
THE TREATMENT OF NEGATION IN LOGIC PROGRAMS

FOR REPRESENTING LEGISLATION

Robert Kozualski

Imperial College, London

Abstract.

Logic programs represent knowledge in the form of
implications

A if Bl and . . . Bn, ~10

where the conclusion A is an atomic formula and each
condition Bi is either an atomic formula or the negation

of an atomic formula. Any variables are assumed to be
universally quantified, with a scope which is the entire
sentence. A negated condition “not Ai” is deemed to

hold if the corresponding positive condition Ai can be

shown to fail to hold. This interpretation of negative
conditions is called negation by failure (NBF) [Cl 781. It
has the characteristic that only the positive “if-half” of a
definition needs to be given explicitly. The negative
“only-if” half is given implicitly by NBF.

The obvious problem with NBF is that it supplies the
only-if halves of implications, whether or not they are
intended. I shall discuss a possible solution to this
problem in the context of discussing the more general
problem of representing negative conclusions. I shall
focus on examples taken from our formalisation of the
1981 British Nationality Act (BNA) [SSKKHC 861. I shall
argue that many negative sentences can be regarded as
integrity constraints and consequently can be eliminated
by transformations such as those developed by Asirelli et
al [ASM 851 and Kowalski and Sadri [KS 881. Among
such sentences are ones expressing prohibitions. The
interpretation of prohibitions as integrity constraints
suggests a possible approach to the treatment of deontic
modalities.

Example: Deprivation of citizenship.

Part V, section (40) of the BNA concerns deprivation of
citizenship. Subsections (1) and (3) specify two
situations where the Secretary of State may deprive a
person of British citizenship. Both start out in the same
way:

F’emision to copy witbont fee alI or put of this matid is granted pmvidcd that
the copies arc not made or diibuted for dire rmmnmhl advantage, the ACM
copyright notice and the title of the ~bliatim and its date qcu, and naicc is
givm that copy&g is by pcrmision of the Asmciatim for Computing Machinery.
To copy otherwise. 01 to republish, requires a fee and/or s@fic pamispim.

0 ACM 0-89791-322-1/89/0600/0011 $1.50

“Subject to the provisions of this section, the
Secretary of State may by order deprive any British
citizen to whom this subsection applies
of his British citizenship if the Secretary of
State is satisfied that . ..I’

This establishes the logical form of subsections (1) and
(3) as implications having positive conclusions.
Subsections (2) and (4) specify to whom subsections (1)
and (3) apply, and therefore have the effect of defining
one of the conditions of the implications of subsections
(1) and (3).

Subsection (5) however, is a negative statement:

“The Secretary of State -
(a) shall not deprive a person of British
citizenship under this section unless he is satisfied
that it is not conducive to the public good that that
person should continue to be a British citizen;”

Whereas the meaning of (1) and (3) have the form

AifB

the meaning of (5) has the form of a denial

not (A and not C),

where “unless C!” is understood as “if not C” and where
“the Secretary of State shall not deprive . ..‘I is understood
as the negation of “the Secretary of State may deprive . ..I*.

Following [ASM 851, we have shown [KS 881 that the
denial can be eliminated, by adding extra conditions to the
implications (1) and (3), obtaining new implications of
the form:

AifB andC.

Intuitively, the extra condition, added to every implication
having A as its conclusion, guarantees that A will not
hoId unless C also holds.

11

The advantage of the transformation is that the resulting
implications have the form of a logic program which can
be executed in a simple manner. The advantage of the
original formulation is that it is a more natural statement
of t.he problem domain - closer to a program specification
than to a program.

It might be tempting to represent (5) directly as part of
the formalisation of the legislation, on the same level as
the formalisation of (1) and (3). The problem with this
is that there might then be circumstances under which
both A and not A would be derivable. Such a
formalisation would fail to capture tlte intention of the
legislation that, where such a contradiction might arise,
the conclusion A should be withheld. This intention is
signaled by the phrase “subject to the provisions of this
section” in (1) and (3) and is captured by treating (5) as an
integrity constraint, or equivalently by eliminating (5) by
means of the transformation just illustrated.

Subsection (5) can also be interpreted as an exception to
the general rules expressed in subsections (1) and (3). Our
view of (5) as an integrity constraint is compatible with
this view of (5) as an exception. Moreover, the
distinction in [R89] between a separate representation of
exceptions and a compiled representation “as a flat
formalisation” is similar to our distinction between the
separate representation of integrity constraints and the
representation which eliminates integrity constraints by
means of transformation.

Integrity Constraints.

The notion of integrity constraint arises in a database
context as a sentence which must be true of all states of
the database. In the context of a deductive database,
which has the same syntactic form as a logic program, the
notion of integrity constraint is less well established, and
several proposals have been put forward, e.g. /LST86,
SK88, KS88].

For our purposes, we shall regard an integrity constrnint
as a sentence of first-order logic, which when expressed
as denials augmented, if necessary, with auxiliary
implications is consistent with the database. This is the
view taken in [SK881 and [KS88]. A denial is a sentence
of the form

not (Bl and . . . and B,), n 1 1

where each condition Bi is either an atomic formula or the

negation of an atomic formula, and any variables are
assumed to be universally quantified, with a scope which
is the entire sentence.

The restriction that the integrity constraint be expressible
as denials together with auxiliary implications is not a
limitation. Any sentence of first-order logic can be re-
expressed in this form. For example, the sentence

.

for all x there exists y ((P(x y) or Q(x y) if R(x y))

can be reexpressed in the form

not S(x)
S(x) if R(x y) and not P(x y) and not Q(x y)

where “S” is a new predicate symbol, not occurring
elsewhere in the database or the other integrity
constraints. As a simpler example, an implication

CifA

can be reexpressed as a denial

not (A and not C),

which is the form of subsection (5) in our previous
example.

It is instructive to compare the interpretation of
subsection (5) as an integrity constraint with its
interpretation as an implication of the form C if A in the
database. Interpreted as an implication in the database it
allows us to conclude that the Secretary of State is
satisfied that it is not conducive to the public good that a
person should continue to be a British citizen, whenever
we are informed that the Secretary of State has deprived
that person of British citizenship. This interpretation
fails to constrain the behaviour of the Secretary of State
in any way.

Interpreted as an integrity constraint, however, subsection
(5) expresses that a violation occurs whenever the
Secretary of State deprives someone of British citizenship,
without the Secretary of.State being appropriately satisfied
concerning the public good. This violation is signalled
by the derivation of an inconsistency.

Moreover, the wording of subsection (5) suggests further
that, where such a violation might occur, consistency
should be maintained by withholding deprivation of
British citizenship rather than by changing the Secretary
of State’s views concerning the public good. Thus we are
lead not only to interpret (5) as an integrity constraint,
but to interpret it as an integrity constraint which
indicates how violations of integrity are to be avoided.

The elimination of integrity constraints.

Although the theory of integrity checking is well-
developed, in practice, conventional database systems
perform only limited integrity checking and deductive
databases (and logic programs) perform none at all. In the
case of a deductive database, this is because the effect of
integrity checking can often be achieved without explicit
integrity constraints by transforming the original database
[ASM85, KS88]. The simplest case is where an integrity
constraint has been expressed in the form

not (A and C)

12

where both A and C are atomic formulae, and A has been
nominated to be retracted if ever an inconsistency should
arise. The transformation guarantees that the integrity
constraint is maintained by withholding the conclusion A
whenever the condition C holds: All implications in the
database of the form

Aif B,

where B is a conjunction of atomic formulae or negations
of atomic formulae, are replaced by implications

AifBandnotC.

The transformation can easily be generalised to deal with
more general cases. In particular, if, as in the case of
subsection (S), C is the negation not C’ of an atomic
formula C, the transformation replaces all implications of
the form

A if B

by implications

AifBandC.

Example Provisions for reducing statelessness.

As the following example shows, negative statements are
not restricted to statements of prohibition. Schedule 2,
paragraph 1 is concerned with reducing statelessness:

“1. - (1) Where a person born in the United Kingdom
after commencement would but for this paragraph, be
born stateless, then, subject to sub-paragraph (3) -

(a) if at the time of the birth his father or mother is a
citizen or subject of a description mentioned in
sub-paragraph (2), he shall be a citizen 01 a
subject of that description . ..I’.

Clause (b) goes on to explain the consequence that such a
person might therefore be a citizen or subject of different
descriptions by virtue of different parents. Surpressing
certain details, subparagraph (1) (a) has the form:

Status(x y) if B(x)
and Parent(x z)
and Status(z y)
and Sub-para-2(y).

Subparagraph (2) defies the relevant types of status:

“(2) The descriptions referred to in sub-paragraph
(1) are a Dependent Territories citizen, a British
Overseas citizen and a British subject under this
Act.”

This can be formalised by conditionless implications:

Sub-para-2(British-Territories-citizen)
Sub-para-2(British-Overseas-citizen)
Sub-para-2(British-subject).

Subparagraph (3) expresses a constraint on subparagraph
(1):

“(3) A person shall not be a British subject by
virtue of this paragraph if by virtue of it he is a
citizen of a description mentioned in sub-
paragraph (2).”

Here the intention is to insure that, if a person can
become a British-Territories citizen or British-Overseas
citizen by virtue of one parent, then he does not become a
British subject by virtue of the other parent. This has the
form:

not Status(x British-subject) if
1 Status(x British-Territories-citizen) or

Status(x British-Overseas-citizen)].

This can be reformulated as two denials:

not (Status(x British-subject) and
Status(x British-Territories-citizen))

not (Status(x British-subject) and
Status(x British-Overseas-citizen))

The wording of subparagraph (3), in fact, expresses the
additional information that the predicate “Status(x British-
subject)” should be withheld, whenever an inconsistency
would otherwise occur.

Using the transformation of [KS 881. the constraint can be
eliminated by transforming the representation of
subparagraph (1) into the form:

Status(x British-subject)
if not Status(x British-Territories-citizen)
and not Status(x British-Overseas-citizen)
and B(x)
and Parent(x z)
and Status(z British-subject)

Status(x y)
if not y = British-subject
and B(x)
and Parent(x z)
and Status(z y)
and Sub-para-2(y).

The transformation generates two sentences, the first of
which concerns those instances of subparagraph (1) to
which the integrity constraint applies, and the second of
which concerns those instances for which it does not
apply-

Constraints on undefined conditions.

The two, previously considered examples illustrated the
elimination of constraints on predicates A completely
defined in the legislation itself. The transformation used
in those examples does not apply to constraints on
predicates that are not completely defined, but form part of
the input about particular individuals. The concept of
being ordinarily resident is such a predicate. Section 50,
subsection (5) describes a constraint on this predicate:

13

“It is hereby declared that a person is not to be treated
for the purposes of any provision of this Act as
ordinarily resident in the United Kingdom or in a
dependent territory at a time when he is in the United
Kingdom or, as the case may be, in that territory in
breach of the immigration laws.”

This has the form

not A if C, or equivalently
not (A and C),

where the predicate A is not defined in the Act. (However,
section (7) subsection (3) does give a partial definition of
“ordinarily resident”). Notice that the English wording
conveys the additional information that A rather than C
should be withheld whenever it would be necessary to
withhold one of them to avoid an inconsistency.

Notice also that, whereas our two previous examples could
be considered as examples of rules with exceptions, this is
an example of an exception without any rules.

Theoretically, the transformation of [KSSS] applies, not
only to rules already present in the legislation, but also to
input of the form

A

about particular individuals, transforming the input into
the form

A if not C.

But this is equivalent to explicitly checking the integrity
of A without having an explicit representation of the
integrity constraint.

An alternative is to use the transformation developed by
Minker and his colleagues, e.g. [CGM 881. to replace all
implications of the form

BifAandD

having A as a condition, by implications of the form

B ifAandnotCandD.

This has the effect of ensuring that, although the input of
A might violate integrity, no such violation is allowed to
propagate elsewhere. Indeed, the transformation would
also apply to all queries

AandD?

having A as a condition, transforming them into the form

AandnotC andD?

Thus, even if the input of A were to violate any integrity
constraints, it would not contribute to the derivation of
any consequences.

For the concept of being ordinarily resident this
transformation applies, for example, to section (50),
subsection (2). which defines the concept of being settled
in the U.K. or a dependent territory, as well as to section

(7), subsection (2), which defines entitlement to register
as a citizen of the U.K. by virtue of residence.

One of the difficulties with this second transformation is
that, in a large and complex text, it is generally harder to
find all places where a predicate A occurs as a condition
than it is to find all places where it occurs as a
conclusion; and consequently it is harder to find all
implications that need to be replaced by the
transformation. However, as the present example shows,
it can be applied in situations where the first
transformation cannot.

Constraints on predicates not occurring in the
legislation.

A more extreme situation arises when a constraint
concerns predicates that occur neither as conclusions nor
as conditions in the legislation. Two such examples in
the BNA concern the interaction between the legislation
and the environment in which the legislation is
implemented:

“44-(2) The Secretary of State, a Governor or a
Lieutenant-Governor. as the case may be, shall not be
required to assign any reason for the grant or refusal
of any application under this Act the decision on
which is at his discretion;”

“44-(3) Nothing in this section affects
the jurisdiction of any court to entertain proceedings
of any description concerning the rights of
any person under any provision of this Act”.

It is impossible to capture the meaning of such
constraints in the form of positive implications. Such
examples provide further motivation for extending logic
programs by the inclusion of explicitly stated integrity
constraints. Explicit representation of integrity
constraints is a feature of deductive databases,
(as discussed for example in [LST 861 and SK 881) and has
also been proposed as an extension of logic programming
[EK 891.

Negation for explicit representation of only-if
halves of definitions.

In addition to its occurrence in the kinds of examples
already considered, negation is also used in the text of
legislation to explicitly express the only-if halves of
definitions. Many of these explicit occurrences of
negation simply take the form of a phrase

“otherwise not”

following the if half of a definition. Other occurrences of
negation are more elaborate statements located physically
apart from their if halves. A good example of this is
section (37). subsection (4) which expresses that the Act
provides an exhaustive defmition of the different forms of
Commonwealth citizenship (British citizenship, British
Dependent Territories citizenship, British Overseas
citizenship) and the status of British subject:

14

“(4) After commencement no person shall have the
status of a Commonwealth citizen or the status
of a British subject otherwise than under this Act”.

Because there are so many different clauses defining the
different forms of Commonwealth citizenship and the
status of British subject, it would not be practical to
express their definitions in if-and-only-if form.

The example of (37) (4) suggests how NBF could be
modified to overcome the problem that it supplies the
only-if half of a definition whether or not it is intened:
Simply require that, whenever all clauses of the if-half of
the definition of a predicate have been given, then an
explicit de&ration be made that there are no others. NBF
can then be restricted to the demonstration of negative
conditions whose predicates have been so declared.

Conclusions.

I have considered several ways in which negative
statements can arise in legislation. Although many of
these can be regarded as exceptions to general rules,
others seem to be exception without general rules. Both
types of exception, however, can be regarded as integrity
constraints, and in many cases can be eliminated by
transformations which represent the legislation in the
form of a logic program. Other uses of negation, which
can not be eliminated, motivate extending logic programs
to include explicit statements of integrity constraints or
explicit declarations that the if-halves of definitions have
been completed.

Many of the negative statements occurring in legislation
express prohibitions. It seems that they can be regarded
as integrity constraints, whether or not they can be
eliminated by transformations. It is interesting to
consider whether positive statements expressing
obligations might also be regarded as integrity
constraints. These possibilities are interesting topics for
further research.

Acknowledgement.

This research has been supported by the Science and
Engineering Research Council as part of the Alvey
Programme. I am grateful to Fariba Sadri for helpful
discussions about this work.

References.

[ASM 851 Asirelli. P.. De Santis. M. and Martelli, M.
[19851: “Integrity Constraints in Logic
Databases”, J. Logic Aogramming. Vol. 2,
No. 3, pp. 221-232.

[Cl 781 Clark, K. L. [1978]: “Negation as failure”,
in “Logic and Databases”, Gallaire, H. and
Minker, J. [Eds], Plenum Press, pp. 293-
322.

[CGM 881

[EK 891

[KS 881

[LST 861

w91

{SK 881

Chakravarthy. U.S., Grant, J. and Minker, J.
119881: “Foundations of Semantic Query
Optimization for Declarative Databases”. In
“Foundations of Deductive Databases and
Logic Programming”, J. Minker [Ed.]
Morgan Kaufmann Publishers, Los Altos,
Ca.

Eshghi, K. and Kowalski, R. A. [1989]:
“Abduction Compared with Negation by
Failure”, Proceedings of the Sixth
International Logic Programming
Conference. MIT Press.

Kowalski, R.A. and Sadri. F., [1988]:
“Knowledge Representation without Integrity
Constraints”, Department of Computing.
Imperial College, University of London.

Lloyd, J.W., Sonenberg, EA. and Topor,
R.W. [1986]: “Integrity Constraint
Checking in Stratified Databases”, “J. Logic
Programming, Vol. 4. No. 4. pp. 331-343.

Routen, T., [1989]: “Hierarchically
Organised Formalisations”. In Proceedings
of the Second International Conference on
Artificial Intelligence and Law. ACM
publications.

Sadri, F. and Kowalski, R.A., [1988]: “A
Theorem-Proving Approach to Database
Integrity”. In “Foundations of Deductive
Databases and Logic Programming, J.
Minker [Ed.], Morgan Kaufmann Publishers,
Los Altos, Ca.

[SSKKHC 86]Sergot, M. I., Sadri, F., Kowalski, R. A.,
Kriwaczek, F., Hammond, P. and Cory, H. T.
119861: “The British Nationality Act as a
Logic Program”, CACM, Vol. 29. No. 5, pp.
370-386.

