the CMS/ATMS. Proc. European Conference
on Artificial Intelligence, ECAT "90 International Workshop on Truth Maintenance,
Stockholm, Springer Verlag Lecture notes in Computer Science (1990)

Inoue, K.. Extended logic programs with default assumptions. Proc. 8th Interna-
tional Conference on Logic Programming, MIT Press, Paris (1991) 490 504

Inoue, K., Hypothetical reasoning in logic programs. Journal of Logic Programming

18 (1994) 191-227

Inoue, K., Koshimura, M., Hasegawa, R.., Embedding negation as failure into a
model generation theorem prover. Proc. 11th International Conference on Auto-
mated Deduction, CADE 92, Saratoga Springs, NY (1992)

Inoue, K., Ohta, Y., Hasegawa, R., Nakashima, M., Hypothetical reasoning systems

on the MGTP. Technical Report ICOT, Tokyo (in Japanese) (1992)

Junker, U., A correct non-monotonic ATMS. Proc. 11th International Joint Con-

ference on Artificial Intelligence, Detroit, Mi (1989) 1049-1054

Kakas, A. C., Deductive databases as theories of belief. Technical Report lLogic
Programming Group. Imperial College, London (1991)

Kakas, A.C., On the evolution of databases. Technical Report Logic Programming
Group, Imperial College, London (1991)

Kakas, A.C., Default reasoning via negation as failure. Proc. KCAI-92 workshop on
“Foundations of Knowledge Representation and Reasoning”, Lecture Notes in Al
810, Springer Verlag, eds. Lakemeyer and Nebel (1992)

Kakas, A. C., Kowalski, R. A., Toni, F.. Abductive logic programming. Journal of
Logic and Computation 2(6) (1993) 719 770

Kakas, A. C., Mancarella, P., Anomalous models and abduction. Proc. 2nd Inter-
national Symposium on Artificial intelligence, Monterrey, Mexico (1989)

Kakas, A. C.; Mancarella, P., Generalized Stable Models: a Semantics for Abduc-
tion. Proc. 9th European Conference on Artificial Intelligence, FCAI 90, Stockolm
(1990) 385-391

Kakas, A. C., Mancarella, P., Database updates through abduction. Proc. 16th
International Conference on Very Large Databases, VI.DB 90, Brishane, Australia
(1990)

Kakas, A. C., Mancarella, P.. On the relation of truth maintenance and abduction.
Proc. of the 1st Pacific Rim International Conference on Artificial Intelligence,

PRICAI'90, Nagoya, Japan (1990)

[93]

[94]

95

96

(97]

98

(100

[101]

(102

(103

[104

[105]

[106]

Kakas, A. C., Mancarella, P., Abductive LP. Proc. NACLP °90, Workshop on

Non-Monotonic Reasoning and Logic Programming, Austin, Texas (1990)

Kakas, A. C., Mancarella, P.. Knowledge assimilation and abduction. Proc. FEu-
ropean Conference on Artificial Intelligence, ECAI 90 International Workshop on
Truth Maintenance, Stockholm, Springer Verlag Lecture notes in Computer Science

(1990)

Kakas, A. C., Mancarella, P.. Preferred extensions are partial stable models. Journa
of Logic Programming, 14(3,4):341-348 (1993)

Kakas, A. C., Mancarella, P., Negation as stable hypotheses. Proc. 1st Internalional
Workshop on Logic Programming and Nonmonotonic Reasoning (Nerode, Marek
and Subrahmanian eds.), Washington DC (1991)

Kakas, A. C., Mancarella, P., Stable theories for logic programs. Proc. ISLP 91
San Diego (1991)

Kakas, A. C., Mancarella, P., Constructive abduction in logic programming. Tech-
nical Report Dipartimento di Informatica, Universita di Pisa (1993)

Kakas, A. C., Mancarella, P., Dung, P.M., The acceptability semantics for logic
programs. Proc. 11th International Conference on Logic Programming, MI'T Press,

Santa Margherita Ligure, Ttaly (1994) 504 519

Kakas, A. C., Michael. A.. Scheduling through abduction. Proc. ICLP 93 Post Con-

ference workshop on Abductive Reasoning (1993)

Kakas, A. C., Michael. A., Integrating abductive and constraint logic programming
To appear in Proc. International Logic Programming Conference, (1995)

deKleer, J., An assumption-based TMS. Artificial Intelligence 32 (1986)

Konolige, K., A general theory of abduction. Spring Symposium on Aulomated Ab-

duction, Standford University (1990) 62 66

Konolige, K., Using defualt and causal reasoning in diagnosis. Proc. 3rd Interna-
tional Conference on Principles of Knowledge Represeniation and Reasoning, Cam-

bridge (1992)
Kowalski, R.A., Logic for problem solving. (Elsevier, New York,1979)

Kowalski, R.A., Belief revision without constraints. Computational Intelligence 3(3).
(1987)

Kowalski, R.A., Problems and promises of computational logic. Proc. Symposiun
on Computational Logic, Lloyd ed., Springer Verlag Lecture Notes in Computer
Science (1990)

Kowalski, R.A., Database updates in the event calculus. Journal of Logic Program.

ming 12 (1992) 121 146

74

[109]

[110]

[111]

112

[113]

[119]

[120]

121

[122]

[123

[124]

Kowalski, R. A., A dual form of logic programming. Lecture Notes, Workshop in
Honour of Jack Minker, University of Maryland, November 1992

Kowalski, R.A., Logic without model theory. To appear in What is a Logical System?
(D. Gabbay, ed.) Oxford University Press (1994)

Kowalski, R.A., Sadri, I., Knowledge representation without integrity constraints.
Technical Report Department of Computing, Imperial College, London (1988)

Kowalski, R.A., Sadri, F., Logic programs with exceptions. Proc. 7th International
Conference on Logic Programming, MI'T Press, Jerusalem (1990) 598 613

Kowalski, R.A., Sergot, M., A logic-based calculus of events. New Generation Com-

puting 4 (1986) 67 95

Kunifuji, S., Tsurumaki, K., Furukawa, K., Consideration of a hypothesis-based
reasoning system. Journal of Japanese Society for Artificial Intelligence 1(2) (1986)
228 237

Lamma, ., Mello, P.. An assumption-based truth maintenance system dealing with
non ground justifications. Proc. 1st Compulog-Net Workshop on Logic Programming
in Artificial Intelligence, Imperial College, London (1992)

Lever, J. M., Combining induction with resolution in logic programming. PhD The-
sis, Department of Computing, Imperial College, London (1991)

Levesque, H.J.. A knowledge-level account of abduction. Proc. 11th International

Joint Conference on Artificial Intelligence, Detroit, Mi (1989) 1061 1067

Lloyd, J.W., Topor, R.W.. A basis for deductive database system. Journal of Logic

Programming 2 (1985) 93 109

McDermott, D., Nonmonotonic logic II: nonmonotonic modal theories. JACM 29(1)

(1982)

Maim. E., Abduction and constraint logic programming. Proc. European Confer-
ence on Artificial Intelligence, ECAI 92 Vienna, Austria (1992)

Makinson, D., General theory of cumulative inference. Proc. 2nd International
Workshop on Monmonotonic reasoning, Springer Verlag Lecture Notes in Computer

Science 346 (1989)

Manthey, R., Bry, F.. SATCHMO: a theorem prover implemented in Prolog. Proc.
9th International Conference on Automaled Deduction, CADE 88, Argonne, Illinois

(1988) 415 434

Marek, W., Truszezynski, M., Stable semantics for logic programs and default the-
ories. Proc. NACLP '89 (1989) 243-256

Minker, J., On indefinite databases and the closed world assumption. Proc. 6th
International Conference on Automated Deduction, CADE *82, New York, Springer
Verlag Lecture Notes in Computer Science 138 (1982) 292-308

e

[K3)

[125]

[130]

[131]

[132]

[133]

[134

[135]

[136]

[138]

Miyaki, T., Kunifuji, S., Kitakami, H., Furukawa, K., Takeuchi, A., Yokota, H..
A knowledge assimilation method for logic databases. International Symposium on

Logic Programming, Atlantic City, NJ (1984) 118 125

Moore, R., Semantical considerations on non-monotonic logic. Artificial Intelligence
25 (1985)

Morris, P. H., The anomalous extension problem in default reasoning. Artificia
Intelligence 35 (1988) 383 399

Nebel. B., A knowledge level analysis of belief vevision. Proc. 1st International Con-
Jerence on Principles of Knowledge Representation and Reasoning, Toronto (1989)

301 311

Nebel. B., Belief revision and default reasoning: syntax-based approaches. Proc
2nd International Conference on Principles of Knowledge Representalion and Rea-
soning, Cambridge, Mass. (1991) 417 428

Pearce, D., Wagner, G., Logic programming with strong negation. Proc. Workshoy
on Fxtensions of Logic Programming, Springer Verlag Lecture Notes in Computer
Science (1991)

Pearl, J., Embracing causality in formal reasoning. Proc. AAAl '87, Washington,

Seattle (1987) 360 373

Pearl, J., Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. (Morgan Kaufmann, San Mateo, California,1988)

Peirce, C.S., Collected papers of Charles Sanders Peirce. Vol.2, 1931 1958,
Hartshorn et al. eds., Harvard University Press

Pereira, .M., Alferes, J.J., Aparicio, J.N., Contradiction removal semantics with
explicit negation Proc. Applied Logic Conference, Amsterdam (1992)

Pereira, L.M., Alferes. J.J., Well-founded semantics for logic programs with ex-
plicit negation. Proc. 92 Furopean Conference on Artificial Intelligence, FCAT "Vi-
enna, Austria 1992 (1)02-106

Pereira, L.M., Aparicio, J.N., Alferes, J.J., Non-monotonic reasoning with well-
founded semantics. Proc. 8§th International Conference on Logic Programming, MIT
Press, Paris (1991)

Pereira, ..M., Aparicio, J.N., Alferes, J.J., Contradiction removal within well-
founded semantics. Proc. 1st International Workshop on Logic Programming ana
Nonmonotonic Reasoning (Nerode, Marek and Subrahmanian eds.), Washington
DC (1991)

Pereira, .M., Aparicio, J.N., Alferes, J.J., Derivation procedures for extended sta-
ble models. Proc. 12th International Joint Conference on Artificial Intelligence,
Sidney (1991) 863-868

76

[139] Pereira, ..M., Aparicio, J.N., Alferes, J.J., Counterfactual reasoning based on re- [154] T. Przymusinski, Semantics of disjunctive logic programs and deductive databases.
vising assumptions. Proc. ISLP "9/, San Diego (1991) Proc. DOOD "91 (1991)

[140] Pereira, L.M., Damasio, C.V., Alferes, J.J., Diagnosis and debugging as contradic- [155] Reggia, J.. Diagnostic experts systems based on a set-covering model. Internationa
tion removal. Proc. 2nd International Workshop on Logic Programming and Non- Journal of Man-Machine Studies 19(5) (1983) 437 460

monotonic Reasoning MI'l" press (Pereira and Nerode eds.), Lisbon (1993) 316-330
7 P () () [156] Reinfrank, M., Dessler, O., On the relation between truth maintenance and non-

monotonic logics. Proc. 11th International Joint Conference on Avtificial Inielli-

gence, Detroit, Mi (1989) 1206 1212

[141] Pimentel, S. G., Cuadrado, J. L., A truth maintenance system based on stable
models. Proc. NACLP 89 (1989)

[157] Reiter, R., On closed world data bases. Logic and Databases, Gallaire and Minker
eds., Plenum, New York(1978) 55 76

[142] Pople, H. E. Jr., On the mechanization of abductive logic. Proc. 3rd International
Joint Conference on Arlificial Intelligence, (1973) 147-152

[143] Poole, D., On the comparison of theories: preferring the most specific explanation. [158] Reiter, R., A Logic for default reasoning. Artificial Intelligence 13 (1980) 81 132
(F;;oqc;J9¥Z4fﬂ]ﬁi;natmnal Joint Conference on Arlificial Intelligence, Tos Angeles, Ca [159] Reiter, R., A theory of diagnosis from first principle. Artificial Intelligence 32 (1987)
J8I —14
[160] Reiter, R., On integrity constraints. Proc. 2nd Conference on Theoretical Aspects o,

[144] Poole, D)., Variables in hypotheses. Proc. 10th International Joint Conference on Reasoning about Knowledge, Moshe V. Vardi ed.., Pacific Grove, California (1988)

Artificial Intelligence, Milan (1987) 905 908
L)) . o) I [161] Reiter, R., On asking what a database knows. Proc. Symposium on Computationa
[145] QPBOJE’ D., Alogical framework for default reasoning. Artificial Inielligence 36 (1988) Logic, 1.loyd ed., Springer Verlag Lecture Notes in Computer Science (1990)
=47 ;
32] Reiter, R., deKleer, J., Foundations of assumption-based truth maintenance sys-
162] Reiter, R., deKl J., Foundati f tion-based I int

[146] Poole, D., Representing knowledge for logic-based diagnosis. Proc. International tems: preliminary report. Proc. AAAI '$7, Washington, Seattle (1987) 183 188

Conference on Fifth Generation Computer Systems, Tokyo (1988) 1282 1290

) o) } [163] Rodi, W.L., Pimentel, S.G., A non-monotonic ATMS using stable bases. Proc. 2nc

[147] Poole, D., Explanation and prediction: an architecture for default and abductive International Conference on Principles of Knowledge Represenlalion and Reason-
reasoning. Computational Intelligence Journal 5 (1989) 97-110 ing, Cambridge, Mass. (1991)

[148] Poole, D., Logic programming, abduction and probability. Proc. International Con- [164] Sacch, D., Zaniolo, €., Stable models and non determinism for logic programs with

ference on Fifth Generation Computer Systems, Tokyo (1992) 530 538 negation Proc. ACM SIGMOD-SIGACT Symposium on Principles of Database Sys-

[149] Poole, D., Probabilistic Horn abduction and Bayesian networks. Artificial Intelli- tems (1990) 205-217

gence 64 (1993) 81-129 [165] Sadri, F., Kowalski, R.A., An application of general purpose theorem-proving fc

database integrity. Foundations of Deductive Databases and Logic Programming
Minker ed., Morgan Kaufmann Publishers, Palo Alto (1987) 313-362

[150] Poole, D.. Goebel, R.G., Aleliunas, Theorist: a logical reasoning system for default
and diagnosis. The Knowledge Fronteer: FEssays in the Representation of Knowl-
edge, Cercone and McCalla eds, Springer Verlag Lecture Notes in Computer Science [166

Sakama, C., Tnoue, K., Negation in disjunctive logic programs. Proc. 10th Interna-

(1987) 331 352

Preist, C., Eshghi. K., Consistency-based and abductive diagnoses as generalised
stable models. Proc. International Conference on Fifth Generation Computer Sys-
tems, Tokyo (1992) 514 521

Przymusinski, T.C., On the declarative and procedural semantics of logic programs.

Journal of Automated Reasoning 5 (1989) 167 205

Przymusinski, T.C., Extended stable semantics for normal and disjunctive pro-
grams. Proc. Tth International Conference on Logic Programming, MI'T Press,

Jerusalem (1990) 459 477

-1
-1

tional Conference on Logic Programming, MIT Press, Budapest (1993) 703 719

Sakama, C., Inoue, K., On the equivalence hetween disjunctive and abductive logic
programs. Proc. 11th International Conference on Logic Programming, MIT Press.
Santa Margherita Ligure, Italy (1994) 489-503

Sato, T., Completed logic programs and their consistency. Journal of Logic Pro-

gramming 9 (1990) 33 44

Satoh, K., A top-down proof procedure for default logic by using abduction. Proc
FEuropean Conference on Artificial Intelligence, ECAT ’94, Amsterdam (1994)

Satoh, K., Iwayama, N., Computing abduction using the TMS. Proc. 8th Interna-
tional Conference on Logic Programming, MI'T Press, Paris (1991) 505-518

78

[171]

[172]

Satoh, K.. Iwayama, N., A correct top-down proof procedure for general logic pro-
grams with integrity constraints. Proc. 3rd International Workshop on FKzxtensions

of Logic Programming (1992) 19 34

Satoh, K., Iwayama, N., A query evaluation method for abductive logic program-
ming. Proc. International Conference and Symposium on Logic Programming,

(1992) 671 685

Sattar, A., Goebel, R.; Using crucial literals to select better theories. Technical
Report Dept. of Computer Science, University of Alberta, Canada (1989)

Selman, B., Levesque. H.J., Abductive and default reasoning: a computational core.

Proc. AAAT 90 1990 ()343 348

Sergot,M.. A query-the-user facility for logic programming. Integrated Interactive

Computer Systems, Degano and Sandwell eds., North Holland Press (1983) 27-41

Shanahan, M., Prediction is deduction but explanation is abduction. Proc. 11th
International Joint Conference on Artificial Intelligence, Detroit, Mi (1989) 1055
1060

Simari, G.R., Loui, R.P, A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence 53 (1992) 125 157

Sperber, D., Wilson, D., Relevance: communication and cognition. (Basil Blanckwell
Ltd, Oxford, UK,1986)

Stickel, M.E., A prolog-like inference system for computing minimum-cost abduc-
tive explanations in natural-language interpretation. Proc. International Computer
Science Conference (Artificial Intelligence: Theory and Applications), Honk Kong,
Lassez and Chin eds. (1988) 343-350

Stickel, M.E., Rationale and methods for abductive reasoning in natural language
interpretation. Proc. International Scientific Symposium on Natural Language and
Logic, Hamburg, Germany, Springer Verlag Lecture Notes in Artificial Intelligence

(1989) 233 252

Teusink. F.. Using SLDFA-resolution with abductive logic programs. {LPS 93 post-
conference workshop “Logic Programming with Incomplete Information” (1993)

Toni, F., Kakas, A. C., Computing the acceptability semantics. To appear in
Proc. International Workshop on Logic Programming and Nonmonotonic Reasoning

(1995)

Toni, F., Kowalski, R. A., Reduction of abductive logic programs to normal logic
programs. To appear in Proc. International Logic Programming Conference, (1995)

Toni, F.. A theorem-proving approach to job-shop scheduling. Technical Report

Imperial College, London (1994)

[185] Torres, A., Negation as failure to support. Proc. 2nd International Workshop or

188

189

Logic Programming and Nonmonotonic Reasoning MI'T press (Pereira and Nerode

eds.), Lisbon (1993) 223 243

Van Belleghem, K., Denecker, M., De Schreye, D., Representing continuos change
in the abductive event calculus. Proc. 11th International Conference on Logic Pro-

gramming, MIT Press, Santa Margherita Ligure, Italy (1994) 225 239

Van Gelder, A., Ross. K.A.. Schlipf, J.S.. Unfounded sets and the well-founded
semantics for general logic programs. Proc. ACM SIGMOD-SIGACT, Symposiun
on Principles of Database Systems (1988)

Van Gelder, K.A., Schlipf, J.S.. Commonsense axiomatizations for logic programs.
Journal of Logic Programming 17 (1993) 161-195

Wallace, M., Negation by constraints: a sound and efficient implementation of nega-
tion in deductive databases. Proc. fth Symposium on Logic Programming, San Fran-
a3 ymp 4 g 9.

cisco (1987)

80

