
Logic without Model TheoryRobert KowalskiAbstractArguably, model theory serves two main functions: (1) to explainthe relationship between language and experience, and (2) to spec-ify the notion of logical consequence. In this paper I shall proposethe notion of `knowledge assimilation', the assimilation of new in-formation into a knowledge base, as an alternative understanding ofthe way in which a knowledge base formulated in logic relates to ex-ternally generated input sentences that describe experience. I shallargue that the notion of logical consequence can also be understoodwithin a knowledge assimilation framework, in terms of sentencesthat must hold no matter what stream of input sentences mightarise in the future.Classical model theory can be understood as dealing with staticrelationships among individuals. It leads naturally therefore to possi-ble world semantics and modal logic, in which models are understoodas related to one another by accessibility relations. I shall argue infavour of a non-model-theoretic alternative to possible world seman-tics, an alternative which employs a syntactically rich vocabulary ofterms representing time, events, situations and theories.Similarly to the way in which possible worlds can be viewed asarising from classical models, situations which cut across time andspace in situation semantics can be viewed as arising from possi-ble worlds. I shall argue for representing situations syntactically astheories and amalgamating object language and metalanguage as analternative to situation semantics.1 IntroductionLogic is an important object of study in such diverse disciplines as mathe-matics, philosophy, psychology, linguistics, computing, arti�cial intelligenceand law. It is used informally in every other intellectual discipline: in thenatural sciences, social sciences and humanities. Despite the all-pervasivenature of logic, however, there is little agreement among experts and laypeople alike about whether or not humans are truly logical; and, if they1



2 R. Kowalskiare, about what that logic might be like. Even worse, there seems to belittle communication between experts in logic working in di�erent �elds.In this paper I will outline a computational approach to logic that hasproved useful for building non-trivial applications in computing, arti�cialintelligence and law. I will argue that such a logic can also be used tounderstand human reasoning in both computational and logical terms. Forease of reference, I will call this computational logic `CL'.The computational logic, CL, is not entirely well-de�ned. It is an evolv-ing system of logic, which has its basis in the clausal and logic program-ming (LP) forms of logic, but which is undergoing continual re�nement andreinterpretation. In this paper I will not be concerned with the theoreticalfoundations of CL, but rather with the practical characteristics which makeit useful for building complex applications and for modelling human rea-soning. These characteristics include the use of a rich vocabulary of termsand the combining of object language and meta-language, to represent andreason about time, events, states of a�airs, and theories.Johnson-Laird and Byrne [16], in their book on human deduction, dis-miss clausal logic and by implication LP, as psychologically implausible andpropose instead a model-theoretic account of human reasoning. They arguethat their `mental model' theory explains human performance on reasoningtasks better than proof-theoretic approaches that assume humans reasonby applying rules of inference.The mental model view of human reasoning is similar to the model-theoretic approach to databases, in which a database is regarded as amodel-theoretic structure and a closed query is evaluated by determin-ing its truth value in the database. The model-theoretic approach is alsocommon in modal logic, where possible world semantic structures are oftenused directly as temporal databases or `knowledge bases'. It is, perhaps,taken to its greatest lengths in situation semantics [2], where all informationis directly associated with situations, viewed as extra-linguistic semanticstructures.Situation semantics, motivated largely by problems in linguistics, andmental models, developed in the �eld of psychology, share a common as-sumption that human logical thinking is based upon the processing of cer-tain kinds of semantic structures. In this paper I will present and defend thecontrary view that both computer and human reasoning are better viewedproof-theoretically as reasoning with sentences formulated in an internal,`mental' language.I will begin in section two by considering the two main goals of modeltheory: (1) to explain the relation between language and experience, and(2) to specify the notion of logical consequence. In section three, I willpresent an alternative, more pragmatic approach to the �rst goal|onebased upon the proof-theoretic assimilation of observational sentences into



Logic without Model Theory 3a knowledge base of sentences formulated in a language such as CL.Whereasin model theory `truth' is a relationship between language and reality, inthe alternative approach `truth' is a relationship between sentences of theknowledge base and observational sentences.The language considered in section three is the mental language of anagent that is forced to make sense of a continuous stream of experience for-mulated in terms of observational sentences. In section four, I consider thecase where the observations which need to be assimilated are utterances ofnatural language sentences, and I argue that the meaning of such sentencesis best understood syntactically as the result of translating them into othersentences of the agent's mental language.In section �ve, I consider the second goal of model theory, to specifythe notion of logical consequence, and I outline an alternative speci�cationbased upon the hypothetical consideration of all possible, complete inputstreams of observational sentences. The alternative speci�cation di�ersfrom the orthodox model-theoretic speci�cation by making no assumptionsabout the existence of individuals, functions and relations apart from those`projected' by the vocabulary of the language. Although the alternativespeci�cation is entirely syntactic, it can also be understood `pseudo-model-theoretically' in terms of Herbrand interpretations.In sections six and seven, I consider possible world semantics and sit-uation semantics respectively. In both cases I propose syntactically-basedalternatives. In the case of temporal possible world semantics in particu-lar, I propose the use of a rich vocabulary of terms representing time andevents directly in the language. In the case of situation semantics, in sec-tions eight and nine, I propose the use of metalanguage, in which termsrepresent situations regarded syntactically as theories. In section ten, Iconclude.2 What is model theory?Arguably, model theory has two main functions. First, it aims to clarify therelationship between language and experience, by considering the conceptof truth as a relationship that holds between a sentence and a semanticstructure. The semantic structure, called an interpretation associates in-dividuals with constant symbols of the language, functions with functionsymbols, and predicates or relations with predicate symbols. An atomic,variable-free sentence is said to be true in the interpretation (and the inter-pretation is said to be a model of the sentence) if and only if the individualsassociated with the terms appearing in the sentence stand in the relationassociated with the predicate symbol of the sentence. As an explanation ofthe relationship between language and experience, model-theoretic seman-



4 R. Kowalskitic structures incorporate an assumption that experience is caused by anindependently existing reality, and they serve as mathematical idealisationsof that reality.The other main purpose of model theory is to specify the relationship oflogical consequence between a set of sentences T and a sentence P as holdingif and only if P is true in every interpretation in which all the sentences ofT are true. The model-theoretic de�nition of logical consequence formalisesthe intuitive understanding that P holds whenever T holds, no matter whatmeaning is associated with the symbols in T and P .I shall argue that model theory fails in its �rst goal, of giving a goodexplanation of the relationship between language and experience; and it isonly partially successful in its second goal, of specifying the notion of logicalconsequence. In both cases, the assumption of model theory that thereexists a reality composed of individuals, functions and relations, separatefrom the syntax of language, is both unnecessary and unhelpful.3 A more pragmatic view of the relationshipbetween language and experienceComputer systems that interact with the world and that use logic to rea-son in the context of those interactions suggest a very di�erent and morepragmatic view of the relationship between language and experience. Inthis view, the symbolic representations which are constructed and manipu-lated by the computer can be thought of as sentences of a `knowledge base'formulated in an internal `mental language'.Here the notion of mental language needs to be understood liberally,analogously to the way in which computer languages are understood inComputing. Computer programs written in a high-level language can becompiled into lower-level languages and even into hardware, in such a waythat their high-level origins can be practically unrecognisable. Nonetheless,to understand and reason about the behaviour and `semantics' of suchprograms it is generally useful to view them as though they were stillwritten in the high-level language and as though they were executed on ahigh-level `virtual machine' appropriate to the high-level language. Evenprograms implemented directly at lower-levels are often better understoodby `decompiling' them and imagining them to have been written in a high-level language.The fundamental thesis of logic programming is that appropriate formsof logic can serve as a high-level programming language. It follows thatsuch forms of logic can also be used to understand and reason about com-putations which actually take place at a lower software, hardware or evenbiological level.



Logic without Model Theory 5Logic programs can also function as deductive databases or knowledgebases. But databases, like programs, can usefully be understood at sev-eral di�erent levels. The external level is what the user sees|perhaps anatural language, graphical, menu-driven or forms interface. The physicallevel is what the computer `sees'|typically a collection of obscure datastructures and complicated algorithms that exploit the physical propertiesof the computer to achieve e�ciency. The conceptual level is what the de-signers and implementers of the database system see when they want tounderstand and reason about the intended behaviour of the database. Itis at this conceptual level that the database can be understood as a logicaltheory|some collection of sentences in logical form.It is also at the conceptual level that an intelligent computing agentcan be understood as representing beliefs about its interactions with theworld in the form of a theory or `knowledge base' of sentences formulatedin a `mental', logical language.Such theories or knowledge bases are really `theory presentations' fromwhich logical consequences are derived, both in order to solve problemsand in order to assimilate new `information'. Logically equivalent theo-ries, which entail the same logical consequences, can have very di�erentpragmatic characteristics, in the same way that di�erent, but equivalentprograms can have very di�erent computational properties.In the general case, the knowledge base of an agent consists both of ob-servational sentences, which record inputs and which correspond directlyto experience, and of theoretical sentences, which do not have direct coun-terparts in experience. Observational sentences are ground (i.e. variable-free) atomic sentences, which identify individuals, classify them, and recordboth their attributes and their relationships with other individuals. Withthe aid of theoretical sentences, other ground atomic sentences can be de-rived from input observational sentences; and these derived sentences canbe compared with previous and future observational sentences. A groundatomic sentence might be regarded as `true' if it corresponds exactly withsome such past or future input observation.For example, the knowledge base might record an input observationthat there is smoke coming from the kitchen.Appropriate `mental constants' would be used as symbolic representationsof `the smoke' and `the kitchen'. These might be constants already occur-ring in the knowledge base, in the case of individuals about which therealready exists some previous `knowledge', or they might be new constantsfor new individuals. The record might use a predicate symbol to repre-sent the relationship `coming from'. The time of the observation might



6 R. Kowalskibe recorded explicitly by some form of mental time-stamping (in the man-ner of CL) or implicitly by a modal operator. The entire record of theobservation might then take the formisa (smoke1, smoke)isa (kitchen1, kitchen)and eithercoming-from (smoke1, kitchen1, time1), orcoming-from (smoke1, kitchen1)where in the �rst case the third argument place of `coming-from' indicatesthat `time1' is the time of the happening, whereas in the second case thereis an implicit modality indicating that the event took place at the presenttime.Theoretical sentences in the knowledge base (in one form or other) mightrepresent such beliefs aswhenever and wherever there is smoke, there was an earlierevent of ignition which happened and which caused the smokeand whenever and wherever an event of ignition happens, there is astate of �re soon afterwards.With the aid of such theoretical sentences it would be possible to derivethe conclusion that there is, or soon will be, �re in the kitchen. This con-clusion can be compared with other observational sentences coming fromother observations made at the same or other times. Once observationshave been recorded in the mental language of the knowledge base, thesecomparisons between derived and input sentences are purely syntactic (rel-ative to the mental language). A record of observing �re in the kitchenwould con�rm (the `truth' of) the derived conclusion. A record of observ-ing a smoke machine would probably refute it.That part of the knowledge base, which includes observational sentencesand those theoretic sentences which can be used to derive conclusions thatcan be compared with observational sentences, is often referred to as aworld model. This use of the term is potentially confusing because thenotion is completely syntactic and quite di�erent from the notion of modelin model theory.World models are tested by comparing the conclusions that can be de-rived from them with other sentences that record inputs, which are obser-vational sentences extracted from experience. In the idealised case, where



Logic without Model Theory 7observational sentences are assumed to be faultless, they serve as the stan-dard against which the world model can be tested. Thus, a ground atomicsentence derivable from the `model' can be regarded as `true' if it is iden-tical to an input observational sentence. Moreover, such an input neednot be added to the `model' because it is already derivable and thereforeredundant. The negation of a ground atomic sentence derivable from the`model' can be regarded as `false' if it is the negation of an input obser-vational sentence. In such a case assimilation of the input would involve(perhaps non-deterministically) removing or modifying some sentence inthe knowledge base that leads to the derivation of the false conclusion, andadding the `true' input to the knowledge base.In the idealised and unrealistic case where the observational sentencesconstitute a complete and correct description of all experience, then the`truth' or `falsity' of all sentences in the world model can be determined.Thus, for example, given such a complete and faultless set of observationsentences O a sentence of the form8Xp(X)would be `true' relative to O, if every ground instancep(t)is `true' relative to O, where t is any ground term occurring in O, and itwould be `false' otherwise.Moreover, a negative sentence :Pis `true', relative to O, if and only if P is not in O. Thus it is the assumptionthat the observations are complete that warrants concluding :P if P cannotbe validated by the observations. This is similar to the assumption ofcompleteness used to justify negation as failure in logic programming [5].Obviously, the notion of an idealised, faultless and complete set of ob-servational sentences has much in common with the notion of model inmodel theory. In model theory, there is a real world, consisting of real in-dividuals, functions and relations. In the more pragmatic theory, however,there is only an inescapable, constantly 
owing input stream of observa-tional sentences, which the agent is forced to assimilate. To inquire intothe source of this input stream and to speculate about the nature of thesource is both unnecessary and unhelpful. For all the agent can ever hopeto determine, the source might just as well be some form of virtual reality.Hallucinations can be explained as a lack of coherence among the inputsentences themselves, rather than as any lack of correspondence between



8 R. Kowalskiinput sentences and reality. Identifying an appropriate record of experienceto be rejected or otherwise modi�ed, as such an hallucination, can be a non-deterministic process, like any other process of restoring consistency to aninconsistent set of sentences.In model theory, truth is a static correspondence between sentencesand a given state of the world. In the computationally inspired, pragmatictheory, however, what matters is not so much `truth' and correspondencebetween language and experience, but the appropriate assimilation of aninescapable, constantly 
owing input stream of observational sentences intoan ever changing knowledge base. Correspondence between an input sen-tence and a sentence that can be derived from the knowledge base is onlya limiting case. In other cases some weaker form of coherence may be allthat can be obtained. In the most extreme form of incoherence, whicharises in the case of inconsistency, assimilation of an input might require anon-deterministic revision of the knowledge base.A related process of belief revision was considered by G�ardenfors [12]and by Alchourr�on, G�ardenfors and Makinson [1], who formulated a num-ber of postulates about the relationship between a given state of a knowl-edge base, an input, and the resulting successor state of the knowledgebase. These postulates embody a number of idealised assumptions, aboutthe knowledge base containing all its logical consequences and about therebeing a unique successor state, which are not computationally feasible.Perhaps, more importantly though, the belief revision theory shares withthe knowledge assimilation theory presented here the property that model-theoretic considerations are unnecessary. Moreover, G�ardenfors [12] showshow belief revision can give an alternative account of the semantics of logic,somewhat in the spirit of the account presented later in section �ve of thispaper.The process of knowledge assimilation, proposed in [18], was intendedas a computationally feasible account of how input sentences might be as-similated into a given set of sentences constituting a `theory'. The proposalwas intended to include such diverse applications as updating a database,understanding a natural language discourse, enlarging and testing a scien-ti�c theory, and assimilating observations into the knowledge base of anintelligent, computing agent. A related, computationally-oriented theoryof human cognition in general and of human communication in particularhas been developed by Sperber and Wilson [33].In knowledge assimilation, the relationship between a given state T ofa theory, an input sentence P , and a successor state T 0 of the theory isdetermined by resource-constrained deduction. There are four cases:1. P is a logical consequence of T .2. Part of T is logically implied by P together with the other part of T ,



Logic without Model Theory 9i.e. T = T1 [ T2 and T2 is a logical consequence of T1 [ fPg.3. P is inconsistent with T .4. None of the relationships (1){(3) hold.Input sentences, P , occur as items in a constantly 
owing input stream.Normally there is little time available to process one input before the nextalready appears. Although it is sometimes possible to interrupt the pro-cessing of the �rst input, process the second and return to the �rst, mostinputs need to be assimilated `on-line' in the relatively small gap betweenthat input and the next. Thus detecting any of the logical relationships(1){(3) outlined above is generally subject to severe limitations on the pro-cessing time available.To make the best use of the limited computational resources, proof pro-cedures for detecting logical consequences need to be as e�cient as possible.For this reason they need to avoid generating obvious redundancies and ir-relevancies. One way to reduce the generation of redundancies is to avoidexplicitly putting them there in the �rst place. This is the purpose of cases(1) and (2).One way to reduce the generation of irrelevancies is to focus on theinput. This can be done by reasoning forward from P in cases (2) and(3), so that every conclusion generated depends non-trivially on P ; and,similarly, to reason backwards from P in cases (1) and (2). Another way isto avoid unnecessary and computationally unmotivated use of the thinningrule, which derives A _B from A:Such strategies for improving the e�ciency of deduction in classicallogic have been developed in the �eld of automated reasoning. Many ofthese strategies are based upon some restricted use of the resolution rule ofinference [29]. These strategies implement classical logic, but derive onlyrelevant conclusions, without using relevance logic. Related restrictions onthe deductive processing of information have been proposed by Sperberand Wilson [33].The successor state T 0 , which results from processing an input sentenceP in a given state T of a theory, depends upon what logical relationshipscan be determined between T and P within the limited computationalresources available.In case (1) the input is determined to be redundant, and the theorydoes not need to change, i.e. T 0 = T . However, although the input does notcontain any new logical (or `semantic') information, it does have pragmaticvalue. It identi�es some subtheory T � of T used to derive P . This subtheory



10 R. Kowalskican be most easily determined by reasoning backward from the input P .To the extent that all the sentences in T � are relevant to the derivation ofP , the input P lends support to the sentences in T �. The increased supportgiven to T � could be recorded in the form of metalogical labels [10] whichsomehow measure the degree of con�rmation or utility of the sentences inT �.The term `degree of con�rmation' comes from philosophy of science,where it indicates the extent to which an hypothesis conforms to obser-vational evidence. Here, I use the term more in the sense of G�ardenfors'[12] epistemic entrenchment and Sperber and Wilson's [33] strength of anassumption, to indicate the extent to which a sentence has proved usefulfor the deductive processing of other sentences in the past or the extent towhich is expected to prove useful in the future.In case (2), the input provides useful information, which renders part,T2 of T redundant. Therefore the input can replace T2 in the successorstate of the theory, i.e. T 0 = T1 [ fPg. Assuming that T itself is theresult of a previous sequence of knowledge assimilation steps, and thereforethat it contains no `obvious' redundancies or inconsistencies, the generationof T2 can be performed by reasoning forward from P , thereby restrictingthe conclusions contained in T2 to ones in which the contribution of Pis relevant. Moreover, if degree-of-con�rmation labels are associated withsentences in the theory, then the labels associated with sentences in theset T �, used to derive conclusions in T2, can be revised to record a higherdegree of con�rmation.In case (3), the test for inconsistency can be performed by reasoningforward from P , on the assumption that the search for inconsistency canbe restricted to proofs in which the contribution of P is relevant [30]. Thederivation of an inconsistency identi�es a subset T � of T [ fPg, contain-ing P , which needs to be revised in order to avoid the inconsistency. Ingeneral, this can be done in many di�erent ways, and therefore the choiceof successor state T 0 will be non-deterministic. i.e. di�erent choices of T 0will have the desired e�ect of avoiding the inconsistency. In some domains,such as database updates, it is common simply to ignore the input, and soT 0 = T . In other domains, where the input can be regarded as recording`true' observations, some other way of restoring consistency needs to befound. In these and other cases, degree-of-con�rmation labels can help toidentify candidate sentences to be removed or otherwise modi�ed. In anycase, it may not be possible to identify a unique successor state T 0, in whichcase the agent may need to explore alternative successor states, whetherin sequence or in parallel. Notice, moreover, that exploring alternative,mutually incompatible successor states in parallel might give an externalobserver the misleading impression that the agent is irrationally committedto holding simultaneously incompatible beliefs.



Logic without Model Theory 11In case (4), where none of the other logical relationships can be deter-mined in the time (and space) available, it may be necessary to add theinput to the theory, obtaining T 0 = T [ fPg. In many domains, however,it is more appropriate (and more coherent) to determine an abductive ex-planation � such that T [ � implies P and to let T 0 = T [ �. Otherconstraints that are normally imposed upon � include that (a) T [� beconsistent, (b) � be minimal, i.e. no strict subset �0 of � is such thatT [�0 implies P , and (c) � be basic, i.e. not derivable (by deduction orabduction) from T [�0, where �0 6= �. As in case (3), the choice of T 0will often be non- deterministic. Again, degree-of-con�rmation labels canhelp to compare di�erent derivations and to choose a � such that the rel-evant subset T � of T used with � to derive P has a greater (or at least noworse) degree of con�rmation than other relevant subsets used with otherabductive explanations. As in case (1), the generation of the relevant setT � needed to derive P can be performed by reasoning backward from theinput P .Adding an abductive explanation in place of the input to obtain a suc-cessor state of the knowledge base violates the Alchourr�on{G�ardenfors{Makinson rationality postulates, but accords well with the Sperber{WilsonRelevance Theory. A survey of the extension of logic programming to in-corporate abduction is given by Kakas, Kowalski and Toni [17].For the sake of e�ciency, cases (1) and (4) can be combined, usingresolution to reason backward from the goal P , reducing it either to theempty set of subgoals (case 1) or to a set of abducible subgoals (case 4).Cases (2) and (3) can also be combined, using resolution to reason forwardfrom the assertion P , either to derive conclusions already in T (case 1) orto derive an obvious inconsistency (case 3). Furthermore, the test (case 4)that an abductive explanation � is consistent with T , can be subsumed bytreating � as a new set of inputs to be assimilated.Compared with knowledge assimilation, model theory can be regardedas dealing with the special and limiting case where the input sentencesconstitute a correct and complete description of the world, and are givenentirely in advance. Cases (1){(4) of knowledge assimilation are roughlyanalogous to the recursive de�nition of truth in model theory. The bigdi�erence, however, is that model theory assumes the existence of seman-tic structures containing individuals, properties and relationships, separatefrom the syntactic structures of the language. Knowledge assimilation,on the other hand, assumes only that there is a constant stream of inputsentences that need to be assimilated.In the normal case, the input sentence to be assimilated is an observa-tional sentence|for example, some record of a natural language utterance.Such observational sentences typically have the form of ground atomic sen-tences. However, an agent might also generate its own hypothetical inputs,



12 R. Kowalskias in the case of abduction, induction, or theory formation more generally.The four cases of knowledge assimilation apply also to such hypotheticalinput sentences, in which case (2) assumes a special importance, because itindicates the explanatory power of the hypothesis. The greater the number(and degree-of-con�rmation) of sentences T2 derivable from the hypothesis,the greater the explanatory power and utility of the hypothesis.In summary, knowledge assimilation provides a syntactic and pragmaticalternative to model theory as an account of the relationship between lan-guage and experience. It assumes that experience takes the form an in-escapable stream of input sentences, which needs to be assimilated intoa constantly changing knowledge base. The knowledge base serves to or-ganise and provide e�cient access to useful information. Not only do itsconsequences need to correspond as much as possible with experience, butideally they need to provide coherent explanations as well.In the next two sections, I will discuss natural language processingand logical consequence in knowledge assimilation terms. In the followingsections I will discuss syntactic alternatives to possible world semantics andsituation semantics.4 Natural language processingNatural language understanding can also be understood in knowledge as-similation terms|but with two complicating factors: The �rst concernsthe relationship between language and thought. Presumably, there is orthere ought to be some close relationship between the structure of a nat-ural language utterance and the structure of some sentence in the mentallanguage of the communicator. In the simplest case, the utterance conveysthe communicator's thought as directly and as simply as possible. In othercases, the utterance may be ambiguous or misleading. In yet others, itmight attempt to articulate a new thought, as part of the communicator'sprocess of assimilating a new hypothesis into its own knowledge base. Inmany cases, the correspondence between a natural language utterance andits intended meaning might be very imperfect indeed.The second complication concerns the di�erence in the meaning of anutterance as understood by the communicator compared with its meaningas understood by the recipient. For the recipient, this means that theutterance needs to be understood in terms of both the recipient's own pointof view as well as the recipient's understanding of the communicator's pointof view.Consider, for example, the process of attempting to understand andassimilate the consecutive sentences in a text such as the one constitut-ing this paper. Arguably, the reader has a two-fold task. The �rst is to



Logic without Model Theory 13understand the text in its own terms, assessing the extent to which thepresumed meanings of individual sentences cohere with the previously de-termined meanings of the sentences which preceded them. The second is tounderstand the signi�cance of the text for the reader's own beliefs, assessingthe extent to which the meanings conveyed can be coherently assimilatedinto the reader's own knowledge base. In the simplest case, understand-ing a straight-forward account of some historical event, for example, thetwo tasks might collapse into one if the recipient has su�cient faith in thecommunicator. In a more complicated case, however, the recipient mightnot only decide to reject the information, but also to conclude that thecommunicator is using the communication for some ulterior motive. Anexample, where the recipient would have bene�ted from reasoning in sucha way, is the crow in Aesop' s fable of the fox and crow.Notice that throughout the preceding discussion I have implicitly as-sumed that the `meaning' (and by implication the `semantics') of naturallanguage sentences is be obtained by translating such natural language sen-tences into other sentences of a mental language. This is a kind of `corre-spondence theory' of meaning|not a correspondence between natural lan-guage utterances and actual states of a�airs, but rather a correspondencebetween natural language utterances and mental language sentences.In the standard account of natural language understanding, the obser-vational sentences that are input to a recipient record only the syntacticform of the utterance. The recipient needs to process this syntactic formto generate a representation of its `semantics'.Consider, for example, the natural language sentence'All humans are mortal.'A typical natural language processing program would �rst generate an in-ternal representation of its syntax, for example a list such as['All', `humans', `are', `mortal', `.']and then a representation of its meaning, e.g.8X(h(X) ! m(X))The program might usefully record the source and context of the inputby means of appropriate metalevel sentences such assaid (co, john, ['All', `humans', `are', `mortal', `.'])said-that (co, john, `8X(h(X) ! m(X))')where the second sentence would be derived from the �rst. Here the �rstargument, co, is some representation of the context|possibly a time in-dicator, an event identi�er, or even a situation in the spirit of situation



14 R. Kowalskisemantics. By reference to this argument, the agent trying to assimilatethe input can gain access to previous inputs in the same discourse.Having obtained a metalevel representation of the presumed meaningof the input, the agent would then attempt to assimilate this metalevelsentence into its knowledge base, perhaps deriving such object level con-clusions as 8X(h(X) ! m(X)) orlogician (john) _ psychologist (john).In the �rst case, the conclusion might be derived by means of a metalevelsentence1 believes (X;Y ) said-that (X;Y )^ trustworthy (X)together with a scheme2 that combines an object level conclusion with ametalevel condition Y  believes (X; `Y ')^ wise (X)and with object level sentences that express that John is both trustworthyand wise.In the second case, the conclusion might be derived from other, quitedi�erent assumptions in the knowledge base, e.g.logician (X)_ psychologist (X)  said-that (X;Y )^ logic-example (Y )In both cases what is assimilated is not an object level sentence express-ing that all humans are mortal, but rather a metalevel sentence expressingthat john said that all humans are mortal.In general it is important to distinguish between information comingfrom direct experience and information coming from communication. Al-though both kinds of information are appropriately expressed by means ofobservational sentences, information which comes from direct experience ismost naturally expressed in object level form, e.g.h (john).a record of an observation that john is human, whereas information whichis communicated is most naturally expressed in metalevel form, e.g.1Upper case symbols are used here and elsewhere in this paper for variables. Anyvariable occurring in a sentence is assumed to be universally quanti�ed, even whenthe quanti�ers are not written explicitly. Note also that I use `p ! q' and `q  p'interchangeably.2A simpler representation of this scheme as a combined object-level, metalevel sen-tence without quotation will be given in section 8.



Logic without Model Theory 15said (co, john, ['All', `humans', `are', `mortal', `.'])Of course, such metalevel observational sentences are also, in a sense,object level sentences which record direct experiences of the communicationitself.The example shows how di�cult it is to test whether or not a com-puting agent processes information logically, and, if it does, what kind oflogic the agent employs. A psychologist, for example, who poses logic puz-zles in natural language, can not simply assume that the agent receivingthe communication assimilates the information communicated directly inobject-level form as though it were the result of its own direct experience.To determine whether or not the agent reasons logically, the interrogatorwould need to know the contents of the agent's knowledge base and under-stand how the agent assimilates the communication (not the informationcommunicated!) into that knowledge base.5 The speci�cation of logical consequenceI believe that the considerations presented in the previous two sections callinto question the usefulness of model theory in providing a useful accountof the relationship between language and experience. Model theory helpsto explain neither the relationship between mental language and the worldnor the relationship between natural language and its meaning.But perhaps the more signi�cant achievement of model theory is its pro-viding a speci�cation of logical consequence, which is arguably more com-pelling than simply providing a proof procedure. In this respect, modeltheory (non-constructively) speci�es the notion of logical consequence inmuch the same way that a program speci�cation speci�es a program. Incontrast, proof theory provides a non-deterministic, but constructive def-inition of logical consequence, which is analogous to a non-deterministicprogram.Model theory formalises the intuitive speci�cation of logical consequence,which can be put informally in the forma set of sentences T logically implies a sentence Pif and only iffor every interpretation I of the language Lin which T and P are formulated,P holds in I if all sentences in T hold in I.Model theory formalises the notion of interpretation in this informalspeci�cation in terms of set theoretic or algebraic structures, which havea di�erent nature from the linguistic structures of the language L. I have



16 R. Kowalskialready argued that, for the purpose of understanding the relationship be-tween language and experience, such extra linguistic semantic structuresare neither necessary nor useful. I have argued instead that the notionof assimilating a dynamically changing input stream of observational sen-tences can give a better account both of the relationship between mentallanguage sentences and experience and of the relationship between naturallanguage sentences and their meanings. I shall now argue that a similar,purely syntactic notion, in which interpretations are understood as ide-alised, complete and faultless input streams of observational sentences, canbe used to formalise the speci�cation of logical consequence. This notionis, in fact, similar to the notion of Herbrand interpretation in model theory.The syntactic speci�cation of logical consequence is especially trans-parent in the case of sentences formulated in clausal form, which is thebasis for both resolution and LP. Clausal form is normally considered asan implementation of classical �rst-order logic (FOL). However, althoughclausal form has some disadvantages compared with FOL, it can also beconsidered as a knowledge representation formalism in its own right [18].Its main advantage is its simplicity and the fact that trivial syntactic dif-ferences between sentences are avoided by the use of a canonical form. Forexample, a conjunction of sentences, A^B, is represented as a set fA;Bg;double negation, ::A, is automatically eliminated; and negation is onlyapplied to atomic formulae. Existential quanti�ers are avoided by intro-ducing `skolem' constants and function symbols, which make existentialcommitments more explicit than existential quanti�ers. For example, thesentence 8X9Y father (Y;X)becomes a clause 8X father (dad(X); X);where the function symbol `dad' is distinct from any other function symbolused elsewhere.In general, a clause can be written either as an universally quanti�eddisjunction of literals or as an universally quanti�ed implication of the form8X1; : : : ; Xk(A1 ^ : : :^An ! B1 _ : : :_Bm)where the Ai and Bj are atoms and X1; : : : ; Xl are all the variables occur-ring in the Ai and Bj . In LP, the number of conclusions m is always lessthan or equal to one. If m is zero, then the clause is equivalent to a denial8X1; : : : ; Xk:[A1 ^ : : :^An]:Because all variables are universally quanti�ed it is usual to omit explicituniversal quanti�ers.



Logic without Model Theory 17The semantics of clausal form is normally de�ned in terms of Herbrandinterpretations, which are sets of ground atoms. I shall show that this se-mantics can also be understood in knowledge assimilation terms. Given aset of clauses S, a Herbrand interpretation of S is any set of ground atomsconstructed from the vocabulary of predicate symbols, function symbols,and constant symbols occurring in S. Thus Herbrand interpretations canbe understood purely syntactically as a complete and faultless set of pos-sible observational sentences, where every ground term of the language isregarded as the name of a `conceivably' observable individual and everypredicate symbol as the name of an observable predicate or relation.To show that a set of clauses T logically implies a sentence P , the denial,:P , of P is converted into a set of clauses P � and it is shown that T [P � isinconsistent. This is done by showing that every Herbrand interpretationof T [ P � falsi�es some clause in T [ P �. A Herbrand interpretation Ifalsi�es a clause if it falsi�es some ground instanceA1 ^ : : :^An ! B1 _ : : :_Bmof the clause. Such a variable-free clause is falsi�ed by I if all of A1; : : : ; Anbelong to I, but none of B1; : : : ; Bm belong to I.It is possible to execute the semantics of clausal form directly, to de-termine whether a set, S, of clauses is inconsistent, using the method ofsemantic trees [21], originally developed to prove the completeness of reso-lution. The semantic tree procedure can be viewed as an idealised process ofassimilating all possible input streams of complete observations and show-ing that each such stream falsi�es some clause in the set of clauses S. Thereis a one-to-one correspondence between such input streams and Herbrandinterpretations of S.The process of assimilating all possible input streams of complete ob-servations can be formulated as a process of growing a binary-branchingtree of partial input streams, and terminating the growth of a branch whenthe observations recorded on that branch already falsify some clause in S.If S is inconsistent, the process will terminate after only a �nite number ofsteps.To be more precise, given S, �rst some procedure for enumerating allground atoms A1; : : : ; An; : : :constructible from the vocabulary of S is de�ned. This determines a one-to-one correspondence between Herbrand interpretations I of S and sequencesl1; : : : ; ln; : : :



18 R. Kowalskiwhere each li is either Ai, if Ai belongs to I, or :Ai, if Ai does not belongto I. The collection of all such sequences can be presented in the form ofa binary tree:
: : :: : :: : :: : :

: : :
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When a new node ln of the tree is generated, the new informationln is assimilated into the theory consisting of S together with the earlierpart of the branch l1; : : : ; ln�1. If S [ fl1; : : : ; lng is inconsistent (i.e. theinformation on the branch so far already falsi�es some clause in S), then thebranch is terminated, and all possible input streams extending this branchare eliminated from further consideration.The semantic tree procedure has all the hallmarks of a program speci�-cation. Although it is executable, it is ine�cient, especially if the enumer-ation of atoms determining the growth of branches is not dependent on thestructure of the clauses in S. Its e�ciency can be greatly improved bothby choosing an enumeration which is sensitive to the structure of the set ofclauses and by appropriately choosing di�erent enumerations on di�erentbranches.Arguably, the semantic tree procedure is also a good semantics, be-cause it considers all possible (syntactically characterised) meanings of thevocabulary occurring in a given set of clauses. It is not, however, model-theoretic, because it makes no assumptions about the existence of possibleindividuals, functions, and relations independently from the syntax of thelanguage.The semantic tree procedure can also be viewed as a form of reasoningby means of hypothetical cases, somewhat similar in spirit to the way inwhich a lawyer might argue in favour of a general principle by appealing



Logic without Model Theory 19to imaginary cases. Such reasoning by means of cases is an importantcharacteristic of legal reasoning and of practical reasoning in general. Itmay be tempting to understand such hypothetical, case-based reasoning inmodel-theoretic terms. The semantic tree procedure and the example oflegal reasoning show that it can also be understood more simply in purelylinguistic terms.Curiously, the semantic tree procedure also has a purely proof-theoreticinterpretation. Extending a branch by creating two new successor nodescan be interpreted as the application of a rulefAg [ S ` ? f:Ag [ S ` ?S ` ?Recognising that a partially constructed branch already falsi�es some clausecan be interpreted as the application of a complex, premise-free rulefA1; : : : ; An;:B1; : : : ;:Bm; Cg [ S ` ?where A1 ^ : : :^An ! B1 _ : : :_Bm is a ground instance of C.Clearly, there is a one-to-one correspondence between a semantic treedemonstration that a set of clauses S is inconsistent and a proof of S ` ?using these deduction rules. Moreover, this correspondence between seman-tic tree demonstrations and deduction rule proofs is obviously very like thecorrespondence between the semantic and proof-theoretic interpretationsof the semantic tableau procedure.The examples of the semantic tree and semantic tableau proceduresare not unique. Many other proof procedures are ambiguous and can beinterpreted both semantically and proof-theoretically. For example, themodel-elimination procedure [23], as its name implies, was originally un-derstood in purely model-theoretic terms. Today this interpretation haslargely been forgotten. On the other hand, the clausal theorem-proverSATCHMO [24] and its parallel variant MGTP [9] are still commonly re-garded as model-theoretic procedures, even though, in my opinion, it ismore useful to understand them purely proof-theoretically.In the light of such examples, as Wilfred Hodges has observed [14], itis easy to understand how Johnson-Laird might argue that human beingsreason in model-theoretic rather than in proof-theoretic terms.6 From model theory to possible worldsThe model-theoretic approach to logic leads naturally both to the notionof possible worlds and to the enrichment of FOL by means of modal oper-ators. The more pragmatically-oriented, CL approach, on the other hand,



20 R. Kowalskileads to the use of a rich vocabulary of terms representing such entitiesas time, events, situations, and theories without leaving FOL and withoutintroducing new logical operators.Given the seemingly static view of the world inherent in the semanticstructures of classical model theory, it is natural to view time as trans-forming one static state of the world into another. Thus the possible worldsemantics of modal logic replaces the simple model-theoretic interpreta-tions of FOL by complexes of interpretations (possible worlds) connectedby accessibility relations. In the simplest and most commonly occurringcase, the concepts of time, events, states, and state transitions are presentin the possible worlds semantic structures, but are absent from the lan-guage itself. In their place, the modal language contains modal operators,which are used to form sentences whose truth values are determined byreference to the accessibility relation between possible worlds. Thus, forexamplea sentence future P is true in a possible world Iin a possible worlds structure Wif and only if P is true in some possible world I 0accessible from I in W .The notion that a modal theory T logically implies a conclusion P is de-�ned, analogously to the case for FOL, as holding if and only iffor every world structure W and everypossible world I in W , if T is true in I in Wthen P is true in I in W .Modal logic and its possible world semantics seem to be adequate for rea-soning about change in an unchanging environment. This is the case, forexample, when reasoning about general properties of programs. In sucha case, possible worlds correspond to possible program execution paths;and sentences true in all possible world structures correspond to programproperties, such as correctness and termination, that hold no matter whatexecution path the program might take. That the modal language does notallow explicit reference to speci�c states of computation is not a limitation,because properties of speci�c states are not needed for proving generalprogram properties.The situation is quite di�erent, however, when modal logic is used torecord incoming observations that change over the course of time. Forexample, an observation thatmary is at workmight be recorded by a simple sentence of the form



Logic without Model Theory 21location (mary, work).But, immediately after the observation has been completed, the furthersentencepast location (mary, work)would need to be added to the knowledge base. Both sentences would needto be retained until mary leaves work, at which time the �rst sentencewould need to be deleted.Maintaining modal sentences becomes even more complicated whenthey express expectations about the future. For example, should a sen-tence such asfuture location (mary, home)be deleted when the observationlocation (mary, home)is �rst recorded? Or, rather, should the expectation be retained as part ofa default strategy which expects facts to persist until they are explicitlyterminated? If the latter, then how should such default rules be formu-lated?Because of such problems of maintaining modal sentences in a chang-ing environment, many applications of modal logic abandon the notion oflogical consequence and use possible world structures directly as temporaldatabases or knowledge bases instead. Incoming information about thepresent state is input into a possible world representing the present state.Information about the past or future is appropriately recorded in past orfuture possible worlds. As time changes, the possible world representingthe present state changes accordingly.Using possible world structures as knowledge bases is a natural exten-sion of using classical models as relational databases. In the relationaldatabase case, the database consists only of ground atomic sentences. Sen-tences more general than ground atoms can occur only as queries or in-tegrity constraints. They are evaluated by determining their truth valuesin the database regarded as a model-theoretic structure. By assuming thatthe database is complete (i.e. the `closed world assumption'), a ground neg-ative literal :A is assumed to be true if A does not belong to the database.By analogy with relational databases, the most obvious way to use pos-sible world structures as databases or knowledge bases is to associate onlyground atoms with possible worlds and to restrict more general sentences toqueries and integrity constraints. Unfortunately, not only does this greatlyrestrict the kind of information that can be stored in a knowledge base,but it also involves enormous duplication. Facts, such as



22 R. Kowalskilocation(mary, work)that hold in several possible worlds must be included in all the worlds inwhich they hold. Moreover, general statements, such aswhenever mary stays late at work,she drives the car to work in the morning,do not �t into such a possible world structure.Many authors have argued for using deductive theories rather thanmodel-theoretic structures as databases. The most obvious advantage isthat the database can then contain sentences more general than just groundatoms. Moreover, a relational database can be considered as a special casein which the deductive theory is a set of ground atoms augmented with acompleteness assumption [11].Similar arguments apply to possible world structures. A possible worldstructure can be regarded as a special case of a non-modal theory in whichthe fact that a relationshiphhr; a1 : : :anii holds in a possible world sis represented by a sentence such asholds (hhr; a1 : : :anii; s).Such a non-modal approach to the representation of modal concepts is ex-empli�ed by McCarthy's situation calculus, Allen's interval logic, the eventcalculus of Kowalski and Sergot and many other formalisms for the repre-sentation of temporal information both in database systems and in arti�cialintelligence. Moreover, Gabbay [36] has developed a general methodology,called `labelled deductive systems' by means of which possible world struc-tures can be translated directly into classical logic.7 From possible worlds to situation seman-ticsSituation semantics can be viewed as arising from possible world semanticsin a similar way to that in which possible world semantics can be viewed asarising frommodel theory. Whereas a possible world, in the context of tem-poral reasoning, can be viewed as representing an instantaneous time sliceof an entire world state, a situation is most naturally viewed as represent-ing partial information that cuts across time and space. Typical situationsmight include, for example,



Logic without Model Theory 23s1, the situation consisting of all of Mary's activities at workon 1 April 1993, and s2, the situation consisting of all the in-formation I have about Mary.Situations `support' items of information, which are semantic entitiescalled infons, similar to the way in which relationships between individu-als hold in the semantic structures of classical model theory and possibleworld semantics. In addition to recording `ordinary' relationships betweenindividuals, infons also record locations, times and polarities. A polarityof 1 indicates that a relationship holds; a polarity of 0 that it doesn't. Forexample �1 = hhlocation,mary, work, 1 April 1993, 1ii�2 = hhlocation,mary, work, 1 April 1993, 0iiwhere the �rst argument, `location', is the relation name, the third argu-ment, `work' or `home', names the actual location and the fourth argument,`0' or `l', indicates whether or not the relationship actually holds.Compound infons can be constructed by means of conjunction, disjunc-tion, universal and existential quanti�cation. The only negation allowedin most treatments of situation semantics is that provided by the polar-ity `0', which can be associated with basic (non-compound) infons. (Thisrestricted use of negation is similar to the restricted use of negation inthe clausal form of logic.) However, there is normally no connective forconstructing compound infons by means of implication (as in the standardtreatment of clausal form, but not in the treatment presented in section 5).To a �rst approximation [8], (the external form of) the mental state ofan agent can be understood as a collection (or knowledge base) of proposi-tions of the form s � �expressing that a situation s supports an infon �. (The distinction betweenthe external and internal form of a belief is discussed below in section9.) Information that persists over time can be recorded, by means of aproposition such ass1 � 8T 2 [10 : 00; 10 : 50]hhlecturing, mary, work; T; 1iifor example. Situation semantics can also relate information about onesituation to information about another, by means of `constraints' betweensituation types. Such constraints serve the function of implication as a log-ical connective in ordinary FOL. For example, let S and T be the situationtypes (rather like sets)S1 = [s1 j s1 � hhlocation, mary, work, t, 1ii ^ hhlate, tii ^ hhday, t, dii]S2 = [s2 j s2 � 9T (hhdrives, mary, work, T, 1ii ^ T < t ^ hhday; T;dii)]



24 R. KowalskiThen the proposition w � S1 ) S2expresses, as part of the information supported by the world state, w,that, for every situation in which mary works late, there exists a situationin which she drives to work earlier in the same day.More generally, a constraint of the formS ) S0expresses that if s is any situation of type S then there is a correspondingsituation s0 of type S0, possibly extending s.Constraints can also convey information about a single state. For ex-ample, the constraint S3 ) S4where S3 = [s j s � hhkisses, a, b, l, t, 1ii]S4 = [s j s � hhtouches, a, b, l, t, 1ii]can be understood as expressing that if a person a kisses a person b atlocation l and time t in situation s then a touches b at location l and timet in the same situation s.A knowledge base consisting of propositions in situation semantics isanalogous to a possible worlds structure used directly as a temporal knowl-edge base. In both cases, logical consequence and proof procedures play norole. In both cases, the alternative is to use an ontologically rich vocabu-lary of terms representing time, events, and theories, to use theories (sets ofsentences) as knowledge bases, and to use proof procedures to deduce log-ical consequences. In this alternative approach, situations are representedby theories, infons by ordinary sentences and the `supports' relation by ametapredicate demo (T; P )which expresses that the conclusion named P can be demonstrated fromthe theory named T .8 Combining object language and metalan-guageMetaprogramming is a powerful, commonly used technique for implement-ing expert systems, natural language processing systems, theorem-provers,interpreters and compilers in Prolog and in other logic programming lan-guages. Its use has also been proposed for theory construction [4] (including



Logic without Model Theory 25the construction and manipulation of modules viewed as theories), knowl-edge assimilation [18, 3] and the representation of knowledge and belief inmulti-agent systems [22]. Many of these applications require that objectlanguage and metalanguage be combined, similarly to the way in whichmodal logic combines sentences with and without modal operators.Following the results of Tarski [34], who showed that inconsistenciescan arise when object language and metalanguage are combined in an un-restricted manner, it has been generally held that object language andmetalanguage should be separated in an hierarchical fashion, so that self-reference can not occur. Moreover, Montague [25] and Thomason [35]showed that object language and metalanguage can not be combined con-sistently in the more restricted manner of modal logic. However, morerecent studies (e.g. [26, 27, 7, 31]) indicate ways in which object languageand metalanguage can be combined, provided that appropriate restrictionsare imposed.At least two other objections have been raised against systems thatcombine object language and metalanguage. One is that the naming con-ventions necessary to distinguish between object level expressions and theirmetalevel names are syntactically cumbersome. The other is that usingsyntactic expressions to represent intensional concepts, such as knowledgeand belief, is too �ne grained, in the sense that it distinguishes, as di�er-ent beliefs, logically equivalent sentences that are trivial variants of oneanother.One possible approach to the �rst objection is to abandon naming con-ventions altogether and to allow syntactic expressions to function as termswhich name themselves. This is the approach taken informally in muchProlog programming practice (including the so-called non-ground namingof variables [13]) and more formally in the micro-Prolog programming lan-guage [6]. Semantic foundations for using syntactic expressions as their ownnames were laid by Richards [28] and Gabbay [10] and have been furtherdeveloped by Jiang [15].The use of syntactic expressions as their own names allows combinedobject-level metalevel sentences such as8X;Y (X  believes (Y;X) ^ wise (Y )):In common with other universally quanti�ed sentences, such sentencescan be understood as standing for the set of all their ground instances, e.g.for such instances aslikes (john, mary) believes (john, likes (john, mary)) ^ wise (john).The second objection, that the use of syntactic expressions to repre-sent intensional concepts is too �ne grained, has been partly addressed by



26 R. Kowalskithe discussion in section 5, where it was pointed out that clausal form (andother canonical forms) eliminates trivial syntactic distinctions between oth-erwise identical sentences. In this respect, the relationship between clausalform and the standard form of FOL might be regarded as similar to therelationship between the `deep structure' which expresses the `meaning'of natural language sentences and the `surface structure' exhibited by thesentences themselves.Nonetheless, syntactic representations of intensionality (even in canon-ical form) are much �ner grained than modal representations. Thus, forexample, the two sentencesbelieves (john, 8X (human (X) ! mortal (X)) ^ human (john))believes (john, 8X (human (X) ! mortal (X)) ^ human (john)^ mortal (john))are logically equivalent in modal logic, where `believes' is a modal operator,because the two sentences8X (human (X) ! mortal (X)) ^ human (john)8X (human (X) ! mortal (X)) ^ human (john) ^ mortal (john)are logically equivalent. However, they are not equivalent in metalogic,where `believes' is a metapredicate, unless they become so as a consequenceof non-logical axioms such asbelieves (T; P ) believes (T; P  Q) ^ believes (T;Q)believes (T; P ^Q) believes (T; P ) ^ believes (T;Q)As Konolige [37] observes, the �ner granularity of syntactic representa-tions of belief potentially avoids the omniscience problem of conventionalmodal representations: that if an agent holds a belief then it holds all logi-cal consequences of that belief. In fact, however, Konolige treats belief as amodal operator, but gives it a syntactic interpretation, in which an agent isregarded as holding a belief if (and only if) the agent can prove that belieffrom its `knowledge base'. That the agent a can prove p is determined byan `attachment rule', which associates a knowledge base Kba and inferencesystem `a with a and shows thatKba `a pby directly applying the inference rules of `a to Kba.In metalogic programming it is natural to interpret the `believes' pred-icate as a two argument proof predicatedemo (T; P )



Logic without Model Theory 27where the �rst argument T names a theory (the knowledge base of anagent) and the second argument P names a sentence which is believed bythe agent because it can be derived (or `demonstrated') from T . The `demo'predicate can be de�ned by such non-logical axioms as(d1) demo(T; P ) demo(T; P  Q)^ demo(T;Q)(d2) demo(T; P ^Q) demo(T; P )^ demo(T;Q)identical (except for the di�erent predicate symbol) to those for `believes'given before. Alternatively, it can be implemented by means of an attach-ment (or re
ection) rule, similar to that of the modal language of Konolige.In CL, the theory parameter T of the `demo' predicate names a set ofclauses. A �nite set of clauses can be represented either by a list or by aconjunction of the clauses in the set. The two representations are identicalfor conjunctions C1 ^ : : :^Cn�1 ^Cnwritten in the canonical formC1 ^ (: : :^ (Cn�1 ^ (Cn ^ true)) : : :)where `^ ' functions as an in�x list constructor and `true' as a list terminatoror empty list. That a sentence is provable from a set of sentences becauseit belongs to the set can be expressed by the non-logical axioms(d3) demo (P ^Q;P )(d4) demo (P ^Q;R) demo (Q;R)similar to the axioms de�ning list membership.Thus for example demo ((p q) ^ (q ^ true); p)can be proved by using (d3) and (d4) to showdemo ((p q) ^ (q ^ true); p q)demo ((p q) ^ (q ^ true); q)and then using (d1).An alternative and often more useful way of representing theories andother syntactic objects is by means of constants [19]. Membership of a sen-tence in a set of sentences constituting a theory, represented by a constant,



28 R. Kowalskican be expressed by means of appropriate non-logical axioms. Thus, if theconstant c names the theory fc1; : : : ; cn; : : :gthen membership in the set can be de�ned, for example, by enumerationdemo(c; c1)...demo(c; cn)...The use of constants as names of theories can even be used for in�nitesets of sentences. For example, the in�nite set of ground, object levelclauses of unbounded lengthprime (2)  trueprime (3)  : divides (2,3) ^ true...prime (N+1)  : divides (N, N+1) ^(: : :^ (: divides (2, N+1) ^ true): : : )...can be named by a constant, say `prime', and membership in the in�niteset can be de�ned by the three clausesdemo (prime, prime (N+1)  X)  conditions (N,N+1, X)conditions (1, N, true)conditions (M+1, N, : divides (M+1, N) ^ X) conditions (M, N, X)Naming theories by constants is especially useful when the `demo' pred-icate represents belief. In such cases it is not realistic to name a knowledgebase by an explicit conjunction of sentences, either because the knowledgebase is too large or because its complete contents are not known.If an agent has a unique knowledge base (or set of beliefs), then theagent's name can conveniently double as the name of the knowledge base.Thus the metasentencesdemo (john, p q)demo (john, q)can be interpreted as expressing that john both believes p  q and alsobelieves q. From these sentences it is possible to derive the conclusiondemo (john, p)using the clause (d1).



Logic without Model Theory 299 Situations as theoriesFrom a purely formal point of view, much of situation semantics can beformalised in metalogic by using theories to represent situations, sentencesto represent infons, and the `demo' predicate to represent the `supports'relation. There is even a formal correspondence between the de�nitionof the `demo' predicate and certain properties of the `supports' relation,including for example such properties ass � �1 ^ �2 i� s � �1 and s � �2which is formally like the clause (d2) of the de�nition of `demo'.Unlike the use of constraints between situation types to represent con-ditional statements in situation semantics, CL uses ordinary implicationinstead. Thus a conditional statement such as`If a person kisses a person at atime and a location, then the �rstperson touches the second person at thesame time and the same location'can be formulated as an ordinary object level sentencekisses (A;B; T; L)! touches (A;B; T; L):It can also be expressed at the metalevel, either in the form(m1) demo (S, kisses (A;B; T; L))! demo (S, touches (A;B; T; L))or in the form(m2) demo (S, kisses (A;B; T; L)! touches (A;B; T; L)).Whereas the �rst of these metalevel formulations is analogous to theformulation by means of a constraint in situation semantics, the secondis analogous to the prohibited use of implication to construct compoundinfons. (m1) can be derived from (m2) using (d1).Constraints between di�erent situation types can also be formalised inCL by means of metalevel implications. For example, the constraint thatfor every situation in whichMary works late there exists asituation in which she drives to workearly that same daycan be formulated by means of the metalevel statement



30 R. Kowalski[demo(earlier(S), drive(mary, work, before(T )))^ before (T ) < T^ day (before(T ); D)] demo (S, location (mary, work, T ) ^ late (T )^ day (T;D)).Here the `Skolem' function symbol `earlier' constructs a name for thesituation earlier(S) which exists as a function of the universally quanti�edvariable S, thereby eliminating the need for an existential quanti�er. Simi-larly, the function symbol `before' avoids the use of an existential quanti�erfor the time before T which exists as a function of T .In situation semantics, an infon can occur as part of a meaningful state-ment only in the context of a situation which supports it. In CL, on theother hand statements can be formulated at either the object level or themetalevel, as is most appropriate. Thus it would be simpler and possiblyalso more appropriate to formulate the connection between Mary' s workinglate and driving to work by the purely object level statement[drive (mary, work, before (T )) ^ before (T ) < T^ day (before(T ); D)] location (mary, work, T ) ^ late (T )^ day (T;D).The possibility of formalising situation semantics in the metalogicalcomponent of CL glosses over an important philosophical di�erence be-tween the two approaches. Situation semantics views and represents mentalstates of an agent and their relationship to the world objectively from anexternal `theoretician's' point of view. CL, on the other hand, is conceivedof as a mental language in which an agent subjectively constructs internalrepresentations of its experience and beliefs and uses those representationsto derive logical consequences.Thus, for example, situation semantics would represent the externalcontent of John's belief that it is raining by the propositions � hhraining; t0; 1iias seen externally by the `theoretician', where s is John's immediate en-vironment at the time t0 that he holds the belief. Devlin [8, p. 165], indiscussing this example, denotes the internal structure of John' s belief byhBel, -, raining], now]; 1iwhere raining] is John's notion of raining, now] is John's notion of presenttime, and the dash in the second argument indicates that the belief is`situated', i.e. does not itself involve a notion of the situation s that �guresin the external content of John' s belief. This internal structure, whichis neither an infon nor a proposition, is not of direct concern to situationtheory.In CL there is no `theoretician' and no external content of beliefs, onlyagents and their internal representations of their own beliefs, as well as



Logic without Model Theory 31their internal representations of other agents' beliefs. Thus, John mightrepresent his own belief, that it is raining, in the object level formraining (t0)where t0 records the time of the event, or in the more informative formraining (l0; t0)where l0 records the location of the event. For John's internal purposesthese two parameters, l0 and t0, alone are likely to constitute an adequateindication of the situation in which the raining takes place.Another agent, say Mary, might have her own representation of John'sbelief, perhaps in the formdemo (john, raining (l0; t0)).This representation, while external to John, would be internal to Mary.Agents may be inclined to associate objective status to their beliefs,regarding them as objectively `true'. They may be similarly inclined toregard other agents' beliefs as `true' if they accord with their own beliefs.Thus, for example, if Mary believeshuman (john)mortal (X) human (X): (superhuman (X)^ human (X))demo (john,8X (mortal (X) human (X))demo (john, superhuman (john))then she will believe : superhuman (john)as a logical consequence of her beliefs. Moreover, she will probably regardJohn' s belief that he is superhuman as false. Of course, John himself mightnot actually believe that he is superhuman. So, from John's point of view,Mary' s belief that John believes that he is superhuman would be false.10 ConclusionIn this paper I have outlined an agent-centred, computationally-oriented,and purely syntactic account of the relationship between language and ex-perience. In this account, an agent interacts with its environment through aconstant stream of inputs, which it assimilates in the form of observationalsentences into an evolving knowledge base of beliefs. Both the knowledge



32 R. Kowalskibase and the inputs are formulated as sentences in the agent's internalmental language.The assimilationof inputs is constrained by the computational resourcesavailable. Consequently the agent' s knowledge base should be structuredto make the best use of the limited computational resource. For the sake ofe�ciency, redundant derivations of the same conclusion should be avoided.For the sake of more e�ective problem-solving, beliefs which are more usefulshould be easier to derive than beliefs which are less useful.The resource-constrained nature of an agent' s ability to derive logicalconsequences from its knowledge base is an essential aspect of its `pragmat-ics', because what matters in practice is not whether a consequence followsfrom the knowledge base in the ideal case, but rather whether it followsin the case at hand. Thus, for example, a logically inconsistent knowledgehaving many useful consequences might well be more `logical' than a con-sistent one which gives access to only few useful consequences, especially ifthe inconsistency is inaccessible in practice or if it can be prevented frompolluting the rest of the knowledge base if and when it is found.In the knowledge assimilation account of the relationship between lan-guage and experience, it is unnecessary and unhelpful to be concernedabout the existence and the nature of the `world' which generates the in-put stream. In this respect, the knowledge assimilation account divergesfrom model theory, which posits the existence of an external reality havinga `semantic' structure which is analogous to the syntactic structure of thelanguage of the knowledge base.I have argued also that the notion of logical consequence can be spec-i�ed in purely syntactic, knowledge-assimilation terms, without the extra-syntactic structures of model theory. Not only is the syntactic speci�cationexecutable, but it leads directly to more e�cient and more conventionallyde�ned proof procedures.The model-theoretic view of logic leads naturally to possible world se-mantics and potentially to situation semantics. The knowledge assimilationview, on the other hand, leads to the employment of a syntactically richlanguage with a vocabulary of terms representing such objects as time,events, and theories. For this purpose it is necessary to combine objectlevel and metalevel in the same language. Moreover, for the sake of sim-plicity and naturalness of expression, it is useful to allow syntactic objectsto be named both by themselves and by constant symbols or other groundterms. The use of constant symbols as names of theories is especially usefulfor representing situations and other agents' knowledge bases as theoriesin the combined object-level and metalevel language.This paper was written partly in reaction to Johnson-Laird' s theoriesabout the model-theoretic nature of human deduction. His work and thatof his colleagues have two parts: an experimental part which establishes



Logic without Model Theory 33certain empirical data, and a theoretical part which attempts to explainthe empirical results. I regret that I have not had time to investigate theextent to which the computationally-oriented CL approach to deductionand knowledge assimilation might provide an alternative explanation forthe same empirical results. Nonetheless, I hope that I have drawn at-tention to some of the di�culties involved in assessing whether or not anagent understands natural language logically, and that I have raised somedoubts about whether seemingly model-theoretic reasoning is truly model-theoretic and not simply proof theory in disguise.I am aware of other holes I have left in my argument. I have said verylittle, for example, about how an agent might generate outputs which a�ectits environment and which have a subsequent a�ect on its own and otheragents' future inputs. Clearly, such an output will normally be generatedby some plan formation process in the context of the agent's `residentgoals'. The agent will record the output, predict its expected e�ect on theenvironment using its `world model', and compare its expectations againstits later observations. The relationships between inputs and outputs andbetween goals and actions, within the knowledge assimilation frameworkoutlined in this paper, undoubtedly requires further investigation.I have said very little, too, about the characteristics of CL which sup-port such pragmatically important properties as relevance and even para-consistency. Here I will mention again only that we should look for suchproperties to emerge as the result of the need for e�ciency which arisesfrom resource-constrained deduction. Thus, to make the best use of thelimited resources available, both redundancies and irrelevancies have to beavoided as much as possible. In the case of resolution-based proof pro-cedures,, irrelevancies are avoided both by focusing on the input and byeliminating the thinning rule, which allows A _ B to be derived from B.The elimination of thinning does not introduce a new logic, but simplymakes classical logic more e�cient. Resource limitations also mean thatinconsistencies can exist without being detected and without leading to thederivation of arbitrary and irrelevant consequences. Such paraconsistencydoes not require a new logic, but simply emerges as a property of classicallogic when it is used in a practical context.I began this paper by referring to the multitude of di�erent disciplinesin which logic plays a central role. In this paper, I have explicitly con-sidered only computing and arti�cial intelligence to any signi�cant extent,and linguistics and psychology to a much lesser degree. However, two otherdisciplines, philosophy of science and law, have also contributed implicitlyto the approach presented here. The notion of knowledge assimilation, inparticular, owes much to the concepts of observational and theoretical sen-tences, con�rmation, falsi�cation, and explanation developed in philosophyof science. On the other hand the idea of a canonical language, CL, based



34 R. Kowalskion resolution and logic programming, and combining object language withmetalanguage has been greatly supported by investigations of legal reason-ing and the formalisation of legislation [32, 20].I also set out as my ultimate goal, in the introduction of this paper, tooutline an approach to logic that could be used to explain human reason-ing in both logical and computational terms. This goal was deliberatelyambiguous with respect to explaining competence or performance, wherecompetence is concerned with how humans ought to reason, and perfor-mance with how they actually reason in practice. I chose not to distinguishbetween these two goals because in the case of designing an arti�cial agentthere is no reason why the two kinds of reasoning should be distinguished.Moreover, in the case of a human agent, it seems to me that the theory isapplicable to both goals.A performance theory of human reasoning would be interesting for sci-enti�c reasons. But from a purely practical point of view, a competencetheory would be even more important, because it could be used by peopleto improve their own natural reasoning skills. This, after all, is the originaland ultimate goal of logic, viewed as a discipline in its own right. It wouldbe a pleasant irony if computationally-oriented logics, originally developedfor use by machines, should also prove convenient for use by human beings.AcknowledgementsI am grateful to Jon Barwise and Dov Gabbay for helpful discussions andfor comments on an earlier draft of this paper. This work was supportedboth by the ESPRIT Basic Research project Compulog and by FujitsuResearch Laboratories.References[1] Alchourr�on, C.E., G�ardenfors, P. and Makinson, D. On the Logic ofTheory Change: Partial meet functions for contraction and revision.Journal of Symbolic Logic, 50, 510{530, 1985.[2] Barwise, J. and Perry, J. Situations and Attitudes. MIT Press, 1983.[3] Bowen, K. A. and Kowalski, R. A. AmalgamatingLanguage and Meta-language in Logic Programming, in Logic Programming (Clark, K.L.and T�arnlund, S.-A., editors), Academic Press, pp. 153{173, 1982.[4] Brogi, A., Mancarella, P., Pedreschi, D., Turini, F. Composition oper-ators for logic theories, in Proc. Symposium on Computational Logic,Springer-Verlag, 1990.
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