
 0

Computational Logic and Human Thinking:
How to be Artificially Intelligent

Robert Kowalski

Department of Computing
Imperial College London

http://www.doc.ic.ac.uk/~rak/

 21 November 2010

 http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf)

To be published by Cambridge University Press

http://www.doc.ic.ac.uk/~rak/papers/newbook.pdf�

 1

Preface

The mere possibility of Artificial Intelligence (AI) – of machines that can
think and act as intelligently as humans – can generate strong emotions.
While some enthusiasts are excited by the thought that one day machines
may become more intelligent than people, many of its critics view such a
prospect with horror.
 Partly because these controversies attract so much attention, one of the
most important accomplishments of AI has gone largely unnoticed: the fact
that many of its advances can also be used directly by people, to improve
their own human intelligence. Chief among these advances is Computational
Logic.
 Computational Logic builds upon traditional logic, which was originally
developed to help people think more effectively. It employs the techniques of
symbolic logic, which has been used to build the foundations of mathematics
and computing. However, compared with traditional logic, Computational
Logic is much more powerful; and compared with symbolic logic, it is much
simpler and more practical.
 Although the applications of Computational Logic in AI require the use of
mathematical notation, its human applications do not. As a consequence, I
have written the main part of this book informally, to reach as wide an
audience as possible. Because human thinking is also the subject of study in
many other fields, I have drawn upon related studies in Cognitive
Psychology, Linguistics, Philosophy, Law, Management Science and English
Composition.
 In fact, the variant of Computational logic presented in this book builds
not only upon developments of logic in AI, but also upon many other
complementary and competing knowledge representation and problem
solving paradigms. In particular, it incorporates procedural representations of
knowledge from AI and Computing, production systems from AI and
Cognitive Science, and decision analysis from Management Science,
Cognitive Psychology and Philosophy.
 Because Computational Logic has so many applications and so many
relations with other fields, the ideal, ultimate use of this book would be as a
companion text for an undergraduate degree in practical thinking. Such a
degree course would combine the traditional virtues of a liberal arts
education with the argumentation skills of analytic philosophy, the rigours of
scientific method and the modern benefits of information technology. It
would provide the student with the transferable thinking and communication
skills needed not only for more specialised studies, but also for problems that
do not fall into neatly classified areas.
 As far as I know, nothing approaching such a degree course exists today;
and as far as I can see, no such degree course is likely to exist in the near
future. Logic as an academic discipline, as it exists today, is fragmented

 2

between Mathematics, Philosophy and Computing. Moreover, the practical
applications of Informal Logic are mostly buried inside other academic
disciplines, like Law, Management Science and English Composition. None
of these disciplines could host such a degree course on its own, and few of
them would welcome such an expansion of Logic in their own field.
 Perhaps one day, an educational institution will make room for a degree
course focussing on how to think. In the meanwhile, this book can be used as
a supplement to more conventional courses. For those who have already
completed their formal education, it can provide a glimpse into a possible
future world.
 In writing this book, I have taken pains to avoid misrepresenting the
subject by over-simplification. For this reason, I have included a number of
additional, more advanced chapters, which fill in some of the otherwise
missing technical detail. These chapters can be safely skipped by the casual
reader. Taken on their own, they provide a self-contained introduction and
reference to the formal underpinnings of the Computational Logic used in
this book.
 I have also been sensitive to the fact that, because I address issues of
English writing style, I am inviting attention to the inadequacies of my own
writing style. In defence, let me argue that without the help of Computational
Logic, my writing would be a lot worse.
 When I started my undergraduate studies at the University of Chicago
years ago, my writing was so bad that I failed the placement examination and
had to take an extra, non-credit, remedial course. I finished the year with As
in all my other subjects, but with a D in English writing skills. It took me
years to diagnose the problems with my writing and to learn how to improve
it. In the course of doing so, I learned more about practical logic than I did in
any of my formal logic courses. I like to believe that my writing is a lot better
today than it was during my first year in Chicago. But more importantly, I
hope that the lessons I learned will also be helpful to some of the readers of
this book.

I gave a short course based on this book at The International Center for
Computational Logic (ICCL) 2008 summer school on Computational Logic
and Cognitive Science. A copy of the slides that accompanied the course can
be found at: http://www.computational-logic.org/content/events/iccl-ss-
2008/lectures.php?id=24

Jacinto Davila, has used an earlier draft of this book for a course at
Universidad de Los Andes, Venezuela. Here is a link to his Spanish
translation: http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-
de-agentes.html

http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24�
http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24�
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html�
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html�

 3

I am very grateful to Jacinto, Tom Blackson, François Bry, Tony Burton,
Keith Clark, Phan Minh Dung, Maarten van Emden, Steffen Hoelldobler,
Luis Pereira, Yongyuth Permpoontanalarp, Fariba Sadri, Keith Stenning,
Dania Kowalska-Taylor, Sten-Ake Tarnlund, Jeff Thompson, Francesca Toni
and Mike Tunstall for their comments on earlier drafts of the book.

To Bob, John and Mary

 4

Contents

Summary and Plan of the Book ………..………………….… page 4
Introduction …………………………………………………….......... 14
Chapter 1 Logic on the Underground ………………………………… 22
Chapter 2 The Psychology of Logic…………..……………………… 38
Chapter 3 The Fox and the Crow……………………………………… 54
Chapter 4 Search……………………………………………………… 65
Chapter 5 Negation as Failure……………………………………… 75
Chapter 6 How to Become a British Citizen………………………… 92
Chapter 7 The Louse and the Mars Explorer………………………… 108
Chapter 8 Maintenance Goals as the Driving Force of Life…………… 123
Chapter 9 The Meaning of Life……………………………………… 141
Chapter 10 Abduction ………………………………………………… 150
Chapter 11 The Prisoner's Dilemma…………………………………… 160
Chapter 12 Motivations Matter………………………………………...171
Chapter 13 The Changing World ……………………………………...182
Chapter 14 Logic and Objects………………………………………… 196
Chapter 15 Biconditionals……………………………………………..206
Chapter 16 Computational Logic and the Selection Task…………… 217
Chapter 17 Meta-logic……………………………………………… 232
Conclusions………………………….. 247
Chapter A1 The Syntax of Logical Form …………………………… 251
Chapter A2 Truth……………………………………………………… 267
Chapter A3 Forward and Backward Reasoning……………………… 278
Chapter A4 Minimal Models and Negation. ………………………… 284
Chapter A5 The Resolution Rule……………..……………………… 290
Chapter A6 The Logic of Abductive Logic Programming ………… 301
References…………………………... 318

 5

Summary and Plan of the Book

Because this book ranges over a wide variety of topics, it is useful to
summarise the relationships between the different chapters in one place.
However, instead of placing this summary at the end of the book, where all
of its terms will have already been explained in detail, I have decided to
present it here, in keeping with the general spirit of the book that is better to
work backwards from your destination, than to stumble forward, wondering
where you are going.
 Therefore, this summary may be read either before or after the main body
of the book. But it can also be read in parallel, to get a better orientation of
how the individual chapters are related.

Introduction. In Artificial Intelligence, an agent is any entity, embedded
in a real or artificial world, that can observe the changing world and perform
actions on the world to maintain itself in a harmonious relationship with the
world. Computational Logic, as used in Artificial Intelligence, is the agent’s
language of thought. Sentences expressed in this language represent the
agent’s beliefs about the world as it is and its goals for the way it would like
it to be. The agent uses its goals and beliefs to control its behaviour.
 The agent uses the inference rules of Computational Logic, applying
them to its thoughts in logical form, to reason about the world and to derive
actions to change the world for its own benefit. These inference rules include
both forward reasoning to derive consequences of its observations, and
backward reasoning to reduce its goals to subgoals and actions. The agent
can also use forward reasoning to deduce consequences of candidate actions,
to help it choose between alternative candidates.
 Although the main purpose of Computational Logic is to represent an
agent’s private thoughts and to control its behavour, the agent can also use
Computational Logic to guide its public communications with other agents.
By expressing its communications in a more logical form, a speaker or writer
can make it easier for the listener or reader to translate those
communications into thoughts of her own.

Chapter 1 Logic on the Underground. The London Underground
Emergency Notice illustrates the way in which the meanings of English
communications can be understood as thoughts in logical form. In
Computational Logic, these thoughts have both a logical and computational
character. Their logical character is apparent in their explicit use of logical
connectives, like any, if, and and not; and their computational character is
manifest in their use as procedures for reducing goals to subgoals. Because

 6

of this dual logical and computational character, sentences expressed in this
form are also called logic programs.
 The Emergency Notice also illustrates how the coherent use of English
communications can be understood in terms of logical connections between
the meanings of those communications and other thoughts in an agent’s web
of goals and beliefs. Once the agent has made the connections, the agent can
activate them by forward or backward reasoning, when the need arises.
Connections that are activated frequently can be collapsed into derived goals
or beliefs, which can be used more directly and more efficiently in the future.

Chapter 2 The Psychology of Logic. The most influential and widely
cited argument against logic comes from psychological experiments about
reasoning with natural language sentences in conditional form. The most
popular interpretation of these experiments is that people do not have a
natural general-purpose ability to reason logically, but have developed
instead, through the mechanisms of Darwinian evolution, specialised
algorithms for solving typical problems that arise in their environment.
 In this chapter I discuss some of the issues involved in solving these
reasoning tasks, and argue that one of the main problems with the
experiments is that they fail to appreciate that the natural language form of a
conditional is only an approximation to the logical form of its intended
meaning. Another problem is that the interpretation of these experiments is
based upon an inadequate understanding of the relationship between
knowledge and reasoning. In Computational Logic applied to human
thinking, this relationship can be expressed rather loosely as an equation:
thinking = specialised knowledge + general-purpose reasoning.

Chapter 3 The Fox and the Crow. Aesop’s fable of the fox and crow
illustrates the backward reasoning of a clever fox, to generate a plan to
achieve the goal of having the cheese of a not so clever crow. It contrasts the
fox’s proactive, backward reasoning with the crow’s reactive, forward
reasoning, to respond to the fox’s praise by breaking out in song, thereby
dropping the cheese to the ground, where the fox can pick it up. Both the fox
and the crow reason in accordance with the inference rules of Computational
Logic, but the fox has a better knowledge of the world, and has more
powerful ways of using that knowledge for her own benefit.
 If the crow knew as much as the fox and were able to reason preactively,
thinking before he acts, then he could reason forward from the hypothetical
performance of his candidate actions, predict their likely consequences, and
choose an alternative action, like flying away or swallowing the cheese, that
achieves a better expected resulting state of affairs.

Chapter 4 Search. In Computational Logic, a proof procedure consists of
a collection of inference rules and a search strategy. The inference rules

 7

determine both the structure of proofs and the search space of all possible
proofs relevant to the solution of a goal. The search strategy determines the
manner in which the search space is explored in the search for a solution.
 Many different search strategies are possible, including both parallel
strategies, which explore different parts of the search space at the same time,
and best-first strategies, which aim to find the best solution possible in the
shortest amount of time.

Chapter 5 Negation as Failure. In the semantics of Computational
Logic, the world is a positive place, characterised by the positive atomic
sentences that are true at the time. Because the ultimate purpose of an
agent’s goals and beliefs is to manage its interactions with the world, the
syntactic form of the agent’s thoughts also has a corresponding positive bias.
In many cases, syntatically negative thoughts arise from the failure to
observe or derive positive information.
 Negation as failure is a natural way to reason by default with incomplete
information, deriving conclusions under the assumption that the agent knows
it all, but then gracefully withdrawing those conclusions if new information
shows that they do not hold. It also facilitates higher-level ways of
organising goals and beliefs into hierarchies of rules and exceptions, in
which the rules represent only the most important conditions, and the
exceptions add extra conditions when they are needed.

Chapter 6 How to Become a British Citizen. The British Nationality
Act is a body of English sentences, which states precisely the conditions
under which a person may acquire, renounce or be deprived of British
citizenship. The Act is designed to be both unambiguous, so there is little
doubt about its intended meaning, and flexible, so that it can be applied to
changing circumstances. Its English style resembles the conditional form of
sentences in Computational Logic.
 In addition to its use of conditional form, the British Nationality Act
illustrates many other important features of Computational Logic, including
the representation of rules and exceptions, and meta-level reasoning about
what it takes for a person, like you or me, to satisfy the Secretary of State
that the person fulfils the requirements for naturalisation as a British citizen.
 In contrast with the British Nationality Act, the University of Michigan
Lease Termination Clause shows how an ambiguous, virtually unintelligible
English text can be made understandable by reformulating it in
Computational Logic style.

Chapter 7 The Louse and the Mars Explorer. Arguably, the most
influential computational model of human thinking in Cognitive Psychology
is the production system model, as illustrated in this chapter by the wood

 8

louse and the Mars explorer robot. Production systems combine a working
memory of atomic facts with condition-action rules of the form if conditions
then actions. The working memory is like a model of the current state of the
world, and the rules are like an agent’s goals and beliefs.
 The condition-action rules are embedded in an observation-thought-
decision-action cycle and are executed by matching the conditions of rules
with facts in the working memory and generating the actions of rules as
candidate actions. This manner of execution is called forward chaining,
which is similar to forward reasoning. If more than one candidate action is
generated in this way, then a process, called conflict resolution, is used to
decide between the candidates. The chosen action is then executed, changing
the state of the working memory, simulating the way an agent’s actions
change the state of the world.
 From a logical point of view, there are three kinds of condition-action
rules: reactive rules, which are like instinctive stimulus-response
associations; goal-reduction rules, which reduce goals to subgoals by
forward chaining; and forward reasoning rules, which perform genuine
logical forward reasoning.

Chapter 8 Maintenance Goals as the Driving Force of Life. The
agent model presented in this book combines the functionalities of logic and
production systems in a logical framework. The framework takes from
production systems the observation-thought-decision-action cycle, but
replaces condition-action rules by goals and beliefs in the logical form of
conditionals. It replaces reactive rules by maintenance goals used to reason
forwards, goal-reduction rules by beliefs used to reason backwards, and
forward reasoning rules by beliefs used to reason forwards.
 In the logical agent model, the agent cycle responds to observations of
the environment by reasoning forwards with beliefs, until it derives a
conclusion that matches one of the conditions of a maintenance goal. It
reasons backwards, to check the other conditions of the maintenance goal. If
all the conditions of the maintenance goal are shown to hold in this way, it
reasons forwards one step, deriving the conclusion of the maintenance goal
as an achievement goal. It then starts to reason backwards using its beliefs to
reduce the achievement goal to a plan of candidate actions. It decides
between different candidate actions, and starts to execute a plan. If
necessary, it interrupts the execution of the plan, to process other
observations, interleaving the plan with other plans.

Chapter 9 The Meaning of Life. The logical framework of the
preceeding chapter views an agent’s life as controlled by the changes that
take place in the world, by its own goals and beliefs, and by the choices the
agent makes between different ways of achieving its goals. The combination
of its beliefs and its highest-level goals generates a hierarchy of goals and

 9

subgoals. However, for the sake of efficiency, this hierarchy may be
collapsed into a collection of more direct stimulus-response associations,
whose original goals are no longer apparent, but are implicit and emergent.
 In Artificial Intelligence and Computing more generally, it is common
for an intelligent designer to implement an artificial agent that does not
contain an explicit representation of its higher-level goals. The designer is
aware of the agent’s goals, but the agent itself is not. As far as the agent is
concerned, its life may seem to be entirely meaningless.
 In this chapter, we contrast the seemingly meaningless life of an
imaginary, artificial wood louse, with the more meaningful life of an
intelligent agent, in which stimulus-response associations and awareness of
higher-level goals are combined.

Chapter 10 Abduction. One of the main functions of an agent’s beliefs is
to represent causal relationships between its experiences. The agent uses
these causal representations both proactively to generate plans to achieve its
goals, and preactively to derive consequences of candidate actions to help it
choose between alternative candidate actions. However, the agent can also
use the same causal beliefs abductively to generate hypotheses to explain its
observations, and to derive consequences of candidate hypotheses to help it
choose between alternative hypotheses. This process of generating and
choosing hypotheses to explain observations is called abduction.
 Like default reasoning with negation as failure, abduction is defeasible in
the sense that new information can cause a previously derived conclusion to
be withdrawn.

Chapter 11 The Prisoner's Dilemma. The problem of deciding
between alternative abductive explanations of an observation is similar to the
problem of deciding between alternative actions, which is exemplified by the
Prisoner’s Dilemma. In this chapter, we see how an agent can use a
combination of Computational Logic and decision theory to decide between
alternatives. According to decision theory, the agent should choose an
alternative that has the best expected outcome. The expected outcome of an
action is determined by appropriately combining judgements of the utility (or
desirability) of the action’s consequences with judgements of the probability
(or likelihood) that the consequence will actually happen.
 Decision theory is a normative theory, which requires detailed
knowledge of utilities and probabilities, but neglects the motivations of an
agent’s actions. In practice, agents more typically employ heuristic goals and
beliefs (or rules of thumb), which approximate the decision-theoretic norms.
But heuristics often go astray. When it is important to make smarter choices,
it is better to use the more encompassing framework of the agent cycle, to
analyse the motivations of actions and to ensure that a full range of
alternatives is explored.

 10

Chapter 12 Motivations Matter. Decision Theory leads to
consequentialist theories of morality, which judge the moral status of actions
simply in terms of their consequences. But in psychological studies and the
law, people judge actions both in terms of their consequences and in terms of
their motivations. We show how Computational Logic can model such moral
judgements by using constraints to prevent actions that are deemed to be
morally or legally unacceptable.

Chapter 13 The Changing World. An agent’s life is a continuous
struggle to maintain a harmonious relationship with the ever-changing world.
The agent assimilates its observations of the changing state of the world, and
it performs actions to change the world in return.
 The world has a life of its own, existing only in the present, destroying its
past and hiding its future. To help it survive and prosper in such a changing
environment, an intelligent agent uses beliefs about cause and effect,
represented in its language of thought. In this chapter we investigate in
greater detail the logical representation of such causal beliefs and the
semantic relationship between this logical representation and the changing
world.

Chapter 14 Logic and Objects. Whereas in Cognitive Psychology
production systems are the main competitor of Logic, in Computing the main
competitor is Object-Orientation. In the object-oriented way of looking at the
world, the world consists of objects, which interact by sending and receiving
messages. Objects respond to messages by using encapsulated methods,
invisible to other objects, and inherited from methods associated with
general classes of objects.
 Computational Logic is compatible with Object-Orientation, if objects
are viewed as agents, methods are viewed as goals and beliefs, and messages
are viewed as one agent supplying information or requesting help from
another. Viewed in this way, the main contribution of Object-Orientation is
two-fold: It highlights the value both of structuring knowledge (goals and
beliefs) in relatively self-contained modules, and of organising that
knowledge in abstract hierarchies.

Chapter 15 Biconditionals. In this chapter we explore the view that
conditional beliefs are biconditionals in disguise. For example, given only
the two alternative conditions that can cause an object to look red:

 an object looks red if the object is red.
 an object looks red if it illuminated by a red light.

the two conditionals can be understood as standing for the biconditional:

 11

 an object looks red if and only if
 the object is red or the object is illuminated by a red light.

Both negation as failure and abduction can be understood as reasoning with
such biconditionals as equivalences, replacing atomic formulas that match
the conclusion by the disjunction of conditions (connected by or) that imply
the conclusion.

Chapter 16 Computational Logic and the Selection Task. In this
chapter we return to the problem of explaining some of the results of
psychological experiments about reasoning with conditionals. We investigate
the different ways that Computational Logic explains these results,
depending on whether a conditional is interpreted as a goal or as a belief. If it
is interpreted as a belief, then it is often natural to interpret the conditional as
specifying the only conditions under which the conclusion holds. This
explains one of the two main mistakes that people make when reasoning
with conditionals, when judged by the standards of classical logic.
 The other main mistake is that people often fail to reason correctly with
negation. This mistake is explainable in part by the fact that an agent’s
observations are normally represented by positive atomic sentences, and that
negative conclusions have to be derived from positive observations. In many
cases this derivation is easier with conditional goals than with conditional
beliefs.

Chapter 17 Meta-logic. In this chapter we explore how meta-logic can
be used to simulate the reasoning of other agents, and to solve problems that
cannot be solved in the object language alone. We illustrate this with a
variant of the wise man puzzle, and with Gödel’s theorem that there are true
but unprovable sentences in arithmetic.

Conclusions. This concluding chapter takes a step back from the details,
and takes a broader look at the main aim of the book, which is to show how
Computational Logic can reconcile conflicting paradigms for explaining and
guiding human behaviour. It also suggests how Computational Logic may
help to reconcile conflicts in other areas.

Chapter A1 The Syntax of Logical Form. This additional, more
formal chapter gives a more precise formulation of Computational Logic as a
logic of sentences having the conditional form if conditions then conclusion
or equivalently having the form conclusion if conditions. In its simplest
form, the conclusion of a conditional is an atomic expression, consisting of a
predicate and a number of arguments. The conditions are a conjunction

 12

(connected by and) of atomic expressions or the negations of atomic
expressions.
 In this chapter, I compare the conditional form of logic with standard
classical logic. I argue that classical logic is to conditional logic, as natural
language is to the language of thought. In both cases, there are two kinds of
reasoning, performed in two stages. The first stage translates sentences that
are unstructured and possibly difficult to understand into simpler sentences
that are better structured. The second stage derives consequences of the
resulting simpler sentences. The logic of conditional forms is the logic of
such simpler and better structured sentences.

Chapter A2 Truth. Conditionals in Computational Logic represent an
agent’s goals and beliefs in its private language of thought. They also
represent the meanings of its public communications with other agents, and
for this reason they can be said to represent the semantics of natural language
sentences. However, sentences in logical form also have a semantics in terms
of their relationship with states of the world.
 This additional chapter makes a start on the discussion of this semantics,
and of the relationship between truth in all models and truth in minimal
models. It argues from the example of arithmetic that truth in minimal
models is more fundamental than truth in all models.

Chapter A3 Forward and Backward Reasoning. This chapter
defines the forward and backward rules of inference more precisely, and
shows how they can be understood in semantic terms, as showing how the
truth of one set of sentences implies the truth of another. This semantic point
of view applies both to the use of these inference rules to determine truth in
all models and to their use to generate and determine truth in minimal
models.

Chapter A4 Minimal Models and Negation. This chapter shows how
the semantics of negation as failure can be understood in terms of the
minimal model semantics of Chapter A2.

Chapter A5 The Resolution Rule of Inference. In this chapter we
see that forward and backward reasoning are both special cases of the
resolution rule of inference, and that resolution is the underlying mechanism
for reasoning in connection graphs.
 Resolution was originally presented as a machine-oriented rule of
inference, whereas forward and backward reasoning are human-oriented
ways of understanding human thinking. This combination of human and
machine-orientation is reflected in the fact that the human mind can be
regarded as a computing machine whose software is a conditional form of
logic and whose hardware is a connectionist form of resolution.

 13

Chapter A6 The Logic of Abductive Logic Programming. This
chapter provides most of the technical support for the combination of
forward reasoning, backward reasoning and negation as failure, which are
the basic inference rules of the Computational Logic used in this book.
 The proof procedure presented in this chapter can be understood in
semantic terms, as generating a minimal model in which an agent’s goals and
beliefs are all true. However, it can also be understood in argumentation
terms, as generating an argument in favour of a claim, both by providing
support for the claim and by defeating all attacking arguments with counter-
arguments.

 14

Introduction

Computational Logic has been developed in Artificial Intelligence over the
past 50 years or so, in the attempt to program computers to display human
levels of intelligence. It is based on Symbolic Logic, in which sentences are
represented by symbols and reasoning is performed by manipulating
symbols, like solving equations in algebra. However, attempts to use
Symbolic Logic to solve practical problems by means of computers have led
to many simplifications and enhancements. The resulting Computational
Logic is not only more powerful for use by computers, but also more useful
for the original purpose of logic, to improve human thinking.
 Traditional Logic, Symbolic Logic and Computational Logic are all
concerned with the abstract form of sentences and how their form affects the
correctness of arguments. Although traditional logic goes back to Aristotle in
the fourth century B.C., Symbolic Logic began primarily in the nineteenth
century, with the mathematical forms of logic developed by George Boole
and Gottlob Frege. It was considerably enhanced in the twentieth century by
the work of Bertrand Russell, Alfred North Whitehead, Kurt Gödel and
many others on its application to the Foundations of Mathematics.
Computational Logic emerged in the latter half of the twentieth century,
starting with attempts to mechanise the generation of proofs in mathematics,
and was extended both to represent more general kinds of knowledge and to
perform more general kinds of problem solving. The variety of
Computational Logic presented in this book owes much to the contributions
of John McCarthy and John Alan Robinson.
 The achievements of Symbolic Logic in the past century have been
considerable. But they have resulted in mainstream logic becoming a branch
of Mathematics and loosing touch with its roots in human reasoning.
Computational Logic also employs mathematical notation, which facilitates
its computer implementation, but obscures its relevance to human thinking.
 In this book, I will attempt to show that the practical benefits of
Computational Logic are not limited to Mathematics and Artificial
Intelligence, but can slso be enjoyed by ordinary people in everyday life,
without the use of mathematical notation. Nonetheless, I include several
additional, more technical chapters at the end of the book, which can safely
be omitted by the casual reader.

The relationship between logic and thinking

Logic in all its varieties is concerned with formalising the laws of
thought. Along with related fields such as Law and Management Science, it
focuses on the formulation of normative theories, which prescribe how
people ought to think. Cognitive Psychology is also concerned with thinking,

 15

but it focuses almost exclusively on descriptive theories, which study how
people actually think in practice, whether correctly or not. For the most part,
the two kinds of theories have been developed in isolation, and bear little
relationship with one another.

However, in recent years, cognitive psychologists have developed Dual
Process theories, which can be understood as combining descriptive and
normative theories. Viewed from the perspective of Dual Process theories,
traditional descriptive theories focus on intuitive thinking, which is
associative, automatic, parallel and subconscious. Traditional normative
theories, on the other hand, focus on deliberative thinking, which is rule-
based, effortful, serial and conscious. In this book, I will argue that
Computational Logic is a dual process theory, in which intuitive and
deliberative thinking are combined.

But logic is concerned, not only with thinking in the abstract, but with
thoughts represented in the form of sentences and with thinking treated as
manipulating sentences to generate new thoughts. In Computational Logic,
these logical manipulations of sentences also have a computational
interpretation. Viewed in this way, Computational Logic can be regarded as
a formalisation of the language of human thought.

Computational Logic and the language of thought

As used in Artificial Intelligence, Computational Logic functions first and
foremost as an intelligent agent’s language of thought. It includes a syntax
(or grammar), which determines the form of the agent’s thoughts, a
semantics, which determines the contents (or meaning) of those thoughts,
and an inference engine (or proof procedure), which generates (or derives or
infers) new thoughts as consequences of existing thoughts. In this role,
Computational Logic can be regarded as a private language, representing the
agent’s goals and beliefs, and helping the agent to regulate its behaviour.
This private language is independent from, and more fundamental than,
ordinary, natural languages like English.

However, in multi-agent systems in Artificial Intelligence, the private
language of an individual agent also serves the secondary function of
representing the meanings of its communications with other agents. These
communications are expressed in a shared public language, which may differ
from the private languages of individual agents. The task of a
communicating agent is to translate thoughts from its private language into
the public language, in such a way that the receiving agent can readily
translate those public communications into appropriate thoughts in its own
private language.

It would be easier if all agents shared the same private language, and if
that private language were identical to the public language of the community

 16

of agents. This can be arranged by design in an artificial multi-agent system,
but it can only be approximated in a society of human agents.

The distinction between private and public languages, which is so clear
cut in Artificial Intelligence, has been proposed in the Philosophy of
Language to explain the relationship between human thinking and
communication. Many of these proposals, which for simplicity can be
lumped together as Language of Thought (LOT) proposals, maintain that
much human thinking can be understood as taking place in a language of
thought. The most famous proposal along these lines is Fodor’s hypothesis
that the LOT is a private language, which is independent of the Babel of
public languages (Fodor, 1975). Other proposals, notably (Carruthers, 2004),
argue that a person’s LOT is specific to the public language of the person’s
social community.

No matter where they stand on the relationship between private and
public languages, most proposals seem to agree that the LOT has some kind
of logical form. However, for the most part these proposals are remarkably
shy about the details of that logical form. By comparison, the proposal that I
present in this book – that Computational Logic can be regarded as a
formalisation of the LOT – is shamelessly revealing. I draw the main support
for my argument from the uses of Computational Logic in Artificial
Intelligence. But I also draw support from the relationship between
Computational Logic and normative theories of human communication.

Computational Logic and human communication

Much of the time, when we speak or write, we simply express ourselves in
public, without making a conscious effort to communicate effectively. But
when it really matters that we are understood - like when I am writing this
book - we try to be as clear, coherent and convincing as possible. The
difference is like the difference between descriptive and normative theories
of thinking; and, as in the case of the two kinds of thinking, the two kinds of
communication are studied mainly in different academic disciplines.
Whereas linguistics is concerned with developing descriptive theories about
how people use language in practice, Rhetoric and allied disciplines such as
English Composition and Critical Thinking are concerned with normative
theories about how people should use language to communicate more
effectively.

In this book, I present a normative theory of intelligent thinking,
communication and behaviour. But I pay attention to descriptive theories,
because descriptive theories help to understand where we are coming from,
whereas normative theories show us where we are aiming to go.

The descriptive theory of communication that comes closest to a
normative theory is probably Relevance theory (Sperber and Wilson, 1986).
It is based on a more general theory of cognition, which loosely speaking

 17

hypothesizes that, given competing inputs from their environment, people
direct their attention to those inputs that provide them with the most useful
information for the least processing cost. Applied to communication, the
theory hypothesizes that, given a potentially ambiguous communication as
input, readers or listeners translate the input into a logical form that
maximises the amount of information it contains, while minimising the
computational effort needed to generate that logical form.

Relevance theory is compatible with the hypothesis that Computational
Logic, or something like it, is the logic of the language of thought. Like
Computational Logic, Relevance theory also has both logical and
computational components. Moreover, it provides a link with such normative
theories of communication as Joseph Williams’ guides to English writing
style (Williams, 1990/1995).

One way to interpret Williams’ guidance is to understand it in logical
terms, as including the advice that writers should express themselves in a
form that is as close as possible to the logical form of the thoughts they want
to communicate. In other words, they should say what they mean, and they
should say it in a way that makes it as easy as possible for readers to extract
that meaning. Or to put it still differently, the public expression of our
private thoughts should be as close as possible to the logical form of those
thoughts.

If our private language and public language were the same, we could
literally just say what we think. But even that wouldn’t be good enough;
because we would still need to organise our thoughts coherently, so that one
thought is logically connected to another, and so that our readers or listeners
can relate our thoughts to thoughts of their own.

Williams’ guidance for achieving coherence includes the advice of
placing old, familiar ideas at the beginning of a sentence and placing new
ideas at its end. In a succession of sentences, a new idea at the end of a
sentence becomes an old idea that can be put at the beginning of the next
sentence.

Here is an example of his advice, which uses an informal version of the
syntax of Computational Logic, and which incidentally shows how
Computational Logic can be used to represent an agent’s goals and beliefs to
guide its behaviour:

 You want to be more intelligent.
 You will be more intelligent if you are more logical.
 You will be more logical if you study this book.
 So (given no other alternatives) you should study this book.

It may not be poetry, and you might not agree with it, but at least it’s clear,
coherent and to the point.

 18

What is Computational Logic?

The version of Computational Logic presented in this book combines a
simplified form of language for representing information with mechanical
(or automatic) ways of using information to infer its consequences.
Sentences in this language have the simple form of conditionals: if
conditions then conclusion (or equivalently conclusion if conditions). The
basic rules of inference are forward and backward reasoning.
 Forward reasoning is the classical rule of inference (also called modus
ponens) used to derive conclusions from conditions. For example, given the
belief that in general a person will be more logical if the person studies this
book, forward reasoning derives the conclusion that Mary will be more
logical from the condition that Mary studies this book. Forward reasoning
includes the special case in which an agent derives consequences of its
observations, to determine how those consequences might affect its goals.
 Backward reasoning works in the opposite direction, to derive conditions
from conclusions. For example, given the belief that in general a person will
be more intelligent if the person is more logical as the only way of
concluding that a person will be more intelligent, backward reasoning
derives the condition that John should be more logical from the conclusion
John will be more intelligent. Backward reasoning can be regarded as a form
of goal-reduction, in which the conclusion is a goal, and the conditions are
subgoals. Backward reasoning includes the special case in which an agent
derives subgoals that are actions, which the agent can perform in the world.

Backward reasoning gives Computational Logic the power of a high-
level computer programming language, in which all programs consist of
goal-reduction procedures. Indeed, the programming language, Prolog,
which stands for Programming in Logic, exploits this form of computation
mainly for applications in Artificial Intelligence.

Computational Logic, in the more general form that we investigate in this
book, also includes the use of inference to help an agent choose between
alternative courses of action. For example, having used backward reasoning
to derive two alternative subgoals, say John is more logical or John takes
intelligence-enhancing drugs, for achieving the goal John is more intelligent,
John can use forward reasoning to infer the possible consequences of the
alternatives before deciding what to do. In particular, if John infers the
consequence that John may suffer irreversible brain damage if John chooses
the second alternative, John takes intelligence-enhancing drugs, then it will
encourage John to choose the first alternative, John is more logical, instead.

What is Artificial Intelligence?

Artificial Intelligence (AI) is the attempt to program computers to behave
intelligently, as judged by human standards. Applications of AI include such

 19

problem areas as English speech recognition, expert systems for medical and
engineering fault diagnosis, and the formalisation of legal reasoning.

The tools of AI include such techniques as search, symbolic logic,
artificial neural networks and reasoning with uncertainty. Many of these
tools have contributed to the development of the Computational Logic we
investigate in this book. However, instead of concerning ourselves with
Artificial Intelligence applications, we will focus on the use of
Computational Logic to help ordinary people think and behave more
intelligently.

Thinking of people in computational terms might suggest that people can
be treated as though they were merely machines. On the contrary, I believe
instead that thinking of other people as computing agents can help us to
better appreciate our common nature and our individual differences. It
highlights our common need to deal with the cycle of life in an ever-
changing world; and it draws attention to the fact that other people may have
other experiences, goals and beliefs, which are different from our own, but
which are equally worthy of understanding, tolerance and respect.

Computational Logic and the cycle of life

The role of Computational Logic in the mind of an intelligent agent can be
pictured approximately like this:

Forward
reasoning

Forward
reasoning

Backward
reasoning

Consequences
of alternative
candidate actions

Decide

Maintenance goal Achievement goal

Observe Act
The world

stimulus-response associations

 20

In this way of looking at the relationship between an agent and the world, the
mind of the agent is a syntactic structure, which represents the agent’s beliefs
about the world as it is and its goals for the way it would like the world to
be. These beliefs and goals are represented in the agent’s private language of
thought, whose sentences have the syntactic form of conditionals.
 The world, on the other hand, is a semantic structure, which includes the
agent’s body, and gives meaning to the agent’s thoughts. It is a dynamic
structure, which is continuously changing, and exists only in the here and
now. However, the agent can record its changing experiences in its language
of thought, and formulate general beliefs about the causal relationships
between its experiences. It can then use these beliefs, which explain its past
experiences, to help it achieve its goals in the future.

The agent observes events that take place in the world and the properties
that those events initiate and terminate. It uses forward reasoning to derive
conclusions of its observations. In many cases, these conclusions are actions,
triggered by instinctive or intuitive stimulus-response associations, which
can also be expressed in the logical form of conditionals. The agent may
execute these actions by reflex, automatically and immediately. Or it may
monitor them by performing higher-level reasoning, as in dual process
models of human thinking.
 But whether an agent is tempted to react immediately with stimulus-
response associations or not, the agent can reason forwards to determine
whether the observation affects any higher-level goals that need to be
maintained to keep it in a harmonious relationship with its environment.
Forward reasoning with higher-level maintenance goals of this kind
generates achievement goals for the future. The agent can reason backwards,
to reduce these achievement goals to subgoals and to search in its mind for
plans of actions to achieve these goals.

The agent may find that there are several, alternative plans all of which
achieve the same goal; and, if there are, then the agent needs to decide
between them. In classical Decision Theory, the agent uses the expected
consequences of its candidate plans to help it make this decision. With its
beliefs represented in the logical form of conditionals, these consequences
can be derived by reasoning forwards from conditions that represent the
hypothetical performance of alternative candidate actions. The agent can
evaluate the consequences, reject actions that have unintended and
undesirable consequences, and choose actions that have the most desirable
expected outcomes (or utility).

However, the consequences of an agent’s actions may depend, not only
its own actions, but also on the actions of other agents or other conditions
that are outside the agent’s control. The agent may not be able to determine
for certain whether these conditions hold in advance, but it may be able to
judge their likelihood (or probability). In such cases, the agent can use the
techniques of Decision Theory, to combine its judgements of probability and

 21

utility, and choose a course of actions having highest expected utility.
Alternatively, the agent may use more pragmatic, precompiled plans of
action that approximate the Decision-Theoretic ideal.

Among the criteria that an agent can use to decide between alternative
ways of accomplishing its goals, is their likely impact on the goals of other
agents. Alternatives that help other agents achieve their goals, or that do not
hinder the achievement of their goals, can be given preference over other
alternatives. In this way, by helping the agent to understand and appreciate
that other agents have their own experiences, goals and beliefs,
Computational Logic can help the agent avoid conflict and cooperate with
other agents.

This book aims to show that these benefits of Computational Logic,
which have had some success in the field of Artificial Intelligence, also have
great potential for improving human thinking and behaviour.

 22

Chapter 1. Logic on the Underground

If some form of Computational Logic is the language of human thought, then
the best place to look for it would seem to be inside our heads. But if we
simply look at the structure and activity of our brains, it would be like
looking at the hardware of a computer when we want to learn about its
software. Or it would be like trying to do sociology by studying the
movement of atomic particles instead of studying human interactions. Better,
it might seem, just to use common sense and rely on introspection.

But introspection is notoriously unreliable. Wishful thinking can trick us
into seeing what we want to see, instead of seeing what is actually there. The
behavioural psychologists of the first half of the 20th century were so
suspicious of introspection that they banned it altogether.

Artificial Intelligence offers us an alternative approach to discovering the
language of thought, by constructing computer programs whose input-output
behaviour simulates the externally visible manifestations of human mental
processes. To the extent that we succeed in the simulation, we can regard the
structure of those computer programs as analogous to the structure of human
mind, and we can regard the activity of those programs as analogous to the
activity of human thinking.

But different programs with different structures and different modes of
operation can display similar behaviour. As we will see later, many of these
differences can be understood as differences between levels of abstraction.
Some programs are closer to the lower and more concrete level of the
hardware, and consequently are more efficient; others are closer to the higher
and more abstract level of the application domain, and consequently are
easier to understand. We will explore some of the relationships between the
different levels later in the book, when we explore dual process theories of
thinking in Chapter 9. In the meanwhile, we can get an inkling of what is to
come by first looking closer to home.

If human thoughts have the structure of language, then we should be able
to get an idea of that structure by looking at natural languages such as
English. Better than that, we can look at English communication in situations
where we do our best to express ourselves as clearly, coherently and
effectively as possible. Moreover, we can be guided in this by the advice we
find in books on English writing style.

For the purpose of revealing the language of thought, the most important
advice is undoubtedly the recommendation that we express ourselves as
clearly as possible - making it as easy as we can for the people we are
addressing to translate our communications into thoughts of their own.
Everything else being equal, the form of our communications should be as
close as possible to the form of the thoughts that they aim to convey.

What better place to look than at communications designed to guide
people how to behave in emergencies, in situations where it can be a matter

 23

of life or death that the recipient understands the communication as intended
and with as little effort as possible.

Imagine, for example, that you are travelling on the London underground
and you hear a suspicious ticking in the rucksack on the back of the person
standing next to you. Fortunately, you see a notice explaining exactly what to
do in such an emergency:

The public notice is designed to be as clear as possible, so that you can
translate its English sentences into your own thoughts with as little effort as
possible. The closer the form of the English sentences to the form in which
you structure your thoughts, the more readily you will be able to understand
the sentences and to make use of the thoughts that they communicate.
 The thoughts that the management of the underground wants you to have
are designed to make you behave effectively in an emergency, as well as to
prevent you from behaving recklessly when there isn’t an emergency. They
are designed, therefore, not only to be clear, but to be to the point – to tell
you what to do if there is an emergency and what not to do if there isn’t one.
But they are also intended to be coherent, so that you can easily relate the
new thoughts that new sentences communicate to existing thoughts you
already have in your head. These existing thoughts include both thoughts that
were already there before you started reading and thoughts that might have
been conveyed by earlier sentences in the text you are reading.

The emergency notice as a program

The purpose of the emergency notice is to regulate the behaviour of
passengers on the London underground. It does so much in the same way that

Emergencies

Press the alarm signal button
to alert the driver.

The driver will stop
if any part of the train is in a `station.

If not, the train will continue to the next station,
where help can more easily be given.

There is a 50 pound penalty
for improper use.

 24

a computer program controls the behaviour of a computer. In general, much
of our human communication can be understood in such computational
terms, as one human attempting to program another, to elicit a desired
behaviour.

I do not mean to suggest that people should be treated as though they
were merely machines. I mean to propose instead that thinking of people as
computing agents can sometimes help us to communicate with them in more
effective and more efficient terms. Our communications will be more
effective, because they will better accomplish our intentions; and they will be
more efficient, both because they will be easier for other people to
understand, and because the information they convey will be easier for other
people to use for their own purposes.

Understanding a communication is like the process that a computer
performs when it translates (or compiles) a program written in an external
source language into an internal target language that the computer already
understands. When a computer compiles the source program, it needs both to
translate individual sentences of the program into the target language and to
place those sentences into a coherent internal structure expressed as a target
program. Compiling a program is efficient when it can be done with as little
processing as necessary. Analogously, understanding an English
communication is efficient when compiling it from its English form into a
mental representation can be done with as little effort as possible.

Using the information in a communication is like executing a target
program, after it has been compiled. When a computer executes a program, it
follows the instructions mechanically in a systematic manner. When a person
uses the information in a communication, the person combines that
information with other information that the person already has and uses the
combined information to solve problems. People perform much of this
process of using information systematically, automatically and
unconsciously. Like a computer program, the information that people use to
solve problems is efficient if it helps them to solve problems with as little
effort as possible.

The computational nature of the emergency notice is most obvious in the first
sentence:

Press the alarm signal button
 to alert the driver.

This has the form of a goal-reduction procedure:

Reduce the goal of alerting the driver
to the subgoal of pressing the alarm signal button.

 25

Goal-reduction procedures are a common form of human knowledge
representation. They structure our knowledge in a way that facilitates
achieving goals and solving problems. Here the thought communicated by
the sentence is that the goal of alerting the driver can be reduced to the
subgoal of pressing the alarm signal button.

To understand and make use of the goal-reduction procedure, you need to
assimilate it into your existing goals and beliefs. For example, you might
already know that there could be other ways of alerting the driver, such as
shouting out loud. You probably know that alerting the driver is one way of
getting help, and that there are other ways of getting help, such as enlisting
the assistance of your fellow passengers. You probably recognize that if there
is an emergency then you need to deal with it appropriately, and that getting
help is one such way, but that other ways, such as running away or
confronting the emergency head on yourself, might also be worth
considering.

Goal-reduction procedures are also a common form of computer
knowledge representation, especially in Artificial Intelligence. Liberally
understood, they can serve as the sole construct for writing any computer
program. However, almost all computer languages also use lower-level
programming constructs. Most of these constructs bear little resemblance to
human ways of thinking.

But there is one other construct that is even higher-level than goal-
reduction, and which may be even closer to the way humans structure their
thoughts. This construct is exemplified by the logical form of the conditional
sentences found in the second and third sentences of the emergency notice.

The logic of the second and third sentences

Many linguists and philosophers subscribe to some form of Language of
Thought hypothesis (LOT), the hypothesis that many of our thoughts have a
structure that is similar to the structure of natural languages such as English.
Most of those who subscribe to LOT also seem to believe that the language
of thought has a logical form. In this book, I will explore the more specific
hypothesis that the language of thought has the logical form of conditional
sentences. This hypothesis is supported by the English form of the second
and third sentences of the emergency notice.

Indeed, the second and third sentences of the emergency notice both have
the logical form of conditionals (also called implications). Conditionals are
sentences of the form:

 if conditions then conclusion
or equivalently conclusion if conditions.

A more precise definition is given in the additional Chapter A1.

 26

In the emergency notice, the second sentence is written with its conclusion
first; and the third sentence is written the other way around, with its implicit
conditions first.

In formal logic, it is normal to write conditionals in the forward direction
if conditions then conclusion. This is why reasoning from conditions to
conclusions is called forward reasoning, and why reasoning from conclusion
to conditions is called backward reasoning. However, no matter whether
conditionals are written conditions-first or conclusion-first, they have the
same meaning. But we often write them one way rather than the other when
we have one preferred direction of use in mind, or when we want to write
them more coherently in the context of other sentences.

I have argued that the notice is designed to be as easy as possible to
understand, and that as a consequence its external form should be a good
indication of the internal form of its intended meaning. In particular, the
external, conditional form of the second and third sentences suggests that
their intended meaning also has the logical form of conditionals.

However, whatever the form of the LOT, one thing is certain: Its
sentences are unambiguous, in that they mean what they say. In contrast,
English sentences are often ambiguous, because they can have several
different meanings. For example, the English sentence the first passenger
attacked the second passenger with a rucksack has two possible meanings.
Either the first passenger carried out the attack with a rucksack or the second
passenger had a rucksack, and the first passenger attacked the second
passenger in some indeterminate manner. The difference between the two
meanings could make a big difference in a court of law.

Ambiguity is the enemy of clarity. It creates confusion, because the reader
does not immediately know which of the several possible interpretations of
the communication is intended; and it creates extra effort for the reader,
because the reader has to explore different interpretations, to find an
interpretation that makes the most sense in the context of the reader’s
background goals and beliefs.

You might be surprised, therefore, to discover that the second and third
sentences of the notice are more ambiguous than they first appear. In
particular, the second sentence does not explicitly state what the driver will
actually stop doing. It is unlikely, for example, that:

The driver will stop causing the emergency
 if any part of the train is in a station.

Instead, it is more likely that:

 The driver will stop the train in a station
 if any part of the train is in the station.

 27

But even this interpretation does not fully capture the sentence’s intended
meaning. Understood in the context of the first sentence, the second sentence
has an additional implicit condition, namely that the driver has been alerted
to an emergency. Therefore, the intended meaning of the second sentence is
actually:

 The driver will stop the train in a station
 if the driver is alerted to an emergency

and any part of the train is in the station.

Without the additional condition, the sentence on its own literally means that
the driver will stop the train whenever the train is in a station, whether or not
there is an emergency. If that were the case, the train would never leave a
station once it was there. To understand the sentence, the reader of the notice
needs both general background knowledge about the way train drivers
normally behave and specific knowledge about the context of the earlier
sentences in the notice.

In the spirit of our interpretation of the second sentence, it should now be
clear that the intended meaning of the third sentence is:

The driver will stop the train at the next station
and help can be given there better than between stations

 if the driver is alerted to an emergency
and not any part of the train is in a station.

In natural language, it is common to leave out some conditions, such as any
part of the train is in the station, that are present in the context. In more
formal logic, however, the context needs to be spelled out explicitly. In other
words, sentences in formal logic, to represent information unambiguously,
need to stand on their own two feet, without relying for support on the
context around them.

The web of belief

Because the meaning of individual sentences expressed in purely logical form
does not rely on context, collections of sentences in logical form can be
written in any order. In theory, therefore, if this book were written in purely
logical form, I could write it - and you could read it - forwards, backwards, or
in any other order, and it would still have the same meaning. In fact, you
could take any text written as a sequence of sentences in logical form, write
the individual sentences on little pieces of paper, throw them up in the air like
a pack of cards, and pick them up in any order. The resulting sequence of
sentences would have the same meaning as the text you started with.

 28

In contrast, much of the work in writing a book like this is in trying to
find an order for presenting the ideas, so they are as clear, coherent, and
convincing as possible. No matter whether I spell out all of the contexts of
individual sentences in detail, I need to present those sentences in a coherent
order, which relates consecutive sentences both to ideas you had before you
started reading and to ideas you obtained from reading earlier sentences.

One way to achieve coherence is to follow Williams’s advice of placing
old, familiar ideas at the beginnings of sentences and new ideas at their ends.
Sometimes, as a limiting case, if an “old” idea is particularly salient, because
it has just been introduced at the end of the previous sentence, then the old
part of the next sentence can be taken for granted and simply left out. This is
what happens in the emergency notice, both in the transition from the first
sentence to the second sentence, where the condition the driver is alerted to
an emergency has been left out, and in the transition from the second
sentence to the third sentence, where any part of the train is in a station has
been left out.

If the language of thought is a logic of conditional forms, then the
simplest way to achieve coherence is by linking the beginnings and ends of
consecutive sentences by means of the conclusions and conditions of the
thoughts they express, using such obvious patterns as:

 If condition A then conclusion B.
 If condition B then conclusion C.

and

 conclusion C if condition B.
 conclusion B if condition A.

The need for coherence in human communication suggests that the language
of thought is not an unstructured collection of sentences, after all. Rather, it is
a linked structure in which sentences are connected by means of their
conclusions and conditions.

Connection graphs (Kowalski, 1975, 1979), which link conclusions and
conditions of sentences in logical form, have been developed in Artificial
Intelligence to improve the efficiency of automated reasoning. The links in
connection graphs pre-compute much of the thinking that might be needed
later. Here is a connection graph representing some of a person’s goals and
beliefs before reading the emergency notice:

 29

Here is the same connection graph, augmented with additional beliefs, after
the person reads the emergency notice, assuming the person believes
everything written in the notice:

Goal: If there is an emergency
 then you deal with the emergency appropriately.

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

You alert the driver
if you shout for help.

You get help
if you enlist the assistance of your neighbors.

You deal with the emergency appropriately
if you confront the emergency yourself.

You deal with the emergency appropriately
if you run away.

 30

We will see in later chapters that the kind of conditional represented by the
sentence if there is an emergency then you deal with the emergency
appropriately is a maintenance goal, which a person tries to make true by
making its conclusion true whenever its conditions become true.

Goal: If there is an emergency
 then you deal with the emergency appropriately.

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

You alert the driver
if you press the alarm signal button.

The driver will stop the train immediately
if the driver is alerted to an emergency
and any part of the train is in a station.

The driver will stop the train at the next station
if the driver is alerted to an emergency
and not any part of the train is in a station.

You alert the driver
if you shout for help.

You get help
if you enlist the assistance of your neighbors.

You deal with the emergency appropriately
if you confront the emergency yourself.

You deal with the emergency appropriately
if you run away.

There is a fifty pound penalty
if you press the alarm signal button
and you do so improperly.

 31

Connection graphs are related to W. V. Quine’s (1963) web of belief.
Quine argued that scientific theories, and human beliefs more generally, form
a web of beliefs, which are linked to the world of experience by means of
observational sentences at the periphery. Beliefs in scientific theories stand
and fall together as a whole, because any belief, no matter how theoretical,
might be involved in the derivation of an empirically testable, observational
consequence. If an observational consequence of a theory is contradicted by
experience, consistency can be restored by revising any belief involved in the
derivation of the contradiction.

Connection graphs can be viewed as a concrete realization of the web of
belief, in which goals and beliefs are connected by links between their
conditions and conclusions. Although in principle it might be possible to find
a chain of connections between any two beliefs, in practice connections seem
to cluster in relatively self-contained domains, like modules in a computer
program and like the different kinds of intelligence in Howard Gardner’s
(1983) Theory of Multiple Intelligences.

There will be more to say about connection graphs in later chapters. But
in the meanwhile, we have a more pressing concern: How does the
connection graph view of the mind, as a web of conditionals, relate to goal-
reduction procedures? The simple answer is that goal-reduction procedures
are one way of using the connections.

The first sentence as part of a logic program

The first sentence of the Notice, written in the form of a goal-reduction
procedure, hides an underlying logical form. In general, goal-reduction
procedures of the form:

Reduce goal to subgoals

hide logical conditionals of the form:

Goal if subgoals.

The goal-reduction behaviour of procedures can be obtained from
conditionals by backward reasoning:

To conclude that the goal can be solved,
show that the subgoals can be solved.

 Thus, the first sentence of the Emergency Notice has the hidden logical form:

You alert the driver,
if you press the alarm signal button.

 32

Viewed in connection graph terms, backward reasoning is one way in which
a thinking agent can use links between conditionals to direct its attention
from one thought to another. Backward reasoning directs the agent’s
attention from a goal to a conclusion that matches the goal. For example:

The use of backward reasoning to turn conditionals into goal-reduction
procedures is the basis of logic programming, which in turn is the basis of the
programming language Prolog.

Backward reasoning contrasts with forward reasoning, which is probably
more familiar to most people. Given a conditional of the form:

 If conditions then conclusion.

and a collection of statements that match the conditions, forward reasoning
derives the conclusion as a logical consequence of the conditions. For
example, given the statements:

You alert the driver.
A part of the train is in a station.

forward reasoning uses the conditional:

 The driver will stop the train immediately

 if the driver is alerted to an emergency
and any part of the train is in a station.

to derive the conclusion that the driver will stop the train immediately.
 Viewed in connection graph terms, forward reasoning directs attention
from the conclusion of a belief to a belief whose conditions are linked to
those conclusions. For example:

You deal with the emergency appropriately
if you get help.

Goal: You deal with the emergency appropriately.

 33

Backward reasoning is also called top-down reasoning, or analysis. Forward
reasoning is also called bottom-up reasoning, or synthesis.
 When and how to combine backward and forward reasoning are one of
the main topics of this book. However, the connection graph view of the
mind suggests that pure backward or forward reasoning are not the only ways
of reasoning. Connections can also be activated in different parts of the mind
simultaneously and in parallel (Cheng and Juang, 1987). Moreover,
connections that are activated frequently can be short-circuited, and their
effect can be compiled into a single goal or belief. For example, the link:

between two beliefs can be compiled into the single belief:

The fourth sentence as an inhibitor of action

In natural language, the logical form of conditionals is often hidden below
the surface, sometimes appearing on the surface in procedural form, at other
times appearing in declarative form. For example, the last sentence of the
Notice is a declarative sentence, which hides its underlying conditional form:

 There is a fifty pound penalty if
 you press the alarm signal button and
 you do so improperly.

The sentence does not say that you will necessarily receive the penalty for
improper use. So its conclusion, more precisely stated, is only that, under the
condition that you use the alarm signal button improperly, you will be liable

The driver will stop the train immediately
 if the driver is alerted to an emergency
and any part of the train is in a station.

You alert the driver.

A part of the train is in a station.

You deal with the emergency appropriately
if you get help.

You get help
if you alert the driver.

You deal with the emergency appropriately
if you alert the driver.

 34

to the penalty. Backwards reasoning turns this conditional into a goal-
reduction procedure:

To be liable to a 50 pound penalty,
press the alarm signal button and
do so improperly.

It is very unlikely that a passenger would want to get a 50 pound penalty, and
very unlikely, therefore, that the passenger would want to use the conditional
as such a goal-reduction procedure. It is more likely that the passenger would
use it to reason forward instead, to conclude that using the alarm signal
button improperly could have an undesirable consequence.
 In subsequent chapters, we will see two ways of dealing with the
undesirability of the possible consequences of actions. The first is to use
decision theory, associating probabilities and utilities with the consequences
of actions, and choosing an action having the best expected outcome. The
other is to use deontic constraints on actions, formulated in terms of
obligations, permissions and prohibitions.
 In standard logical representations, the deontic notions of obligation,
permission and prohibition are accorded the same status as the logical
connectives and, or, if and not, in so-called deontic logics. However, in the
approach we take in this book, we treat obligations and prohibitions more
simply as a species of goal. Obligations are represented by conditional goals
whose conclusion the agent attempts to bring about if the conditions hold.
Prohibitions (or constraints) are represented by conditional goals with
conclusion false, whose conclusion the agent attempts to prevent, by ensuring
that the conditions do not hold. In the case of the fourth sentence of the
emergency notice, this prohibition could be stated in the form:

 Do not be liable to a penalty.
Or, stated as a conditional goal: If you are liable to a penalty then false.

Although it may seem a little strange, we will see later that representing
probibitions and other constraints as conditional goals (with conclusion false)
has the advantage that then they share the same semantics and the same rules
of inference as other conditional goals. When used to reason forward and to
derive the conclusion false, they eliminate any hypothesis or candidate action
that leads to the derivation of false.
 Thus, in conjunction either with the use of decision theory or with the use
of deontic constraints, the fourth sentence acts as an inhibitor of action rather
than as a motivator of actions. This explains why the sentence is written
declaratively and not procedurally.
 In fact, only the first sentence of the Emergency Notice is written in
procedural form, and only this first sentence of the Notice functions as a

 35

normal program, to evoke the behaviour that is desired of passengers on the
underground. The fourth sentence functions as a constraint, to prevent
undesired behaviour.

The second and third sentences, on the other hand, describe part of a
program to be executed by a different agent, namely by the driver of the train.
These sentences are written declaratively and not procedurally precisely
because they are to be executed by a different agent, and not by the agent
observing the emergency. However, passengers can use these two sentences,
like the fourth sentence, to derive the likely consequences of pressing the
alarm signal button.

Programs with purpose

It is implicit that the purpose1

 (or goal) of the Notice is to explain how you
can get help from the driver in an emergency. That is why the third sentence
includes a phrase that explains why the driver does not stop the train
immediately when it is not in a station, but waits to stop until the next station:

 where help can more easily be given.

The Notice makes sense because the first sentence, in particular, coheres with
the goals and beliefs that you probably already had before you started reading
the Notice. For example, with such sentences as:

 If there is an emergency then

deal with the emergency appropriately.

You deal with the emergency appropriately if
 you get help.

You get help if you alert the driver.

Although I have deliberately written the second and third sentences here
conclusion-first, because it is natural to use them conclusion-first, backwards,
as procedures for dealing with emergencies, I have written the first sentence
condition-first, because it is natural to use it condition-first, forwards, to
respond to emergencies.

The first sentence also has the form of a conditional. But here its
conclusion is written imperatively (deal with the emergency appropriately)
rather than declaratively (you deal with the emergency appropriately). This

1 The terms “goal” and “purpose” are interchangeable. Other terms that sometimes
have the same meaning are “motivation”, “reason”, “interest”, “desire”, “objective”
“mission”, “target”, “value”, etc.

 36

follows English grammar, in which beliefs are expressed as declarative
sentences, but goals, including commands and prohibitions, are expressed as
imperative sentences.

The difference between goals and beliefs is that beliefs describe an
agent’s understanding of the world as it is, whereas goals describe the agent’s
view of the world as the agent would like it to be. This distinction between
goals and beliefs has been largely neglected in symbolic, mathematical logic,
because in mathematics truth is eternal, and there are no actions that a
mathematical theory can do to make a sentence become true. However, the
distinction is important in Artificial Intelligence, because the ability to
perform actions to achieve goals is an essential property of an agent’s nature.

Ordinary natural languages distinguish between goals and beliefs by using
imperative sentences for goals and declarative sentences for beliefs.
However, in the Computational Logic used in this book, both kinds of
sentences are expressed declaratively. For example, we represent the
conditional-imperative sentence:

 If there is an emergency then

deal with the emergency appropriately.

as the declarative sentence:

If there is an emergency then
you deal with the emergency appropriately.

We distinguish between goals and beliefs, not by means of syntax, but by
assigning them to different categories of thought.

Where do we go from here?

This chapter has been intended to give an impression of the book as a whole.
It shows how English sentences can be viewed in both computational and
logical terms; and it shows how the two views are combined in
Computational Logic.

Traditional logic, on which Computational Logic is based, has fallen out
of fashion in recent years. Part of the problem is that its use of symbolic
notation can give the impression that logic has little to do with everyday
human experience. But another part of the problem is that it fails to address a
number of issues that are important in human thinking and behaviour. These
issues include the need:

• to distinguish between goals and beliefs
• to be open to changes in the world
• to combine thinking about actions with deciding what to do

 37

• to combine thinking and deciding with actually performing actions
• to reason by default and with rules and exceptions.

We will see how Computational Logic addresses these issues in the following
chapters. For the moment, we can picture the problem we face roughly like
this:

 ?

Computational Logic as
the thinking component
of an intelligent agent

 The world

 38

Chapter 2. The Psychology of Logic

In this chapter, I will discuss two psychological experiments that challenge
the view that people have an inbuilt ability to perform abstract logical
reasoning. The first of these experiments, the Selection Task, has been widely
interpreted as showing that, instead of logic, people use specialized
procedures for dealing with problems that occur commonly in their
environment. The second, the Suppression Task, has been interpreted as
showing that people do not reason using rules of inference, like forward and
backward reasoning, but instead construct a model of the problem and inspect
the model for interesting properties. I will respond to some of the issues
raised by these experiments in this chapter, but deal with them in greater
detail in a later chapter, after presenting the necessary background material.

To motivate the discussion of the selection task below, consider its
potential application to the problem of improving security on the London
underground. Suppose that the management of the underground decides to
introduce a security check, as part of which security officers stick a label with
a letter from the alphabet to the front of every passenger entering the
underground. Suppose that the security officers are supposed to implement
the following conditional:

 if a passenger is carrying a rucksack on his or her back,
 then the passenger is wearing a label with the letter A on his or her front.

Imagine that you have the task of checking whether the security officers have
properly implemented the conditional. Which of the following four
passengers do you need to check? In the case of Bob and John you can see
only their backs, and in the case of Mary and Susan you can see only their
fronts:

 Bob, who is carrying a rucksack on his back.
 Mary, who has the label A stuck to her front.
 John, who is carrying nothing on his back.
 Susan, who has the label B stuck to her front.

Unfortunately, I have had only limited experience with trying this test
myself. So I’m not entirely sure what to expect. But if you are like most
ordinary people, and if the task I have asked you to perform is sufficiently
similar to some of the psychological experiments that have been performed
on ordinary people, then depending on how you interpret the task your
performance may not be very logical.

If you were being logical, then you would certainly check Bob, to make
sure that he has the label A stuck to his front; and most people, according to
psychological studies, correctly perform this inference. So far so good.

 39

But, if you were being logical according to the standards of classical
logic, then you would also check Susan, because she might be carrying a
rucksack on her back, in which case she would have the incorrect label B
stuck to her front. Unfortunately, in many psychological experiments with
similar reasoning tasks, most people fail to make this correct inference. If you
were to make the same mistake in this version of the selection task, the
failure could be disastrous, because Susan could be a terrorist carrying a
bomb in a rucksack on her back. Not so good.

According to classical logic, those are the only cases that matter. It is not
necessary to check Mary, because the conditional does not state that carrying
a rucksack on the back is the only condition under which the letter A is stuck
to a person’s front. There could be other, alternative conditions, for example
like carrying a hand grenade in a waist belt, that might also require the
security officers to stick the letter A on a person’s front. But you have not
been asked to check whether Mary might be a terrorist. That is the security
officers’ job. You have been asked to check only whether the security
officers have correctly implemented the one stated conditional. Checking to
see whether Mary has a rucksack on her back is going beyond the call of
duty. However, in many psychological experiments with similar tasks, most
subjects do indeed perform this additional, logically unnecessary step.

It remains to consider the case of John, who has nothing on his back.
Logically, it doesn’t matter what letter he has stuck to his front. It could be
the letter B, or even be the letter A. There is no need to check John at all. In
psychological studies with similar tasks, most people also reason “correctly”,
concluding that the letter stuck to John’s front is entirely irrelevant. Even
most people who interpret the conditional as expressing the only condition
under which the letter A is stuck to a person’s front conclude that it is
unnecessary to check John. (But if they really believed that the conditional
expresses the only such condition, then they should check that the conclusion
that John has the letter A stuck to his front doesn’t hold under any other
conditions, such as the condition that he has nothing on his back.)

You might think that the psychologists who devise these experiments
would be disappointed with the evidence that most people appear not to be
very logical. But many psychologists seem to be absolutely delighted.

The Wason selection task

The first and most famous of these experiments was performed by Peter
Wason (1968). In Wason’s experiment, there are four cards, with letters on
one side and numbers on the other. The cards are lying on a table with only
one side of each card showing:

 40

The task is to select those and only those cards that need to be turned over, to
determine whether the following conditional holds:

If there is a d on one side,
then there is a 3 on the other side.

Variations of this experiment have been performed numerous times, mainly
with College students. The surprising result is that only about 10% of the
subjects give the logically correct answer.

Almost everyone recognizes, correctly, that the card showing d needs to
be turned over, to make sure there is a 3 on the other side. This is a logically
correct application of the inference rule modus ponens, which is also called
forward reasoning. Most people also recognise, correctly, that the card
showing f does not need to be turned over. Although, if you ask them why,
they might say “because the conditional does not mention the letter f”, which
(as you will see in a moment) is not the right reason.

Many subjects also think, incorrectly, that it is necessary to turn over the
card showing 3, to make sure there is a d on the other side. This is logically
incorrect, because the conditional does not claim that having a d on one side
is the only condition that implies the conclusion that there is a 3 on the other
side. This further claim is expressed by the so-called converse of the
conditional:

If there is a 3 on one side,
then there is a d on the other side.

The two conditionals are the converse of one another, in the same way that
the two conditionals:

If it is raining, then there are clouds in the sky.
If there are clouds in the sky, then it is raining.

are also mutually converse. In fact, (in case it’s not obvious) the first
conditional is true and the second conditional is false.

d

3

7

f

 41

However, more disturbingly, only a small percentage of subjects realise
that it is necessary to turn over the card showing 7, to make sure that d is not
on the other side. It is necessary to turn over the 7, because the original
conditional is logically equivalent to its contrapositive:

If the number on one side is not 3 (e.g. 7),
then the letter on the other side is not d.

Similarly, the second sentence in the pair of sentences:

If it is raining, then there are clouds in the sky.
If there are no clouds in the sky, then it is not raining.

is the contrapositive of the first sentence, and the two sentences are also
logically equivalent. Notice that it is logically necessary to turn over the card
showing 7 (because the number 3 is not the number 7) even though the
original conditional does not mention the number 7 at all.

The obvious conclusion, which many psychologists draw, is that people
are not logical, and that logic has relatively little to do with real human
reasoning.

A variant of the selection task

Psychologists have shown that people perform far better when the selection
task experiment is performed with a problem that is formally equivalent to
the card version of the task but has meaningful content. The classic
experiment of this kind considers the situation in which people are drinking
in a bar, and the subject is asked to check whether the following conditional
holds:

If a person is drinking alcohol in a bar,
then the person is at least eighteen years old.

Again there are four cases to consider, but this time instead of four cards
there are four people. We can see what two of them are drinking, but not how
old they are; and we can see how old two of them are, but not what they are
drinking:

Bob, drinking beer.
Mary, a senior citizen, obviously over eighteen years old.

 John, drinking cola.
 Susan, a primary school child, obviously under eighteen years old.

 42

In contrast with the card version of the selection task, most people solve the
bar version correctly, realising that it is necessary to check Bob to make sure
that he is at least eighteen years old, and to check Susan to make sure that she
is not drinking alcohol, but that it is not necessary to check Mary and John.

Cognitive psychologists have proposed a bewildering number of theories
to explain why people are so much better at solving such versions of the
selection task compared with other, formally equivalent variations, like the
original card version. The most generally cited of these theories, due to Leda
Cosmides (1985, 1989), is that humans have evolved a specialized algorithm
(or procedure) for detecting cheaters in social contracts. The algorithm has
the general form:

If you accept a benefit,
then you must meet its requirement.

In the bar version of the selection task, the “benefit” is “drinking beer” and
the “requirement” is “being at least eighteen years old”.

Cosmides and her co-workers also argue that humans have evolved other
specialized algorithms for dealing with other kinds of problems, for example
an algorithm for avoiding hazards:

If you engage in a hazardous activity,
then you should take the appropriate precaution.

Stephen Pinker (1997) cites Cosmides’ evolutionary explanation approvingly
in his award winning book, How the Mind Works. He points out that the
cheater algorithm explanation doesn’t always justify the logically correct
solution. For example, given the conditional if he pays $20 he receives a
watch, subjects typically select the person who doesn’t pay $20, to check he
hasn’t received a watch. But logically, this is unnecessary, because the
conditional doesn’t say that he receives a watch only if he pays $20. The
conditional is entirely compatible, for example, with a person receiving a
watch if he takes early retirement. Thus, according to Cosmides and Pinker,
evolutionary algorithms explain human performance on selection tasks,
whether or not that performance coincides with the dictates of classical logic.

At about the same time as Cosmides developed the evolutionary theory,
Cheng and Holyoak (1985) put forward a related theory that people reason
about realistic situations using specialised algorithms. But for Cheng and
Holyoak, these algorithms are “pragmatic reasoning schemes”. Chief among
these pragmatic schemes are ones involving deontic notions concerned with
permission, obligation and prohibition. In English these notions are typically
signalled by the use of such words as “can”, “should”, “need” and “must”.
But these explicit linguistic signals can be omitted if the context makes it

 43

obvious that an obligation or prohibition is involved, as in the formulation of
the bar version of the selection task above.

In fact, if Cheng and Holyoak are right, then the security check version of
the selection task shouldn’t be hard at all, because the most natural
interpretation of the conditional:

 If a passenger is carrying a rucksack on his or her back,
 then the passenger is wearing a label with the letter A on his or her front.

is deontic:

 If a passenger is carrying a rucksack on his or her back,
 then the passenger should be wearing a label with the letter A
 on his or her front.

But then the real problem isn’t just how people reason with conditionals in
logical form, but also how people interpret natural language conditionals and
translate them into conditionals in logical form.

But both Cosmides and Cheng and Holyoak draw a different conclusion.
They argue that people do not have an in-built, general-purpose ability for
abstract logical reasoning, but instead employ specialised procedures for
dealing with classes of practical problems that arise naturally in the world
around them. I will discuss the selection task in greater detail in Chapter 16,
but the relationship between general-purpose and special-purpose methods is
too important not to address it here. It is part of the more fundamental
relationship between knowledge representation and problem solving, which
is one of the main themes of this book.

Thinking = knowledge representation
+ problem solving

In Artificial Intelligence, the ultimate goal of an agent is to maintain itself in
a harmonious relationship with the world. For this purpose, intelligent agents
employ a mental representation of the world and use that representation to
respond to threats and opportunities that arise in their environment. They do
so by observing the current state of the world, generating appropriate goals,
reducing those goals to actions, and performing actions, to change the world
for their benefit. In Computational Logic, these mental representations are
expressed in a logical language of thought; and both the generation of goals
from observations and the reduction of goals to actions are performed by
logical reasoning.
 Thus, an intelligent agent needs both specialized knowledge (in the form
of goals and beliefs), and general-purpose reasoning abilities (including

 44

forward and backward reasoning). The agent needs specialised knowledge,
both to deal with everyday problems that occur as a matter of course, and to
deal with problems that might never occur but could have life-threatening
consequences if they do. But the agent also needs general-purpose reasoning,
to be able to use its knowledge flexibly and efficiently.
 The relationship between knowledge representation and reasoning is like
the relationship between a computer program and program execution.
Knowledge is like a computer program, consisting of specialised procedures
for solving problems that are particular to a problem domain. Reasoning is
like program execution, employing general-purpose methods to execute
programs in any domain. In Computational Logic, programs are represented
in logical form, and program execution is performed by applying rules of
inference.
 Compared with conventional computer programs, whose syntax consists
of instructions for a machine, programs in logical form are much higher-
level, in that their syntax more closely mirrors the semantic structure of the
world that they represent. However, in Computational Logic the application
of general-purpose inference rules to domain-specific knowledge behaves
like specialised algorithms and procedures. This relationship can be
expressed in the form of an equation:

 algorithm = knowledge + reasoning.

I will argue later in the book that the kind of specialised algorithm involved
in cheater detection can be viewed as combining a goal (or constraint) of the
logical form:

if a person accepts a benefit
and the person does not meet its requirement
then false.

with general-purpose reasoning with goals that have the form of such
conditionals. In general, given a goal of the logical form:

if conditions then conclusion.

• reason forward to match an observation with a condition of the goal,
• reason backward to verify the other conditions of the goal, and
• reason forward to derive the conclusion as an achievement goal.

In the special case where the achievement goal is false and therefore
unachievable, then this pattern of reasoning detects violation of the goal. In
the special case where the other conditions are properties that can be
observed in the agent’s environment, then the agent can attempt to verify

 45

these properties by actively attempting to observe whether or not they are
true.
 This analysis of the cheater detection algorithm applies without prejudice
to the issue of whether or not people actually use such algorithms to solve
selection tasks. Moreover, it is compatible with the argument of (Sperber,
Cara and Girotto, 1995) that people are more likely to solve selection task
problems in accordance with the norms of classical logic, the more natural it
is for them to represent the conditional:

 if conditions then conclusion

in the form: it is not the case that
 conditions and not conclusion.

or equivalently: if conditions and not conclusion then false.

This analysis of the cheater detection algorithm is also compatible with the
argument of (Cheng and Holyoak, 1985) and (Stenning and van Lambalgen,
2008) that people more readily solve selection task problems in accordance
with classical logic if they interpret those problems in deontic terms. It is
even compatible with Cosmides argument that people use Darwinian
algorithms, because the analysis is independent of the source of the agent’s
knowledge. The agent might have obtained its knowledge by learning it
through its own experience, by learning it from parents, teachers or friends,
or by inheriting it through the mechanisms of Darwinian evolution.
 Although this analysis may explain some of the cases in which people
reason correctly in terms of classical logic, it does not explain those cases, as
in the card version of the selection task, where they reason with the converse
of the conditional or where they fail to reason with the contrapositive. We
will return to this problem in Chapter 16. But before we leave this chapter,
we will look at another example that challenges the claim that people reason
using logical rules of inference.

The suppression task

Consider the following pair of premises:

If she has an essay to write, then she will study late in the library.

 She has an essay to write.

Most people correctly conclude:

She will study late in the library.

 46

Suppose I now say in addition:

If the library is open, then she will study late in the library.

Given this additional information, many people (about 40%) suppress their
earlier conclusion that she will study late in the library.
 This problem was originally studied by Ruth Byrne (1989) and used as
evidence to argue that people do not reason with logical rules of inference,
such as modus ponens (forward reasoning), but reason instead by
constructing and inspecting mental models, which are like architects’ models
or diagrams, whose structure is analogous to the structure of the situation
they represent.
 Mental models, as (Johnson-Laird, 1983) and (Johnson-Laird and Byrne,
1991) describe them, look a lot like the semantic structures that we
investigate in later, mainly additional chapters. But they also look like sets of
atomic sentences, and consequently are ambiguous by the rigorous standards
of mathematical logic (Hodges; 1993, 2006). It would be easy to dismiss
mental models as confusing syntax and semantics. But it might be a sign of a
deeper relationship between syntax and semantics than is normally
understood.
 Indeed, somewhat in the spirit of mental models, I will argue later in the
book that the appropriate semantics for Computational Logic is one in which
semantic structures are represented syntactically as sets of atomic sentences. I
will also argue that the kind of reasoning that is most useful in Computational
Logic is the reasoning involved in generating such a synactically represented
semantic structure, in order to make or show that a given set of sentences
may be true. We will see that it is hard to distinguish between reasoning
about truth in such syntactic/semantic structures and reasoning with purely
syntactic rules of inference.
 Like the Wason selection task, the suppression task has generated a
wealth of alternative explanations. The explanation that comes closest to the
approach of this book is the explanation of (Stenning and van Lambalgen,
2008) that solving problems stated in natural language is a two-stage process
of first identifying the logical form of the problem and then reasoning with
that logical form. The mistake that many psychologists make is to ignore the
first stage of the process, assuming that if the syntax of a natural language
statement already has an apparently logical form, then that apparent form is
the intended form of the statement’s meaning.
 We saw a clear example of the difference between the apparent logical
form of an English sentence and its intended logical form in Chapter 1, in the
case of the second sentence of the London underground emergency notice:

The driver will stop
if any part of the train is in a station.

 47

where its intended meaning was:

The driver will stop the train in a station
 if the driver is alerted to an emergency

and any part of the train is in the station.

The intended meaning of the sentence contains both the missing object, the
train, of the verb stop and an extra condition, coming from the context of the
previous sentence press the alarm signal button to alert the driver. Because
this missing condition is already present in the context, it is relatively easy
for the reader to supply it without even noticing it isn’t actually there.

Arguably, the situation in the suppression task is similar, in that the
English language sentence if she has an essay to write, then she will study
late in the library is also missing an extra condition, namely the library is
open, needed to represent the logical form of its intended meaning:

 If she has an essay to write and the library is open,
 then she will study late in the library.

 But in the suppression task, the missing condition comes in a later sentence,
rather than in an earlier one. In any case, it is hard to argue that the later
sentence if the library is open, then she will study late in the library means
what it actually says. Taken literally, the sentence says that she will study late
in the library, whether or not she has an essay to write, as long as the library
is open. It is also hard to argue that the sentence measures up to the standards
of clarity advocated in books on good English writing style.
 There are a number of ways that the task could be reformulated, to
conform to better standards of English style. Perhaps the formulation that is
closest to the original statement of the problem is a reformulation as a rule
and an exception:

If she has an essay to writen, she will study late in the library.
But, if the library is not open, she will not study late in the library.

Exceptions are a conventional way of adding extra conditions to a rule, after
a simplified form of the rule has been presented. In general, rules and
exceptions have the form:

Rule: a conclusion holds if conditions hold.
Exception: but the conclusion does not hold if other conditions hold.

Expressed in this form, the meaning of the rule depends upon the context of
the exception that follows it. However, the rule can also be expressed

 48

context-independently, as strict logical form requires, by adding to the rule an
extra condition:

Context independent rule: a conclusion holds if conditions hold

and other conditions do not hold.

In the suppression task, the extra condition is equivalent to the positive
condition the library is open.

We will see other examples of rules and exceptions in later chapters. We
will see that the kind of reasoning involved in the suppression task, once its
intended logical form has been identified, is a form of default (or defeasible)
reasoning, in which the conclusion of a rule is deemed to hold by default, but
is subsequently withdrawn (or suppressed) when additional information
contradicting the application of the rule is given later.
 Before we leave the suppression task, note that the exception, when
correctly expressed in the form if the library is not open, then she will not
study late in the library, is the contrapositive of the converse if she will study
late in the library, then the library is open of the original English sentence if
the library is open, then she will study late in the library. So the suppression
task can be regarded as an example of the communicator incorrectly
expressing information in the converse of its intended meaning.

Natural language understanding
versus logical reasoning

Communicating effectively in natural language is a challenge not only for the
writer (or speaker) but also for the reader (or listener). It is a challenge for the
writer, who needs to express her thoughts as clearly, coherently and
effectively as possible; and it is a challenge for the reader, who needs to
construct a logical form of the communication, assimilate that logical form
into his web of goals and beliefs, and act appropriately if necessary.

As we well know, the syntax of English sentences is only an imperfect
conveyor of a writer’s thoughts. In particular, English sentences frequently
omit conditions (like the driver is alerted to an emergency and the library is
open) and other qualifications (the driver will stop the train) needed to
reconstruct their meaning. As a consequence, although a reader needs to use
the syntax of English sentences to help him reconstruct their logical form, he
cannot rely exclusively upon their syntax. In many cases, there can be
several, alternative candidate logical forms for the same English sentence,
and consequently the reader needs to draw on other resources to help him
choose between the alternatives.

The only other resource a reader can draw upon are his own goals and
beliefs, including the goals and beliefs he has extracted from previous
sentences in the discourse, and including his beliefs about the writer’s goals

 49

and beliefs. In choosing between the alternative meanings of a sentence, the
reader needs to choose a logical form that is as coherent as possible with this
context.

There are different ways to judge coherence. Obviously, a logical form
that has no connections with the reader’s understanding of the writer’s goals
and beliefs is less coherent than a logical form that does have such
connections. A logical form that confirms this understanding is more
coherent than a logic form that conflicts with this understanding. In a
sequence of English sentences, a logical form that has connections with the
logical forms of previous sentences is more coherent than a logical form that
does not.

I have already argued, following Stenning and van Lambalgen, that the
suppression task is a clear-cut case in which the first stage of solving the
problem, namely constructing its logical form, is much harder than the
second stage of reasoning with that logical form. In particular, it is hard
because the writer has expressed one of the sentences in the converse form of
its intended meaning. By comparison, the selection task is even more
difficult, because both stages are hard.

The first stage of the selection task is hard, because the reader has to
decide whether the conditional has any missing conditions, whether it is the
only conditional having the given conclusion, and whether it is to be
interpreted as a goal or as a belief. To help in making these decisions, the
reader needs to assimilate the logical form of the conditional as coherently as
possible into his existing goals and beliefs. Sperber, Cara and Girotto (1995)
argue that, because there is so much variation possible in the first stage of the
selection task, it is impossible to form any judgement about the correctness of
the reasoning processes involved in the second stage. This view is also
supported by the results of experiments by Almor and Sloman (2000) who
showed that, when subjects are asked to recall the problem after they have
given their solution, they report a problem statement that is consistent with
their solution rather than with the original problem statement.

The second stage of the selection task is hard, mostly because negation is
hard. For one thing, it can be argued that positive observations are more
fundamental than negative observations. For example, we observe that a
person is tall, fat and handsome, not that she is not short, not thin and not
ugly. Such negative sentences have to be inferred from positive observations
or assumptions, and the longer the chain of inferences needed to derive a
conclusion, the harder it is to derive it.

We will look at reasoning with negation in greater detail in subsequent
chapters. In the meanwhile, there is another issue, which goes to the heart of
the relationship between logical and psychological reasoning, namely
whether the given task is to be solved in the context of an agent’s goals and
beliefs, or whether it is to be solved in a context in which those goals and
beliefs are temporarily suspended.

 50

Reasoning in context

I argued above that, because natural language is ambiguous, readers often
need to choose between alternative logical forms as a representation of the
writer’s intended meaning. The syntax of an English sentence is only one
guide to that intended meaning. Coherence with the reader’s existing goals
and beliefs, including logical forms of earlier sentences in the same
discourse, as well as the reader’s beliefs about the writer’s goals and beliefs,
all play a part in helping to identify the intended logical form of a new
sentence in the discourse.
 Most of the time we understand communications intuitively,
spontaneously and unconsciously, without being aware of these difficulties,
relying perhaps more on our expectations of what the writer wants to say,
than on what the writer actually says.
 Sometimes, when communications have little connection with our own
experience, they go in one ear and out the other, as though they were a kind
of background noise. And sometimes we just understand sentences in our
own, private way, only loosely connected to what the writer has written, and
even more loosely connected to what the writer had in mind.
 In contrast with sentences in natural language, sentences in logical form
say exactly what they mean. But because different people have different
goals and beliefs, the same sentence in logical form has different significance
for different people. So, although the sentence has the same meaning for
different people when the sentence is regarded in isolation, it has a different
meaning (or significance) when the sentence is understood in the context of a
person’s goals and beliefs.
 Assume, for example, that the sentence Susan has a rucksack on her back
means exactly what it says, and is already in logical form. But if I believe
that Susan has a bomb in the rucksack and you believe that Susan has only
her lunch in the rucksack, then the same belief that Susan has a rucksack on
her back has a different significance for the two of us.
 Understanding sentences for their significance in the context of the
reader’s goals and beliefs is a higher kind of logic than understanding
sentences in the isolated context of a psychological experiment. But most
psychological studies of human reasoning make the opposite assumption: that
logical reasoning means interpreting natural language problem statements
context-independently, using only the sentences explicitly presented in the
experiment.
 Such ability to suspend one's own goals and beliefs and to reason context-
independently, as studied in psychological experiments, is indeed an
important and useful skill, but it is not quite the same as reasoning logically.
In some cases, it is more like failing to see the wood for the trees.

 51

 Computational Logic is concerned with representing goals and beliefs in
logical form and with reasoning with those representations to solve problems
that arise in the Real World. Compared with representations in logical form,
communications in natural language are generally only a poor approximation
to the logical forms of those communications. As a consequence, reasoning
tasks presented in natural language are often only an approximation to
reasoning tasks performed on pure logical forms.

Before we conclude this chapter, we will look at yet another example that
illustrates the confusion between natural language understanding and logical
reasoning.

The use of conditionals to explain observations

The philosopher John Pollock (1995) uses the following example, not to
argue that people are illogical, but to support the view that real logic involves
a sophisticated form of argumentation, in which people evaluate arguments
for and against a given conclusion. Here I use the same example to illustrate
the difference between the apparent logic of the natural language statement of
a problem and the underlying logic of the problem when it is viewed in the
context of an agent’s goals and beliefs.
 Suppose I tell you that:

 An object is red if it looks red.

Try to suspend any other goals and beliefs you might have about being red
and looking red, and treat the sentence as meaning exactly what it says. Now
suppose I also tell you that:

This apple looks red.

You will probably draw the obvious conclusion that this apple is red. Now
suppose I say in addition:

 An object looks red if it is illuminated by a red light.

It is likely that you will now withdraw your previous conclusion.
 The example is similar to the suppression task, because the third sentence
can be interpreted as drawing your attention to a missing condition in the first
sentence:

 An object is red if it looks red and it is not illuminated by a red light.

Pollock explains the example in terms of competing arguments for and
against the conclusion that this apple is red. But there is an alternative

 52

explanation: namely, that you understand the first sentence in the context of
your existing beliefs, which already include, perhaps naively, the belief that
looking red is caused by being red, represented in the natural effect if cause
form:

 An object looks red if it is red.

Thus the first sentence of the discourse is the converse of your pre-existing
causal belief. It tells you in effect that the writer believes that the only cause
of an object looking red is that it actually is red. Given only this first sentence
of the discourse, you conclude that the apple is red because that is the only
way of explaining the observation that the apple looks red.
 However, the third sentence of the discourse gives an additional possible
cause for an object looking red. Either you already have this additional causal
belief, and the writer is simply drawing your attention to it, or you add this
new causal belief to your existing beliefs. In both cases the logical form of
the third sentence is coherent with your existing beliefs. And in both cases
you withdraw the assumption that being red is the only explanation for the
apple looking red.
 This way of thinking about the example views it as a problem of
abductive reasoning, which is the problem of generating hypotheses to
explain observations. Abductive reasoning is the topic of Chapter 10.

Conclusions

In this chapter, we considered the claim, supported by the selection task, that
people reason by means of specialised algorithms rather than by means of
general-purpose logic. I attacked this claim by arguing that it fails to
appreciate that specialised algorithms combine specialized knowledge with
general-purpose reasoning.

Following Sperber, Cara and Girotto (1995) and Stenning and van
Lambalgen (2008), I argued that the discussion of psychological experiments
of reasoning also fails to pay adequate attention to the first stage of solving
such problems, which is to translate them from natural language into logical
form. Moreover, it fails in particular to take into account the need for those
logical forms to be coherent with the reader’s other goals and beliefs.

However, even taking these arguments into account, there remain
problems associated with the second stage of reasoning with the resulting
logical forms. Some of these problems, as illustrated by both the suppression
task and the red light examples, have to do with the relationship between
conditionals and their converse. Other, more difficult problems have to do
with reasoning with negation. Both kinds of problems, reasoning with
converses and reasoning with negation, will be taken up in later chapters.

 53

 We also considered the argument, supported by the suppression task, that
people reason by means of mental models rather than by means of rules of
inference. In the more advanced chapters A2, A3, A4 and A6, I will argue
that forward and backward reasoning can both be viewed as determining
truth in minimal models. This observation lends support to a variant of the
mental model theory of deduction, reconciling it with the seemingly contrary
view that people reason by means of rules of inference.

 54

Chapter 3 The Fox and the Crow

In this chapter we revisit the ancient Greek fable of the fox and the crow, to
show how the proactive thinking of the fox outwits the reactive thinking of
the crow. In later chapters, we will how reactive and proactive thinking can
be combined.

The fox and the crow are a metaphor for different kinds of people. Some
people are proactive, like the fox in the story. They like to plan ahead,
foresee obstacles, and lead an orderly life. Other people are reactive, like the
crow. They like to be open to what is happening around them, take advantage
of new opportunities, and to be spontaneous. Most people are both proactive
and reactive, at different times and to varying degrees.

The fox and the crow

Most people know the story, attributed to Aesop, about the fox and the crow.
It starts, harmlessly enough, with the crow perched in a tree with some
cheese in its beak, when along comes the fox, who wants to have the cheese.

In this version of the story, we consider the fox’s point of view. To model her
proactive way of thinking, we represent her goals and beliefs in logical form:

Goal: I have the cheese.

Beliefs: the crow has the cheese.

Goal: The fox has cheese.

Beliefs: The crow has cheese.

An animal has an object
if the animal is near the object
and the animal picks up the object.

The fox is near cheese if the crow sings.

The crow sings if the fox praises the crow.

?

 55

 An animal has an object

if the animal is near the object
and the animal picks up the object.

 I am near the cheese

if the crow has the cheese
and the crow sings.

 the crow sings if I praise the crow.

As you can see, the fox is not only a logician of sorts, but also an amateur
physicist. In particular, her belief about being near the cheese if the crow
sings combines in a single statement her knowledge about her location
relative to the crow with her knowledge of the laws of gravity. Reasoning
informally, the single statement can be derived from other more fundamental
statements in the following way:

The fox knows that if the crow sings,
then the crow will open its beak
and the cheese will fall to the ground under the tree.

The fox also knows that, because the fox is under the tree,
the fox will then be near the cheese.

Therefore, the fox knows she will be near the cheese if the crow sings.

The fox is also an amateur behavioural psychologist. Being a behaviourist,
she is interested only in the crow’s external, input-output behaviour, and not
in any internal methods that the crow might use to generate that behaviour. In
particular, although the fox represents her own beliefs about the crow in
logical terms, she does not assume that the crow also uses logic to represent
any beliefs about anything. As far the fox is concerned, the crow’s behaviour
might be generated by means of condition-action rules without any logical
form. Or his behaviour might even be “hardwired” directly into his body,
without even entering into his mind.

Like the fox’s belief about being near the cheese if the crow sings, the
fox’s belief that the crow will sing if the fox praises the crow might also be
derived from other, more fundamental beliefs. They might be derived perhaps
from more general beliefs about the way some naive, reactive agents respond
to being praised, without thinking about the possible consequences of their
actions.

The fox also has ordinary common sense. She knows that an animal will
have an object if she is near the object and picks it up. As with her other

 56

beliefs, she can derive this belief from more basic beliefs. For example, she
can derive this belief from the simpler belief that an animal will have an
object if the animal picks up the object, by combining it with the constraint
that to pick up an object the animal has to be near the object (ignoring other
constraints like the weight and size of the object).

The fox holds this belief about the conditions under which she will have
an object as a general law, which applies universally to any animal and to any
object (although she doesn’t seem to know that the law also applies to robots,
unless she views robots as another species of animal). She also knows
enough logic to be able to instantiate the general law, in other words, to
apply it to special instances of animals and objects, such as the fox and the
cheese respectively.

The fox’s beliefs as a logic program

The fox’s beliefs have not only logical form, but they also have the more
specialised form of conditionals:

 conclusion if conditions.

Both the conclusion and the conditions are written in declarative form. The
conditionals are written backwards, conclusion first, to indicate that they can
be used to reason backwards, from conclusions to conditions. Using
backward reasoning, each such conditional behaves as a goal-reduction
procedure:

 to show or make the conclusion hold,
 show or make the conditions hold.

Even “facts”, which record observations, like the belief that the crow has the
cheese, can be viewed as conditionals that have a conclusion, but no
conditions:

 conclusion if nothing.

Or in more logical terms:

 conclusion if true.

Such facts also behave as procedures:

 to show or make the conclusion hold, show or make true hold.
or to show or make the conclusion hold, do nothing.

 57

Therefore, the fox’s beliefs can be used as a collection of procedures:

 to have an object, be near the object and pick up the object.
 to be near the cheese, check the crow has the cheese
 and make the crow sing.
 to make the crow sing, praise the crow.
 to check that the crow has the cheese, do nothing.

Notice that the subgoals in these procedures are expressed in the imperative
mood. This manner of expression is risky. What do you do if you have two
alternative procedures for achieving the same goal? For example:

 to have an object, make the object.

There is no problem with a declarative formulation:

 An animal has an object if the animal makes the object.

But the two procedures, with two imperatives, create a conflict. We will see
later in Chapter 7 that the need for conflict resolution, to choose between
conflicting imperatives, also arises with condition-action rules. However, in
the meanwhile, we can avoid such explicit conflicts by treating the subgoals
of procedures, not as imperatives, but as recommendations:

 to have an object, you can be near the object
 and you can pick up the object.
 to have an object, you can make the object.

You wouldn’t get very far with such irresolute language in the army, but at
least you would avoid the need for conflict resolution. However, let’s not
worry about these niceties for now, and return to our story of the fox and the
crow.

The fox can use these procedures (whether expressed imperatively or as
recommendations), one after the other, to reduce the top-level goal I have the
cheese to the two action subgoals I praise the crow and I pick up the cheese.
Together, these two actions constitute a plan for achieving the top-level goal.

Backward reasoning in connection graphs

The fox’s reduction of her original goal to the two action subgoals can be
visualized as searching for a solution in the connection graph that links her
top-level goal to the web of her beliefs. Of course, the totality of all her
beliefs is bound to be huge, and the search would be like looking for a needle
in a haystack. However, the strategy of backward reasoning guides the

 58

search, so that she needs to consider only relevant beliefs whose conclusion
matches the goal.

Starting from the original, top-level goal and following links in the graph,
the fox can readily find a sub-graph that connects the goal either to known
facts, such as the crow has the cheese, or to action subgoals, such as I praise
the crow and I pick up the object, that can be turned into facts by executing
them successfully in the real world. This subgraph is a proof that, if the
actions in the plan succeed, and if the fox’s beliefs are actually true, then the
fox will achieve her top-level goal. The fox’s strategy for searching the
graph, putting the connections together and constructing the proof is called a
proof procedure.

Backward reasoning is performed by matching (or better unifying) a goal
with the conclusion of a conditional and deriving the conditions of the
conditional as subgoals. For example, the top-level goal:

 I have the cheese.

matches the conclusion of the conditional:

Goal: I have the cheese.

An animal has an object
if the animal is near the object
 and the animal picks up the object.

I am near the cheese
if the crow has the cheese
 and the crow sings.

The crow sings if I praise the crow.

An animal has an object
if the animal makes the object.

The crow has the cheese.

possibly other beliefs

 other beliefs

 59

 An animal has an object
 if the animal is near the object and the animal picks up the object.

Backward reasoning derives the two subgoals:

 I am near the cheese and I pick up the cheese.

by instantiating the general terms the animal and the object with the specific
terms I and the cheese respectively.

The second of these two subgoals is an action, which matches the
conclusion of no conditional in the connection graph. It can be solved only by
performing it successfully. However, the first subgoal can be reduced to other
subgoals by three further steps of backwards reasoning. The final result of
this chain of backward reasoning is a logical proof that the fox has the cheese
if she praises the crow and picks up the cheese.

 In traditional logic, it is more common to present proofs in the
forward direction. In this case, a traditional proof would look more like this:

I praise the crow.
Therefore the crow sings.

 the crow has the cheese.
Therefore I am near the cheese.

 I pick up the cheese.
Therefore I have the cheese.

Although forward reasoning is a natural way to present proofs after they have
been found, backward reasoning is normally a more efficient way to find
them. Both forward and backward reasoning involve search; but given a goal
to be solved, backward reasoning is goal-directed, and focuses attention on
beliefs that are relevant to the goal.
 The connection graph pictured above illustrates only a fraction of the
beliefs that are potentially relevant to the goal. Some of the links, like the one
linking the top-level goal to the belief that an animal has an object if the
animal makes the object do not feature in the plan that the fox eventually
finds to solve her goal. The belief is relevant to the goal, because its
conclusion matches the goal. But for simplicity, I have ignored, for now, the
possibility that the fox might explore this alternative way of solving her top-
level goal.
 In a more realistic representation of the graph, there would be many more
such potentially relevant links. Some of them might lead to other solutions,
for example to the solution in which the fox climbs the tree and snatches the
cheese from the crow. Others might lead to useless or even counter-

 60

productive attempted solutions, for example to the fox leaping at the crow,
but frightening him away in the process.
 The fox needs both a strategy to guide her search for solutions and a
strategy to compare solutions and decide between them. We will discuss the
problem of searching for solutions in Chapter 4, and the problem of deciding
between solutions in later chapters.
 But, first, notice that, in addition to other links, which lead to other ways
of trying to solve the top-level goal I have the cheese, there is another way of
trying to solve the goal, which doesn’t even make it, as a link, into the graph,
namely by trying to use the fact the crow has the cheese. Remember this fact
is actually a kind of degenerate conditional the crow has the cheese if true,
which behaves as the simple procedure to check that the crow has the cheese,
do nothing. This procedure could be used to try to solve the top-level goal I
have the cheese, by trying to identify (match or unify) the two specific terms
I and the crow. If this identification were possible, backward reasoning with
the fact would solve the top-level goal in one step.
 We have been using the related terms identification, instantiation,
matching and unification informally. These terms have precise definitions,
which are presented in Chapter A3. For the purposes of this example, it
suffices to note that these definitions preclude the possibility of identifying
different specific terms with one another. So, unless the fox is having an
identity crisis, she cannot match the conclusion of the degenerate conditional
the crow has the cheese if true with her goal I have the cheese. The
connection graph does not include a link between the fact and the goal,
because it pre-computes unifying instantiations, and recognizes that the
identification of the specific terms I with the crow is impossible. This pre-
computation is independent of the different purposes to which such a link
might contribute.
 Thus backward reasoning, connection graphs and a host of other
techniques developed in the field of Automated Reasoning in Artificial
Intelligence significantly reduce the amount of search that an agent needs to
perform to solve its goals. But even with all of these refinements, the
problem of search is inescapable, and we will return to it in Chapter 4, where
it gets a whole chapter of its own.

The end of the story of the fox and the crow?

For a Logic Extremist, this would be the end of the story. For the Extremist,
there is no difference between the fox’s world and the fox’s beliefs about the
world, and no difference between the fox’s plan for getting the cheese and the
fox’s actually having it.

However, Common Sense tells us that there is more to life than just
thinking. In addition to thinking, an agent needs to observe changes in the
world and to perform actions to change the world in return. Logic serves

 61

these purposes by providing the agent with a means of constructing symbolic
representations of the world and of processing those representations to reason
about the world. We can picture this relationship between the world and logic
in the mind of an agent like this:

Representation and meaning

This relationship can be looked at in different ways. On the one hand,
sentences in logical form represent certain aspects of the agent’s
experience of world. On the other hand, the world is an interpretation,
which gives meaning (or semantics) to sentences expressing the agent’s
goals and beliefs.
 This notion of meaning, by the way, is quite different from the meaning
that we were concerned with before, when we understood meaning as the
thoughts that people attempt to communicate by means of sentences in
natural language. There, the meaning of a public sentence was a private
sentence in the communicator’s language of thought. Here it is the meaning
of that private sentence in relationship to the world. These relationships
between different kinds of meaning can be pictured like this:

 agent

Logical
representation
of the world

act observe

 The world

 62

Whereas before we were concerned with so-called speaker’s meaning, here
we are concerned with logical meaning. Linguists and philosophers are also
concerned with linguistic meaning, understood in terms of the relationship
between natural language sentences and the world. But in my opinion,
ordinary natural language communications are too imprecise and too clumsy
to have a meaning that is independent of the logical meaning of their
speaker’s meaning.
 We can better understand the notion of logical meaning if we consider it
in general terms, as a relationship between sentences in logical form and
interpretations (sometimes also called models or possible worlds), including
artificial and imaginary worlds, like the world in the story of the fox and the
crow. An interpretation is just a collection of individuals and relationships
among individuals. For simplicity, properties of individuals are also regarded
as relationships.

An interpretation in traditional logic normally corresponds to a single,
static state of the world. For example:

In the story of the fox and the crow, the fox, crow, cheese, tree, ground
under the tree, and airspace between the crow and the ground can be
regarded as individuals; and someone having something can be
regarded as a relationship between two individuals. The sentence “The
crow has the cheese.” is true in the interpretation at the beginning of
the story and false in the interpretation at the end of the story.

The simplest way to represent an interpretation in symbolic form is to
represent it by the set of all the atomic sentences that are true in the
interpretation. In this example we might represent the interpretation at the
beginning of the story by the atomic sentences:

 the crow has the cheese.
 the crow is in the tree.
 the tree is above the air.
 the air is above the ground.
 the tree is above the ground.
 the fox is on the ground.

Thoughts expressed in
logical form

Sentences expressed in
natural language

The World

speaker’s
meaning

logical
meaning

linguistic
meaning

 63

The difference between such atomic sentences and the interpretation they
represent is that in an interpretation the individuals and the relationships
between them can be understood as having an existence that is independent
of language.
 Atomic sentences are only symbolic expressions, consisting of a predicate
(or predicate symbol) and zero, one or more arguments. As explained in
Chapter A1, a predicate symbol represents a property of an individual or a
relation among several individuals, represented by the arguments of the
predicate. For example, words and phrases like the crow, the cheese, the tree,
etc. are names of individuals, and has and is in are predicates that name
relations between individuals.

The attraction of logic as a way of representing the world lies largely its
ability to represent regularities (or rules) by means of non-atomic sentences.
For instance, in the atomic sentences above, the fact that the tree is above the
ground can be derived from the more basic facts that the tree is above the air
and the air is above the ground, given the non-atomic sentence:

one object is above a second object
if the first object is above a third object
and the third object is above the second object.

Or, looking at it differently, the non-atomic sentence is true in the
interpretation represented by the atomic sentences.
 The ultimate purpose of interpretations is to determine whether sentences
are true or false. In the case an agent embedded in the Real World, beliefs
that are true are normally more useful than beliefs that are false. Goals that
are easy to make true are normally more useful than goals that are difficult to
make true.
 In general, the problem of determining the truth value of a non-atomic
sentence in an interpretation reduces to the problem of determining the truth
values of simpler sentences. For example:

 A sentence of the form conclusion if conditions is true
 if conditions is false or conclusion is true.

 A sentence of the form everything has property P is true
 if for every thing T in the interpretation, T has property P is true.

Backward reasoning with such meta-sentences (sentence about sentences)
eventually reduces the problem of determining the truth value of an arbitrary
sentence to the problem of determing the truth values of atomic sentences
alone.

 64

 Thus, for the purpose of determining whether arbitrary sentences are true
or false, it is unnecessary to know what are the real individuals and
relationships in an interpretation. It is sufficient merely to know which
atomic sentences are true and which atomic sentences are false.
 We will investigate semantics in greater detail in the more advanced
Chapter A2, and the representation of changing states of the world in Chapter
13. But before we leave this chapter:

What is the moral of the story of the fox and the crow?

Presumably Aesop’s fable had a purpose – a lesson that it is not safe to take
another agent’s words and actions at face value, without trying to understand
the agent’s underlying goals and intentions. Or, even more simply, that
before you do something you should think about its possible consequences.

The crow in Aesop’s fable reacts to the fox’s praise spontaneously -
without thinking, you could say. A more intelligent crow would monitor his
intended actions, before performing them, to determine whether they might
have any unintended and undesirable consequences.

If only the crow knew what the fox knows, then the crow might be able to
reason preactively as follows:

 I want to sing.
 But if I sing, then the fox will be near the cheese.
 If the fox is near the cheese and picks up the cheese,
 then the fox will have the cheese.
 Perhaps the fox wants to have the cheese and therefore will pick it up.
 But then I will not have the cheese.
 Since I want to have the cheese, I will not sing.

This line of reasoning uses some of the same beliefs as those used by the fox,
but it uses them forwards rather than backwards. We will investigate this dual
use of beliefs for both backward and forward reasoning in future chapters. In
the meanwhile, we note that, whether or not the use of logic might seem to be
the most natural way to think, it can often help us to think and behave more
effectively.

 65

Chapter 4 Search

It is a common view in some fields that logic has little to do with search. For
example, Paul Thagard (2005) in Mind: Introduction to Cognitive Science
states on page 45: “In logic-based systems, the fundamental operation of
thinking is logical deduction, but from the perspective of rule-based systems,
the fundamental operation of thinking is search.”
 Similarly, Jonathan Baron (2008) in his textbook Thinking and Deciding
writes on page 6: “Thinking about actions, beliefs and personal goals can all
be described in terms of a common framework, which asserts that thinking
consists of search and inference. We search for certain objects and then make
inferences from and about the objects we have found.” On page 97, Baron
states that formal logic is not a complete theory of thinking because it
“covers only inference”.
 In this book, we see the inference rules of logic as determining a search
space of possible solutions of goals, and search strategies as determining
proof procedures for finding solutions of goals. But like Baron, we also see
the need to use the inference rules of logic to infer consequences of candidate
solutions. Moreover, we also distinguish thinking, which generates solutions
and infers their consequences, from deciding, which evaluates solutions and
chooses between them. In Chapter 8, we will see that rule-based systems,
championed by Thagard, can also be understood in logical terms.
 The relationship between search and backward reasoning is easy to see
when the search space generated by backward reasoning is pictured as an
and-or tree. Nodes in the tree represent atomic goals, with the top-level goal
at the top of the tree. There are two kinds of arcs: or-arcs linking an atomic
goal with all the alternative ways of solving the goal, and and-arcs
connecting all of the subgoals in the same alternative.
 There is a clear relationship between such and-or trees and connection
graphs. Or-arcs correspond to links in a connection graph, and and-arcs
correspond to the conjunction of all the conditions in a conditional. Here is
the and-or tree for the fox’s goal of having the crow’s cheese:

 66

And-or trees have been used extensively for problem-solving in Artificial
Intelligence, especially for two-person games, such as chess. In game-
playing, or-arcs represent the first player’s alternative moves, and and-arcs
represent all of the second player’s possible reponses. To win the game, the
first player must have a move that defeats every move of the second player.
 In very large games, such as chess, it is impossible for a player to search
the tree completely before deciding on the next move. However, even in such
games, it is often possible to compute an approximate measure of the value of
a node, and to use that measure to guide the search for the best solution
within the time and other resources available. The minimax search strategy,
for example, uses such a measure to choose a move that minimises the value
of the best moves for the other player. Similar search strategies can be used
for more general and-or trees corresponding to backward reasoning in
connection graphs.
 In conventional and-or trees, the subgoals associated with the same
alternative are independent of one another. But in connection graphs,
subgoals are often interdependent. For example, if you are an animal and you
try to use the belief:

An animal has an object if

 I have the cheese.

I am near the cheese if

 The crow sings if
 I praise the crow.

 An animal has an object if
 the animal makes the object.

 The crow has
 the cheese.

possibly other beliefs

 other beliefs

the animal is
near the object.

the animal picks
up the object.

the crow sings.

the crow has
the cheese

or

and

and

or

 67

 an animal has an object
if the animal is near the object
and the animal picks up the object.

to have an object, then you have two subgoals, to find an object you are near
and to find an object you can pick up. But the object you find should be the
same for both subgoals. In theory, you could solve the two subgoals
independently, finding nearby objects and picking up arbitrary objects, and
then trying to find an object that belongs to both sets of solutions afterwards.
In practice, however, you would be far better off first finding an object near
you, and then trying to pick it up.
 Because of this interdependence between subgoals, it is often more
convenient to represent the search space for backward reasoning as a simple
or-tree, whose nodes are conjunctions of all the subgoals associated with an
alternative. Whereas the and-or tree and connection graph representations
display the original goals and beliefs, the or-tree shows only the goals and
subgoals generated by beliefs. Here is what such an or-tree looks like for the
fox’s goal of having the crow’s cheese:

 I make the cheese.

possibly other beliefs

 other beliefs

 the crow has the cheese and the crow sings and I pick up the cheese.

or

or

 the crow sings and I pick up the cheese.

 I praise the crow and I pick up the cheese.

 I am near the cheese and I pick up the cheese.

 I have the cheese.

 68

The underlined subgoal in each node is the subgoal selected for goal-
reduction, which gives rise to the next level of nodes lower in the search
space.
 Because of their simplicity, it is easy to see how to define a variety of
different search strategies for searching or-tree search spaces. The most naïve
strategy is to search breadth-first, level by level, first generating all nodes one
step away from the top-level goal, then all nodes two steps away, etc. If there
is any solution to the top-level goal, then breadth-first search is guaranteed to
find the shortest solution. But breadth-first search is combinatorially
explosive. If every node has two alternative successor nodes, one level lower
in the tree, then if the shortest solution involves two goal-reductions, the
search strategy needs to generate only 22 = 4 branches. If it involves 10 goal
reductions, it needs to generate 210 = 1,024 branches. But if it needs 50 goal-
reductions, then it needs to generate 250 = 1,125,899,906,842,624 branches.
No wonder many critics believe that AI is impossible.
 There are two ways around the problem. One is to use a better search
strategy. The other is to use a better search space. We will come back to the
second way later. But first consider the same situation as before, in which
every node has two successors, but now suppose that half of the branches
contain a solution, say at the same level 50 steps away from the top-level
goal. Then, on the average, depth-first search needs to generate only 100
nodes to find the first solution.
 Depth-first search is the opposite of breadth-first search, it explores only
one branch at a time, backtracking to try other branches only when necessary.
It is very efficient when the search space contains lots of solutions. But it can
go disasterously wrong if it contains infinite branches and they are explored
before alternative finite branches containing solutions. Here is a connection
graph for a simple example:

 69

Now consider the or-tree search space for same problem:

 bob will go to the party.

ad infinitum

 john will go to the party.

 Who will go to the party.

Who = mary

 john will go to the party.

 mary will go to the party.

Who = bob

 mary will go to the party.

Who = john

 mary will go to the party.

 john will go to the party.

ad infinitum

Goal: Who will go to the party?

mary will go to the party if
john will go to the party.

bob will go to the party.

Who = bob

Who = mary

john will go to the party if
mary will go to the party.

Who = john

 70

If you are interested in finding only one solution, and you do a breadth-first
search, then you find your answer Who = bob in one step. But it you do a
depth-first search, and you consider the branch in which Who = mary or the
branch in which Who = john, then you can go on forever, but you will never
find a solution.
 The programming language Prolog searches or-trees generated by
backward reasoning depth-first, using the order in which clauses are written
to determine the order in which branches are explored. If the clauses are
written in the order:

 mary will go to the party if john will go to the party.
 john will go to the party if mary will go to the party.
 bob will go to the party.

then Prolog goes into an infinite loop. But if the third sentence bob will go to
the party is written first, then Prolog finds a solution in one step. Of course,
in this case, the problem can easily be solved by the programmer controlling
the order in which clauses are written. But there are many other more
complicated cases where this easy solution doesn’t work.
 It seems that this kind of unintelligent behaviour is one of the main
reasons that logic programming languages, like Prolog, went out of fashion in
the 1980s. Many alternative solutions to the looping problem and related
inefficiencies have been explored since the 1970s, but the one that seems to
have been the most effective is the use of tabling (Sagonas, Swift and
Warren, 1994), which is now incorporated in several Prolog systems.
 Tabling, maintains subgoals and their solutions in a table. When a
previously generated subgoal is re-encountered, the search strategy reuses
solutions from the table, instead of re-doing inferences that have already been
performed. In the example just given, if it generates the subgoal mary will go
to the party and later generates it again, it will recognise the loop, fail, and
backtrack to an alternative branch of the search space.

The problem of search is a well-developed area of Artificial Intelligence,
featuring prominently in such introductory textbooks as those by Russell and
Norvig (2010), Poole and Mackworth (2010) and Luger (2009). The search
strategies described in these books apply equally well to the problem of
searching for solutions in Computational Logic. For the most part, these
search strategies are general-purpose methods, such as depth-first, breadth-
first, and best-first search.

Best-first search

Best-first search strategies are useful when different solutions of a problem
have different values. For example, assuming that the fox in our story judges

 71

that having the crow’s cheese is more valuable than making her own food,
she could use best-first search to guide her search for the best solution.
 To use best-first search, you need to be able to evaluate and compare
different solutions. For example, if you want to go from A to B, then you
might prefer a travel plan that takes the least time, costs the least money or
causes the least harm to the environment. No single plan is likely to be best
for all of these attributes, so you may have to weigh and trade one attribute
off against the other. Given such weights, you can use the weighted sum of
the values of the attributes as a single measure of the overall value of a
solution.
 It is often possible to extend the measure of the value of a complete
solution to a measure of the value of a partial solution. For example, suppose
you want to travel from Bridgeport in Connecticut to Petworth in England,
and you are exploring a partial travel plan that involves flying from New
York to London, but haven’t figured out the rest of the plan. You know that
the best cost of any complete travel plan that extends the partial plan will
need to include the cost of the flight. So you can add together the cost of the
flight with an estimate for the best costs of any additional travel, to estimate
the cost of the best travel plan that includes this partial plan.
 Best-first search uses this measure of the value of partial solutions to
direct its search for complete solutions. The breadth-first variant of best-first
search does this by picking a branch that has currently best value, and
generating its successor nodes. Under some easily satisfied conditions, the
first solution found in this way is guaranteed to be the best (optimal) solution.
 Although such best-first search is better than simple breadth-first search,
it suffers from similar disadvantages. It too is computationally explosive,
especially when there are many solutions that differ from one another only
slightly in value. These disadvantages can be avoided to some extent by a
depth-first version of best-first search, which like simple depth-first search,
explores only one branch of the search space at a time.
 The depth-first version of best-first search keeps a record of the best
solution found so far. If the current branch is not a solution, and the branch
can be extended, then it extends the branch by generating a successor node
that has highest estimated value. However, if the estimated value of the
extended branch exceeds the value of the best solution found so far (if there
is one), then the extended branch terminates in failure and the search strategy
backtracks to an earlier alternative.
 If the current branch is a new solution, then the search strategy compares
its value with the value of the best solution found so far (if there is one), and
it updates its record of the currently best solution. In this way, the search
strategy can be terminated at any time, having generated the best solution that
can be found within the computational resources available.
 Both variants of best-first search complement the use of decision theory
for choosing the best solution, once it has been found. The depth-first variant

 72

has the further advantage that it interprets “best solution” more realistically
as “the best solution given the computational resources available”. Morever,
its measure of the value of solutions and of partial solutions can be extended
to include, not only their utility, but also the probability of their actually
achieving their expected outcomes. The resulting measure of value as
expected utility, combining utility and probability, integrates best-first search
into a classical decision-theoretic framework.

The connection graph of an agent’s goals and beliefs can also help with best-
first search, by associating with links statistical information about the degree
to which the links have proved useful in the past. This information can be
used to increase or decrease the strength of connections in the graph.
Whenever the agent solves a new goal, it can increase the strength of links
that have contributed to the solution, and decrease the strength of links that
have led it down the garden path. The strength of links can be used for best-
first search, by activating stronger links before weaker links.
 The strength of links can be combined with activation levels associated
with the agent’s current goals and observations. Activation levels can be
spread through the graph in proportion to the strength of links, reasoning
bidirectionally both backwards from the goals and forwards from the
observations. Any candidate action subgoal whose level of activation exceeds
a certain threshold can be executed automatically.
 The resulting action execution combines a form of best-first search with a
form of decision-theoretic choice of best action, in an algorithm that
resembles a connectionist model of the brain. An agent model employing this
approach has been developed by Pattie Maes (1990). The model does not use
logic or connection graphs explicitly, but it can be understood in such purely
logical terms.
 Connection graphs can also be used to combine search with compiling
general-purpose goals and beliefs into more efficient special-purpose form.
This is because very strong links between goals and beliefs behave as though
the links were goals or beliefs in their own right. Generating these goals or
beliefs explicitly and adding them to the graph short-circuits the need to
activate the links explicitly in the future. For example, the fox’s specialised
belief that the crow sings if I praise the crow can be generated from such
more general-purpose beliefs as:

an agent does Y if I do X and the agent reacts to X by doing Y

agent = the crow X = praise Y = sing

the crow reacts to praise by singing

 73

I will argue later in Chapter 9 that this kind of compiling links into new goals
and beliefs can be viewed in some cases as a kind of compiling of conscious
thought into subconscious thought.

Knowledge representation matters

But efficient search strategies and other general-purpose problem-solving
methods are only half of the story of what it takes to solve problems
efficiently. The other half of the story concerns knowledge representation. In
our story of the fox and the crow, in particular, we have employed a
simplified representation, which vastly over-simplifies the knowledge
representation issues involved.

To start with, the representation completely ignores temporal
considerations. It is obvious that the action of an agent picking up an object
initiates the property of the agent possessing the object afterwards. This
property continues to hold until it is terminated by some other action or
event, such as the agent giving the object away, loosing it or consuming it.
Thus, to be more precise, we should have expressed the relationship between
picking up an object and possessing it more like this:

 an animal has an object at a time
 if the animal is near the object at an earlier time
 and the animal picks up the object at the earlier time
 and nothing terminates the animal having the object between the two times.

In fact, as we will see in Chapter 13, this representation combines in a single
belief a more basic law of cause and effect (that a state of possession is
initiated by picking up an object) with a constraint (that a precondition of
picking up an object is being near the object).
 The representation of cause and effect is sufficiently complex that we
give it detailed consideration in Chapter 13. But, even ignoring such
considerations, there are still major knowledge representation issues at stake.
In fact, we skirted around these issues earlier when we argued informally that
the fox might derive the belief I am near the cheese if the crow has the
cheese and the crow sings from more basic beliefs concerning the laws of
gravity and her location in relation to other objects.

There, the primary motivation was simply to make the example
sufficiently simple, not to get bogged down in excruciating detail. But there
was another reason: There is so much knowledge that could be relevant to the
fox’s goal that it would be hard to know where to stop. If Quine were right
about the web of belief, that every belief is connected to every other belief,
an agent would potentially need to consider all of its beliefs, in order to solve
any goal that might arise in its environment. It is this knowledge
representation problem, more than any problem to do with general-purpose

 74

reasoning, that is the major bottleneck in developing Artificial Intelligence.
Arguably, it is also the biggest problem for understanding and improving
human intelligence. To put it more directly, knowledge is more important
than raw problem-solving power.

Probably the most ambitious attempt to address this knowledge
representation problem is the Cyc Project (Lenat and Guha, 1989; Panton et
al, 2006), which has assembled a collection of several million assertions
encoding the common sense knowledge of human experience. Assertions in
Cyc are formulated in a variety of Computational Logic, similar to the one
investigated in this book, and its inference engine is based primarily on
backward reasoning.

Cyc organizes its knowledge in collections of micro-theories, concerning
such separate domains as science, society and culture, climate and weather,
money and financial systems, health care, history, and politics. These micro-
theories, in turn, are organised in hierarchies, in which micro-theories lower
in the hierarchy inherit assertions from more abstract micro-theories higher in
the hierarchy. Micro-theories in Cyc are like classes in object-oriented
computer programming languages and like modules in some computational
theories of the mind. We will have more to say about such classes and
modules later in Chapter 14.

 75

Chapter 5. Negation as Failure

It’s easy to take negation for granted, and not give it a second thought. Either
it will rain or it won’t rain. But definitely it won’t rain and not rain at the
same time and in the same place. Looking at it like that, you can take your
pick. Raining and not raining are on a par, like heads and tails. You can have
one or the other, but not both.
 So it may seem at first glance. But on closer inspection, the reality is
different. The world is a positive, not a negative place, and human ways of
organising our thoughts about the world are mainly positive too. We directly
observe only positive facts, like this coin is showing heads, or it is raining.
We have to derive the negation of a positive fact from the absence of the
positive fact. The fact that this coin is showing heads implies that it is not
showing tails, and the fact that it is sunny implies, everything else being
equal, that it is not raining at the same place and the same time.
 From an agent’s point of view, an observation can be passive or active. A
passive observation is an observation over which you have no control. The
world forces it upon you, and you have to take it on board, like it or not.
Because our conceptualisation of the world consists of positive facts, these
passive observations are positive, atomic sentences.
 An active observation, on the other hand, is one that you actively perform
to determine the value of some atomic predicate. If the predicate contains no
variables2

, then the result of the observation is either true or false. If it
contains variables whose values are unknown, then either the observation
succeeds and returns values for the unknowns, or the observation fails and
returns a negative observation. In either case, you can use the result and just
forget about it, or you can record it for possible future use. For example:

 You look out the window and fail to see any raindrops falling from the
sky. You conclude that is not raining.

It is just before bedtime and time for a mid-night snack, but you are on
a diet. You pause to monitor the sensations in your body. Failing to
feel pangs of hunger, you decide you are not hungry, and stick to your

2 Variables in symbolic logic are similar to variables in mathematics, but more
precise. In mathematics, it is common to make no distinction between the different
roles that the variable X plays in the two equations: 2X = 2, X + Y = Y + X. In the
first equation X is an unknown, and implicitly, the equation represents the existentially
quantified goal of showing that there exists an X such that 2X = 2, namely the value X
= 1. However, in the second equation X and Y stand for arbitrary numbers, and
implicitly the equation represents the universally quantified sentence expressing that
for any pair of numbers X and Y it doesn’t matter in which order you add them, the
result is the same.

 76

diet. You are lucky this time. Not only has the active obervation of the
state of your body returned a negative response, but you have not been
attacked by unprovoked, “passive” feelings of hunger.

You are a robot looking for life on mars, moving one step at a time on
uncertain terrain. Every time you move forward one step, you observe
and record how far you have gone. If your attempt to move has failed,
then you have observed that you haven’t moved at all.

We will see later that negative observations can be represented by means of
constraints, which are conditional goals with conclusion false. But in the
meanwhile here are a couple of examples:

 if raining then false.
i.e. it is not the case that it is raining.

 if I am hungry then false
i.e. it is not the case that I am hungry.

We will also see that negative observations can also be derived from positive
observations, using constraints. For example:

Observation: the grass is wet.
Constraint: if an object is wet and the object is dry then false.
i.e. it is not the case that

an object is wet and the object is dry.
Forward reasoning: it is not the case that the grass is dry.

Mental representations have a positive bias

In the semantics of Computational Logic, it is convenient to identify the
world, at any given point in time, with the set of all the atomic sentences that
are true in the world at that time. This is the source of our positive
observations. It gives our goals and beliefs a positive bias too, because the
main function of our mental representations is to help us to deal with the
world around us. Even emotionally negative thoughts, like being lonely, sad,
or disgruntled, which reflect the way we feel about our situation in the world
and which affect the decisions we make, have logically positive mental
representations.
 Further evidence that our mental representations have a positive bias is in
the way we record information in history books and computer databases. For
example:

 77

We record that Columbus discovered America in 1492 - not in 1493,
not in 2010, not in any other year, but in and only in 1492.

The last train to leave London Victoria for Pulborough, West Sussex
from Monday to Friday, between 17 May 2010 and 12 December
2010 is at 22:52 – not 22:51 and not 22:53. If you arrive at Victoria
at 22:53 and you miss the train, then it’s your fault, and not the fault
of the timetable.

But mental representations involve more than just records of positive facts.
They also involve the use of conditionals to represent facts more compactly
by means of general rules. Since the facts are positive, the conclusions of the
conditionals used to derive the facts are positive too. For example, the time of
the last train to Pulborough could be represented by means of a conditional
whose conclusion gives the time and whose conditions restrict the days of the
week and the calendar period:

 the last train from victoria to pulborough leaves at 22:52 on a day
 if the day is a weekday and the day is in the period
 between 17 may 2010 and 12 december 2010.

Of course, to complete the representation, the conditional would need to be
augmented with additional, lower-level conditionals with positive
conclusions to represent the days of the week and the days in the period
between two days.
 This use of conditionals to represent data more compactly is associated
with deductive databases and the database family of languages called
Datalog. But most conventional computer databases either store the data
explicitly or compactify it by using conventional, low-level computer
programming techniques.
 Conditionals in logic programming and in the programming language
Prolog can also be used to represent programs and to execute them by
systematically reducing goals to subgoals. But programs, no matter what
language they are written in, also have a positive bias. For example, they
compute positive arthmetic relationships like addition and multiplication, and
not negative relationships like non-addition and non-multiplication. For one
thing, it would be hard to know where to draw the line. Sure:

 2 + 2 ≠ 1 and 2 + 2 ≠ 5.

But what about: 2 + 2 ≠ a pot of gold?

Where do goals and beliefs come from?

 78

To do justice to the role that negation plays in our goals and beliefs, we
would need to tackle larger issues concerning the nature and sources of all
our goals and beliefs. The argument about the primacy of positive
information, presented so far, relates only to beliefs that are obtained first-
hand from experience, that generalise experience, or that are computed by
programs. It ignores two other important sources of goals and beliefs, namely
those that we may have been born with, and those that we may have obtained
second-hand as the result of the testimony, persuasion or coercion of other
agents.
 These other sources of goals and beliefs often do have an essentially
negative character in the form of constraints. For example:

 Nothing is both big and small.
 No number is both odd and even.
 No letter is both a vowel and a consonant.
 Do not drink alcohol in a bar if you are under eighteen years old.
 Do not harm a person who is not threatening any harm.
 Do not steal.
 Do not talk with your mouth full.

We will see later that such constraints play an important role in monitoring
and eliminating both candidate actions and candidate explanations of
observations. In the meanwhile, however, we will focus on the simpler source
of negative information, which is from the failure to derive positive
information.

Negation as failure and the closed world assumption

The derivation of negative conclusions from the lack of positive information
about a predicate is justified by a belief or assumption that we have all the
positive information that there is to be had about the predicate. This applies
both to the conclusions we derive by actively observing the world, and to the
conclusions we derive by consulting our beliefs. For example:

You look for your keys in their usual place, and you cannot find
them. On the assumption that you have done a thorough
investigation, you conclude that they are not in their usual place.

If you believe that Christopher Columbus discovered America in
1492, and you believe that a person can discover something only
once, then it follows that Christopher Columbus did not discover
America in 2010 or in any year other than 1492.

 79

 If you believe that the last train is at 22:52, and you believe that the
only trains on a given day are between the first and last train, then
there is no train scheduled to leave at 22:53 or at any other time after
22:52 on the same day.

 If you believe that you know how to add two numbers, that every

pair of numbers has only one sum, and that when you add 2 + 2 you
get 4, then you can conclude that 2 + 2 ≠ a pot of gold.

Deriving a negative conclusion from the failure to solve a positive goal is
called negation as failure in logic progamming:

to show that the negation of a positive sentence holds,
 show that the positive sentence does not hold.

 Negation as failure extends the much simpler if-then-else statement of more
conventional programming languages. Analogues of the if-then-else
statement are also familiar in natural languages like English. For example,
the second and third sentences of the London underground emergency notice
are expressed in a variant of the if-then-else form:

if any part of the train is in a station,
 then the driver will stop the train,

 else the driver will stop the train at the next station.

The use of negation as failure to derive a negative conclusion is justified by
the closed world assumption that you have complete knowledge about all the
conditions under which the positive conclusion holds. It might better be
called the closed-mind assumption, since an agent’s beliefs are not held
externally in the world, but internally in its mind. The assumption can be
represented as a meta-belief:

the negation of a sentence holds
if the sentence does not hold.

This meta-belief is a meta-sentence, because it talks about sentences. It can
also be understood as an epistemic or auto-epistemic sentence3

, because it
can be phrased in terms of what an agent knows or believes:

the negation of a sentence holds

3 Epistemic logic and meta-logic are very similar when understood informally, but
they are very different when they are formalised. The relationship between them is
touched upon in later chapters, but to some extent is still an open research issue.

 80

if I do not know (or believe) that the sentence itself holds.

The term epistemic comes from the same root as epistemology, the study of
knowledge.
 As we will see in Chapter 17, the language of Computational Logic can
be extended to include goals and beliefs that are meta-logical or epistemic.
Because the closed world assumption has conditional form, it can be used to
reason backwards or forwards, like any other conditional. Backward
reasoning with the closed world assumption is equivalent to negation as
failure. Therefore, negation as failure is a natural complement to the use of
backward reasoning in general. Given a conditional with negative conditions
of the form:

 positive conclusion if positive conditions and negative conditions

backward reasoning uses the conditional as a goal-reduction procedure:

 to show or make the positive conclusion hold,
 show or make the positive conditions hold and
 show or make the negative conditions fail to hold.

To illustrate the negation as failure rule (abbreviated naf), suppose that we
are trying to decide on whether or not to go to a party and suppose:

 mary will go if john will go.
 john will go if bob will not go.

Suppose we are interested in whether mary will go. Then we can reason
backwards as follows:

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: bob will not go.

 Naf: bob will go.
 Failure: no!

Success: yes!

In accordance with the closed world assumption, because we have no way of
showing that bob will go, it follows that bob will not go.
 The same conclusion that mary will go can also be derived by reasoning
forward, once we get off the ground by starting with the assumption that bob
will not go:

 81

Assume: bob will not go
Forward reasoning: john will go.
Forward reasoning: mary will go.

Now suppose Bob decides to be difficult. Believing that mary will go, he
decides to go as well. Let’s see what Mary thinks about that:

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: bob will not go.

 Naf: bob will go.
 Success: yes!

Failure: no!

So it seems that Bob will be going to the party on his own. The addition of
the new information that bob will go defeats the previous argument that mary
will go. It similarly defeats any attempt to show that john will go.
 This property of negation as failure and the closed world assumption is
called defeasibility or non-monotonicity.4

 Looked at in this way, the closed world assumption is not so close-
minded after all, because any conclusion obtained with its aid is always
subject to revision. It is as though the conclusion had an extra, hidden auto-
epistemic qualification, as far as I know. For example:

 It is a form of default reasoning, in
which an agent jumps to a conclusion, but then withdraws the conclusion
given new information that leads to the contrary of the conclusion.

Conclusion: Mary and John will not go the party, as far as I know.

The development of logics for default reasoning has been one of the most
important achievements of Artificial Intelligence. Most of the research has
been concerned with exploring alternative “semantics” of default reasoning
and with developing efficient proof procedures. The closed world assumption
is an informal semantics, but it needs to be refined to deal with more difficult
cases, as the following example shows.
 Suppose that Bob is now out of the picture, but Mary and John are still
having trouble deciding what to do:

4 Monotonicity in mathematics means that the more you put into a system, the more
you get out. Classical logic is monotonic in this sense. Default reasoning is non-
monotonic, because putting in more information can result in previously derived
conclusions being withdrawn.

 82

 mary will go if john will go.
 john will go if mary will go.

Initial goal: mary will go.
Subgoal: john will go.
Subgoal: mary will go.
Ad infinitum ……………..

Since it cannot be shown that mary will go, it follows from the closed world
assumption that mary will not go. Similarly john will not go. As far as we
know.
 The example shows that default reasoning can involve the need to reason
with an infinite amount of resources. For this reason, the semantics is said to
be non-constructive. However, in this as in many other cases, the infinite
chain of reasoning needed to show that a negative conclusion holds can be
detected finitely by noticing that the same subgoal reoccurs as a subgoal of
itself. But in the general case, infinite failure cannot be detected by finite
means.
 This is an example of the same phenomenon underlying Kurt Gödel’s
(1931, 1951) proof of the incompleteness theorem, which states that there
exist true, but unprovable sentences of arithmetic. We will return to this issue
in chapters 15, 17 and A2. Moreover in Chapter 15, we will investigate a
finite, constructive version of negation as failure and discuss its relationship
with proof in arithmetic.

An intelligent agent needs to have an open mind

Granted that we tend to view the world in positive terms, and to derive
negative conclusions from the failure to show positive conclusions, it doesn’t
follow that we need to have a closed mind about everything. We can
distinguish between closed predicates, about which we have complete
knowledge, and open predicates, about which our knowledge is incomplete.
Closed predicates are appropriate for concepts that we use to organise and
structure our thoughts, and which do not directly represent our interactions
with the world. They include predicates that classify observations and actions
into more abstract categories, like emergencies and getting help, as well as
more complex predicates, like being eligible for Housing Benefit and being a
British citizen.
 But there are other predicates about which it makes no sense to believe
that we have complete knowledge. These are open predicates that describe
states of affairs in the external world about which we have little or no
experience. Did it rain last night in Port Moresby in Papua New Guinea? In
the event of my applying for naturalisation as a British citizen, will the
Secretary of State deem fit to grant me a certificate of naturalisation? Was a

http://en.wikipedia.org/wiki/Port_Moresby�

 83

child found abandoned in the UK born to parents at least one of whom was a
British citizen? You would have to be self-confident to the point of
recklessness to believe you could use the closed world assumption to answer
all such questions.

Relaxing the closed world assumption

Many of the benefits of reasoning with the closed world assumption can be
achieved more modestly without assuming that we know it all, but by the
selective use of conditions of the form cannot be shown in otherwise normal
conditionals. For example, the closed world assumption can be applied
selectively to a single particular sentence, formalizing an agent’s meta-belief
that if the particular sentence were true, then the agent would know (and
believe) that the particular sentence is true; otherwise the sentence is false.
This can be stated in the same form as the more general closed world
assumption, but restricted to the single particular sentence rather than
applied to all atomic sentences. Robert Moore (1985) gives the following
example of such a selective closed world assumption:

“Consider my reason for believing that I do not have an older brother.
It is surely not that one of my parents once casually remarked, “You
know, you don’t have any older brothers”. Nor have I pieced it
together by carefully sifting other evidence. I simply believe that if I
did have an older brother I would surely know about it, and since I
don’t know of any older brothers, I must not have any.”

Moore’s belief that he does not have an older brother follows from the
selective closed world assumption:

 I do not have an older brother
if I cannot show that I have an older brother.

Default reasoning

From the selective closed world assumption, it is only a small step to full-
blown default reasoning without the closed world assumption. Instead of
limiting expressions of the form cannot be shown to closed world and
selective closed world assumptions, they can be used in the conditions of
any conditional. The negation as failure inference rule can be generalised
accordingly:

 to show that a sentence cannot be shown
 show that all ways of trying to show the sentence result in failure.

 84

Consider the belief that a person is innocent unless proven guilty, and
suppose that Bob is accused of robbing the bank.

 a person is innocent of a crime
 if the person is accused of the crime
 and it cannot be shown that
 the person committed the crime.

 a person committed an act
 if another person witnessed the person commit the act.

 bob is accused of robbing the bank.

Clearly, there are other conditions, besides there being a witness, that may
lead an agent to believe that a person committed a crime, for example DNA
evidence of the person’s involvement in the crime. But it is hard to identify
and consider all of these other possibilities from the outset. In the next
section, we will see how default reasoning makes it easier to deal with such
additional possibilities incrementally by successive approximation.
 However, given the simplified representation above, negation as failure
can be used to determine whether Bob is innocent. Here we assume the
taxonomic knowledge that robbing a bank is a crime and a crime is an act:

Initial goal: bob is innocent of robbing the bank.
Subgoals: bob is accused of robbing the bank

 it cannot be shown that bob committed robbing the bank
 and

Subgoal: it cannot be shown that

 bob committed robbing the bank

 Naf: bob committed robbing the bank
 Subgoals:
 Failure: no!

another person witnessed bob commit robbing the bank

Success: yes!

The negation as failure inference rule shows that Bob cannot be shown to
have robbed the bank, but without the closed world assumption, it does not
follow that Bob actually did not rob the bank! He did not rob the bank, only
so far as we know.
 But suppose that we are given the additional information:

 john witnessed bob commit robbing the bank.

The application of the negation as failure rule now succeeds, and the
previous conclusion that he is innocent no longer holds.

 85

Missing conditions

In everyday language, it is common to state only the most important
conditions of a general statement (or rule) explicitly, and to leave it implicit
that other unstated conditions may also apply. For example, we commonly
say:

 all birds fly.
i.e. an animal can fly if the animal is a bird.

rather than: an animal can fly if the animal is a bird

and the animal is not a penguin
and the animal is not unfledged
and the animal is not injured.

But instead of revising our statement when it becomes apparent that it was an
over-simplification, we more commonly correct ourselves in seemingly
contradictory, separate statements. We say for example:

 an animal cannot fly if the animal is a penguin

an animal cannot fly if the animal is unfledged
an animal cannot fly if the animal is injured.

We saw an even more confusing example of this in the suppression task,
where the first statement is an over-generalisation, and the second statement
attempts to draw attention to a missing condition of the first sentence:

she will study late in the library if she has an essay to write.
she will study late in the library if the library is open.

The example is confusing because it doesn’t play the correction game in the
standard way. The standard way is to seemingly contradict yourself, by
stating missing conditions in separate sentences whose conclusion is contrary
to the conclusion of the first sentence:

Over-simplification: a conclusion holds if conditions hold.
Correction: the conclusion does not hold if other conditions hold.

Intended meaning: a conclusion holds if conditions hold
 and other conditions do not hold.

There are logics that give semantics and provide proof procedures for
reasoning directly with sentences in this seemingly contradictory form. These
semantics and proof procedures are typically defined in terms of arguments,

 86

what it means for arguments to attack and defend one another, and what it
means for a set of arguments collectively to defeat an attack. In these
semantics and associated proof procedures, there are ways to ensure that a
correction defeats an original over-simplification.
 However, in the version of Computational Logic in this book, it is simpler
to reexpress the original over-simplification more precisely from the start,
with an explicit condition stating that the contrary of the conclusion does not
hold:

Restated rule: a conclusion holds if conditions hold
 and it is not the case that the conclusion does not hold.

It might seem that the two negations it is not the case that and does not hold
would cancel one another out, but in fact they don’t. The first negation it is
not the case that is negation as failure, and the second negation does not hold
can be reformulated as a positive predicate. This second kind of negation is
sometimes called strong negation.5

 Strong negation is commonly used to represent the opposite of one of the
positive predicates in a pair of antonyms or contraries, like wet and dry, tall
and short, big and small, and good and bad. Using strong negation, not wet is
equivalent to dry and not good is equivalent to bad. We will see other
examples of strong negation later in the book.

 The advantage of restating rules with missing conditions in the more
precise formulation is that additional conditions can be added to the rule in
separate sentences without the appearance of seeming contradiction. For
example, here is a restatement of the suppression task example in the more
precise formulation, with separate corrections, to take into account different
conditions that might prevent a student from studying late in the library:

 she will study late in the library
 if she has an essay to write
 and it is not the case that
 she is prevented from studying late in the library.

 she is prevented from studying late in the library
 if the library is not open.
 she is prevented from studying late in the library
 if she is unwell.
 she is prevented from studying late in the library
 if she has a more important meeting.
 she is prevented from studying late in the library

5 Strong negation was introduced into logic programming in (Gelfond and Lifschitz,
1988).

 87

 if she has been distracted.

Here being prevented from studying late in the library is a positive predicate,
which is the contrary of studying late in the library. Its meaning and
associated rules of inference would be unchanged if it were replaced by the
strongly negated predicate she will not study late in the library.
 However, no matter how the corrections are expressed, they can be
compiled into a statement of the rule in which all of the qualifying conditions
are stated explicitly:

Intended meaning: she will study late in the library

 if she has an essay to write
 and the library is open
 and she is not unwell
 and she doesn’t have a more important meeting
 and she hasn’t been distracted.

The only problem with this compiled representation, as simple as it is, is that
it has to be changed every time a new missing condition is identified. The
formulation is lower-level than the higher-level rule and exceptions
formulation. It requires less sophisticated problem-solving resources, and is
therefore more efficient. But the formulation as a higher-level rule and
exception is easier to develop and maintain.
 The relationship between the two formulations is another example of the
relationship between a higher-level and lower-level representation, which is a
recurrent theme in this book. In this case, the higher-level rule acts as a
simple first approximation to the more complicated rule.
 In most cases, when a concept is under development, the complicated rule
doesn’t even exist, and the higher-level representation as a rule and
exceptions makes it easier to develop the more complex representation by
successive approximation. In other cases, when a complicated rule already
exists, for example in the case of existing legislation, the rule and exception
form makes it easier to communicate the rule to other agents. By isolating the
most important conditions of the rule, and highlighting them in the general
rule, the less important conditions can be mentioned in separate
corrections/exceptions when and if the need later arises. Public
communications of regulations are a good example. The following example
is from the UK citizen’s advice bureau website:

Housing Benefit is a benefit for people on a low income to help them
pay their rent. You may be able to get Housing Benefit if you are on
other benefits, work part-time or work full-time on a low income.

 88

The word “may” in the second sentence indicates that there are other
conditions that also need to be satisfied to get Housing Benefit, but they are
not significant enough to be mentioned in an introduction.6

 The sentence is a
simplified rule that is subject to unstated exceptions. Here is a partial
representation of the logic of the two sentences:

 a person gets help to pay rent if the person receives housing benefit.

 a person receives housing benefit
 if the person is on other benefits
 or the person works part-time
 or the person works full-time on a low income
 and it is not the case that
 the person is ineligible to receive housing benefit.

The representation is partial because it does not represent the “constraint”
that Housing Benefit is for people on a low income. This constraint can be
treated as an exception:

 a person is ineligible to receive housing benefit
 if the person is not on a low income.

We will see a number of other examples of rules and exceptions when we
look at the British Nationality Act. But first we will look briefly at an
example that illustrates the way rules and exceptions can be organised into
hierarchies.

Hierarchies of rules and exceptions

Consider the following informal statement of the example:

Rule 1: All thieves should be punished.
Rule 2: Thieves who are minors should not punished.
Rule 3: Any thief who is violent should be punished.

Here the intention is that rule 2 is an exception to rule 1, and rule 3 is an
exception to rule 2. In argumentation terms, rule 2 attacks arguments
constructed using rule 1, and rule 3 defends arguments constructed using rule
1, by attacking arguments constructed using rule 2. These intentions and
argument attack relations can be compiled into the lower-level rules:

 a person should be punished

6 In more traditional logic, the word “may” is more commonly regarded as a modal
operator in modal logic.

 89

 if the person is a thief and the person is not a minor.

 a person should be punished
 if the person is a thief and the person is a minor
 and the person is violent.

In this compiled representation it is not necessary to write explicitly that:

a person should not be punished if the person is a thief
and the person is a minor and the person is not violent

if we treat the predicate a person should be punished as a closed predicate.
 The compiled rules can be decompiled into higher-level rules and
exceptions in several ways. Here is one such representation:

 a person should be punished
 if the person is a thief
 and it is not the case that
 the person is an exception to the punishment rule.

 a person is an exception to the punishment rule
 if the person is a minor
 and it is not the case that
 the person is an exception to the exception to the punishment rule.

 a person is an exception to the exception to the punishment rule

 if the person is violent.

Notice that the positive predicates a person is an exception to the punishment
rule and a person is an exception to the exception to the punishment rule
cannot be written as the more obvious predicates a person should not be
punished and a person should be punished respectively. If they were, then the
top-level rule would also be an exception to the exception, which is not what
is intended.
 Suppose, for example, that Bob is a thief:

Initial goal: bob should be punished
Subgoals: bob is a thief
 it is not the case that

 and

 bob is an exception to the punishment rule
Subgoals: it is not the case that
 bob is an exception to the punishment rule

 Naf: bob is an exception to the punishment rule

 90

 Subgoals: bob is a minor
 bob is an exception to the exception

 and it is not the case that

 to the punishment rule
 Failure: no!

Success: yes!

It cannot be shown that bob is an exception to the punishment rule, because it
cannot be shown that he is a minor. Suppose, instead that Mary is a thief,
who is also a minor:

Initial goal: mary should be punished
Subgoals: mary is a thief
 it is not the case that

 and

 mary is an exception to the punishment rule
Subgoals: it is not the case that
 mary is an exception to the punishment rule

 ` Naf: mary is an exception to the punishment rule
 Subgoals: mary is a minor
 mary is an exception to the exception

 and it is not the case that

 to the punishment rule
 Subgoal: it is not the case that
 mary is an exception to the exception
 to the punishment rule

 Naf: mary is an exception to the exception
 to the punishment rule
 Subgoals: mary is violent
 Failure: no!

 Success: yes!

Failure, no!

I’m sure you can figure out for yourself what happens to John, who is a thief,
a minor, violent and prone to fits of jealousy.

Conclusions

In this chapter, I have argued the case for the primacy of positive predicates,
starting with the claim that the state of the world at any given time is
characterised by the atomic sentences that are true in the world at that time.
Consequently, passive observations, over which an agent has no control, are

 91

invariably represented by positive atomic sentences. However, active
observations, which an agent can perform to determine the value of some
predicate, can result in negative observations, as the result of the failure to
obtain a positive result.
 Active observations, whether they return a positive or negative result, can
be used to solve the problem at hand and can be forgotten, or they can be
recorded for future use. We will see in later chapters that negative
observations can be recorded by means of constraints, or can be derived from
positive observations by means of constraints.
 The primacy of positive predicates extends to an agent’s beliefs, which
typically have the form of conditionals with positive atomic conclusions.
However, negations of atomic predicates can occur as conditions of
conditionals and can be solved by means of negation as failure, justified by
the closed world assumption – that the agent knows all there is to know about
the predicate of the condition. The closed world assumption can be relaxed,
by replacing negative conditions by weaker conditions that positive
predicates cannot be shown. But whether or not the assumption is relaxed in
this way, the resulting beliefs are defeasible, in the sense that new
information can defeat previously derived conclusions and can cause them to
be withdrawn.
 A common application of defeasible reasoning, also called default
reasoning, is to reason with rules and exceptions. In these applications, it is
often natural to represent the conclusion of an exception as the negation of
the conclusion of the general rule; and it is often common to neglect to
qualify the general rule with an explicit condition expressing that the rule is
subject to possible exceptions. Semantics and proof procedures, often of an
argumentation-theoretic form, can be provided for beliefs in this form.
However, it is simpler to define semantics and proof procedures for precise
rules with explicit conditions stating that contrary conditions do not hold.
 We have seen that rules and exceptions can be compiled into lower-level
rules in which all of the qualifying conditions of the exceptions are
incorporated into the rules. But just as importantly, lower-level rules can
often be decompiled into higher-level rules and exceptions. These higher-
level rules are easier to develop, maintain and communicate to other agents.
 Unfortunately, there is more to negation than we have been able to cover
in this chapter. We need to deal with negation by means of constraints, and
we have to investigate the kind of reasoning with contra-positives that is
involved in problems like the selection task. We also need to see how
negation can be understood in terms of biconditionals. These are topics for
later chapters. The semantics of negation as failure is investigated in greater
detail in the more advanced Chapter A4.

 92

Chapter 6. How to Become a British Citizen

In this chapter we return to the topic of Chapters 1 and 2: the relationship
between Logic, natural language, and the language of thought. We will look
at the law regulating British citizenship, which is the British Nationality Act
1981 (BNA), and see that its English style resembles the conditional style of
Computational Logic (CL) (Sergot et al, 1986).
 The BNA is similar to the London underground emergency notice in its
purpose of regulating human behaviour. But whereas the emergency notice
relies on the common sense of its readers to achieve its desired effect, the
BNA has the power of authority to enforce its provisions. The BNA differs
from the underground notice also in its greater complexity and the more
specialized nature of its content.
 Nonetheless, like the emergency notice, the BNA has been written in an
English style that has been chosen to be as easy as possible for its intended
audience to understand. Arguably therefore, like the emergency notice, its
linguistic form is likely to reflect the form of the private, mental language in
which its readers represent their own thoughts.
 We will see that the most obvious similarity between the BNA and CL is
their shared use of conditional sentences (or rules) as the main vehicle for
representing information. But we will also see that the BNA, like ordinary
English, uses a variety of grammatical forms to express the conditions of
conditionals, often inserting them into the conclusions. More importantly, we
will see that the BNA highlights the need for logical features in CL that we
have seen only in toy examples until now. The most important of these
features are negation and meta-level reasoning. We will also use the BNA as
an excuse to delve into the more formal side of CL.
 In addition to studying the BNA for clues to the logic of the language of
human thought, we will also see examples where expressing the BNA in CL
form can make its natural language expression easier to understand. In
contrast with the BNA, we will look at the University of Michigan lease
termination clause, which was studied by University of Michigan law
professor Layman Allen and his colleague Charles Saxon (1984) as an
example of ambiguous English, and will see how its language can be
improved by expressing it in CL form.

The British Nationality Act 1981

The following examples from the BNA illustrate the representation of time,
default reasoning and meta-level reasoning about belief.

Acquisition by birth

 93

The first subsection of the BNA deals with acquisition of citizenship by
virtue of birth in the United Kingdom after commencement (1 January 1983,
the date on which the Act took effect):

1.-(1) A person born in the United Kingdom after commencement
shall be a British citizen if at the time of the birth his father or
mother is -

 (a) a British citizen; or
 (b) settled in the United Kingdom.

The English of this clause can be considered an informal variant of CL form,
even to the extent of expressing its conclusion before (most of) its conditions,
which is the conventional syntax for logic programs used to reason
backwards. The biggest difference from CL syntax is that it inserts the logical
conditions born in the United Kingdom after commencement into the middle
of its logical conclusion a person shall be a British citizen. Syntactically,
these conditions are a shortened form of the restrictive relative clause who is
born in the United Kingdom after commencement.
 Restrictive relative clauses are similar in syntax to non-restrictive relative
clauses, but their semantics is entirely different. Restrictive relative clauses
add extra conditions to conditionals. Non-restrictive relative clauses add
extra conclusions. Grammatically, non-restrictive clauses are supposed to be
set apart from the rest of the sentence by commas, but restrictive clauses are
supposed to be tied to the phrase they qualify without any commas. But most
of the time, it seems that writers and readers ignore the rules of grammar, and
rely instead upon their background knowledge to determine the intended
meaning.

For example, the following two sentences are punctuated correctly. The
relative clause is restrictive in the first sentence, and non-restrictive in the
second sentence:

 A British citizen who obtains citizenship by providing false information
 may be deprived of British citizenship.

 A British citizen, who is an EU citizen,
 is entitled to vote in EU elections.

In CL, the logical form of the two clauses is dramatically different:

 a person may be deprived of British citizenship
 if the person obtains citizenship by providing false information.

 a person is entitled to vote in EU elections
 if the person is a British citizen.

 94

 a person is an EU citizen if the person is a British citizen.

Some grammarians also insist that the correct relative pronoun for restrictive
relative clauses is that rather than which or who. According to them, the first
sentence in the pair of sentences above should be written:

 A British citizen that obtains citizenship by providing false information
 may be deprived of British citizenship.

But in British English, this rule is largely ignored these days. In any case, if it
is important that your readers understand what you write, then it is better not
to rely on such subtle grammatical devices as the presence or absence of
commas, and the supposed differences of meaning between that and which,
which few readers know or care about. It is better to express yourself in an
English form that more closely resembles the logical form of the thought you
wish to convey. For example, do not write:

 A British citizen, who has the right of abode in the UK,
 owes loyalty to the Crown.
or A British citizen that has the right of abode in the UK
 owes loyalty to the Crown.

But, depending on what you mean, write:

 All British citizens have the right of abode in the UK
 and owe loyalty to the Crown.
or A British citizen owes loyalty to the Crown
 if the citizen has the right of abode in the UK.

The use of relative clauses is one way in which the syntax of English differs
from the syntax of conditionals in logical form. Another difference is the way
in which they represent variables. Symbolic forms of CL use symbols, like X
and Y for variables, which range over classes of individuals. Variables are
distinct from constants, which represent unique individuals.
 English uses the combination of an article, like a and the, and a common
noun, like person, animal, object and thing, as a sorted or typed variable. It
uses the articles a and an, as in an animal and a person, for the first use of a
variable; and it uses the article the, as in the animal and the person, for
subsequent uses of the same variable. It uses proper nouns, like Mary, Felix
and Venus, which are usually capitalized, as constants, to represent
individuals. Individuals can also be represented by definite descriptions, as in
the phrase the strongest man on earth.
 Putting all these considerations about relative clauses and variables
together, and taking the liberty to introduce one or two other refinements, we

 95

obtain the following more precise, but still relatively informal CL
representation of subsection 1.17

:

 X acquires british citizenship by subsection 1.1 at time T
 if X is a person

and X is born in the uk at time T
 and T is after commencement
 and Y is a parent of X
 and Y is a british citizen at time T or
 Y is settled in the uk at time T

Notice that the condition X is a person prevents cats and dogs from claiming
British citizenship. However, it is unnecessary to add the condition Y is a
person, because if X is a person then any parent of X is also a person. Notice
also that the condition Y is a parent of X is short for Y is a mother of X or Y is
a father of X.
 This representation uses the Prolog convention in which capitalised words
or letters, such as X, Y and T, stand for variables, which is why british and uk
have been written in lower case. This is the opposite of the English
convention in which upper case is used for proper nouns and names, and
lower case is used for common nouns. Just for the record, this is one of the
ways a die-hard mathematical logician might write 1.1:

∀X(∀T(∃Y(b(X, uk, T) ∧ c(T) ∧ d(Y, X) ∧ (e(Y, T) ∨ f(Y,T)))→ a(X, 1.1, T))).

Representation of time and causality

The English formulation of subsection 1.1 is precise about the temporal
relationships among the conditions of 1.1, but does not state the temporal
relationship between the conditions and the conclusion. In other words, it
does not say when a person satisfying the conditions of 1.1 actually is a
British citizen. I have used the term acquires british citizenship as a kind of
place-holder, which can accommodate different relationships between these
times. Anticipating Chapter 13, about the representation of time and change,
this is as good a place as any to propose a likely intended relationship:

 a person is a british citizen at a time
 if the person acquires british citizenship at an earlier time
 and it is not the case that
 the person ceases to be a british citizen between the two times.

7 Notice that this has the propositional form A if (B and C and D and (E or F)),
which is equivalent to two separate conditionals: A if B and C and D and E and
A if B and C and D and F.

 96

This should remind you of the relationship between picking up an object and
having the object at a later time, which was mentioned briefly at the end of
Chapter 4. In both cases, these relationships are instances of a more general,
abstract relationship. Here is a statement of that relationship in the event
calculus (Kowalski and Sergot, 1986):

 a fact holds at a time,
 if an event happened at an earlier time
 and the event initiated the fact
 and it is not the case that
 an other event happened between the two times and
 the other event terminated the fact.

The different special cases can be obtained by adding information about
specific types of events initiating and terminating specific types of facts. For
example:

 the event of a person acquiring british citizenship initiates

the fact that the person is a british citizen.

 the event of a person being deprived of british citizenship terminates
the fact that the person is a british citizen.

 the event of an animal picking up an object initiates

the fact that the animal has the object.

 the event of an animal dropping an object terminates
the fact that the animal has the object.

Notice that in the case of an animal picking up an object, our earlier
representation in Chapter 4 of the relationship:

 an animal has an object at a time
 if the animal is near the object at an earlier time
 and the animal picks up the object at the earlier time
 and nothing terminates the animal having the object between the two times.

contains an additional condition that the animal is near the object at an
earlier time. In the event calculus, this additional condition can be expressed
as a separate constraint:

 if an animal picks up an object
 and it is not the case that the animal is near the object at a time

 97

 then false.

In general, the event calculus constraint expresses that an event is possible if
all its preconditions hold. We will discuss the representation of preconditions
of events later in Chapter 13.
 The use of the term fact in the event calculus axiom can be stretched to
cover, not only ordinary facts, which are atomic sentences, but also more
general sentences, which are initiated by events like the commencement of an
act of parliament. For example:

 the commencement of an act of parliament initiates a provision
 if the provision is contained in the act.

 the repeal of an act of parliament terminates a provision
 if the provision is contained in the act.

The treatment of events and sentences as individuals is an example of
reification. The corresponding phenomenon in English is nominalization, in
which a verb, such as commence is turned into a noun, such as
commencement. Reification is a powerful tool, which has proved to be
indispensible for knowledge representation in Artificial Intelligence. But it
worries some philosophers, who view it as populating the world with
individuals of questionable existence.

Acquisition by abandonment

The second subsection of the BNA also employs reification, in this case to
reify the purposes of subsection 1.1:

 1.-(2) A new-born infant who, after commencement, is found
 abandoned in the United Kingdom shall, unless the contrary is shown,

be deemed for the purposes of subsection (1)-
 (a) to have been born in the United Kingdom after commencement; and
 (b) to have been born to a parent who at the time of the birth
 was a British citizen or settled in the United Kingdom.

It might seem a little strange to devote the very second sentence of the BNA
to such a hopefully uncommon case, when there are so many simpler and
more common cases to consider. But what better, more coherent place is
there for a provision referring to the purpose of subsection 1.1 than
immediately after 1.1 itself? Somewhat more awkward, from our point of
view, is that subsection 1.2 combines so many other complex logical features
in a single rule that it’s hard to know where to begin in picking its logic apart.

 98

 Perhaps the easiest place to start is with the notion of purpose. It is clear
that purpose is just another name for goal. But in logic programming, the
conclusion of a conditional, used to reason backwards, is treated as a goal
and its conditions are treated as subgoals. Accordingly, the conclusion of a
conditional identifies its purpose. Thus we can interpret the phrase the
purposes of subsection (1) as a reference to the logical conclusion of 1.1,
namely to acquire British citizenship. The phrase could have equally well
been expressed less dramatically as the conclusion of subsection (1).
 Moreover the phrases 1.2.a and 1.2.b are exactly the logical conditions of
1.1. Therefore, translating unless as if not, we can paraphrase subsection 1.2
in the form:

The conclusion of 1.1 holds for a person
if the person is found newborn abandoned in the uk after commencement
and the contrary of the conditions of 1.1 are not shown to hold for the person.

The paraphrased sentence combines in a single sentence the use of meta-
language to talk about the conclusions and conditions of sentences with the
object-language to talk about states of affairs in the world. The use of meta-
language treats sentences as individuals, and is another example of
reification. We shall return to the issue of meta-language both later in this
chapter and in Chapter 17.
 The other notable feature of 1.2 is its use of the phrase unless the
contrary is shown. We have seen the use of the similar phrase cannot be
shown for default reasoning before. The phrase cannot be shown has nice
theoretical properties; but, as we have seen, it includes the need to expend a
potentially infinite amount of resources trying to show that something is the
case. The phrase is not shown is more practical, because it assumes that only
a finite amount of effort has been spent, but it suffers from the imprecision of
not specifying how much effort is needed. Moreover, it does not cater for the
possibility that new information or additional effort might make it possible to
show conditions that could not be shown before.

Ignoring these concerns and exploiting the fact that the contrary of born
in the uk is born outside the uk, and the contrary of born after
commencement is born on or before commencement we can rewrite 1.2 as:

A person found newborn abandoned in the uk after commencement
shall be a british citizen by section 1.2
if it is not shown
that the person was born outside the uk
and it is not shown that
the person was born on or before commencement
and it is not shown that

 99

both parents were not british citizens at the time of birth
and it is not shown that
both parents were not settled in the uk at the time of birth

This gives us two logical paraphrases of subsection 1.2. However, I suspect
that the combined object-language meta-language representation is probably
the easiest to understand.

Rules and exceptions

The phrases is not shown and cannot be shown are forms of negation that can
be implemented by variants of negation as failure. The BNA also includes the
use of negation to represent rules and exceptions. For example:

40.-(2) The Secretary of State may by order deprive a person of a
citizenship status if the Secretary of State is satisfied that deprivation is
conducive to the public good.

40.-(4) The Secretary of State may not make an order under subsection (2)
if he is satisfied that the order would make a person stateless.

As we saw in the chapter on negation as failure, the exception can be
compiled into the conditions of the rule :

40.-(2) The Secretary of State may by order deprive a person of a
citizenship status if the Secretary of State is satisfied that deprivation is
conducive to the public good,
and he is not satisfied that the order would make the person stateless.8

English typically distinguishes between rules and exceptions by presenting
the rule before its exceptions, and introducing the exception by such words or
phrases as “but”, “however” or “on the other hand”. In the following
provision 12.1 of the BNA, the signal that the rule is subject to exceptions is
given by the vague qualification, subject to subsections (3) and (4):

8 The condition he is not satisfied that the order would make the person
stateless is not equivalent to the arguably more natural condition he is satisfied that
the order would not make the person stateless. The “more natural condition” is
equivalent to a stronger version of 40.-(4): The Secretary of State may not make an
order under subsection (2) unless he is satisfied that the order would not make a person
stateless.

 100

12— (1) If any British citizen of full age and capacity makes in the
prescribed manner a declaration of renunciation of British citizenship,
then, subject to subsections (3) and (4), the Secretary of State shall cause
the declaration to be registered…………………………………………………
(3) A declaration made by a person in pursuance of this section shall not
be registered unless the Secretary of State is satisfied that the person who
made it will after the registration have or acquire some citizenship or
nationality other than British citizenship;……………………………………
4) The Secretary of State may withhold registration of any declaration
made in pursuance of this section if it is made during any war in which
Her Majesty may be engaged in right of Her Majesty’s government in the
United Kingdom.

12.3 is a straight-forward exception to 12.1, expressing in effect a condition
under which the Secretary of State may not cause a declaration of
renunciation to be registered. 12.4 is also an exception, but its effect depends
on whether the Secretary of State actually decides to exercise permission to
withhold registration. Taking the difference between these two exceptions
into account, the intended combined meaning of 12.1, 12.3 and 12.4 can be
compiled into a single rule:

The Secretary of State shall cause a declaration of renunciation
of British citizenship to be registered

 if the declaration is made by a British citizen of full age and capacity
and the declaration is made in the prescribed manner
and the Secretary of State is satisfied that after the registration the person
will have or acquire some citizenship or nationality other than British
citizenship;
and it is not the case that
 the declaration is made during a war in which Her Majesty is engaged
 in right of Her Majesty’s government in the United Kingdom

and the Secretary of State decides to withhold the registration.

Notice that the rule can be further simplified by replacing the condition the
Secretary of State is satisfied that after the registration the person will have or
acquire some citizenship or nationality other than British citizenship by the
equivalent condition the Secretary of State is satisfied that after the
registration the person will not be stateless.
 Section 12 contains another rule and exception, which on the face of it is
even more complicated:

12— (2) On the registration of a declaration made in pursuance of this
section the person who made it shall cease to be a British citizen.

 101

(3) …; and if that person does not have any such citizenship or nationality
on the date of registration and does not acquire some such citizenship or
nationality within six months from that date, he shall be, and be deemed
to have remained, a British citizen notwithstanding the registration.

However, much of the complication disappears if the rule and exception are
compiled into a single rule defining termination of citizenship:

the event of registering a declaration of renunciation by a person
terminates the fact that the person is a british citizen
if the registration was made on date T1
and the person has some citizenship or nationality
other than british citizenship on date T2
and T1 ≤ T2 ≤ T1 + six months.

Understood in the context of the event calculus, the termination rule takes
effect at the time of registration only if the person renouncing citizenship is a
citizen or national of some other country within six months of the
registration. The complexity is due, not to the logical form of the rule, but to
its content, whereby a state of affairs in the past (termination of citizenship)
is caused in part by a state of affairs in the future (possession of some other
citizenship or nationality).

How to satisfy the Secretary of State

The provisions in the BNA for depriving a person of British citizenship and
for registering a renunciation of British citizenship involve seemingly
inscrutable references to satisfying the Secretary of State. However, under the
assumption that the Secretary of State is a rational person, not all of these
references are as impenetrable as they may seem. Consider, for example, the
main provision for acquiring British citizenship by naturalisation:

6.-(1) If, on an application for naturalisation as a British citizen made by a
person of full age and capacity, the Secretary of State is satisfied that the
applicant fulfils the requirements of Schedule 1 for naturalisation as such a
citizen under this sub-section, he may, if he thinks fit, grant to him a
certificate of naturalisation as such a citizen.

At the top-most level, this has the logical form:

 the secretary of state may grant a certificate of naturalisation

to a person by section 6.1
 if the person applies for naturalisation

 102

 and the person is of full age and capacity
 and the secretary of state is satisfied that
 the person fulfils the requirements of schedule 1

for naturalisation by 6.1
 and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

The first two conditions are simple object-level conditions concerning the
state of the world. But the last two conditions are epistemic or meta-level
conditions concern the Secretary of State’s state of mind. In theory, the last
condition is totally inscrutable and can only be given as part of the input for a
given case. However, in practice, an expert lawyer might be able to predict
with a high degree of certainty how the Secretary will decide new cases
based on the lawyer’s knowledge of previous decisions in similar, old cases.
 The third condition is more interesting, because the BNA includes a
specification of the requirements for naturalization that an applicant must
fulfil to the satisfaction of the Secretary of State. If the Secretary’s state of
mind were entirely impenetrable, there would be no point in specifying these
requirements. The schedule is quite long, and it is convenient therefore to
summarise and paraphrase its contents:

 a person fulfils the requirements of schedule 1 for naturalisation by 6.1
 if either the person fulfils the residency requirements
 of subparagraph 1.1.2
 or the person fulfils the crown service requirements
 of subparagraph 1.1.3
 and the person is of good character
 and the person has sufficient knowledge
 of english, welsh, or scottish gaelic
 and the person has sufficient knowledge about life in the uk
 and either the person intends to make his principal home in the uk
 in the event of being granted naturalisation

or the person intends to enter or continue in crown service or
other service in the interests of the crown in the event of being
granted naturalisation.

On the assumption that the Secretary of State is a rational person and that all
rational people understand the meaning of the words if, or and and as they
occur in schedule 1 in the same way, it can be shown that:

the secretary of state is satisfied that
a person fulfils the requirements of schedule 1 for naturalisation by 6.1
 if either the secretary of state is satisfied that

 103

the person fulfils the residency requirements of subparagraph 1.1.2
 or the secretary of state is satisfied that
 the person fulfils the crown service requirements of subparagraph 1.1.3
 and the secretary of state is satisfied that

the person is of good character
 and the secretary of state is satisfied that
 the person has sufficient knowledge
 of english, welsh, or scottish gaelic
 and the secretary of state is satisfied that

the person has sufficient knowledge about life in the uk
 and either the secretary of state is satisfied that

the person intends to make his principal home in the uk
 in the event of being granted naturalisation

or the secretary of state is satisfied that
the person intends to enter or continue in crown service or
other service in the interests of the crown in the event of being
granted naturalisation.

The result is an explicit, though tedious statement of what it takes to satisfy
the Secretary of State concerning the requirements for naturalization. We will
see how to derive this explicit form in Chapter 17.

As we have seen, compared with ordinary English, the language of the
BNA is extraordinarily, and at times even painfully precise. Its precision is
due in large part to its use of conditional syntactic form, which helps to
eliminate ambiguity.

A syntactic expression is ambiguous when it has several distinct
identifiable meanings. For example, the word he is ambiguous in the
following pair of sentences:

 The Secretary of State deprived Bob Smith of his British citizenship.
 He was very upset about it.

Ambiguity can be eliminated simply by replacing the ambiguous expression
by a precise expression that represents its intended meaning; for example, by
replacing the word he in the second sentence above either by the Secretary of
State or by Bob Smith.
 The conditional form of CL helps to reduce the ambiguity associated with
such relative clauses as who was born in the UK. As we have seen,
restrictive relative clauses add extra conditions to conditionals, whereas non-
restrictive relative clauses add extra conclusions.
 Ambiguity is distinct from, but often confused with vagueness. Ambiguity
arises when a syntactic expression has several distinct interpretations, all of
which can be expressed explicitly. Vagueness, on the other hand, arises when

 104

a concept, like newborn infant has no crisp, hard and fast definition. Logic
tolerates vagueness, but does not tolerate ambiguity. It accommodates vague
concepts as conditions of conditionals, simply by not attempting to define
them in the conclusions of other conditionals.

Although, like ambiguity, vagueness causes problems of interpretation, it
is often useful in practice, because it allows the law to evolve and adapt to
changing circumstances. Arguably, however, except for its use in poetry,
humour and deception, ambiguity serves no other useful purpose.

Whereas the syntax of the BNA is expressed in explicit conditional form,
the syntax of the University of Michigan lease termination clause below is
both unstructured and highly ambiguous. The termination clause was
originally investigated by Allen and Saxon to illustrate the use of
propositional logic to formulate a precise interpretation of an ambiguous legal
text. Significantly, the intended interpretation identified by Allen and Saxon
has the conditional form associated with Computational Logic.

The University of Michigan lease termination clause

The clause consists of a single sentence, which I advise you not to try to
understand until I first explain why the sentence in this form is virtually
impossible to understand:

"The University may terminate this lease when the Lessee, having
made application and executed this lease in advance of enrollment, is
not eligible to enroll or fails to enroll in the University or leaves the
University at any time prior to the expiration of this lease, or for
violation of any provisions of this lease, or for violation of any
University regulation relative to Resident Halls, or for health reasons,
by providing the student with written notice of this termination
30 days prior to the effective time of termination; unless life, limb,
or property would be jeopardized, the Lessee engages in the sales or
purchase of controlled substances in violation of federal, state or
local law, or the Lessee is no longer enrolled as a student, or the
Lessee engages in the use or possession of firearms, explosives,
inflammable liquids, fireworks, or other dangerous weapons within
the building, or turns in a false alarm, in which cases a maximum of
24 hours notice would be sufficient".

In fact, I could not resist trying to make your task a little easier by
highlighting the two conclusions, the first of which is split into two halves,
separated by its various conditions.

The sentence is hard to understand, because it has the ambiguous form:

A if B and B’, C or D or E or F or G or H

 105

unless I or J or K or L or M in which case A’.

The sentence is ambiguous for the same reason that the arithmetic expression
1+1×2 is ambiguous. In mathematics and mathematical logic, such
ambiguities are resolved by the appropriate use of parentheses, either
1+(1×2) or (1+1)×2 in the case of the arithmetic expression.
 In the case of the termination clause, the sub-clauses A, A’, B, B’, C, D,
E, F, G, H, I, J, K, L and M can be grouped together by means of parentheses
in many different ways. Some of these groupings are logically equivalent.
After accounting for these equivalences, Allen and Saxon identified
approximately 80 questions that would need to be asked to disambiguate
between the different interpretations. As a result of their analysis they
identified the intended interpretation as having the unambiguous logical
form:

 (A if (not (I or J or K or L or M) and ((B and B’ and (C or D)) or E

or F or G or H)) and A’ if (I or J or K or L or M))

This formal representation can be simplified if we rewrite it in the syntax of
conditionals, and if we assume that the second conditional states the only
conditions under which the conclusion A’ holds. Using this assumption, we
can replace the condition not (I or J or K or L or M) by not A’, obtaining the
conditionals:

 A if not A’ and B and B’ and C. A’ if I
 A if not A’ and B and B’ and D. A’ if J
 A if not A’ and E. A’ if K
 A if not A’ and F. A’ if L
 A if not A’ and G. A’ if M.

The repetition of the conclusions A and A’ is a little tedious, but at least it
makes the meaning crystal clear. In English, we can obtain a similar effect
without the tedious repetition by signalling the disjunction of the different
conditions with the phrase “one of the following conditions holds”:

The University may terminate this lease by providing the student with
written notice of this termination 30 days prior to the effective time of
termination
if the University may not terminate this lease
 with a maximum of 24 hours notice
and one of the following conditions holds:

1) The Lessee, having made application and executed this lease in
advance of enrollment, is not eligible to enroll
or fails to enroll in the University.

 106

2) The Lessee leaves the University at any time
prior to the expiration of this lease.

3) The Lessee violates any provisions of this lease.
4) The Lessee violates any University regulation

 relative to Resident Halls.
5) There are health reasons for the termination.

The University may terminate this lease
with a maximum of 24 hours notice
if one of the following conditions holds:

1) Life, limb, or property would be jeopardized.
2) The Lessee engages in the sales or purchase of controlled substances

in violation of federal, state or local law.
 3) The Lessee is no longer enrolled as a student.

4) The Lessee engages in the use or possession of firearms, explosives,
inflammable liquids, fireworks,
or other dangerous weapons within the building.

5) The Lessee turns in a false alarm.

There are two reasons why you may not be entirely satisfied with this
rewriting of the sentence. First, why would the University want to restrict
itself, in cases where it is allowed to give 24 hour notice, so that it does not
have the discretion of giving 30 days notice instead? This is probably a
mistake, due to the complex wording of the original sentence, which even its
writers did not fully understand.
 Second, what does it mean to say that the University may terminate this
lease with a maximum of 24 hours notice? The word maximum here suggests
that in such cases the University may terminate the lease with less than 24
hours notice. Surely, in all fairness, the student deserves a minimum of 24
hours to get her things together and to vacate her room.

So how could the lawyers who drafted the lease make such a big mistake?
Perhaps they meant that, upon receiving such notice, the student would have
a maximum of 24 hours to vacate the halls of residence. If so, the intention
could have been achieved more correctly and more simply by expressing the
conclusion in a parallel form to the alternative conclusion that the University
may terminate a lease with 30 days notice. The parallel form would mention
neither the term maximum nor minimum:

The University may terminate this lease by providing the student with
notice of this termination 24 hours prior to the effective time of
termination.

 107

Part of the moral of the story is to do as every good book on English writing
style advises: Express similar ideas in similar ways.

Summary

Both the BNA and the University of Michigan lease termination clause
illustrate, in their very different ways, the usefulness of expressing
information in conditional form. Arguably, this is because, not only are
conditionals close to the language of human thought, but also because they
are close to the laws that govern both our natural and social worlds.
 The BNA shows that we still have some way to go to understand the
subtleties and complexities of meta-level reasoning and of different kinds of
negation. However, the University of Michigan lease termination clause
shows that, even without those complexities, the syntactic form of
conditionals can help to clarify, not only the intended meanings of English
sentences, but also to uncover unintended meanings.
 In the next chapter, we explore production systems, which are widely
regarded in Cognitive Psychology as the most convincing computational
model of the mind. In the following chapter, we will see how Computational
Logic reconciles logic and production systems.

 108

Chapter 7. The Louse and the Mars Explorer

Logical Extremism, which views life as all thought and no action, has given
Logic a bad name. It has overshadowed its near relation, Logical Moderation,
which recognises that Logic is only one way of thinking, and that thinking
isn’t everything.

The antithesis of Logical Extremism is Extreme Behaviourism, which
denies any Life of the Mind and views Life instead entirely in behavioural
terms. Behaviourism, in turn, is easily confused with the condition-action
rule model of thinking.

Behaviourism

If you were analysing the behaviour of a thermostat, which regulates the
temperature of a room by turning on the heat when it is too cold and turning
off the heat when it is too hot, you might describe the thermostat’s input-
output behaviour in condition-action rule terms:

 If the current temperature is C degrees
 and the target temperature is T degrees
 and C < T - 2°
 then the thermostat turns on the heat.

 If the current temperature is C degrees
 and the target temperature is T degrees
 and C > T + 2°
 then the thermostat turns off the heat.

But you wouldn’t attribute the thermostat’s behaviour to a mind that
consciously manipulates such descriptions to generate its behaviour.

In the same way that you could view the thermostat’s external behaviour
without committing yourself to a view of its internal operation, the
behaviourist views agents in general. Thus, in the story of the fox and the
crow, a behaviourist, unable to examine the fox’s internal, mental state,
would view the behaviour of the fox in the same way that we view the
behaviour of the thermostat:

If the fox sees that the crow has cheese, then the fox praises the crow.
If the fox is near the cheese, then the fox picks up the cheese.

The behaviourist’s description of the fox in the story begins and ends with
the fox’s externally observable behaviour. The behaviourist justifies her
refusal to attribute any internal, mental activity to the fox, by the fact that it is

 109

impossible to verify such attributions by the scientific method of observation
and experimentation.

According to the behaviourist, the fox could be a purely reactive agent,
simply responding to changes in the world around her. If, in the course of
reacting to these changes, the fox gets the cheese, then this result might be
merely an indirect, emergent effect, rather than one that the fox has
deliberately aimed to bring about by proactive thinking.

The behaviourist also sees no reason to distinguish between the behaviour
of a thermostat and the behaviour of a human. The behaviourist might use a
conditional:

 If a passenger observes an emergency on the underground,
 then the passenger presses the alarm signal button.

to describe the behaviour of a passenger on the underground. But the use of
such a description says nothing about how the passenger actually generates
that behaviour. As far as the behavourist is concerned, pressing the alarm
signal button whenever there is an emergency might be only an instinctive
reaction, of whose purpose the passenger is entirely unaware.

Behaviourism is indirectly supported by Darwinism, which holds that
organisms evolve by adapting to their environment, rather than by a goal-
oriented process of self-improvement.

Behaviourism also shares with condition-action rules a focus on
modelling behaviour as reactions to changes in the environment. However,
whereas behaviourism restricts its attention to descriptions of behaviour,
condition-action rules in production systems are used to generate behaviour.

The program for a thermostat implemented by means of a production
system would look like this:

If the current temperature is C degrees
and the target temperature is T degrees
and C < T - 2°
then turn on the heat.

If the current temperature is C degrees
and the target temperature is T degrees
and C > T + 2°
then turn off the heat.

Production systems

Few psychologists subscribe today even to moderate versions of
behaviourism. Most adhere instead to the cognitive science view that
intelligent agents engage in some form of thinking that can usefully be

 110

understood as the application of computational procedures to mental
representations of the world.

Paul Thagard (2005) states in his book, Mind: Introduction to Cognitive
Science, that, among the various models of thinking investigated in cognitive
science, production systems have “the most psychological applications”
(page 51). Steven Pinker (1997) in How the Mind Works also uses production
systems as his main example of a computational model of the mind (page
69). The most influential computational models of human thinking are
probably the production system models Soar (Laird, et al, 1987) and ACT-R
(Anderson and Lebiere, 1998).

A production system is a collection of condition-action rules, of the form:

If conditions then actions.

which are incorporated in the thinking component of an agent’s observation-
thought-decision-action cycle. Condition-action rules (also called production
rules, if-then rules or just plain rules) are similar to the behaviourist’s
descriptions of behaviour. However, because they are used by an agent
internally to generate the agent’s behaviour, their conclusions are often
expressed in the imperative mood:

If conditions then do actions.

Production systems were invented as a mathematical model of computation
by the logician, Emil Post (1943) in the 1920s, but first published in 1943.
They were proposed as a computational model of human intelligence by the
Artificial Intelligence researcher Alan Newell (1973). They have also been
used for developing numerous expert systems, computer programs that
simulate human expertise in such fields as medicine, finance, science and
engineering.

The production system cycle

Production systems embed condition-action rules in an observation-thought-
decision-action cycle:

Repeatedly,
 observe the world,
 think,
 decide what actions to perform,
 act.

Thinking in production systems is similar to, but subtly different from,
forward reasoning in logic. As in logic, if all of the conditions of a rule hold

 111

in a given state, then the rule is said to be triggered or enabled, and the
conclusion is derived. However, whereas, in logic, forward reasoning derives
a conclusion that is a logical consequence of the conditions, in production
systems, the conclusion is only a recommendation to perform actions. This
kind of thinking is often called forward chaining, which helps to distinguish
it from genuine forward reasoning, although not everyone uses these terms in
this way.

Although the conclusion of a production rule is only a recommendation to
perform actions, it is common to express the actions as commands. If more
than one rule is triggered in a given situation, and the actions of the rules are
incompatible, then the agent needs to choose between them. This decision
between conflicting recommendations is called conflict resolution. The rule
or rules whose actions are chosen are said to be fired.

Production systems with no representation of the world

In the simplest case, an agent’s mental state might consist solely of
production rules, without any mental representation of the world. All of the
conditions of a rule are verified simply by matching them against the agent’s
current observations. In such a case, it can be said that “the world is its own
best model” (Brooks, 1991). If you want to find out about the world, don’t
think, just look!

Observing the current state of the world is a lot easier than trying to
predict it from past observations and from assumptions about the persistence
of past states of affairs. And it is a lot more reliable, because persistence
assumptions can easily go wrong, especially when there are other agents
around, changing the world to suit their own purposes.

What it’s like to be a louse

To see what a production system without any representation of the world
might be like, imagine that you are a wood louse and that your entire life’s
behaviour can be summed up in the following three rules:

If it’s clear ahead, then move forward.
 If there’s an obstacle ahead, then turn right.
 If I am tired, then stop.

Because you are such a low form of life, you can sense only the fragment of
the world that is directly in front of you. You can also sense when you are
tired. Thus, your body is a part of the world, external to your mind. Like
other external objects, your body generates observations, such as being tired
or being hungry, which are attended to by your mind.

 112

 It doesn’t matter where the rules came from, whether they evolved
through natural selection, or whether they were present at birth, thanks to
some Grand Designer. The important thing is, now that you have them, they
regulate and govern your life.

Suppose, for the purpose of illustration, that you experience the following
stream of observations:

 clear ahead.
 clear ahead.
 obstacle ahead.
 clear ahead and tired.

Matching the observations, in sequence, against the conditions of your rules
results in the following interleaved sequence of observations and actions:

 Observe: clear ahead.
 Do: move forward.

 Observe: clear ahead.
 Do: move forward.

 Observe: obstacle ahead.
 Do: turn right.

 Observe: clear ahead and tired.

At this point, your current observations trigger two different rules, and their
corresponding actions conflict. You can’t move forward and stop at the same
time. Some method of conflict resolution is needed, to decide what to do.

Many different conflict resolution strategies are possible. But, in this as in
many other cases, the conflict can be resolved simply by assigning different
priorities to the different rules, and selecting the action generated by the rule
with the highest priority. It is obvious that the third rule should have higher
priority than the second. So the appropriate action is:

 Do: stop.

An even simpler approach is to avoid conflict resolution altogether, by
changing the rules, adding an extra condition “and you are not tired” to the
first and second rules. A more complicated approach is to use Decision
Theory, to compare the different options and to select the option that has the
highest expected benefit. But, no matter how it is done in this case, the result
is likely to be the same – better to rest when you are tired than to forge ahead
regardless.

 113

 Once a louse has learned the rules, its internal state is fixed. Observations
come and go and the louse performs the associated actions, as stimulus-
response associations, without needing to record or remember them. The
price for this simplicity is that a louse lives only in the here and now and has
no idea of the great wide world around it. For a normal louse, this may a
small price to pay for enjoying the simple life.

Production systems with internal state

Although the simple life has its attractions, most people prefer a little more
excitement. Some people even want to believe that their life has a purpose,
whether or not they can know what that purpose may be.
 We will investigate the meaning of life for our imaginary louse in Chapter
9, but in the meantime we will have to be content with spicing up our
production system model with an internal database that serves as an internal
state. The database is a set of atomic sentences, which is like a relational
database. Typically it is much smaller than a conventional database, and for
this and for other, more psychological reasons it is often called a working
memory.

The database can be used to simulate the external world, or to represent
and manipulate some imaginary world. It is also commonly used as a
temporary memory to store calculations to solve a temporary goal.

In a production system with an internal database, a rule is triggered when
an atomic sentence that is an external or internal update of the database
matches one of the conditions of the rule, and any additional conditions of the
rule are verified as holding in the current state of the database9

. If the rule is
triggered in this way, then the actions of the rule are derived as candidates for
execution. When all of the candidate actions have been determined, then
conflict resolution is used to choose one or more actions for execution. If a
chosen action is an external action, then it is performed on the external world.
If it is an internal action, then it is performed as an internal update of the
database.

What it’s like to be a Mars explorer

To imagine what a production system with memory might be like, suppose
that your life as a louse has expired; and, as a reward for your past efforts,
you have been reincarnated as a robot sent on a mission to look for life on
Mars.

Fortunately, your former life as a louse gives you a good idea how to get
started. Moreover, because you are a robot, you never get tired and never

9More generally and to improve efficiency, partially triggered rules can be treated as
new rules that can be further triggered by future updates.

 114

have to rest. However, there are two new problems you have to deal with:
How do you recognise life when you see it, and how do you avoid going
around in circles?

For the first problem, your designers have equipped you with a life
recognition module, which allows you to recognise signs of life, and with a
transmitter to inform mission control of any discoveries. For the second
problem, you have an internal database to remember whether you have been
to a place before, so that you can avoid going to the same place again.

Of course, the problems facing a real-life robot are far more complex that
that. They include very hard problems of constructing mental representations
of observations and of converting mental representations of actions into
physical motor controls. But to make the example tractible, we will ignore
these interface problems and also simplify the associated knowledge
representation issues.

Given these simplifications, a production system with memory, which is a
refinement of the production system of a louse, might look something like
this:

If the place ahead is clear
and I haven’t gone to the place before,
then go to the place.

If the place ahead is clear
and I have gone to the place before,
then turn right.

 If there’s an obstacle ahead
 and it doesn’t show signs of life,
 then turn right.

 If there’s an obstacle ahead
 and it shows signs of life,
 then report it to mission control
 and turn right.

To recognise whether you have been to a place before, you need to make a
map of the terrain. You can do this, for example, by dividing the terrain into
little squares and naming each square by a co-ordinate, (E, N), where E is the
distance of the centre of the square East of the origin, N is its distance North
of the origin, and the origin (0, 0) is the square where you start.

For this to work, each square should be the same size as the step you take
when you move one step forward. Assuming that you have recorded the co-
ordinates of your current location in the database, then you can use simple
arithmetic to compute the co-ordinates of the square ahead of you and the

 115

square to the right of you, and therefore the co-ordinates of your next
location.

Every time you go to a square, you record your visit in the database.
Then, to find out whether you have gone to a place before, you just consult
the database.

Suppose for example, that you are at the origin, pointed in an Easterly
direction. Suppose also that the following atomic sentences describe a part of
the external world around you:

 life at (2, 1)
 clear at (1, 0)
 clear at (2, 0)
 obstacle at (3, 0)
 obstacle at (2, -1)
 obstacle at (2, 1).

Suppose also that you can see only one step ahead. So, when you start, the
only thing you know about the world, in your internal database, is that your
current location is (0, 0) and the only thing you can observe is that it is clear
at (1, 0), which is the place immediately in front of you.

Assume also that, although it is your mission to look for life, you are the
only thing that moves. So this description of the initial state of the world will
also apply to all future states of the world that you will encounter.

With these assumptions, your behaviour is completely predetermined:

 Initial database: at (0, 0)

 Observe: clear at (1, 0)
 Do: move forward
 Update database: delete at(0, 0), add at(1, 0), add visited (0, 0)

 Observe: clear at (2, 0)
 Do: move forward
 Update database: delete at(1, 0), add at(2, 0), add visited(1, 0)

 Observe: obstacle at (3, 0)
 Do: turn right

 Observe: obstacle at (2, -1)
 Do: turn right

 Observe: clear at (1, 0)
 Do: turn right

 116

 Observe: obstacle ahead at (2, 1) and life at (2, 1)
 Do: report life at (2, 1) and turn right10

Notice that reporting your discovery of life to mission control is just another
action, like moving forward or turning right. You have no idea that, for your
designers, this is the ultimate goal of your existence.

Your designers have endowed you with a production system that achieves
the goal of discovering life as an emergent property of your behaviour.
Perhaps, for them, this goal is but a subgoal of some higher-level goal, such
as satisfying their scientific curiosity. But for you, none of these goals or
subgoals is apparent.

Condition-action rules with implicit goals

Condition-action rules that implement reactive behaviour are an attractive
model of evolutionary theory. As in the theory of evolution, the ultimate
goal of such reactive rules is to enable an agent to survive and prosper, and
is emergent rather than explicit. For example, the two rules:

If there is an emergency then get help.

 If there is an emergency then run away.

have the implicit goal of dealing appropriately with the emergency, which is
a euphemism for trying to save yourself, and maybe trying to save others if
you can.
 Reactive rules are also a natural way to generate simpler kinds of
reactive behaviour, with more modest emergent goals. Herbert Simon (1999)
gives the example of a production system for solving algebraic equations in
one unknown, for example for solving the equation 7X + 6 = 4X + 12 with
the unknown X.

1. If the expression has the form X = N, where N is a number,
 then halt and check by substituting N in the original equation.

2. If there is a term in X on the right hand side,
 then subtract it from both sides and collect terms.

3. If there is a numerical term on the left hand side,
 then subtract it from both sides, and collect terms.

4. If the equation has the form NX = M, N ≠ 0,
 then divide both sides by N.

10 I leave it to the reader to work out what happens next, and I apologise for any
complications in advance.

 117

To solve the equation, both the initial equation and an extra copy of the
equation are put into the initial database. The actions of the rules change the
copy of the equation until it is in the right form for the application of rule 1,
when the solution needs to be substituted into the original equation. The
production system cycle executes the following steps:

 Initial equation: 7X + 6 = 4X + 12
 Use 2 to obtain: 3X + 6 = 12
 Use 3 to obtain: 3X = 6
 Use 4 to obtain: X = 2
 Use 1 to halt and check: 7⋅2 + 6 = 4⋅2 + 12.

Notice that there is no explicit representation of the top-level goal of solving
the original equation. Nor is there any representation of the implicit
intermediate subgoals of combining all occurrences of the variable into one
occurrence and of isolating the variable. The first subgoal is the purpose of
rule 2, and the second subgoal is the purpose of rules 3 and 4.
 The top-level goal and its relationship with the intermediate subgoals
could be made explicit by means of the conditional (Bundy et al, 1979):

 An equation with a single variable X is solved
 if all occurrences of X are combined into a single occurrence
 and the single occurrence of X is isolated.

We will investigate the relationship between logical conditionals with
explicit goals and production rules with emergent goals when we explore the
meaning of life and dual process theories of thinking in Chapter 9. In that
chapter, I will suggest that an agent has a higher-level of consciousness
when it has an explicit representation of its goals, and that it has a lower-
level of consciousness when its goals are only emergent.
 But even emergent goals are better than none. The fact that an agent’s
behaviour has any goals at all, whether they be conscious or emergent, can
be said to give the agent’s life a meaning, in the sense that they give its life a
purpose.

The use of production systems for forward reasoning

The natural correspondence between reactive condition-action rules and
stimulus-response associations is probably production systems’ biggest
selling point. It may even be the evolutionary ancestor of all later forms of
higher-level intelligence. If so, the next step in evolution might have been
the extension from forward chaining with reactive rules to forward reasoning
with conditionals.
 Consider, for example, the following fragment of the family tree of
Adam and Eve from the Book of Genesis:

 118

 Eve mother of Cain
 Eve mother of Abel
 Adam father of Cain
 Adam father of Abel
 Cain father of Enoch
 Enoch father of Irad

Consider also the production rules:

 If X mother of Y
 then add X ancestor of Y.

 If X father of Y
 then add X ancestor of Y.

 If X ancestor of Y
 and Y ancestor of Z
 then add X ancestor of Z.

Suppose that the only conflict resolution that is performed is to avoid firing
the same rule matching it with the same facts in the database more than once
(called refraction in the production system literature). Then the initial
database is successively updated, until no new facts can be added:

In the first iteration add: Eve ancestor of Cain
 Eve ancestor of Abel
 Adam ancestor of Cain
 Adam ancestor of Abel
 Cain ancestor of Enoch
 Enoch ancestor of Irad

In the second iteration add: Eve ancestor of Enoch
 Adam ancestor of Enoch
 Cain ancestor of Irad

In the third iteration add: Eve ancestor of Irad
 Adam ancestor of Irad

If the word add is omitted from the action part of the three production rules,
then the rules are indistinguishable from logical conditionals, and forward
chaining is indistinguishable from forward reasoning.
 More generally, production systems can implement forward reasoning
from an initial set of facts with any set of conditionals all of which satisfy
the restriction that any variable in the conclusion of a conditional occurs

 119

somewhere in the conditions of the conditional. This restriction, called the
range-restriction, is relatively easy to satisfy and avoids such conditionals
as:

 If pigs can fly then X is amazing.
i.e. If pigs can fly then everything is amazing.

To implement forward reasoning, it suffices to prefix the word add before
every conclusion, to turn the conclusion into an action that updates the
database.

The use of production systems for goal reduction

The step from reactive rules to forward reasoning with conditionals is an
easy one. The next step, to goal-reduction is much harder. This is because, to
represent goal-reduction in production rule form, the working memory needs
to contain, in addition to “real” facts, which represent the current state of a
database, also goal facts, which represent some desired future state. Goal
manipulation actions need to add goal facts when goals are reduced to
subgoals and to delete goal facts when they are solved. Goal-reduction is
implemented, not by backward reasoning as in logic programming, but by
forward chaining with rules of the form:

 If goal G and conditions C then add H as a subgoal.

Goal-reduction in production rule form is an important feature both of
cognitive models, such as Soar and ACT-R, and of many commercial expert
systems.

In his Introduction to Cognitive Science, Thagard (2005) uses the ability
of production systems to perform goal-reduction to support his claim that
“unlike logic, rule-based systems can also easily represent strategic
information about what to do”. He illustrates his claim with the following
example (page 45):

 If you want to go home and you have the bus fare,
 then you can catch a bus.

Forward chaining with the rule reduces a goal (going home) to a subgoal
(catching a bus).
 But earlier in the book, we saw that goal reduction can also be performed
by backward reasoning with conditionals. In the case of Thagard’s example,
with the conditional:

 You go home if you have the bus fare and you catch a bus.

 120

Thus Thagard’s argument against logic can be viewed instead as an argument
for logic programming and Computational Logic, because they too can easily
represent strategic information.
 In fact, Thagard’s argument can be turned against itself. How do you
represent the fox’s strategy for having an object by first getting near it and
then picking it up? The production rule:

If you want an object and you are near the object,
 then you can pick the object up.

assumes you are already near the object. It’s not obvious how to formulate
the more general strategy:

If you want an object
then you can get near the object,

 and you can pick the object up.

The actions in this general strategy are a sequence of a subgoal followed by
an action. But production systems normally accommodate only actions that
can be performed in the same iteration of a cycle.
 To deal with problems of this kind, the production systems Soar and
ACT-R employ a different structure for goals and subgoals than they do for
ordinary facts. They store goals in a stack. When a goal is reduced to a
subgoal, the new subgoal is put (or pushed) on top of the stack. When a goal
is solved, it is taken off (or popped) from the top of the stack. Only the goal
at the top of the stack can contribute to the triggering of a production rule.

The goal stack can be used to reduce the goal of having an object to the
subgoals of getting yourself and the object near to one another and of picking
the object up, for example in the following way:

If your goal (at the top of the goal stack) is to have an object
and you are not near the object,

 then make your goal (pushing it on top of the stack) to be near the object

If your goal (at the top of the goal stack) is to have an object
and you are near the object,

 then pick up the object.

If your goal (at the top of the goal stack) is to have an object
and you have the object

 then delete the goal (by popping it from the top of the stack).

 121

To represent the general strategy as a single rule, it is necessary either to
represent it in logical form or to represent it in an agent programming
language.
 Many of the agent programming languages (see for example (Dennis et
al, 2008)) that have been developed in Artificial Intelligence can be viewed
as extensions of production systems in which rules have the more general
form of reactive plans:

 If triggering condition and other conditions hold,
 then solve goals and perform actions.

The conclusions of such reactive plans can be a collection of subgoals to be
achieved and of actions to be performed over several agent cycles. The
triggering condition can be either an observation or a goal. Thus, forward
chaining with such rules can perform goal-reduction, without the restriction
of production systems that all the actions in the conclusion of a rule have to
be performed in a single cycle.
 The alternative to performing goal-reduction by forward chaining,
whether with simple production rules or with reactive plans, is to perform
goal-reduction by backward reasoning with logical conditionals. The
advantage of the logical alternative is that it simultaneously represents both
the goal-reduction procedure and the belief that justifies the procedure.

Logic versus production rules

Thus there are three kinds of production rules: reactive rules, forward
reasoning rules, and goal-reduction rules. It is only reactive rules that do not
have an obvious logical counterpart. However, in the next chapter, we will
see that reactive rules can be understood in logical terms as conditional goals.
Forward reasoning rules can be understood as conditional beliefs used to
reason forward, and goal-reduction rules as conditional beliefs used to reason
backwards.
 Thagard’s textbook (2005, page 47) includes the claim that, in contrast
with logic, “rules can be used to reason backward or forward”. In fact, it
would be more accurate to state that in contrast with production rules, logical
conditionals can be used to reason backward or forward. Because conditions
in production rules come first and actions come later, true production rules
can only be used in the forward direction.

To be fair to Thagard, in most of his arguments against logic and in
favour of rules, he is only reporting common misconceptions, failing to
recognise the properties of logical conditionals and attributing their
properties to production rules instead. What is most unfortunate is that these
confusions have permeated Cognitive Science and held back its progress
since the early 1970s.

 122

 However, production systems do have a critical feature that logic is
missing - the production system cycle, which is the intellectual ancestor of
the agent cycle. The agent cycle plays a critical role in the logic-based agent
model of this book, linking an agent’s thoughts in logical form to changes in
the agent’s surrounding environment.

Conclusions

The use of production systems to generate the behaviour of an intelligent
agent, as seen in this chapter, can be pictured like this:

 Forward chaining Conflict resolution

In the next chapter we will see how logic and production systems can be
reconciled in a more general framework, which uses logic for an agent’s
thoughts, and uses an agent cycle to embed the agent in a semantic structure,
which gives meaning to the agent’s thoughts.

 working memory

 the world

?

observe act

 123

Chapter 8 Maintenance Goals as the Driving
Force of Life

What do the passenger on the London underground, the fox, the wood louse,
the Mars explorer and even the heating thermostat have in common? It
certainly isn’t the way they dress, the company they keep, or their table
manners. It is the way that they are all embedded in a constantly changing
world, which sometimes threatens their survival, but at other times provides
them with opportunities to thrive and prosper.
 To survive and prosper in such an environment, an agent needs to be
aware of the changes taking place in the world around it, and to perform
actions that change the world to suit its own purposes. No matter whether it is
a human, wood louse, robot or heating thermostat, an agent’s life is an
endless cycle, in which it must:

repeatedly (or concurrently)
 observe the world,
 think,
 decide what actions to perform, and
 act.

We can picture this relationship between the mind of an agent and the world
like this:

The observation-thought-decision-action cycle is common to all agents, no
matter how primitive or how sophisticated. For some agents, thinking might

observe act

 The world

think decide

 124

involve little more than firing a collection of stimulus-response associations,
without any representation of the world. For other agents thinking might be a
form of symbol processing, in which symbols in the mind represent objects
and relationships in the world. For such symbol manipulating agents, the
world is a semantic structure, which gives meaning to the agent’s thoughts.

Although production systems perform thinking by manipulating symbolic
expressions, they do not interpret expressions in terms of semantic structures.
Instead, the production system cycle provides production systems with a so-
called operational semantics, which is a mathematical characterization of the
transitions from one state of the production system cycle to the next. From a
logical point of view, operational semantics is not a semantics at all.

In contrast with production systems, logic has a well-developed semantics
understood in terms of the relationship between symbolic expressions and the
objects those symbolic expressions represent. However, the semantics of
traditional logic does not take adequate account of the dynamic interaction
between symbolic representations and the environment in which those
representations are embedded.

We will investigate the semantics of logical representations of the
changing world in greater detail in Chapter 13. In this chapter we sketch a
preliminary framework that combines the dynamic interactions of the
production system cycle with the semantics and inference mechanisms of
Computational Logic. The first step in this direction is to interpret reactive
condition-action rules as conditional goals in logical form, and to recognize
that the role of such goals is to motivate an agent to change the world around
it.

The semantics of beliefs

We discussed logical semantics briefly in Chapter 3 and discuss in greater
detail in the more advanced chapters A2, A3, A4, and A6. Here we will deal
with only the most important features that distinguish the semantics of goals
from the semantics of beliefs. To understand the semantics of goals, we need
to understand, first, the simpler semantics of beliefs.

Traditional logic is mainly concerned with the logic of beliefs, which
represent an agent’s view of the world, whether or not the beliefs are actually
true. They include atomic sentences that record the agent’s observations, such
as the fox’s seeing that the crow has cheese. They also include causal beliefs
about the laws of nature, such as the belief that if an agent picks up an object
then the agent will possess the object.

In addition to its beliefs about the directly observable world, an intelligent
agent needs theoretical beliefs to organise and connect its other beliefs
together. These include beliefs that identify objects as belonging to different
theoretical classes, such as the classes of foxes, humans, animals, animates,
agents, artefacts, and things. They typically also include beliefs that organise

 125

such classes into hierarchies, in which, for example, foxes and humans are
animals, animals are agents, agents are animates, and animates and artefacts
are things.

If an agent expresses its beliefs in the right form, then beliefs about
objects belonging to classes higher in the hierarchy will apply with little extra
effort to objects belonging to classes lower in the hierarchy. Thus the belief
that if an animal picks up an object then the animal will possess the object
also applies to all foxes and in particular to the fox in the story of the fox and
the crow.

Theoretical beliefs can also include beliefs about unobservable entities,
like ghosts, angels, or electrons, and about unobservable relationships, such
as haunting, blessing, or sending out waves. Such beliefs complicate the
semantics of logic, because their entities and relationships need not really
exist in the agent’s independently existing world.

But such complications arise even with classes of objects and with
hierarchical relationships, which are also not directly observable. Indeed,
even observable objects and relationships, as in the fox’s observation that the
crow has the cheese, are arguably constructed in part by the eye of the
beholder. Thus, the easiest way to deal with all of these complications in one
go is simply to identify the agent’s external environment with the set of
atomic sentences, which represents the world as the agent experiences it.

The semantics of goals

In contrast with an agent’s beliefs, which represent the way the agent sees the
world as it is, whether the agent likes it or not, an agent’s goals represent the
agent’s view of the world as the agent would like it to be. There isn’t much
an agent can do about the past. So goals only affect actions that the agent can
perform in the future.

The most obvious kind of goal is an achievement goal, to attain some
desired future state of the world. The simplest kind of achievement goal is
just an atomic action, such as the fox picks up the cheese. However, a more
typical achievement goal is an observation sentence, such as the fox has the
cheese, that the agent would like to hold in the future. Achievement goals can
include actions and conjunctions of atomic sentences, such as the fox has the
cheese and the fox eats the cheese. They can also include existentially
quantified goals, which contain “unknowns” such as there exists some
instance of food, such that the fox has the food and the fox eats the food.
Achievement goals motivate an agent to generate a plan of actions, such as
the fox praises the crow, picks up the cheese and eats the cheese, to change
the world into future states in which the goals are true.
 A less obvious kind of goal, but arguably one that is more fundamental, is
a maintenance goal, which maintains the agent in a harmonious relationship
with the changing state of the world. Achievement goals are typically derived

 126

from maintenance goals, as the result of the agent observing some change in
the world around it.

For example, in the story of the fox and crow, the fox’s goal of having the
crow’s cheese appears out of the blue. A more realistic version of the story
would include the circumstance that triggered the goal. Perhaps the fox is
behaving like a spoiled child, wanting to have anything she observes in the
possession of another animal. Or perhaps she is just looking for her next
meal. In either case, the fox’s goal of having the cheese can be viewed as a
goal of achieving some future state of the world, in response to observing a
change in the world, which triggers a higher-level goal of maintaining some
desired relationship with the world around her.

Suppose that we give the fox the benefit of doubt and assume that she
wants to have the cheese simply because she is hungry, and not because she
has a personality defect. This can be represented by the maintenance goal:

 if I become hungry, then I have some food and I eat the food.

The goal can be paraphrased, in the imperative:

 if I become hungry, then get some food and eat the food.

The imperative formulation resembles a condition-action rule, except the
conclusion get some food is not a simple action. More generally, reactive
condition-action rules can be understood as the special case of maintenance
goals in which the conclusion is an action or a conjunction of actions, all of
which are to be performed in the same iteration of the agent cycle.
 It is common in natural languages to express goals, whether they be
achievement goals, maintenance goals or constraints, imperatively as
commands, in such forms as do this, if this then do that, and don’t do that.
But in logic, it is simpler to express goals declaratively, with such
expressions as this will be the case, whenever this is the case then that will be
the case, and that will never be the case.

The advantage of the declarative, logical representation of goals,
compared with the imperative formulation, is that the same semantic notion
of truth that relates an agent’s beliefs to the world also applies to the
relationship between the agent’s goals and the world. The main difference
being that beliefs represent sentences about the world that is outside the
agent’s control, whereas goals represent sentences about the world that the
agent can try to control by performing actions to make them true.

To see how the fox’s achievement goal I have the cheese is related to the
maintenance goal, suppose that the fox’s body tells her that she has just
become hungry. Since her body is a part of the world, she becomes aware of
her hunger by means of an observation:

 127

Observation: I become hungry.

The observation matches the condition of the maintenance goal and forward
reasoning derives the conclusion of the maintenance goal as an achievement
goal:

 ` I have some food and I eat the food.

Thus, the real achievement goal is not specifically to have the crow’s cheese,
but more generally to have some instance of food. And having food is only
half the story. The fox also needs to eat the food. As far as the top-level
maintenance goal is concerned, having food without eating it is useless.

To connect the achievement goal with the rest of the story, the fox needs
to have the taxonomic knowledge that cheese is a kind of food and that food
is a kind of object. This knowledge can be represented in a number of
different ways, and there are even specialised logics for this purpose, the
details of which are unimportant here. Suffice it to say that, one way or
another, this taxonomic knowledge is needed to instantiate the achievement
goal, substituting the crow’s cheese for the “unknown” existentially
quantified variable some food.

The time factor

Our reconsideration of the story of the fox and crow is still an over-
simplification, because it does it does not deal with the issue of time. It does
not indicate how much time can elapse between becoming hungry and eating.
Nor does it distinguish between different occurrences of becoming hungry at
different times.

We have already seen briefly in earlier chapters that one way of dealing
with time is by including time points in the mental language with such
representations of the temporal relationship between cause and effect as:

an animal has an object at a time
if the animal is near the object at an earlier time
and the animal picks up the object at the earlier time
and nothing terminates the animal having the object between the two times.

In a similar way, the fox’s maintenance goal with explicit temporal
relationships can be represented like this:

 if I become hungry at a time

then I have some food at a later time
and I eat the food at the later time.

 128

Although the different times and temporal relationships are explicit, they can
be made more precise with a little symbolic notation:

 for every time T1
 if I become hungry at time T1

then there exists a time T2 and an object O such that O is food
and I have O at time T2
and I eat O at time T2
and T1 ≤ T2.

Here the variable T1 is universally quantified with scope the entire goal, and
the variables T2 and O are existentially quantified with scope the conclusion
of the goal.
 Although this representation does not put any limit on the amount of time
that can elapse between the time T1 of becoming hungry and the time T2 of
having food and eating, it does at least indicate their temporal order. It would
be easy to add an extra condition to the conclusion, for example T2 ≤ T1 + 24
hours, but it would be hard to quantify the limit exactly.
 The alternative to adding an extra condition is to leave the decision about
when to do what to the decision-making component of the agent cycle. This
way, the decision is made in the broader context of the totality of the agent’s
current goals, balancing the urgency, utility and probability of achieving one
goal against another. We shall investigate such decision-making in Chapter
11.

We will return to this revised story in the section after next.

Maintenance goals as the driving force of life

The notion of maintenance goal arises, in one guise or another, in many
different disciplines, often in opposition to the notion that the purpose of life,
whether of an individual or of an organisation, consists of achievement goals.
 At the lowest level, even below the level of condition-action rules,
maintenance goals appear in the biological mechanism of homeostasis, which
plants and animals use to maintain a stable relationship with their
environment. For example, homeostasis controls our body’s temperature by
causing us to sweat when it’s too hot, and to shiver when it’s too cold. The
body’s homeostatic temperature control mechanism is like a maintenance
goal, implemented in hardware rather than in software, responding to
observations of the current temperature by generating actions to keep the
body in balance with the changing environment.
 More importantly for the topic of this book, an analogous notion appears
also in Management Science, where it is associated with the so-called soft
systems methodology, developed by Peter Checkland (2000) and inspired by
Sir Geoffrey Vickers’ notion of appreciative system. Vickers (1965)

 129

developed the notion of appreciative system as the result of his practical
experience in management and administration in the British civil service, as a
member of the National Coal Board and other public bodies.
 In his work, Vickers acknowledged the influence of Simon’s (1957, 1960)
model of Management, in which individuals and organisations set goals,
consider alternative solutions and evaluate alternatives to make decisions.
However, Vickers sought to transcend this goal-oriented view of
Management by supplementing it with a view that is more “appreciative” of
the tight coupling between agents and their environment. As Churchland
(2000) puts it, in an appreciative system:

“we all do the following:
selectively perceive our world;
make judgements about it,
judgements of both fact (what is the case?) and
value (is this good or bad, acceptable or unacceptable?);
envisage acceptable forms of the many relationships
we have to maintain over time; and
act to balance those relationships in line with our judgements.”

Here there is an obvious similarity both with the agent cycle in general and
with the focus on maintaining relationships between perceptions and actions.
Judgements of value are a matter for the decision-making component of the
agent cycle, which we investigate in Chapter 11.

Embedding goals and beliefs in the agent cycle

We return to the story of the fox and the crow. For simplicity, to focus on the
way in which the fox’s reasoning with maintenance goals and beliefs is
integrated in the agent cycle, we ignore the factor of time, and we ignore the
alternative ways in which the fox can attempt to achieve the goal of having
food. Suppose, therefore, that the fox has the following maintenance goal and
beliefs:

Goal: if I become hungry, then I have food and I eat the food.

Beliefs: an animal has an object

if the animal is near the object
and the animal picks up the object.

 I am near the cheese

if the crow has the cheese
and the crow sings.

 130

 the crow sings if I praise the crow.

 cheese is a kind of food.
 food is a kind of object.

For simplicity, we assume that the different components of the cycle -
observing, thinking, deciding and acting – occur in sequence. In a real agent
these individual components of the cycle might take place concurrently or
even in parallel. To simulate concurrency, we will assume that the fox is such
a rapid cycler that she has only enough time to perform one step of thinking
in a single cycle.
 We will also assume that the fox’s attempts to perform an action can fail,
and that in the next step of the cycle she gets feedback by observing whether
her actions succeed or fail. We retell the story from the point where the fox
becomes hungry:

The first iteration of the cycle. This is the classic case of an observation
triggering a maintenance goal and deriving an achievement goal.

Observation: I become hungry.
Forward reasoning, achievement goal: I have food and I eat the food.
No candidate action.

The second iteration. The only thinking that the fox can do in this cycle is to
reason backwards, to reduce the subgoal of having food to the subgoal of
being near the food and picking it up. This reasoning involves the taxonomic
reasoning of matching “food” with “object”.

No observation.
Backward reasoning, new subgoals: I am near food and I pick up the food
 and I eat the food.
No candidate action.

The third iteration. In this iteration of the cycle, we suppose that the fox
observes the crow has cheese. The fox has the choice of continuing to reason
backwards from its current subgoals or of reasoning forwards from its new
observation. Generally, it is a good idea to give priority to reasoning with
new observations, just in case there is an emergency that needs to be dealt
with immediately or an opportunity that shouldn’t be missed.
 The observation matches one of the conditions of her belief I am near the
cheese if the crow has the cheese and the crow sings. Because the belief is
expressed in logical form, it can be used to reason forward or backward.
Using it to reason forward, as in this case, it gives rise to a new belief.

 131

Observation: The crow has cheese.
Forward reasoning, new belief: I am near the cheese if the crow sings.
No candidate action.

The fourth iteration. The fox matches the conclusion of the new belief with the
subgoal I am near food, by instantiating the universally quantified variable food
with cheese. This could be viewed as either forward or backward reasoning, or
just marrying up the two, which is another case of the resolution rule presented
in Chapter A5. No matter how you look at it, the effect is to reduce the goal of
being near food to the subgoal of making the crow sing. This has the side effect
of finding out what the food is going to be if the new subgoals succeed.

No observation.
New subgoals: the crow sings and I pick up the cheese
 and I eat the cheese.
No candidate action.

The fifth iteration. The fox reduces the subgoal of making the crow sing to
the subgoal of praising the crow. She now has a plan of actions, which she
can start to execute. In this representation of actions without time, there is
nothing to indicate the order in which the actions should be performed. So
she cheats, knowing that in a representation with explicit time, it would be
obvious that the new action I praise the crow should be performed first.

No observation.
Backward reasoning, new subgoals: I praise the crow and I pick up the cheese
 and I eat the cheese.
Action: I praise the crow.

The sixth iteration. The fox observes the result of the action she performed in
the previous cycle. Assuming that the fox has not lost her voice, the
observation confirms the success of her action, and solves the first of the
three action subgoals, leaving the remaining two subgoals. The next of these
two subgoals is also an action; and, given the intended order of the actions,
there are no other candidate actions that she can perform at this time.

Observation: I praise the crow.
Forward reasoning, remaining subgoals: I pick up the cheese
 and I eat the cheese.
Action: I pick up the cheese.

 The seventh iteration The fox observes the result of her action. However,
this time, to make the story more interesting, assume that the action fails,
either because the crow has not yet started singing, because the cheese has

 132

not yet reached the ground, or because the fox is physically inept. We also
assume that the fox can try the same action again, provided that if there is a
time limit on when the action needs to be performed, then that limit has not
yet been reached.

Negative observation: I do not pick up the cheese.
No thinking that can be shown without an explicit representation of time.
Action: I pick up the cheese.

The negative observation I do not pick up the cheese can be regarded as a
negative response to the action I pick up the cheese, viewed as a query do I
pick up the cheese? from the fox to the world.
 In general, an agent’s attempted actions can be regarded as queries posed
to the world. In the simplest and ideal case, the world just responds in the
affirmative, confirming that the action has succeeded. In the worst case, the
world responds that the action has failed. But in the general case, the action
may contain an existentially quantified variable representing an unknown, for
example to indicate how far an action of moving forward one step actually
succeeds. In such a case the world responds by instantiating the variable,
giving feedback about the result of the action.
 In our semantics, in which the world is described only by means of
positive facts, a negative observation can be understood as a negative reply
from the world to an attempted action or to an active observation by the
agent.

The eighth iteration. The fox observes that the action was successful this
time. The observation solves the associated action subgoal, leaving only the
last action in the plan, which the fox decides to perform in this cycle.

Observation: I pick up the cheese.
Forward reasoning, remaining subgoal: I eat the cheese.
Action: I eat the cheese.

The ninth iteration. The observation of the successful performance of the
action solves the last of the action subgoals. However, the maintenance goal
remains, to be triggered on other, future occasions.

Observation: I eat the cheese.

The general pattern of reasoning in this example, spread out over several
cycles and interleaved with other observations and actions, is this:

Observation: An event happens.
Forward reasoning: The event matches a condition of

 133

 a maintenance goal or belief.
Achievement goal: Eventually, after a combination of forward and

backward reasoning, an instance of the conclusion
of a maintenance goal is derived

 as an achievement goal.
Backward reasoning: Beliefs are used to reduce the achievement goal
 to actions.
Actions: Action subgoals are selected for execution.
Observation: The agent observes whether the actions
 succeed or fail. Actions that fail are retried
 if their time limit has not expired.

The simple pattern of reasoning needs to be made more elaborate, by
monitoring not only whether the agent’s actions succeed, but also whether its
goals succeed. If its actions succeed, but its goals do not, then some of its
beliefs, linking its actions to its goals, must be false. The agent can attempt
both to diagnose the failure by identifying the false beliefs and to avoid
future failures by correcting the faulty beliefs.
 The general process of using confirming and refuting instances of beliefs
to learn more correct beliefs is the basic technique of inductive logic
programming (Muggleton and De Raedt, 1994). The integration of inductive
logic progeramming into the agent cycle has been investigated by Dávila and
Uzcátegui (2005), but is beyond the scope of this book.

The general pattern of reasoning that is exemplified by the story of the fox
and crow is not exceptional. A similar pattern arises in the London
underground example.

The London underground revisited

Consider the following formulation of the London underground example,
ignoring other ways of dealing with emergencies and other ways of getting
help:

Maintenance goal: if there is an emergency then I get help.

Beliefs: a person gets help if the person alerts the driver.

 a person alerts the driver if the person presses the alarm signal button.
 there is an emergency if there is a fire.
 there is an emergency if one person attacks another.
 there is an emergency if someone becomes suddenly ill.
 there is an emergency if there is an accident.

 134

Here the last four beliefs can be viewed as part of the definition of a
hierarchy of classes of events. These definitions could be extended upwards,
for example by classifying an emergency as a kind of threat that needs to be
dealt with immediately. They could be extended sideways by adding other
kinds of emergencies.

The hierarchy could also be extended downwards, for example by
classifying different kinds of accidents. However, for the purpose of the
present example, assume that we have additional beliefs, which do not
classify fires, but help to recognize their manifestations. For simplicity, we
represent these beliefs in the form cause if effect. We use this form, rather
than the more fundamental causal formulation effect if cause, because it
simplifies the kind of reasoning needed. We will discuss the reasoning, called
abduction, needed for the causal formulation in Chapter 10. Moreover, we
will also discuss the relationship between the two formulations when discuss
the treatment of conditionals as biconditionals in Chapter 15.

Additional beliefs: there is a fire if there are flames.
 there is a fire if there is smoke.

This decomposition of the problem of recognising fire could be carried on
indefinitely. But we would soon find it impossible to describe all the
necessary lower-level concepts in recognisable, linguistic terms. Eventually,
there must come a point at which there is a lowest level, which is irreducible
to lower level concepts. This is the level at which the agent’s sensory system
transforms the sensations it receives from the world into observations that
can be represented as concepts in symbolic terms.

Suppose, for the sake of the example, that the concepts of flames and
smoke are the lowest level concepts directly observable in the environment.
Suppose, moreover, that you are traveling on the underground and you
observe smoke. Without going into all of the detail we went into for the fox
and crow example, the agent cycle, possibly spread across several iterations
of the agent cycle, looks like this:

Observation: there is smoke.
Forward reasoning, new belief: there is a fire.
Forward reasoning, new belief: there is an emergency.
Forward reasoning, achievement goal: I get help!
Backward reasoning, subgoal: I alert the driver!
Backward reasoning, action: I press the alarm signal button!

We can picture this combination of forward and backward reasoning like
this:

 135

The action of pressing the alarm signal button, like the observation of an
emergency, can be reduced to lower-level terms; for example, by first
moving your finger to the button and then pushing the button with your
finger. Moving your finger to the button can also be reduced, in turn, to still
lower-level subgoals, like first moving your arm to the vicinity of the button
and then fine-tuning the movement of your finger to the button. But
eventually, there has to be a point where your body takes over from your
mind and performs the actions directly on its own.

All of this thinking takes time, during which you may have to deal with
other observations and perform other actions. Scheduling actions so that
everything is dealt with in a timely manner is a task for the decision making
component of the agent cycle. We have kept the examples in this chapter
deliberately simple, so that no such decisions need to be made. However, we
will address the problem of making decisions in Chapter 11.

The semantics of maintenance goals reconsidered

The same definition of truth applies to both conditional goals and conditional
beliefs. In general a conditional, whether a goal or a belief, is true if and only
if either its conditions are false or its conclusion is true. In the first case,
when its conditions are false, the conditional is true because then it doesn’t
matter whether its conclusion is true or false. In the second case, when its
conclusion is true, the conditional is true because then it doesn’t matter
whether its conditions are true or false. The only case that matters is the case

 If there is an emergency then get help

 Forward

reasoning
Backward
reasoning

 get help

press the alarm
signal button

There is a fire alert the driver

There is smoke

 The world

There is an emergency

Observe Act

 136

in which a conditional can fail to be true, and that is when the conditions are
true and the conclusion is false.
 The difference between an agent’s goals and its beliefs is that the world
determines the truth of its beliefs, but maintaining the truth of its goals partly
determines the world.
 An agent’s actions serve no other purpose than to make its goals true in
the world. To make a maintenance goal true, it is enough for the agent to
make the conclusion true whenever the world makes the conditions true.
Either the world makes the conditions true independently of the agent,
whether the agent likes it or not; or the world makes them true, because the
agent has made them true for some other purpose of its own.
 The agent need not make the conclusion of a maintenance goal true when
the conditions are false; and it need not make extra work for itself, by first
making the conditions true, and then being forced to make the conclusion
true.
 However, there is another case in which an agent can make a maintenance
goal true, which although it is not strictly necessary can nonetheless be very
useful. It is the case in which an agent makes the conditions false, to prevent
them from becoming true, to avoid the need to make the conclusion true in
the future. For example, although an agent can make true the goal if there is
an emergency then I get help simply by waiting for an emergency and then
getting help, it can also make the goal true by preventing the emergency
instead.
 We will see how Computational Logic deals with preventative
maintenance in Chapter A6. In the meanwhile, we note that, if production
systems are viewed in logical terms, then they make condition-action rules
true only by making their conclusions true when the world makes their
conditions true. They cannot make condition-action rules true by preventing
their conditions from becoming true.

Prohibitions

Prevention can be viewed as a voluntary form of prohibition. Given the
obligation of making a maintenance goal true, an agent has a choice: Either
make the conclusion true when the conditions become true, or make the
conditions false, preventing the conditions from becoming true. With genuine
prohibitions there is no choice: Make the conditions false.
 A prohibition can be regarded as a special kind of maintenance goal
whose conclusion is literally false. For example:

 if you steal then false.
i.e. Do not steal.

 137

if you are drinking alcohol in a bar and are under eighteen
then false.

i.e. Do not drink alcohol in a bar if you are under eighteen.

 if you a liable to a penalty for performing an action
 and you cannot afford the penalty
 and you perform the action
 then false.
i.e. Do not perform an action
 if you are liable to a penalty for performing the action
 and you cannot afford the penalty.

The advantage of regarding prohibitions as a special kind of maintenance
goal is that the same semantics and the same inference rules that apply to
maintenance goals in general also apply to prohibitions in particular.
 The semantics of maintenance goals applies to prohibitions, because the
only way to make a conditional true if its conclusion is false is to make the
conditions false.
 We will see later that reasoning forwards with a maintenance goal can be
triggered not only by an observation, but also by a hypothetical candidate
action. Similarly, the consideration of a candidate action can trigger forward
reasoning with a prohibition. Backward reasoning can then attempt to
determine whether the other conditions of the prohibition are true. If they are,
then one step of forward reasoning derives the conclusion false. The only
way to make the prohibition true, therefore, is to make the conditions of the
prohibition false, by making the candidate action false and thereby
eliminating it from further consideration. For example:

 if you are considering stealing, then banish it from your thoughts.

 if you are tempted to drink alcohol in a bar
 and are under eighteen, then don’t.

 if you are thinking of performing an action
 and you are liable to a penalty for performing the action
 and you cannot afford the penalty, then do not perform the action.

Constraints

Prohibitions are constraints on the actions you can perform. But there can
also be constraints on what you are willing to believe. Constraints of this
second kind are familiar in the context of computer databases, where they
maintain the integrity of the database, and for this reason are called integrity
constraints.

 138

 For example, a family database might contain such integrity constraints
as:

 if X is the mother of Y and X is the father of Z then false.
i.e. No one is both a mother and a father.

 if X is an ancestor of X then false.
i.e. No one is their own ancestor.

Integrity constraints are used to reject an update of the database that makes
an integrity constraint false. For example, the second of the two integrity
constraints above, would reject the following update to the database given by:

Update: Enoch father of Adam
Database: Eve mother of Cain
 Eve mother of Abel
 Adam father of Cain
 Adam father of Abel
 Cain father of Enoch
 Enoch father of Irad

 X ancestor of Y if X mother of Y.
 X ancestor of Y if X father of Y.
 X ancestor of Z if X ancestor of Y and Y ancestor of Z.

The pattern of reasoning to check the integrity of the update is the same as
the pattern for assimilating observations:

Update: Enoch father of Adam
Forward reasoning: Enoch ancestor of Adam
Forward reasoning: X ancestor of Adam if
Backward reasoning: X ancestor of Adam

 X ancestor of Enoch

 if X ancestor of Y and
Backward reasoning: X ancestor of Adam

Y ancestor of Enoch

 if X ancestor of Y and
Backward reasoning: X ancestor of Adam if

Y father of Enoch

Backward reasoning: X ancestor of Adam if
X ancestor of Cain

Backward reasoning: Adam ancestor of Adam
X father of Cain

Forward reasoning: false

In a conventional database, the update would be rejected, because it implies
the impossible conclusion false. But in Quine’s web of belief, any of the
goals or beliefs involved in the derivation of false could be deemed the
culprit, and could be rejected or revised instead.

 139

 But belief and goal revision are complicated processes, not to be
undertaken lightly. Fortunately, in many cases, full scale revision is
unnecessary because it is obvious from the start which goals and beliefs are
regarded with suspicion and which are deemed to be beyond any doubt. In
the case of database updates, the integrity constraints are treated as given, and
old data has higher priority than new data. So if new data violates an integrity
constraint, it is the new data that takes the blame. In other applications, such
as in learning new beliefs, in which the beliefs are under suspicion, the
observations have higher priority than other beliefs, and belief revision is
used to refine the beliefs.
 In subsequent chapters we will see that constraints play an important role
in eliminating candidate explanations of observations (abduction), and in
eliminating candidate actions (prohibition). In these applications, it is even
more obvious than in the case of database updates that it is the candidate
explanation or action that is on trial, and which is the sole potential culprit to
be rejected if falsity is derived.

Summary

The examples in this chapter illustrate how logic can be used in the context of
an agent’s observation-thought-decision-action cycle. Placed in this context,
logic is used for the higher levels of thought - both to reason forwards from
observations, triggering maintenance goals and deriving achievement goals,
and to reason backwards to reduce achievement goals to actions.

Below the logical level, perceptual processes transform raw sensations
into observations, and motor processes transform conceptual representations
of actions into raw physical activity. The entire process can be pictured like
this:

Forward
reasoning

Backward
reasoning

Maintenance goal Achievement goal

Observe Act

 The world

Sensory
processes

Motor
 processes

 140

We have seen that forward reasoning with maintenance goals generalises
condition-action rules, achievement goals generalize the actions of condition-
action rules, and backward reasoning with beliefs generates plans of action.
In later chapters, we will see how backward reasoning can also be used to
explain observations (abduction) and how forward reasoning can also be used
to infer consequences of both candidate explanations and candidate actions.
We will also see how this use of forward reasoning from candidate
explanations and actions helps to inform the next, decision-making stage in
the cycle, so that different candidates can be compared, and better informed
decisions can be made.
 But first, in the next chapter, we will see that much of this sophisticated
reasoning can often be compiled into more efficient, lower-level stimulus-
response associations.

 141

Chapter 9. The Meaning of Life

It’s bad enough to be a Mars explorer and not to know that your purpose in
life is to find life on Mars. But it’s a lot worse to be a wood louse and have
nothing more important to do with your life than to just follow the
meaningless rules:

Goals: if it’s clear ahead, then I move forward.
 if there’s an obstacle ahead, then I turn right.
 if I am tired, then I stop.

In fact, it’s even worse than meaningless. Without food the louse will die,
and without children the louse’s genes will disappear. What is the point of
just wandering around if the louse doesn’t bother to eat and make babies?

Part of the problem is that the louse’s body isn’t giving it the right signals
- not making it hungry when it is running out of energy, and not making it
desire a mate when it should be having children. It also needs to be able to
recognise food and eat, and to recognise potential mates and propagate.

So where does the louse go from here? If it got here by natural evolution,
then it has nowhere to go and is on the road to extinction.

But if it owes its life to some Grand Designer, then it can plead with her
to start all over again, this time working from the top-down. The Grand
Designer would need to rethink the louse’s top-level goals, decide how to
reduce them to subgoals, and derive a new, more effective specification of
the louse’s input-output behaviour.

Suppose the Grand Designer identifies these as the louse’s top-level
goals:

Top-level goals: the louse stays alive for as long as possible and
 the louse has as many children as possible.

Of course, a critic might well ask: What purpose do these goals serve, and
why these goals and not others? Perhaps staying alive is just a subgoal of
having children. And perhaps having children is just one way of promoting
the survival of one’s genes. But eventually the critic would have to stop.
Otherwise he could continue asking such questions forever.

To reduce the louse’s top-level goals to subgoals, the designer needs to
use her beliefs about the world, including her beliefs about the louse’s bodily
capabilities. Moreover, she can build upon her earlier design, in which the
louse moved around aimlessly, and give its movements a purpose. She could
use such beliefs as:

Beliefs: the louse stays alive for as long as possible,
 if whenever it is hungry then it looks for food

 142

 and when there is food ahead it eats it,
 and whenever it is tired then it rests,
 and whenever it is threatened with attack then it defends itself.

 the louse has as many children as possible,
 if whenever it desires a mate then it looks for a mate and
 when there is a mate ahead it tries to make babies.

 the louse looks for an object,
 if whenever it is clear ahead then it moves forward,
 and whenever there is an obstacle ahead and it isn’t the object
 then it turns right
 and when the object is ahead then it stops.

 the louse defends itself if it runs away.

 Food is an object.
 a mate is an object.

If the louse were as intelligent as the designer, then the designer could just
hand these beliefs and the top-level goal directly over to the louse itself. The
louse could then reason forwards and backwards, as the need arises, and would
be confident of achieving its goals, provided the designer’s beliefs are actually
true.

But the louse possesses neither the designer’s obvious physical attractions,
nor her superior intellect and higher education. The designer, therefore, not
only has to identify the louse’s requirements, but she has to derive an input-
output representation, which can be implemented in the louse, using its limited
physical and mental capabilities.

One way for the designer to do her job is to do the necessary reasoning for
the louse in advance. She can begin by reasoning backwards from the louse’s
top-level goals, to generate the next, lower level of subgoals:

Subgoals: whenever the louse is hungry then it looks for food
 and when there is food ahead it eats it, and
 whenever the louse is tired then it rests, and
 whenever the louse is threatened with attack then it defends itself and
 whenever the louse desires a mate then it looks for a mate
 and when there is a mate ahead it tries to make babies.

The English words “whenever” and “when” are different ways of saying “if”,
but they carry an additional, temporal dimension11

11 It is interesting that both the temporal and logical interpretations of the ambiguous
English word “then” are meaningful here.

. It would be a distraction

 143

to deal with such temporal issues here. For that reason, it is useful to
reformulate the subgoals in more conventional logical terms. At the same
time, we can take advantage of the reformulation to eliminate an ambiguity
associated with the scope of the words “and when”:

Subgoals: if the louse is hungry then it looks for food, and
 if the louse is hungry and there is food ahead then it eats it, and
 if the louse is tired then it rests, and
 if the louse is threatened with attack then it defends itself, and
 if the louse desires a mate then it looks for a mate, and
 if the louse desires a mate and there is a mate ahead
 then it tries to make babies.

Unfortunately, the designer’s work is not yet done. Some of the conclusions of
the subgoals include other goals (like looking for food, defending itself, and
looking for a mate) that need to be reduced to still lower-level subgoals12.
Fortunately, for the designer, this is easy work. It takes just a little further
backward reasoning and some logical simplification13

, to derive a specification
that a behaviourist would be proud of:

New Goals:

if the louse is hungry and it is clear ahead
then the louse moves forward.

if the louse is hungry and there is an obstacle ahead and it isn’t food
then the louse turns right.

if the louse is hungry and there is food ahead
then the louse stops and it eats the food.

if the louse is tired then the louse rests.

if the louse is threatened with attack then the louse runs away.

if the louse desires a mate and it is clear ahead
then the louse moves forward.

if the louse desires a mate and there is an obstacle ahead and it isn’t a mate

12 For simplicity, we can assume that running away, resting and trying to make babies
are all actions that the louse can execute directly without reducing them to lower-level
subgoals.
13 The necessary simplification is to replace sentences of the form if A, then if B then
C by logically equivalent sentences of the form if A and B then C.

 144

then the louse turns right.

if the louse desires a mate and there is an obstacle ahead and it is a mate
then the louse stops and it tries to make babies.

The new goals specify the louse’s input-output behaviour and can be
implemented directly as a production system without memory. However, the
new goals are potentially inconsistent. If the louse desires a mate and is hungry
at the same time, then it may find itself in a situation, for example, where it
has to both stop and eat and also turn right and look for a mate simultaneously.
To avoid such inconsistencies, the louse would need to perform conflict
resolution.

But if it’s too much to expect the louse to reason logically, it’s probably
also too much to expect the louse to perform conflict resolution. And it’s
certainly far too much to expect it to apply Decision Theory to weigh the
relative advantages of satisfying its hunger compared with those of satisfying
its longing for a mate. The simplest solution is for the designer to make these
decisions for the louse, and to build them into the specification:

if the louse is hungry and is not threatened with attack and
it is clear ahead then the louse moves forward.

if the louse is hungry and is not threatened with attack and
there is an obstacle ahead and it isn’t food and it doesn’t desire a mate
then the louse turns right.

if the louse is hungry and is not threatened with attack and
there is food ahead then the louse stops and eats the food.

if the louse is tired and is not threatened with attack and
is not hungry and does not desire a mate then the louse rests.

if the louse is threatened with attack then the louse runs away.

if the louse desires a mate and is not threatened with attack and
it is clear ahead then the louse moves forward.

if the louse desires a mate and is not threatened with attack and
is not hungry and there is an obstacle ahead and it isn’t a mate
then the louse turns right.

if the louse desires a mate and is not threatened with attack and
there is a mate ahead then the louse stops and tries to make babies.

 145

if the louse desires a mate and is hungry and
is not threatened with attack and
there is an obstacle ahead and it isn’t a mate and it isn’t food
then the louse turns right.

The new specification is a collection of input-output associations that give
highest priority to reacting to an attack, lowest priority to resting when tired,
and equal priority to mating and eating. Now the only situation in which a
conflict can arise is if there is a mate and food ahead at the same time. Well,
you can’t always worry about everything. Even a wood louse deserves a
modicum of free will, even if it means nothing more than making a random
choice.

The mind body problem

In general, a designer’s job ends when she has constructed a declarative
description of her object’s input-output behaviour. How that behaviour is
implemented inside the object is not her concern.

In computer science, this decoupling of an object’s design from its
implementation is called encapsulation. The implementation is encapsulated
inside the object. Objects can interact with other objects, taking only their
input-output behaviour into account.

The notion of encapsulation partially vindicates the behaviourist’s point of
view. Not only is it impossible in many cases to determine what goes on inside
another object, but for many purposes it is also unnecessary and even
undesirable.

Our louse is no exception. It would be easy, given the input-output
specification, to implement the louse’s behaviour using a primitive production
system without memory and without conflict resolution. But does the louse
need to have a mind at all - to represent concepts such as hunger and food and
to derive symbolic representations of its actions? Does the louse really need to
carry around all this mental baggage, when the necessary, instinctive
behaviour can be hardwired, as a collection of input-output associations,
directly into the louse’s body instead14

Similarly, as we saw in Chapter 7, a designer might specify a thermostat in
symbolic terms. But it doesn’t follow that the thermostat needs to manipulate
symbolic expressions to generate its behaviour. Most people would be
perfectly happy if the design were implemented with a simple mechanical or
electronic device.

?

14 This argument has been made, among others, by Rodney Brooks at MIT, who has
implemented several generations of mindless, louse-like robots, which display
impressively intelligent behaviour.

 146

In the same way that a thermostat’s behaviour can be viewed externally in
logical, symbolic terms, without implying that the thermostat itself
manipulates symbolic expressions, our louse’s behaviour can also be
implemented as a collection of instinctive input-output associations in a body
without a mind.

Dual process theories of intuitive and deliberative
thinking

In our imaginary example, the Grand Designer has a high-level awareness of
the louse’s goals and has beliefs that explain how the louse’s behaviour helps
the louse to achieve its goals. But the louse has only low-level, instinctive
input-output associations, without being aware of their purpose.
 But people are different. Although much of our human behaviour is
intuitive, instinctive and sometimes even mindless, we can often step back
from our intuitive judgements, consciously deliberate about their implicit
goals, and control our behaviour to better achieve those goals. It is as though
we could be both a louse and a louse designer at the same time.
 This combination of intuitive and deliberative thinking is the focus of
dual process theories of human thinking. As Kahneman and Frederick (2002)
put it, the intuitive, subconscious level “quickly proposes intuitive answers to
judgement problems as they arise”, while the deliberative, conscious level
“monitors the quality of these proposals, which it may endorse, correct, or
override”.
 In Computational Logic, dual process theories have both a computational
and logical interpretation. The computational interpretation is that, when an
agent is deliberative, its behaviour is controlled by a high level program,
which manipulates symbols that have meaningful interpretations in the
environment. But when the agent is intuitive, its behaviour is generated by a
low level program or physical device, whose structure is largely determined
by the physical characteristics of the agent’s body.

The logical interpretation of dual process theories is that, when an agent is
deliberative, its behaviour is generated by reasoning with high-level goals
and beliefs. When the agent is intuitive, its behaviour is determined by low-
level input-output associations, even if these associations can also be
represented in logical form.

Two kinds of thinking on the underground

The London underground example illustrates the two kinds of the thinking
and the relationship between them. The high-level representation contains an
explicit representation of the goal, and the supporting beliefs:

 147

Goal: if there is an emergency then I get help.

Beliefs: a person gets help if the person alerts the driver.

 a person alerts the driver if the person presses the alarm signal button.
 there is an emergency if there is a fire.
 there is an emergency if one person attacks another.
 there is an emergency if someone becomes seriously ill.
 there is an emergency if there is an accident.
 there is a fire if there are flames.
 there is a fire if there is smoke.

A passenger can use the high-level goal and the beliefs explicitly, reasoning
forward from observations to recognise there is an emergency and to derive
the goal of getting help, and then reasoning backward, to get help by pressing
the alarm signal button.

However, the same behaviour can be generated more efficiently, with less
thought, by using a low-level representation in the form of input-output
associations or condition-action rules. This representation can also be
expressed in the logical form of maintenance goals, which need only one step
of forward reasoning to generate output actions from input observations.

Goals: if there are flames then I press the alarm signal button.
 if there is smoke then I press the alarm signal button.
 if one person attacks another then I press the alarm signal button.
 if someone becomes seriously ill then I press the alarm signal button.
 if there is an accident then I press the alarm signal button.

The low-level representation can be derived from the high-level
representation by doing the necessary forward and backward reasoning in
advance, before the need arises.
 The low-level representation is nearly as low as a representation can go,
while still remaining in logical form. However, it is possible to go lower, if
the associations are implemented by direct physical connections between the
relevant parts of the agent’s sensory and motor systems. This is like
implementing software in hardware.

A computational interpretation of intuitive and
deliberative thinking

In Computing, different levels of representation have different advantages
and are complementary. Low-level representations are more efficient. But
high-level representations are more flexible, easier to develop, and easier to
change.

 148

In the London underground example, the low-level representation lacks
the awareness, which is explicit in the high-level representation, of the goal
of getting help, which is the purpose of pressing the alarm signal button. If
something goes wrong with the low-level representation, for example if the
button doesn’t work or the driver doesn’t get help, then the passenger might
not realise there is a problem. Moreover, if the environment changes, and
there are new kinds of emergencies, or newer and better ways of dealing with
emergencies, then it is harder to modify the low-level representation to adapt
to the changes.

In Computing, the high-level representation is typically developed first,
sometimes not even as a program but as an analysis of the program
requirements. This high-level representation is then transformed, either
manually or by means of another program called a compiler, into a low-level,
more efficiently executable representation.

The reverse process is also possible. Low-level programs can sometimes
be decompiled into equivalent high-level programs. This is useful if the low-
level program needs to be changed, perhaps because the environment has
changed or because the program has developed a fault. The high-level
representation can then be modified and recompiled into a new, improved,
lower-level form.

However, this reverse process is not always possible. Legacy systems,
developed directly in low-level languages and modified over a period of
many years, may not have enough structure to identify their goals precisely
and to decompile them into higher-level form. But even then it may be
possible to decompile them partially and to approximate them with higher-
level programs. This process of rational reconstruction can help to improve
the maintenance of the legacy system, even when wholesale
reimplementation is not possible.

The relationship between intuitive and deliberative
thinking

This relationship between high-level and low-level programs in Computing
has similarities with the relationship between intuitive and deliberative
thinking in people.
 Compiling a high-level program into a lower-level program in Computing
is similar to the migration from deliberative to intuitive thinking that takes
place, for example, when a person learns to use a keyboard, play a musical
instrument or drive a car. In Computing, compiling a high-level program or
specification is normally done by reasoning in advance, before the more
efficient program is implemented. But in human thinking, it is more common
to collapse an explicit high-level representation into a lower-level shortcut
after an extended period of repeated use.

 149

 Decompiling a low-level program into a higher-level program is similar
to the process of reflecting on subconscious knowledge and representing it in
conscious terms - for example, when a linguist constructs a formal grammar
for a natural language. Whereas a native speaker of the language might know
the grammar only tacitly and subconsciously, the linguist formulates an
explicit model of the grammar consciously and deliberatively. Non-native
speakers can learn the explicit grammar, and with sufficient practice
eventually compile the grammar into more efficient and spontaneous form.

Conclusions

Computational Logic is a wide-spectrum language of thought, which can
represent both high-level goals and beliefs, as well as low-level stimulus-
response associations. An intelligent agent can use the high-level
representation when time allows, and the low-level representation when time
is limited. It can also use both representations simultaneously.
 An agent may have inherited its stimulus-response associations at birth,
and finely-tuned them to its own personal experiences. If so, then it can
reasonably rely upon them when new situations are similar to situations that
the agent and its designer or ancestors have successfully dealt with in the
past.
 An intelligent agent, on the other hand, might also be able to reflect upon
its behaviour and formulate an understanding of the consequences of its
actions. The agent can use this higher-level understanding, to help it better
achieve its fundamental goals, especially in new situations that are unlike
situations that have arisen in the past.
 In the more advanced Chapter A5, I show how the resolution rule of
inference can be used to perform not only forward and backward reasoning
when they are needed in the current situation, but also to perform similar
kinds of reasoning in advance. This kind of reasoning in advance can be
viewed as compiling high-level representations of goals and beliefs into more
efficient, lower-level form.
 The ability to combine the two levels of representations combines their
individual strengths and compensates for their individual weaknesses.

 150

Chapter 10. Abduction

Most changes in the world pass us by without notice. Our sensory organs and
perceptual apparatus filter them out, so they do not clutter our thoughts with
irrelevancies. Other changes enter our minds as observations. We reason
forward from them to deduce their consequences, and we react to them if
necessary. Most of these observations are routine, and our reactions are
spontaneous. Many of them do not even make it into our conscious thoughts.

But some observations are not routine: the loud bang in the middle of the
night, the pool of blood on the kitchen floor, the blackbird feathers in the pie.
They demand explanation. They could have been caused by unobserved
events, which might have other, perhaps more serious consequences. The
loud bang could be the firing of a gun. The pool of blood could have come
from the victim of the shooting. The blackbird feathers in the pie could be an
inept attempt to hide the evidence.

Even routine observations can benefit from explanation: Why do the Sun,
the Moon and the Stars rise in the East and set in the West? Why does the
door stick? Why do the apples drop before they are ready to eat? Explaining
routine observations helps us to discover new connections between otherwise
unrelated phenomena, predict the future and reconstruct the past.

An agent might explain its observations by using existing beliefs or new
hypothetical beliefs. Both kinds of explanations deductively imply the
observations, because if the explanations are true, then the observations are
true. Forward reasoning is a natural way to justify explanations after they
have been found, but backward reasoning is normally a much better way of
actually finding them. As Sherlock Holmes explained to Dr. Watson, in A
Study in Scarlet:

“I have already explained to you that what is out of the common is
usually a guide rather than a hindrance. In solving a problem of this
sort, the grand thing is to be able to reason backward. That is a very
useful accomplishment, and a very easy one, but people do not
practise it much. In the everyday affairs of life it is more useful to
reason forward, and so the other comes to be neglected. There are fifty
who can reason synthetically for one who can reason analytically.”
 “I confess,” said I, “that I do not quite follow you.”
 “I hardly expected that you would. Let me see if I can make it
clearer. Most people, if you describe a train of events to them, will tell
you what the result would be. They can put those events together in
their minds, and argue from them that something will come to pass.
There are few people, however, who, if you told them a result, would
be able to evolve from their own inner consciousness what the steps
were which led up to that result. This power is what I mean when I
talk of reasoning backward, or analytically.”

 151

Backward reasoning can be used to find explanations, whether the resulting
explanations use existing beliefs or generate new hypothetical beliefs.
Forward reasoning, in contrast, makes sense only when deducing
consequences from existing beliefs or hypotheses. To use forward reasoning
to explain an observation, you have to make a guess in the dark, generate a
hypothesis, and then check whether or not the hypothesis has any relevance
to the observation. With backward reasoning, the hypothesis is generated
automatically and guaranteed to be relevant.
 But the main problem with explaining an observation is, not so much the
problem of generating relevant explanations, but the problem of deciding
which is the best explanation, given that there can be many alternative,
candidate explanations for the same observation. We will see later that the
problem of determining the best explanation is similar to the problem of
determining the best plan for achieving a goal.

Hypothetical beliefs come in two forms: in the form of general rules (or
conditionals) and in the form of specific facts. Hypotheses in the form of
general rules represent connections between several observations; and the
process of generating hypotheses in the form of rules is known as induction.
Generating hypotheses by induction is hard, and includes the case of
generating a scientific theory, like the laws of celestial motion. We shall
return to the problem of induction briefly in the concluding chapter of this
book.

Hypotheses in the form of facts, on the other hand, represent possible
underlying causes of observations; and the process of generating them is
known as abduction. Typically, a hypothesis generated by abduction is
triggered by the desire to explain one or more particular observations. The
more observations the hypothesis explains, the better the explanation.
Similarly, in deciding between different plans of action, the more goals a plan
achieves, the better.
 Abduction is possible only for an agent who has an open mind and is
willing to entertain alternative hypotheses. It is not possible for a close-
minded agent, who thinks he knows it all.The simplest way to have an open
mind, but to keep the candidate hypotheses within manageable bounds, is to
restrict them to open predicates, to which selective closed world assumptions
and negation as failure do not apply.

The term abduction was introduced by the logician Charles Sanders Peirce
(1931). He illustrated the difference between deduction, induction and
abduction with the following example:

Deduction: All the beans from this bag are white.

These beans are from this bag:
 Therefore These beans are white.

 152

Induction: These beans are from this bag.

These beans are white.
 Therefore All the beans from this bag are white.

Abduction: All the beans from this bag are white.

These beans are white.
 Therefore These beans are from this bag.

Generating abductive hypotheses and deciding between them includes the
classic case in which Sherlock Holmes solves a crime by first identifying all
the hypothetical suspects and then eliminating them one by one, until only
one suspect remains. To put it in his own words (from The Adventure of the
Beryl Coronet): “It is an old maxim of mine that when you have excluded the
impossible, whatever remains, however improbably, must be the truth.”

Sherlock Holmes described his reasoning technique as deduction. But
deduction in logic leads from known facts or observations to inescapable
conclusions. If the beliefs used to deduce the conclusions are true, then the
conclusions must also be true. Abduction, on the other hand, can lead from
true observations and other beliefs to false hypotheses. For this reason,
abductive inference is said to be fallible or defeasible. We will see in Chapter
15 that the distinction between deduction and abduction is blurred when
conditionals are interpreted as biconditionals in disguise.

The grass is wet

The time-worn example of abduction in Artificial Intelligence is to explain
the observation that the grass is wet when you get up one morning. Of
course, there are many possible explanations, but in this part of the world the
most likely alternatives are either that it rained or that the sprinkler was on.
The easiest way to find these explanations is by reasoning backwards from
the observation, treated as a goal15

, with causal connections represented in
the form effect if cause:

Beliefs: the grass is wet if it rained.
 the grass is wet if the sprinkler was on.

15 Notice that treating observations as goals extends the notion of goal, beyond
representing the world as the agent would like it to be in the future, to explaining the
world as the agent actually sees it. This is because the two kinds of reasoning, finding
actions to achieve a goal and finding hypotheses to explain an observation, can both
be viewed as special cases of the more abstract problem of finding assumptions to
deductively derive conclusions. See, for example, (Kakas et al, 1998).

 153

Here the grass is wet is a closed predicate, and it rained and the sprinkler was
on are open predicates.

Instead of failing to solve the goal, because there is no direct evidence that
either of the two subgoals hold, abduction by backward reasoning identifies
the two possible causes as alternative hypothetical explanations of the
observation.
 It would be possible just to leave it at that: Either it rained or the sprinkler
was on. But to be on the safe side, it may pay to spend a little more mental
energy and pursue the logical consequences of the alternatives. If it rained
last night, then the clothes on the clothes line outside will be wet, and you
won’t be able to do the ironing you planned for this morning. If the sprinkler
was on, then your water bill is going to go through the roof, and you better
disconnect the sprinkler in case it decides to turn itself on again tonight.

Suppose you are too lazy or too clever to do the obvious thing and just go
outside and check the clothes on the clothes line or check the state of the
sprinkler. Instead, you might just sit in your living room armchair and reason
as follows: If it rained last night, then there will be drops of water on the
living room skylight. There are drops of water on the skylight. So it is likely
that it rained last night, because the assumption that it rained explains two
independent observations, compared with the assumption that the sprinkler
was on, which explains only one. The combination of backward and forward
reasoning involved in this example can be pictured like this:

For the moment, leave aside the possibility that some prankster might have
gotten a hose and aimed it at the skylight, just to throw you off the right
explanation.

Observation: the grass is wet.

Backward reasoning: or

Hypotheses: it rained. the sprinkler was on.

Forward reasoning: Observation:
the skylight is wet. the grass is wet.

 Backward
 reasoning:

Hypotheses: it rained. the sprinkler was on.

 154

 Thus forward reasoning from alternative explanations can sometimes
derive additional consequences that can be confirmed by past or future
observations. The greater the number of such additional observations a
hypothesis explains, the better the explanation. We will see in the next
chapter that forward reasoning from alternative plans of actions can also help
to decide between alternative plans. The greater the number of additional
goals a plan achieves, the better the plan.

The London underground revisited again

In the previous chapters, we represented the relationships between fire,
smoke and flames in the form cause if effect. This form made it easy to
assimilate the observation of smoke and to conclude by forward reasoning
that there is an emergency. It would have been more natural to express the
relationship in the form effect if cause:

 there are flames if there is a fire.
 there is smoke if there is a fire.

However, with this representation, given the observation there is smoke, it is
impossible to derive there is an emergency by using deduction alone. It is
necessary instead to first use abduction, to determine that there is a fire as the
explanation of the observation, and then use forward reasoning as before.
 This comparison between the two ways of representing the connection
between cause and effect might remind you of the discussion in Chapter 2
about the two ways of representing the connection between being red and
looking red. In that example, we also argued that it is more natural to
represent alternative causes of looking red in the effect if cause form with
separate conditionals:

an object looks red if it is red.
an object looks red if it is illuminated by a red light.

Similarly, it is more natural to represent the alternative causes of smoke by
separate conditionals in effect if cause form:

 there is smoke if there is a fire.
 there is smoke if there is teargas.

We will see later in the chapter on biconditionals, that it is possible to derive,
from the assumption that these are the only conditions under which the
conclusion holds, the two alternative cause if effect conditionals:

 there is a fire if there is smoke and it is not the case that there is teargas.

 155

 there is teargas if there is smoke and it is not the case that there is a fire.

In classical logic, both of these conditionals are logically equivalent to a
conditional with a disjunctive conclusion:

there is a fire or there is teargas if there is smoke.

In Computational Logic with negative conditions interpreted as negation as
failure, we obtain an asymmetric approximation to the disjunction, with one
of the two alternatives holding by default. In this example, because fire is a
more common cause of smoke than teargas, the first of the two cause if effect
conditionals can be used to derive fire as the cause of smoke by default. This
avoids the computationally expensive effort of trying to determine the best
explanation, and amounts to the use of a simple and quick heuristic instead.
 The two alternative ways of representing the relationship between cause
and effect have different advantages and disadvantages. The effect if cause
representation is higher-level, in the sense that its syntax is closer to the
causal structure that it represents. However, it requires more complex
abductive reasoning. The cause if effect representation is lower-level and
more efficient. It requires only deductive reasoning, and it makes it easy to
build in a preference for one explanation over another. This relationship
between the two levels of representation is similar to other such relationships
that we have seen elsewhere in the book. However, in this chapter we focus
on the higher-level abductive representation, bearing in mind that it can also
be implemented purely deductively, as we will see again in greater detail in
Chapter 15.

What counts as a reasonable explanation?

Not every set of abductive hypotheses that deductively implies an
observation is a reasonable explanation of the observation. To be a
reasonable explanation, the hypotheses:

• should be relevant to the observation, and should not include
arbitrary hypotheses that have no bearing on the observation and

• should be consistent with the agent’s existing beliefs.

We touched upon the relevance requirement earlier. It is automatically
satisfied by reasoning backwards from the observation. Backward reasoning
ensures that every hypothesis generated in an explanation is ultimately
connected to the observation by a chain of links in the connection graph of
beliefs. The relevance requirement is weaker than the requirement that
explanations be minimal. The minimality requirement insists that no subset of
the explanation is also an explanation. For example:

 156

Beliefs: the floor is wet if it rained and the window was open.
 the floor is wet if it rained and there is a hole in the roof.
 there is a hole in the roof.

Observation: the floor is wet.
Relevant explanation: it rained and the window was open.
Minimal explanation: it rained.
Irrelevant explanation: it rained and the dog was barking.

Minimality is often cited as a desirable, or even necessary property of
abductive explanations; but ensuring that an explanation is minimal can be
computationally infeasible. Relevance, on the other hand, comes for free with
backward reasoning, and in most cases is an acceptable approximation to
minimality. Both relevance and minimality are a form of Ockham’s razor.

The consistency requirement excludes impossible explanations, such as
the explanation it rained, if there were clothes outside and they didn’t get
wet. Ensuring consistency is complicated in the general case. However, in
many cases it can be facilitated by representing negative concepts in positive
form, and by using constraints to monitor that contrary predicates do not hold
simultaneously. For example, the negative concept not wet can be represented
by the positive concept dry, and the relationship between wet and dry can be
expressed by means of the constraint:

 if a thing is dry and the thing is wet then false.
i.e. nothing is both dry and wet.

In such cases, consistency reduces to the requirement that a hypothesis does
not deductively imply the conclusion false, and a natural way to enforce the
requirement is to reason forward from a hypothesis and to eliminate it if it
implies false. For example:

Beliefs: the clothes outside are dry.
 the clothes outside are wet if it rained.

Hypothesis: it rained
Forward reasoning: the clothes outside are wet
Forward reasoning with the constraint: if the clothes outside are dry then false
Forward reasoning: false

The derivation of false eliminates the hypothesis that it rained as a candidate
explanation of the observation that the grass is wet.

 157

Contraries and strong negation

As we saw in Chapter 5, many concepts occur as pairs of contrary positive
concepts, like wet and dry, tall and short, big and small, and good and bad.
Often these contraries are expressed as negations of one another, as in not wet
instead of dry and not dry instead of wet. This use of negation is sometimes
called strong negation. Viewed as a form of negation, it has the truth value
gap property that there can be instances of a predicate that are neither true
nor false. For example, if my clothes are merely damp, I might consider them
as being neither wet nor dry.
 The use of pairs of contrary predicates with truth gaps is a natural way to
represent vague concepts. Positive instances of the concept can be
represented by one predicate of the pair, and negative instances of the
concept by the other predicate. Instances that are neither clearly positive nor
clearly negative can simply be left undetermined.
 Thus reasoning with strong negation in the form of positive contraries
requires no extension of the inference rules of Computational Logic, if for
every pair of contrary predicates, we have constraints of the form:

 if predicate and contrary-predicate then false.

What counts as a best explanation?

Restricting explanations to hypotheses that are relevant and consistent is not
good enough. In many situations, there will be several such relevant and
consistent explanations. In some cases, where none of the alternatives has
any important, foreseeable consequences, it may be unnecessary to choose
between them. But in other cases, where an explanation does have such
consequences, it can be a good idea to determine whether the explanation is
actually true, so that preparations can be made to deal with those
consequences. If the consequences are beneficial, then they can be exploited:
and if they are harmful, then it might be possible to counteract them before
they do too much damage.
 For example, for most people most of the time, the observation that the
grass is wet is hardly worth explaining. Whether it rained or the sprinkler
was on is likely to be of little significance, especially if the sprinkler doesn’t
belong to you and the grass needs watering anyway. In comparison, some of
the alternative explanations of an observation that the floor is wet do have
important consequences. If the wet floor is due to a hole in the roof, then the
roof will have to be repaired before it gets much worse. If it is due to leaking
plumbing, then you need to deal with the problem before you have a flood on
your hands.

 158

Global warming is a more topical example. If observed rises in world
temperature are primarily due to carbon emissions, then at the rate we
are going global warming will soon make much of our planet
uninhabitable, and we had better dramatically reduce our emissions
before it is too late. But if they are primarily due to natural climatic
processes, then we might as well just adjust to climate change and its
consequences and enjoy them while we can.
 Nothing in life is certain, and that goes as much for explaining
observations as it does for everything else. One way to judge the
likelihood of an explanation is to consult expert opinion. For example,
according to the IPCC Fourth Assessment Report: Climate Change
2007, most of the observed increase in global temperatures since the
mid-20th century is more than 90% likely to be due to the increase in
man-made greenhouse gas concentrations. Therefore, weighing the
importance of the consequences by the probabilities of their causes and
choosing the most likely explanation with the most significant
consequences, we should assume that the causes of climate change are
human greenhouse gas emissions, and act accordingly.

Another way to judge the likelihood of an explanation is to use
statistical information about the relative past frequency of different
causes. For example, you don’t need to be a car mechanic to realize that,
if your car doesn’t start, it must be due to a fuel problem, an electrical
problem, or a mechanical problem. But you need at least a little
experience to realize that electrical problems are more common than
fuel and mechanical problems. So everything else being equal, it is a
good strategy to check whether there is an electrical problem first. You
can do this by reasoning forward from the hypothesis that there is an
electrical problem caused by the battery, and conclude that if the battery
is at fault then the lights will not work. So if you try the lights and they
don’t work, then the problem is most likely due to a faulty battery,
because the more observations a hypothesis explains the more likely it
is to be true.

These two criteria for helping to decide between competing explanations,
their relative likelihood and their utility as judged by the number and
importance of their consequences, are virtually identical to the criteria that
are most helpful in deciding between different courses of action to achieve a
higher-level goal. We will explore these criteria in greater detail in the next
chapter.

 Conclusions

 159

Abduction builds upon traditional logic and, is a defining feature of
Computational Logic. Like default reasoning, it addresses a problem that has
been one of the greatest obstacles to the use of logic in everyday life, the
problem that we need to make judgements and to act upon those judgements
in situations where our knowledge about the world is incomplete.
 Abduction and default reasoning are related by their common use of
assumptions to augment beliefs. In abduction, we augment our beliefs with
assumptions concerning instances of open predicates. In default reasoning,
we augment them with assumptions that an instance of the contrary of a
predicate cannot be shown. In both cases, these assumptions are defeasible,
and can be withdrawn if later observations provide information to the
contrary. This relationship between abduction and default reasoning was first
investigated by Poole, Goebel and Aleliunas (1987).
 The problem of identifying the best explanation has many important
features in common with the problem of deciding between different courses
of action. Similar criteria involving judgements of probability and utility
apply to both problems. We will look at these criteria in the next chapter and
at the technical underpinnings of abductive logic programming in Chapter
A6.

 160

Chapter 11. The Prisoner’s Dilemma

Suppose, in your desperation to get rich as quickly as possible, you consider
the various alternatives, infer their likely consequences and decide that the
best alternative is to rob the local bank. You recruit your best friend, John,
well known for his meticulous attention to detail, to help you plan and carry
out the crime. Thanks to your joint efforts, you succeed in breaking into the
bank in the middle of the night, opening the safe, and making your get-away
with a cool million pounds (approximately 1.65 million dollars - and falling -
at the time of writing) in the boot (trunk) of your car.

Unfortunately, years of poverty and neglect have left your car in a state of
general disrepair, and you are stopped by the police for driving at night with
only one headlight. In the course of a routine investigation, they discover the
suitcase with the cool million pounds in the boot. You plead ignorance of any
wrong doing, but they arrest you both anyway on the suspicion of robbery.

Without witnesses and without a confession, the police can convict you
and your friend only of the lesser offence of possessing stolen property,
which carries a penalty of one year in jail. However, if one of you turns
witness against the other, and the other does not, then the first will be
released free of charge, and the second will take all of the blame and be
sentenced to six years in jail. If you both turn witness, then you will share the
blame and will be sentenced to three years in jail each.

This is an example of the classical Prisoner’s Dilemma, studied in
decision theory and game theory. In decision theory, the general problem of
deciding between alternative actions is often represented as a decision table,
in which the rows represent actions, the columns represent the state of the
world, and the entries represent the resulting outcome. In this case, your
decision table looks like this:

Action State of the world

John turns witness John refuses

I turn witness

I refuse

I get 3 years in jail I get 0 years in jail

I get 6 years in jail I get 1 year in jail

If you and John are offered the same deal and have a chance to consult before
you decide, then you will soon realise that the best option is for you both to
refuse to turn witness against the other. To prevent this, the police interrogate
you in separate cells. Thus you have to decide what to do without knowing
what John will do.

 161

 According to classical decision theory, you should choose the action that
has highest expected utility, in this case the action that minimises the number
of years you expect to spend in jail. We will see how to do this later in the
chapter.

The logic of the prisoner’s dilemma

The Prisoner’s Dilemma has a natural representation in terms of goals and
beliefs:

Goal: if an agent requests me to perform an action,
 then I respond to the request to perform the action.

Beliefs:

 I respond to a request to perform an action if I perform the action.
 I respond to a request to perform an action
 if I refuse to perform the action.

 I get 3 years in jail if I turn witness and john turns witness.
 I get 0 years in jail if I turn witness and john refuses to turn witness.
 I get 6 years in jail if I refuse to turn witness and john turns witness.
 I get 1 year in jail if I refuse to turn witness
 and john refuses to turn witness.

According to our agent model, the maintenance goal is triggered by the
observation:

Observation: the police request me to turn witness
Forward reasoning16

 I respond to the request to turn witness
, achievement goal:

Backward reasoning, one candidate action:
 I turn witness
Forward reasoning, consequences:
 I get 3 years in jail if john turns witness
 I get 0 years in jail if john refuses to turn witness

16 To make the connection between the observation and the condition of the goal, it is
necessary to unify the police with an agent and turn witness with perform an action.
In a computer implementation, this unification would have to be done mechanically.
For this purpose, it would be necessary to recognise turn witness as shorthand for
perform turn witness.

 162

Backward reasoning, another candidate action:
 I refuse to turn witness
Forward reasoning, consequences:
 I get 6 years in jail if john turns witness
 I get 1 years in jail if john refuses to turn witness

Here the consequences (or outcome) of your candidate actions depend upon
whether or not John turns witness against you. Unfortunately, you need to
decide what to do without knowing what John will do.
 In classical logic, it would be possible to reason as follows:

Candidate action: I turn witness
Disjunctive constraint: john turns witness or
 john refuses to turn witness
Disjunctive consequence: I get 3 years in jail or I get 0 years in jail.

Candidate action: I refuse to turn witness
Disjunctive constraint: john turns witness or
 john refuses to turn witness
Disjunctive consequence: I get 6 years in jail or I get 1 years in jail.

Intuitively, the disjunctive consequence of the first candidate action seems
better than the disjunctive consequence of the second alternative, and in
theory it might be possible to evaluate the disjunctive consequences, compare
them and use the result of the comparison to help choose between the
alternative candidates.
 However, the disjunctive constraint is a crude way to express uncertainty.
It cannot represent degrees of uncertainty. For example, because John is your
friend, you might believe:

 john turns witness with probability 10%.
 john refuses to turn witness with probability 90%.

These probabilities can be propagated from the conditions to the conclusions
of beliefs. For example:

 if I turn witness
 and john turns witness with probability 10%
 then I get 3 years in jail with probability 10%.

Decision theory provides a principled way of propagating uncertainty and of
combining judgements of probability with judgements of utility to determine
the expected utility of an action. According to the norms of decision theory,

 163

given a collection of alternative candidate actions, an agent should choose an
action that has the best expected utility.
 Before seeing how to compute the expected utilitity of an action, and
investigating its application to the prisoner’s dilemma, we will take a short
break and look at the more mundane problem of deciding whether or not to
take an umbrella when you leave home.

Should you carry an umbrella?

The problem can be represented in a decision table:

Action State of the world
It rains It doesn’t rain

I take an umbrella

I leave without an umbrella

I stay dry I stay dry
I carry an umbrella I carry an umbrella

I get wet I stay dry

We can represent the problem by the (simplified) goals and beliefs:

Goal: if I go outside, then I take an umbrella
 or I leave without an umbrella.

Beliefs: I go outside.

 I carry an umbrella if I take the umbrella.
 I stay dry if I take the umbrella.
 I stay dry if it doesn’t rain.
 I get wet if I leave without an umbrella and it rains.

Notice that the representation in terms of beliefs is more informative than the
decision table representation, because it indicates more precisely the
conditions on which the outcome of an action depends. For example, it
indicates that staying dry depends only on taking an umbrella and not on
whether or not it rains.
 You can control whether or not you take an umbrella, but you cannot
control the weather. To decide between the alternative actions that you can
control, you should infer their possible consequences, and choose the action
with highest overall expected utility.

Suppose you judge that the value of staying dry is greater than the
inconvenience of taking an umbrella. Then intuitively you should decide to
take the umbrella, if you estimate that the probability of rain is high. But, you
should decide to leave without the umbrella, if you estimate that the
probability of rain is low. These intuitions are justified and made more
precise by the mathematics of decision theory.

 164

Applying decision theory to taking an umbrella

According to decision theory, you can compute the overall expected utility of
an action by weighing the utility of each possible outcome of the action by its
probability, and then sum all of the weighted utilities. In mathematical terms:

 the expected utility of an action is p1u1 + p2u2 + ... + pnun
 if the action has n alternative outcomes with associated
 utilities u1, u2, ..., un and respective probabilities p1, p2, ..., pn.

You should then choose the action with greatest expected utility.
 In the case of deciding whether to take an umbrella, suppose you judge:

 the benefit of staying dry is worth 2 candy bars,
 the cost of carrying an umbrella is worth -1 candy bar,
 the cost of getting wet is worth -9 candy bars,
 the probability that it will rain is P, and therefore
 the probability that it will not rain is (1 – P).

These judgements of utilities and probabilities can be added to the decision
table:

Action State of the world

It rains with It doesn’t rain with
probability P probability (1-P)

Expected
utility
P× utility1 +
(1-P)× utility2

I take an
umbrella

I stay dry I stay dry
I carry an umbrella I carry an umbrella
with utility1 = with utility2 =
2-1 = 1 2-1 = 1

P + (1-P) = 1

I leave without
an umbrella

I get wet I stay dry
with utility1 = -8 with utility2 = 2

-8P+ 2(1-P) =
-10 P + 2

If the expected utilities of the alternative actions are the same, then it makes
no difference, measured in candy bars, whether you take an umbrella or not.
This is the case when:

 -10 P + 2 = 1
i.e. P = .1

 165

Therefore, if the probability of rain is greater than 10%, then you should take
an umbrella; and if it is less than 10%, then you should leave your umbrellas
at home.

The use of decision theory is a normative ideal. In Real Life, we tend to
approximate this ideal, by compiling routine decisions directly into goals and
beliefs. For example:

Goals: if I go outside and it looks likely to rain,

 then I take an umbrella.

 if I go outside and it looks unlikely to rain,
 then I leave without an umbrella.

Beliefs: It looks likely to rain if there are dark clouds in the sky.
 It looks likely to rain if it is forecast to rain.

 It looks unlikely to rain if there are no clouds in the sky.
 It looks unlikely to rain if it is forecast not to rain.

More generally:

if I am leaving a place and I have a thing at the place
and the thing would be useful while I am away from the place
and the value of the thing outweighs the trouble of taking the thing,
then I take the thing with me.

if I am leaving a place and I have a thing at the place
and the thing would be useful while I am away from the place
and the trouble of taking the thing outweighs the value of the thing,
then I leave the thing at the place.

the value of an umbrella outweighs the trouble of taking the umrella
if it looks likely to rain.

the trouble of taking an umbrella outweighs the value of the umrella
if it looks unlikely to rain.
etc.

A psychologist might prefer to view such goals and beliefs as pragmatic
reasoning schemes or Darwinian algorithms. But, as we have been arguing
throughout this book, both of these views are compatible with the view that
thinking is the application of general-purpose logical rules of inference to
domain-specific knowledge (goals and beliefs) expressed in logical form.

 166

Solving the prisoner’s dilemma

The prisoner’s dilemma and the problem of deciding whether to take an
umbrella are both instances of the same general pattern of cause and effect:

 a particular outcome happens if I do a certain action
 and the world is in a particular state.

Similarly:

 I will be rich if I buy a lottery ticket and my number is chosen.
 I will be famous if I write a book and it receives critical acclaim.
 It will rain tomorrow if I do a rain dance and the gods are pleased.

In all of these cases, you can control your own actions, but you cannot
completely control the actions of others or the state of the world. At best, you
might be able to judge the exact probability that the world will be in a
particular state. At worst, you might just assume that the odds of its being or
not being in the state are simply equal.
 However, suppose that in the case of the prisoner’s dilemma, you decide
to do a little high school algebra. Let:

 the utility of your getting N years in jail be –N.
 the probability that John turns witness be P.
 Therefore the probability that John refuses to turn witness is (1 – P).

These utilities and probabilities can be added to the decision table:

Action State of the world

John turns witness John refuses with
with probability P probability (1-P)

Expected
utility
P× utility1 +
(1-P)× utility2

I turn witness

I get 3 years I get 0 years
with utility1 = -3 with utility2 = 0

-3P

I refuse I get 6 years I get 1 year
with utility1 = -6 with utility2 = -1

-6P -(1-P) =
-5P -1

But the expected utility -3P of turning witness is greater than the expected
utility -5P -1 of refusing to turn witness, for all values of P. So no matter
what the probability P that John turns witness against you, you are always
better off turning witness against him.

Unfortunately, if John has the same beliefs, goals and utilities as you, then
he will similarly decide to turn witness against you, in which case both of

 167

you will get a certain 3 years in jail. You would have been better off if the
both of you ignored decision theory, took a chance, and refused to turn
witness against the other, in which case you would have both gotten only 1
year in jail.

But there is a different moral you could draw from the story: that the fault
lies, not with decision theory, but with your own selfish judgement of utility.
You have placed no value at all on the consequences of your actions for the
time that John will spend in jail.

Suppose, for example, that you assign equal value to the time that both of
you will spend in jail. The corresponding new judgements of utility can be
incorporated into a revised decision table:

Action State of the world

John turns witness John refuses with
with probability P probability (1-P)

Expected
utility
P× utility1 +
(1-P)× utility2

I turn witness

I get 3 years I get 0 years
John gets 3 years John gets 6 years
with utility1 = -6 with utility2 = -6

-6P -6(1-P) =
-6

I refuse I get 6 years I get 1 year
John gets 0 years John gets 1 years
with utility1 = -6 with utility2 = -2

-6P -2(1-P) =
-4P -2

But -6 ≥ -4P -2, for all values of P. Therefore, no matter what the probability
P that John turns witness against you, there is never any advantage in your
turning witness against him. Moreover, if John has the same beliefs, goals
and utilities as you, then he will similarly decide not to turn witness against
you, in which case you will both get a certain 1 year in jail.

But it is probably unrealistic to expect you to value equally both what
happens to John and what happens to yourself. To be more realistic, suppose
instead that you value what happens to John only half as much as you value
what happens to yourself:

Action State of the world

John turns witness John refuses with
with probability P probability (1-P)

Expected
utility
P× utility1 +
(1-P)× utility2

I turn witness

I get 3 years I get 0 years
John gets 3 years John gets 6 years
with utility1 = -4.5 with utility2 = -3

-4.5P -3(1-P)
= -1.5P -3

I refuse I get 6 years I get 1 year
John gets 0 years John gets 1 years
with utility1 = -6 with utility2 = -1.5

-6P -1.5(1-P)
= -4.5 P -1.5

 168

The expected utilities of the two alternatives are the same when:

 -1.5P -3 = -4.5 P -1.5
i.e. 3P = 1.5
i.e. P = .50

Therefore, if you judge that the probability of John turning witness is less
than 50%, then you should not turn witness. But if you judge that the
probability is greater than 50%, then you should turn witness. Tit for tat.

Just as in the case of deciding whether to take an umbrella when you
leave home, these calculations are a normative ideal. But in Real Life, we
more normally compile our decisions into rules (or heuristics), which
approximate the decision theoretic ideal, but which can be applied more
simply and more efficiently. For example:

Goals: if an agent requests me to perform an action,

and the action does not harm another person
then I perform the action.

if an agent requests me to perform an action,

 and the action harms another person
then I refuse to perform the action.

These rules are not very subtle, but clearly they can be refined, both by
adding extra rules to deal with other cases, and by adding extra conditions to
accommodate extra qualifications.

Smart choices

But decision theory and heuristics are not the only possibilities. In fact, in
their different ways, they both miss seeing the bigger picture. Decision theory
deals only with independently given alternative candidate actions, evaluating
their likely consequences, but ignoring where the alternatives came from and
the purposes that they serve. Heuristics sidestep the fundamental issues by
employing little more than higher-level stimulus-response associations.
 The smarter way to make decisions is to step back, and pay due attention
to your higher-level goals and to any outside circumstances that may have
triggered the need to make a decision:

• Identify the higher-level goal (purpose, motivation, problem or
objective) of the decision you need to make. Is this goal an implicit
property of heuristics triggered by events in the environment? Or is
it an explicit, higher-level achievement goal; or a subgoal (or means)
towards a yet higher–level goal (or fundamental objective).

 169

• Assuming that you can identify the top-level goal and any subgoals
along the way, consider the alternative ways of solving these goals.
Have you adequately considered all of the relevant alternatives? Or
have you constrained yourself unnecessarily by considering only the
first alternatives that entered your mind? Do you have enough
knowledge (or beliefs) of the problem domain to generate the “best”
alternatives?

• Explore the consequences (or outcomes) of the alternatives, and
their impacts. Evaluate these consequences for the extent to which
they achieve, not only the goals that may have motivated the
alternatives, but also any other goals that might be achieved
opportunistically along the way. Check whether the alternatives
violate any constraints, or whether they have any other negative
consequences that you should avoid.

• Assess the uncertainties associated with the consequences. Are you
indulging in wishful thinking, or taking any unnecessary risks?

• Compare the alternatives, by combining your evaluation of their
consequences with your assessment of their uncertainty. Use this
comparison, not only to identify your final decision, but also to
guide you efficiently in your search.

• Identify the other linked subgoals that need to be solved to achieve
your top-level goals. Make sure that the decision is compatible with
the smart solution of these other subgoals. Give preference to
decisions that facilitate achieving future subgoals and that keep
future options open for as long as possible.

If these guidelines look familiar, it is because they are based on the issues
that recur throughout this book. But if they sound a little unfamiliar, it is
because I have paraphrased them in the manner of Hammond, Keeney and
Raiffa’s (1999) Smart Choices - A practical guide to making better decisions.
 The guidelines in the Smart Choices book are based on solid research in
decision science and on extensive practical experience. They appeal to logic
and common sense, but of the familiar, informal variety. In this book, we
deal with similar issues, but we place them within a Computational Logic and
Artificial Intelligence setting.

Conclusions

The use of decision theory, heuristics and Smart Choices are three different
ways of making decisions.
 Decision theory is a powerful, normative tool. But it needs knowledge
about utility and probability, and time to calculate and compare expected
utilities, which is typically not available in most commonly occurring
situations. Moreover, it neglects the motivations of actions, and the structure

 170

of those motivations in a hierarchy of goals and subgoals, and of alternative
ways of reducing goals to subgoals.
 Instead of decision theory, most people probably use heuristics to guide
their decision-making. Heuristics deal efficiently with the most commonly
occurring cases, and often they approximate the decisions that would be
taken using a decision-theoretic analysis. But heuristics are subject to biases
of all kinds, and often lead to bad choices, sometimes when we are making
the most important decisions in our lives.

In situations where it is important to make as good a decision as possible,
we need to monitor our heuristic responses, and to analyse their role within
the full hierarchy of our goals and subgoals. We need to question the implicit
goals of our intuitive reactions, determine the alternative ways of achieving
those goals, explore their possible consequences and make a smart choice.

But no matter how we make our decisions, we cannot avoid the
uncertainty of their outcomes. As we have seen in this chapter and elsewhere
throughout this book, the outcomes of our actions typically depend upon the
uncertain state of the world:

 a particular outcome happens if I do a certain action
 and the world is in a particular state.

Because the world is such an uncertain place, and because our knowledge of
the world is so incomplete, it is impossible to judge these outcomes without
uncertainty.
 The approach to uncertainty taken in this book is based upon the approach
developed by David Poole (1997), in which probability is associated with
conditions of conditionals rather than with conditionals as a whole. This
approach fits well with other applications of probability, for example in
helping to choose between different abductive explanations of an
observation. Integrating probability and logic is one of the most active areas
of research in Artificial Intelligence today. The collection of papers in (De
Raedt et al., 2008) contains an overview of recent work in this field.

 171

Chapter 12. Motivations matter

In the prisoner’s dilemma, the need to choose between different actions is
generated by the need to solve an achievement goal, obtained as the result of
a request from the police to turn witness against your friend. The
achievement goal, triggered by the external event, is the motivation of the
action you eventually choose.
 But in classical decision theory, the motivation of actions is unspecified.
Moreover, you are expected to evaluate the alternatives by considering only
their likely consequences.
 Conflict resolution in production systems shares with decision theory a
similar need to decide between mutually exclusive actions. However,
whereas in decision theory the deciding factor is the likely consequences of
the actions, in production systems the decision is normally compiled into
much simpler considerations. In production systems, actions are derived
explicitly by means of condition-action rules, whose motivations (or goals)
are typically implicit (or emergent).
 In contrast with both decision theory and production systems, in which
motivations are missing or implicit, in classical planning systems in AI
motivation is the main concern. In classical planning, plans of action are
motivated (or intended) by higher-level achievement goals; but, in contrast
with decision theory, the unintended consequences of actions are commonly
ignored. The different ways in which actions are evaluated in different
paradigms are summarised in the following table:

Evaluation of actions

production decision classical Computational
systems theory planning Logic

Motivations

Consequences

No No Yes Yes

No Yes No Yes

In Computational Logic, actions are motivated by achievement goals, which
are generated by maintenance goals, which are triggered by observations of
changes in the world. Deciding which alternative actions to execute is
informed by evaluating the likely consequences of the actions, including the
achievement goals, which motivated the actions to begin with. This decision
can be assisted by employing the techniques of decision theory, or it can be
compiled into more pragmatically useful goals and beliefs, in which the
evaluation of motivations and consequences is emergent rather than explicit.

Moral considerations

 172

Decision theory guides an agent’s actions towards the optimal achievement
of the agent’s personal goals. These personal goals might be concerned solely
with the agent’s own selfish interests, or they might include the interests of
other agents. As we saw in the Prisoner’s Dilemma, the interests of an
individual agent can sometimes be better served if the agent also values the
interests of other agents. Arguably, the encouragement of personal goals that
include the interests of other agents is the basis of human intuitions about
morality.
 Although morality is one of the main concerns of religion, psychological
studies have shown that people of widely diverse cultural and religious
backgrounds share similar moral intuitions (Hauser et al., 2007). Moreover,
these studies show that many of these intuitions depend upon distinguishing
between the motivations and the consequences of actions. In particular, they
support the principle of double effect.

The principle of double effect holds that an action with bad consequences
may be morally acceptable if the action was motivated by a good end,
provided the bad consequences were not intended as a means to achieve the
good end. But an action is not morally acceptable if it was motivated by a bad
end or if it involved the use of a bad means to a good end, even if its good
consequences might outweigh its bad consequences.

The principle of double effect has been used, for example, to justify
bombing a military facility in wartime even if there is a potential danger to
innocent civilians. But it condemns bombing a civilian target to terrorise the
enemy.
 The principle of double effect is opposed to consequentialism, which, like
decision theory, is concerned only with the consequences of actions.
According to consequentialism, there is no moral distinction between killing
innocent civilians as a side effect of destroying a military facility and killing
them as a deliberate act of terrorism.
 The principle of double effect also plays a normative role in law. For
example, it accounts for the distinction between murder, in which the death
of a person is directly intended, and manslaughter, in which it is foreseeable
as a possible side effect of a less bad, but still blameworthy intention.
 Thus the principle of double effect plays a descriptive role in
understanding moral intuitions and a normative role in law. Mikhail (2007)
explains this dual role with the suggestion that, although individuals seem to
be unaware of the principles that guide their moral intuitions, “the judgments
can be explained by assuming that these individuals are intuitive lawyers who
implicitly recognize the relevance of ends, means, side effects and prima
facie wrongs, such as battery, to the analysis of legal and moral problems”.
 The challenge is to explain these intuitions, which cannot be explained by
decision theory alone.

The runaway trolley

 173

The most famous psychological experiment concerning intuitions about
double effect is the trolley problem. There are two main variants:

Passenger: A runaway trolley is about to run over and kill five
people. The driver has fainted. You are a passenger on the train and
you can press a button that will turn the train onto a sidetrack, saving
the five people, but killing one man who is standing on the sidetrack.
Is it morally permissible to press the button?

Footbridge: A runaway trolley is about to run over and kill five
people. You are a bystander standing on a footbridge over the track.
The only way to stop the train and save the five people is to throw a
heavy object in front of the train. The only heavy object available is
a large man standing next to you. Is it morally permissible to throw
the man onto the track?

In an experiment (Hauser et al, 2007) on the internet with approximately
5,000 voluntary subjects, 85% judged that it is permissible for the passenger
to push the button, but only 12% judged that it is permissible for the
bystander to throw the man. The difference between the two cases is
explained by the principle of double effect. In the case of the passenger
pressing the button, the person on the sidetrack is killed as a consequence of
the action of pushing the button, which is a subgoal of saving five people.
The action of pushing the button is not bad in and of itself. So most people
regard the action as morally permissible.
 However in the case of the bystander throwing the heavy man onto the
track, the action of throwing the man onto the track is morally bad itself, even
though it helps to achieve the morally good goal of saving five people.
 According to consequentialism, both cases have the same moral standing;
and according to utilitarianism, which holds that it is best to do what most
benefits the greatest number of people, both cases are morally justifiable and
preferable to doing nothing.
 Assuming that people subconciously apply the principle of double effect
in judging the morality of actions may explain intuitive judgements in trolley
problems and the like. But that doesn’t explain why people use the principle
of double effect rather than straight-forward decision theory. I will propose
such an explanation - namely that motivations matter - after we first
investigate a logical representation of the runaway trolley problem.

The logic of the runaway trolley

The following representation is specialised for the trolley problem. As with
other examples in this book, the representation could also be expressed more

 174

generally to separate out general-purpose beliefs from the special beliefs
needed for the problem at hand. However, the specialised representation has
the advantage that it allows us to ignore distracting details.

Beliefs:

a person is killed if the person is in danger of being killed by a train
 and no one saves the person from being killed by the train.

 an agent kills a person

if the agent throws the person in front of a train.

 a person is in danger of being killed by a train
 if the person is on a railtrack
 and a train is speeding along the railtrack
 and the person is unable to escape from the railtrack.

 an agent saves a person from being killed by a train
 if the agent stops the train or the agent diverts the train.

 an agent stops a train
 if the agent places a heavy object in front of the train.

 an agent places a heavy object in front of the train
 if the heavy object is next to the agent
 and the train is on a railtrack
 and the agent is within throwing distance of the object to the railtrack
 and the agent throws the object in front of the train.

 an agent diverts a train
 if there is a sidetrack ahead of the train
 and an agent is on the train
 and the agent pushes the sidetrack button.

 a train is speeding along a sidetrack
 if the train is speeding along a track
 and there is a sidetrack ahead of the train
 and an agent pushes the sidetrack button.

In a more precise formulation, using the event calculus for example, it would
be stated that the act of pushing the sidetrack button terminates the state of
the train speeding along its current track and initiates a state in which the
train is speeding along the sidetrack.

The current situation: five people are on the maintrack.

 175

one person is on the sidetrack.
a train is speeding along the maintrack.
the sidetrack is ahead of the train.
the five people are unable to escape from the maintrack.
the one person is unable to escape from the sidetrack.

mary is on the train.
john is next to bob.
john is a heavy object.
bob is within throwing distance of john to the maintrack.

There is nothing in these beliefs to motivate anyone to do anything. To
motivate Bob, John or Mary, they need a motivating goal. As with other
examples in this book, the motivating goal is an achievement goal derived
from a maintenance goal, triggered by an observation of the environment. In
this case, the maintenance goal and associated supporting beliefs might be:

Goal: if a person is in danger of being killed by a train
 then you respond to the danger of the person being killed by the train.

Beliefs: you respond to the danger of a person being killed by the train
 if you ignore the danger.

 you respond to the danger of a person being killed by the train
 if you save the person from being killed by the train.

Given that all three agents have knowledge of the current situation, and
assuming for simplicity that they treat the five people on the maintrack as a
single person, then the three agents would similarly conclude:

Forward reasoning: five people are in danger of being killed by the train

Achievement goal: you respond to the danger of
 the five people being killed by the train

Alternative subgoal: you ignore the danger
Alternative subgoal: you save the five people from being killed by the train.

Mary can save the five people by diverting the train, by pushing the sidetrack
button. Bob can save the five people by stopping the train, by placing a heavy
object in front of the train, by throwing John in front of the train. Fortunately
for Bob, John cannot similarly save the five people by throwing Bob in front
of the train, because he has no reason to believe that Bob is a heavy object.
Also, conveniently for John, we have ignored the possibility that he can save

 176

the five people simply by throwing himself in front of the train of his own
volition. Thefore only Mary and Bob have to choose between the two
alternative subgoals.

Mary has to decide whether to save the five people by pushing the
sidetrack button. Given the urgency of the situation, she may or may not have
the time to contemplate all the possible consequences of the action. If she
does have enough time and enough composure, then she will conclude that
the one person on the sidetrack will be killed by the train if no one saves the
person. But saving five people for sure compared with the near certtainty of
one person being killed is better than doing nothing.
 If Mary does not have the time to think through the consequences, then
she may simply judge that saving five people is better than doing nothing, in
which case she will simply push the button, whatever the consequences. In
either case, her behaviour is morally justified, because her intentions are
good, and any possible bad side effects are both unintended and outweighed
by the benefits.
 Bob, on the other hand, has to decide whether to save the five people by
throwing John in front of the train. Assuming that Bob has enough time to
generate this plan, he may well have enough time to realise that if he throws
John in front of the train, then not only will John be killed as a consequence,
but that he will kill John as a means to the end.

Of course, Bob could use decision theory, to decide whether it is worth it:
Five people saved compared with one person killed. The calculation argues in
favour of killing John. But if Bob concludes that as a consequence of killing
John he might be committing a crime, then the calculation isn’t so easy.

In cases like these, decision-making is a lot easier if there are clear and
simple rules (or constraints) that can be followed, like:

 if an agent kills a person
 and the person is not threatening another person’s life
 then false.

If Bob has no such rule, then he may decide to throw John onto the track,
with the good higher-level intention of saving five people. Nonetheless, we
may judge that his action is morally unacceptable. Our judgement would be
justified by concern about Bob’s lack of moral constraint. Although his lack
of constraint might lead to an over-all good consequence on this occasion, it
could lead to very bad consequences on other occasions.
 If Bob does have such a constraint, but still decides to throw John onto
the track, it must be because he has enough time to generate the plan, but not
enough time to trigger and exercise the constraint. Or so a lawyer might
argue, if the case ever came to a court of law.

The computational case for moral constraints

 177

You could argue for moral constraints on religious grounds. But you can also
argue for them on the computational grounds that there are many situations in
which people don’t have the time or knowledge to make optimal decisions in
accordance with the norms of decision theory. Even if they did, it would be
unreasonable to expect everyone to adhere to the purely utilitarian principle
that their own personal interests, or the interests of their family and friends
are worth no more than the interests of their worse enemy or greatest rival.
 If everyone used decision theory without any constraints, there would be
chaos. Some people would use the freedom to employ arbitrary utility
measures to suit their own interests and to trample over the interests of
others. To protect against the antisocial consequences of the exercise of such
unbridled self-interests, societies impose constraints on the behaviour of
individuals. But to be effective, these constraints need to be simple and easy
to apply, even when time and knowledge are in short supply.
 In our representation of the trolley problem, the constraint was a qualified
version of the sixth commandment, thou shalt not kill, and the only way to
kill a person was to throw the person in front of a train. This was an
oversimplification. It employs a very specific definition of killing a person,
which conveniently applies to Bob, but not to Mary. It could be argued that
an alternative, more realistic definition, like:

an agent kills a person
if the agent performs an action and the action causes the person’s death.

would apply to both Bob and Mary, depending on how causality is defined.
Certainly throwing a person in front of a train causes the death of the person.
But does pushing the sidetrack button also cause the death of the person on
the sidetrack?
 Philosophers and legal scholars have struggled with dilemmas of this kind
for centuries. There has to be an easier solution. Otherwise the exercise of
constraints would require solving difficult problems of causality, and it
would be impossible to apply constraints in practice.
 There is an easier solution. Replace the condition that the action causes
the person’s death by the computationally much simpler condition that the
action causes the person’s death directly by initiating it in one step:

an agent kills a person
if the agent performs an action
and the action initiates the person’s death.

In most cases, determining whether an action initiates a person’s death takes
only one step of deductive inference, which every agent of full age and

 178

capacity should be able to perform. The inference can be made even simpler
by compiling the definition of killing into the constraint:

if an agent performs an action
and the action initiates a person’s death

 and the person is not threatening another person’s life
 then false.

In contrast, determining whether an action causes a person’s death may
require an unbounded number of inferences through an arbitrarily long chain
of actions. The greater the number of inferences, the less reasonable it is to
expect an agent to be able to perform them.
 The use of simple constraints on actions that initiate bad consequences
makes the exercise of constraints much easier, but does not solve all of the
problems that can arise. There will always be hard cases where the direct
effect of an agent’s actions also depends on the state of the world – for
example if a person’s death is initiated by an agent’s driving too fast and the
car’s going out of control.

Hard cases like these are the livelihood of the legal profession, and are
beyond the scope of this book. But, before we leave this topic, there is an
even bigger problem with constraints.

What to do about violations?

The problem with constraints is that people violate them. They violate them,
and either they get away with it or they pay the penalty: Don’t press the
alarm signal button improperly. But if you do, then be prepared to pay a £50
fine.
 Logically it doesn’t make sense. Formulating a constraint as a conditional
with conclusion false, is supposed to prevent the conditions of the constraint
from becoming true. It doesn’t make sense to have additional constraints that
apply only when the conclusion false has been derived.
 This problem has been studied in philosophical logic in the form of
Chisholm’s paradox (Chisholm, 1963). The paradox is usually formulated in
some form of deontic logic, but it can be also formulated in terms of
constraints. Here is an informal statement of the paradox:

It ought to be that Jones goes to assist his neighbors.
It ought to be that if Jones goes, then he tells them he is coming.
If Jones doesn't go, then he ought not tell them he is coming.
Jones doesn't go.

In standard deontic logic, these statements imply the paradoxical conclusions:

 179

 Jones ought to tell them he is coming.
 Jones ought not tell them he is coming.

Almost all deontic logics are modal logics, in which ought is a logical
connective with the same logical status as and, or, if and not. But in
abductive logic programming (ALP), which is the basis of the Computational
Logic that we use in this book, obligations and prohibitions are represented
by means of integrity constraints, which include maintenance goals and
constraints. Here is a representation of the paradox in ALP terms:

Goals: jones goes.
 if jones goes then jones tells.
 if jones stays and jones tells then false.
 if jones stays and jones goes then false.
Belief: jones stays.

The first sentence is an achievement goal. In a more complete version of the
story it might have been derived by means of a maintenance goal, such as if a
person needs help and jones can help then jones goes.
 The second sentence is neither a maintenance goal nor a conventional
constraint, but is nontheless a typical integrity constraint. Viewed in database
terms, it imposes the restriction that whenever the database contains a record
that jones goes then it also contains a record that jones tells. Viewed in
ALP/planning terms, it imposes the restriction that any plan that includes the
action jones goes also includes the action jones tells.
 The third and fourth sentences are contraints. The fourth sentence
expresses that staying is the contrary of going, and the third sentence
constrains Jones from both staying (not going) and telling.
 The fifth sentence expresses that Jones doesn’t go as a positive atomic
fact. Not only does the collection of five sentences together imply the
conclusion false, but the first, fourth and fifth sentences alone imply false. In
other words, Jones ought to go, but doesn’t. In the ALP representation the
second and third sentences serve no function at all.

Constraints and violations of constraints are similar to rules and exceptions.
The primary constraint is like a general rule, and remedial constraints that
deal with violations are like exceptions. We have seen that, in the case of
ordinary rules and exceptions, inconsistency can be avoided by adding an
explicit condition to the general rule stating that no exception applies. We
can try to solve the paradox of constraints and their violation similarly. In
Jones’ case for example, we can add to the primary constraint an extra
condition, for example that jones is not irresponsible:

if a person needs help and jones can help

 180

and jones is not irresponsible then jones goes.
if jones stays and jones is irresponsible then false.
etc.

Several solutions of this kind have been developed and explored, both in the
context of defeasible deontic logic (Nute, 1997) and in repairing violations of
integrity constraints in databases (Bertossi and Chomicki, 2003). They also
arise more generally in Computing, for example when a program
malfunctions and corrective measures need to be applied. The existence of
practical solutions to these problems in Computing suggests that similar
solutions exist in a more logical setting. However, the investigation of these
solutions is yet another problem that is beyond the scope of this book.

Conclusions

The Prisoner’s Dilemma shows that it pays for an agent to value the interests
of other agents, and to include those interests in its judgements of the utility
of its actions. More generally, the Prisoner’s Dilemma and similar examples
show that an agent’s decisions can be judged not only for their consequences
for the agent alone, but for the good of society as a whole. Such concern for
the general good of society seems to be the basis of human intuitions about
morality.

In the Prisoner’s Dilemma, moral values can be catered for relatively
simply by including the interests of other agents in judgements of utility. And
according to consequentialism and utilitarianism, these judgements are
sufficient to determine the moral status of an agent’s decisions in general.
However, according to the proponents of the principle of double effect, they
do not fully account for human moral intuitions, nor for the normative role of
distinctions between ends, means and side effects in the field of law.

Psychological studies of moral intuitions about trolley problems show that
people instinctively judge an agent’s actions both for their motivations and
for their consequences. We have seen that Computational Logic provides a
model of agency in which such moral intuitions can be explained. The model
shows that, in situations where knowledge and time are limited, an agent may
not be able to judge and compare the expected utilities of all the relevant
consequences of its alternative candidate actions. In cases such as these, the
agent can use constraints to avoid actions that are deemed to be morally
unacceptable.

The application of Computational Logic to Computational Morality in
general and to the trolley problem in particular has been investigated by Luis
Pereira (Pereira and Saptawijaya, 2007, 2009, 2010). Although in this chapter
we have used Computational Logic to justify moral intuitions concerning the
principle of double effect, it does not follow that Computational Logic is
restricted to modelling or justifying only one moral theory, or to modelling

http://centria.fct.unl.pt/~lmp�

 181

only one analysis of trolley problems. Its conceptual framework of goals,
subgoals, constraints and consequences is morally neutral and can be used for
many purposes, for better or for worse.

 182

Chapter 13. The Changing World

In Mathematics, semantic structures are static, and truth is eternal. But for an
intelligent agent embedded in the Real World, semantic structures are
dynamic, and the only constant is change.
 Perhaps the simplest way to understand change is to view actions and
other events as causing a change of state from one static world structure to
the next. For example:

 The fox praises
 the crow.

 The fox picks
 up the cheese.

This view of change is formalised in the possible world semantics of modal
logic. In modal logic, sentences are given a truth value relative to a static
possible world embedded in a collection of possible worlds linked with one
another by an accessibility relation.
 In modal logics of time, one possible world is accessible from another if
it can be reached from the other by one state-transforming event. Syntactic
expressions such as “in the past”, “in the future”, “after”, “since” and “until”
are treated as modal operators, which are logical connectives, like “and”,
“or”, “if”, “not” and “all”.

The crow has the cheese.

The crow is in the tree.

The fox is on the ground.

It is raining.

The fox has the cheese.

The crow is in the tree.

The fox is on the ground.

The fox is next
to the cheese.

It is raining.

The cheese is
on the ground.

The crow is in the tree.

The fox is on the ground.

The fox is next
to the cheese.

It is raining.

The crow has the cheese.

The crow is in the tree.

The fox is on the ground.

It is raining.

The crow sings.

 183

 The truth value of sentences containing modal operators is defined, as for
ordinary classical logic, in terms of the truth values of simpler sentences.
However, whereas in classical logic truth is relative to one interpretation (or
possible world), truth in modal logic is relative to one possible world in a
collection of possible worlds. For example:

A sentence of the form in the future P is true
in a possible world W in a collection of worlds C

 if there is possible world W’ in C
 that can be reached from W by a sequence of state-transforming events
 and the sentence P is true in W’.

For example, in modal logic, it is possible to express the sentence

 In the future the crow has the cheese.

This sentence is true in the possible world at the beginning of the story and
false in the possible world at the end of the story (assuming there are no
possible worlds after the story ends).

One objection to the modal logic approach is that its ontology (the things
that exist) is too conservative, which makes knowledge representation
unacceptably difficult. The alternative is to increase the expressive power of
the language by treating events and states of the world as individuals. To treat
something as an individual, as though it exists, is to reify it; and the process
itself is called reification.

The advantage of reification is that it makes talking about things a lot
easier. The disadvantage is that it makes some people very upset. It’s alright
to talk about material objects, like the fox, the crow and the cheese, as
individuals. But it’s something else to talk about states of the world and other
similarly abstract objects as though they too were ordinary individuals.

The situation calculus

The situation calculus shares with modal logic the same view of change as
transforming one state of the world into another, but it reifies actions and
states (or situations) as individuals. In effect, it treats the accessibility
relation of modal logic as a first-class relation, along with other relations,
like the fox has the cheese, among ordinary material objects.

For example, in the situation calculus, in the story of the fox and the
crow, there is only one relevant semantic structure and it contains, in addition
to ordinary individuals, individuals that are actions and individuals that are
global states. It is possible to express such sentences as:

 the crow has the cheese in the state at the beginning of the story.

 184

the crow has the cheese in the state
after the fox picks up the cheese,

 after the crow sings,
 after the fox praises the crow,
 after the state at the beginning of the story.

The first of these two sentences is true. But the second sentence is false.
Reifying actions and states as individuals makes it possible to represent

and reason about the effect of actions on states of the world. If we also reify
“facts”, then this representation can be formulated as two situation calculus
axioms:

a fact holds in the state after an action,
if the action initiates the fact
and the action is possible in the state just before the action.

a fact holds in a state after an action,
if the fact held in the state just before the action
and the action is possible in the state just before the action
and the action does not terminate the fact.

Our original version of the story of the fox and the crow can be reformulated
in situation calculus terms, by defining the appropriate initiates, terminates
and is possible predicates. For this purpose, it is convenient to treat the
action of the crow singing also as a fact:

 an action in which an animal picks up an object
 initiates a fact that the animal has the object.
 an action in which an animal picks up an object
 is possible in a state in which the animal is near the object.

 an action in which I praise the crow
 initiates a fact that the crow sings.
 an action in which I praise the crow
 is possible in any state.

 an action in which the crow sings
 initiates a fact that I am near the cheese.
 an action in which the crow sings
 terminates a fact that the crow has the cheese.
 an action in which the crow sings
 is possible in any state.

 185

In theory, an agent, such as the fox, could include such axioms among its
beliefs, to plan its actions, infer their consequences, and infer the
consequences of other agents’ actions. In practice, however, the use of the
second situation calculus axiom (called the frame axiom) is computationally
explosive. This problem, called the frame problem, is often taken to be an
inherent problem with the use of logic to reason about change.
 The frame problem is not very noticeable with the goal of determining
whether or not the crow has the cheese at the end of the story. Two
applications of backward reasoning with the frame axiom reduce the goal to a
conjunction of subgoals, one of which is to show that the action of singing
does not terminate the “fact” that the crow has the cheese. But because the
action of singing does terminate the fact, the subgoal is false, and therefore
the initial goal is also false.
 However, the frame problem is more obvious with the goal of
determining whether or not it is raining at the end of the story, on the
assumption that it was raining at the beginning of the story. Whether used
forward or backward, the frame axiom needs to be used as many times as
there are actions in the story, to show that it was raining in every state
between the beginning and end of story. This kind of thinking is not so
difficult in the imaginary world of the fox and the crow, but it is clearly
impossible for a real agent living in the real world.

Arguably, it is not logic that is the source of the problem, but the situation
calculus view of change, which the situation calculus shares with the possible
world semantics of modal logic. In both cases, an action is treated as
changing the entire global state of the world. As a result, to show that a fact
that holds in a given state of the world continues to hold until it is terminated,
it is necessary to know and reason about all the other actions that take place
throughout the entire world in the meantime.

An event-oriented approach to change

The alternative is to abandon the global view of actions as transforming one
state of the world into another, and replace it with a more local view that
actions and other events can occur simultaneously and independently in
different parts of the world.
 In the event calculus, events include both ordinary actions, which are
performed by agents, and other events, like the cheese landing on the ground,
which can be understood metaphorically as actions that are performed by
inanimate objects.

For simplicity, we can assume that events occur instantaneously. For this
purpose, an event that has duration can be decomposed into an instantaneous
event that starts it, followed by a state of continuous change, followed by an
instantaneous event that ends it. Thus the cheese falling to the ground can be

 186

decomposed into an instantaneous event in which the cheese starts to fall,
which initiates the state of the cheese actually falling, followed by an
instantaneous event in which the cheese lands, which terminates the state of
falling.

Events initiate and terminate relationships among individuals. These
relationships, together with the time periods for which they hold, can be
regarded as atomic states of affairs. We can picture such an atomic state and
the events that initiate and terminate it like this:

In the story of the fox and the crow, this picture looks like this:

Here the crow’s singing is treated as an action/event that is caused by the
action/event of praising the crow. This causal relationship can be viewed as
yet another instance of the general pattern:

 a particular outcome happens if I do a certain action

 and the world is in a particular state.

In this case, the actions/events in the relationship are associated with the
times of their occurrence:

 the crow sings at time T’ if I praise the crow at time T
 and the crow reacts to the praise between times T and T’.

The fox is near
the cheese.

The crow has
the cheese.

The fox has
the cheese.

The fox praises
the crow.

The crow
sings.

The fox picks
up the cheese.

event
happens

the event
initiates a fact

another event
happens

the fact holds

the other event
 terminates the fact

Time

 187

The condition the crow reacts to the praise between times T and T’ is an open
predicate, which can be assumed, either to explain an observation of the crow
breaking out in song at some time T’ or as part of a plan for the fox to have
the cheese.

A simplified calculus of events

The event calculus represents the relationship between events and the
properties they initiate and terminate by means of the following
axiom and constraint:

Axiom: a fact holds at a time,

 if an event happens at an earlier time
 and the event initiates the fact
 and there is no other event
 that happens between the two times and
 that terminates the fact.

Constraint: if an event happens at a time
 and the event is not possible at the time then false.
Equivalently: if an event happens at a time
 then the event is possible at the time.

The event calculus constraint is analogous to the situation calculus condition
that an action is possible in a state. The constraint is necessary for planning.
Without it, an agent could generate unexecutable plans containing actions
whose preconditions do not hold at the time of execution.
 In many cases, the execution of an action terminates a precondition. For
example, to give an object away, the agent must have the object. For this
reason, to make the constraint work correctly, the event calculus employs the
convention that a fact holds after the event that initiates it, but at the time of
the event that terminates it. So, for example, if Mary gives an apple to John,
then Mary must have the apple at the time that she gives it (constraint), but
John has the apple afterwards (axiom).
 To apply the event calculus in practice, it needs to be augmented, like the
situation calculus, with additional axioms defining initiation, termination,
possibility and temporal order. Thus, the event calculus treats the predicates
a fact holds at a time, an event initiates a fact, an event terminates a fact, an
event is possible at a time and the predicates for temporal ordering as closed
predicates. But it treats the predicate an event happens at a time as an open
predicate.

 188

The event calculus for predicting
consequences of events

The open predicate an event happens at a time can be given directly as an
observation, generated by abduction to explain observed facts, or generated
as a candidate action in a plan to solve an achievement goal. Here is an
example of the first of these three cases, given similar definitions of
initiation, termination and possibility as in the situation calculus example,
but using the event calculus representation of events:

 the fox praises the crow at time 3.
 the crow sings at time 5.
 the fox picks up the cheese at time 8.

We also need to represent the fact that the crow has the cheese at the
beginning of the story. This can be done in several different ways, but the
simplest is just to assume an additional event, such as:

 the crow picks up the cheese at time 0.

Reasoning backwards to determine whether or not the crow has the cheese at
the end of the story, say at time 9, the event calculus axiom generates the
following sequence of goals and subgoals:

Initial goal: the crow has the cheese at time 9

Subgoals: an event happens at time T and T < 9 and
 the event initiates the fact that the crow has the cheese
 there is no other event that happens between T and 9 and

 and

 the other event terminates the fact that the crow has the cheese.

Subgoals: the crow picks up the cheese at time T and T < 9
 there is no other event that happens between T and 9 and

and

 the other event terminates the fact that the crow has the cheese.

Subgoals: there is no
 the other event terminates the fact that the crow has the cheese.

other event that happens between 0 and 9 and

 Naf: an event happens at time T’ and T’ is between 0 and 9 and
 the event terminates the fact that the crow has the cheese
 Subgoals:

.
the crow sings at time T

 Subgoals:
’ and T’ is between 0 and 9

 Success: yes!
5 is between 0 and 9

 189

Failure: no!

The conclusion that the crow does not have the cheese follows from negation
as failure and the fact that, given the order in which the subgoals are selected,
there are no other possible proofs. Of course, this conclusion depends upon
the closed world assumption, that there are no other events that take place
before time 9 that initiate the crow having the cheese. On the other hand,
there is nothing to rule out the possibility that the crow could regain
possession of the cheese at some time after 9, for example by praising the
fox.
 Notice that the efficiency of the search for a solution is highly sensitive to
the order in which subgoals are selected. Given the order of selection in the
proof presented above, there are no other branches in the search space; and
the search is very efficient. However other selection strategies, for example
selecting the subgoal an event happens at time T first, would be very
inefficient. The efficiency of the search can be further improved by storing
events in order of occurrence, so that only the most relevant events are
considered.

The event calculus and the frame problem

Taken together, the subgoal selection and event storage strategies help the
event calculus to overcome many, but not necessarily all of the inefficiencies
of the frame problem. Other inefficiencies are avoided as a result of the event
calculus localised view of change.
 Suppose, for example, that we add that it was raining at the beginning of
the story, by assuming an additional event, such as it starts raining at time -1,
where:

 an event in which it starts raining initates a fact that it is raining.
 an event in which it stops raining terminates a fact that it is raining.

We can simplify the problem of determining whether or not it is raining at
time 9 by solving the subgoals an event initiates a fact and an event
terminates a fact of the event calculus axiom in advance, generating the
specialised axiom:

 it is raining at a time,
 if it starts raining at an earlier time
 and it does not stop raining between the two times.

Reasoning backwards with the specialised axiom generates the following
sequence of goals and subgoals:

 190

Initial goal: it is raining at time 9.

Subgoals: it starts raining at time T and T < 9
 and it does not stop raining between T and 9.

 and

Subgoals: it does not

 stop raining between -1 and 9.

 Naf: it stops raining at time T’
 Failure: no!

 and T’ is between -1 and 9.

Success: yes!

Notice that, unlike the solution of the same problem in the situation calculus,
the length of the solution does not depend on the number of states, actions, or
events between the time -1 at which it starts raining and the time 9 under
consideration. In the event calculus, the length depends only on the number
of relevant rain initiating and terminating events, and their time of
occurrence.

The event calculus for plan generation

The event calculus constraint is not needed when the event calculus axiom is
used to predict the consequences of observed events. But it can be used to
monitor observed events. If an observation violates the constraint, then the
agent needs to choose between rejecting the observation as an illusion, and
rejecting a belief that is incompatible with the observation.
 However, the constraint is needed when the event calculus axiom is used
to generate candidate events to explain observations or to generate candidate
actions to solve achievement goals.
 Here is the beginning of a solution of the fox’s achievement goal of
having the crow’s cheese. In this solution only the initial event the crow picks
up the cheese at time 0 is given:

Initial goal: the fox has the cheese at time T

Subgoals: an event happens at time T’ and T’ < T and
 the event initiates the fact that the fox has the cheese
 there is no other event that happens between T’ and T and

 and

 the other event terminates the fact that the fox has the cheese.

Subgoals: the fox picks up the cheese at time T’
 there is no other event that happens between T’ and T and

 and T’ < T and

 the other event terminates the fact that the fox has the cheese.

 191

Without the event calculus constraint, this is as far as the fox needs to go to
solve the goal. The fox can simply pick up the cheese at any time, provided
she doesn’t do anything to terminate having the cheese in between times.
Although this solution may seem incomplete, it actually satisfies all of the
formal conditions for a solution in the proof procedure of the additional
Chapter A6.
 However, the solution is genuinely incomplete when the constraint is
taken into account. When the constraint is considered, the candidate action
the fox picks up the cheese at time T’ triggers the constraint and generates the
further achievement goal:

Further goal: the fox picks up the cheese is possible at time T’.

Using the relevant definition of possibility:

 an animal picks up an object is possible at a time
 if the animal is near the object at the time

backward reasoning reduces this further goal to the subgoal:

Subgoal: the fox is near the cheese at time T’.

This subgoal is the same kind of achievement goal that we started with, but it
is one step closer to a complete plan.
 Reasoning in this way, alternating between the use of the event calculus
axiom and the event calculus constraint, the fox can soon generate a complete
plan to achieve her initial goal. In addition to the relevant actions, the plan
includes subgoals that prevent the fox from performing any other actions that
might interfere with the plan. It also contains an explicit assumption that the
crow will react to the fox’s praise by singing.
 The solution looks more complicated than it is. Some of the apparent
complexity can be eliminated by compiling the constraint into the event
calculus axiom itself:

Complied axiom: a fact holds at a time,

 if an event happens at an earlier time
 and the event initiates the fact
 and the event is possible at the earlier time
 and there is no other event
 that happens between the two times and
 that terminates the fact.

 192

Even more of the complexity can be eliminated by solving the subgoals an
event initiates a fact and an event is possible at a time in advance, generating
specialised axioms for the special case under consideration. For example:

 an animal has an object at a time,
 if the animal picks up the object at an earlier time
 and the animal is near the object at the earlier time
 and there is no other event
 that happens between the two times and
 the event terminates the fact that the animal has the object.

This compiled form of the event calculus is closer to the representation of the
story of the fox and the crow in Chapters 3 and 4. But it is less flexible for
predicting the consequences of observed events, where the use of the
constraint is unnecessary.
 Notice that explaining an observation that the fox has the cheese is similar
to generating a plan for the fox to have the cheese. This is because planning
and explaining observations are formally identical.

Partially ordered time

Whereas the possible world semantics and the situation calculus both
associate global states with facts, actions and other events, the event calculus
associates time points. In the examples we have seen so far, these time points
are numbers, with the property that all facts and events are ordered linearly
on the same time line. However, the times of unrelated events do not need to
be linearly ordered, as pictured in the example:

To represent such partially ordered events, we need a different way of
naming time points, and of determining when one time point comes before
another. For example:

 the crow picks up the cheese at timecrow-pickup.

The cheese falls to
the ground.

The crow has
the cheese.

The fox has
the cheese.

The fox praises
the crow.

The crow
sings.

The fox picks
up the cheese.

The wolf enters the
scene.

The wolf eats
the fox

 193

 the fox praises the crow at timepraise.
 the crow sings at timesing.
 the fox picks up the cheese at timefox-pickup.
 the wolf enters the scene at timeenter.
 the wolf eats the fox at timeeat.

 timecrow-pickup < timepraise < timesing < timefox-pickup < timeeat
 timeenter < timeeat

 T1 < T3 if T1 < T2 and T2 < T3

The event calculus works equally well with such different representations of
time.

Keeping track of time

The representation of time by numbers, dates and/or clock time serves two
functions. It not only linearly orders time points, but it also measures the
duration between time points. This ability to judge duration is necessary for
the proper functioning of the agent cycle. For example, if you are hungry,
then you need to get food and eat it before you collapse from lack of strength.
If a car is rushing towards you, then you need to run out of the way before
you get run over. If you have a 9:00 appointment at work, then you need to
get out of bed, wash, eat, dress, journey to work, and arrive before 9:00.
 To get everything done in time, you need an internal clock, both to
timestamp observations and to compare the current time with the deadlines of
any internally derived future actions. This creates yet more work for the
agent cycle:

repeatedly (or concurrently):
 observe the world, record any observations,

 together with the time of their observation,
 think,

 decide what actions to perform, choosing only actions
 that have not exceeded their deadline, and

 act.

Consider, for example, the fox’s response to an observation that she is
hungry. She needs to estimate how long she can go without eating before it is
too late:

 if I am hungry at time Thungry
 and I will collapse at a later time Tcollapse if I don’t eat
 then I have food at a time Tfood
 and I eat the food at the time Tfood

 194

 and Tfood is between Thungry and Tcollapse.

She also needs to be able to deal with any attack from the local hunters:

 if the hunters attack me at time Tattack
 and they will catch me at a later time Tcatch if I don’t run away
 then I run away from the hunters at a time Trun
 and Trun is between Tattack and Tcatch.

Suppose, the fox is both hungry and under attack at the same time. Then the
fox needs to do a quick mental calculation, to estimate both how much time
she has to find food and how much time she has to run away. She needs to
judge the probability and utilities of the two different actions, and schedule
them to maximise their overall expected utility. If the fox has done her
calculations well and is lucky with the way subsequent events unfold, then
she will have enough time both to satisfy her hunger and to escape from
attack. If not, then either she will die of starvation or she will die from the
hunt.

But this kind of reasoning is a normative ideal, which is perhaps better
suited to a robot than an intelligent biological being. It would be easier
simply to give higher priority to escaping from attack than to satisfying
hunger, using heuristic “rules of thumb” that might look more like this:

 if I am hungry at time Thungry
 then I have food at a time Tfood
 and I eat the food at the time Tfood
 and Tfood is as soon as possible after Thungry.

 if someone attacks me at time Tattack
 then I run away from the attackers at a time Trun
 and Trun is immediately after Tattack .

Then if you are both hungry and attacked at the same time, say time 0
arbitrarily, your goals would look like this:

 I have food at a time Tfood
 I eat the food at the time Tfood
 I run away from the hunters at a time Trun
 and Trun is immediately after time 0.
 and Tfood is as soon as possible after 0.

It would then be an easy matter for you to determine not only that Trun should
be before Tfood but that Trun should be the next moment in time.

 195

It would be the same if you were attacked after you became hungry, but
before you succeeded in obtaining food. You would run away immediately,
and resume looking for food only after (and if) you have escaped from attack.

Rules of thumb give a quick and easy decision, which is not always
optimal. If you were running away from attack and you noticed a piece of
cheese on the ground, a normative calculation might determine that you have
enough time both to pick up the cheese and to resume running and escape
from attack. Rules of thumb, which are designed to deal with the most
commonly occurring cases, are less likely to recognise this possibility.

Our agent model is neutral with respect to the way decisions are made. It
is compatible, in particular, with the use of decision theory, the use of
heuristic rules of thumb and any combination of the two.

Historical background and additional reading

The event calculus (Kowalski and Sergot, 1986) was inspired in large part by
the situation calculus developed by McCarthy and Hayes (1969). The use of
temporal storage of events to alleviate the frame problem in the event
calculus is discussed in (Kowalski, 1992). A more radical approach to the
frame problem, which manipulates a destructively updated working memory,
is described in (Kowalski and Sadri, 2010). The frame problem is the subject
of Murray Shanahan’s (1997) Solving the Frame Problem.
 The use of the event calculus for knowledge representation and reasoning
in Artificial Intelligence is one of the main topics in Erik Mueller’s (2006)
Commonsense Reasoning. The application of the event calculus to the
analysis of tense and aspect in natural language from the vantage point of
Cognitive Science is the topic of van Lambalgen and Hamm’s (2005) The
Proper Treatment of Events.

 196

Chapter 14. Logic and Objects

What is the difference between the fox and the crow, on the one hand, and
the cheese, on the other? Of course, the fox and crow are animate, and the
cheese is inanimate. Animate things include agents, which observe changes
in the world and perform their own changes on the world. Inanimate things
are entirely passive.

But if you were an Extreme Behaviourist, you might think differently.
You might think that the fox, the crow, and the cheese are all simply objects,
distinguishable from one another only by their different input-output
behaviours:

if the fox sees the crow and the crow has food in its mouth,
then the fox praises the crow.

if the fox praises the crow,
then the crow sings.

if the crow has food in its mouth and the crow sings,
then the food falls to the ground.

if food is next to the fox,
then the fox picks up the food.

Extreme Behaviourism was all the rage in Psychology in the mid-20th
century. A more moderate form of behaviourism has been the rage in
Computing for approximately the past thirty years, in the form of Object-
Orientation.

It’s easy to make fun of yesterday’s Extreme Behaviourists. But it’s not
so easy to dismiss today’s Object-Orientated Computer Scientists and
Software Engineers. Object-Orientation (OO) today dominates every aspect
of Computing: from modelling the system environment, through specifying
the system requirements, to designing and implementing the software and
hardware.

Advocates of OO argue that it provides a natural way of looking at the
world, helping to decompose large systems into maneagable components,
making them easier to develop and maintain. These claims of naturalness
place it in direct competition with Logic in general and Computational
Logic (CL) in particular.

For a while in the 1980s, it looked as though some form of
Computational Logic might come to occupy the central role in Computing
that OO occupies today. If we can understand why OO won the competition
between them, then we might gain a better understanding of the prospects of
CL, not only for Computing, but for Human Reasoning as well.

 197

Objects as individuals

In the object-oriented way of looking at things, the world consists of
objects, which interact with one another through their externally manifest
input-output behaviour. Object-Orientation turns the relationship between
an agent and the world, as viewed in conventional logic:

outside in:

An agent’s observations turn into messages received from other objects, and
its actions turn into messages sent to other objects. The world becomes
absorbed into the network of interacting objects, or becomes a separate object
like any other object.

Encapsulation

An object consists of a local state, which is a collection of current values of
the object’s attributes, and a collection of methods, which the object uses to
respond to messages or to compute values of its attributes. Both of these are
encapsulated within the object, hidden from other objects.

 agent

observe act

The world

The world

object

Representation
of the world

object

object

 198

Encapsulation of an object’s methods is an inherent property of the
natural world, because no object can tell for sure what goes on inside another
object. In theory, if you could get inside another object, you might discover
that it is just like you. Every object - bear, tree, river, mountain or stone -
might have a spirit, which is its internal mental state. Contrariwise, you might
discover that no object, other than yourself, has any internal state at all.

Encapsulation of methods is a useful property for constructing artificial
worlds. It reduces the complexity of combining individual objects into
complex systems of objects, because the engineer only needs to take into
account the external behaviour of the components. Furthermore, should one
of the components of a functioning system become defective or obsolete, it
can be replaced by a new component that has the same external behaviour,
without affecting the behaviour of the system overall.

OO is more moderate than behaviourism. In addition to combining
existing encapsulated objects, the engineer can create new objects by
initialising the values of their attributes and implementing their methods.

Methods

The common OO languages used for implementing methods are typically
procedural languages with a syntax inherited from pre-OO programming
languages and without the declarative semantics of logic-based knowledge
representation languages.

However, even when OO methods are implemented in procedural
programming languages, it is natural to express their specifications in logical
form. These specifications often have the form of condition-action rules in
declarative mood:

 if an object receives a message of the form S from object O
 then the object sends a message of the form R to object P.

For example:

if the fox receives a message that the crow has food in its mouth,
then the fox sends a message of praise to the crow.

if the crow receives a message of praise from the fox,
then the crow sends a message of song.

 if the crow has food in its mouth

and the food receives a message of song from the crow
then the food sends a message of falling to the ground.

if the food sends a message that it is next to the fox,

 199

then the fox sends a message that she picks up the cheese.

The encapsulated methods by means of which these specifications are
implemented can be programmed in different ways. They can be
implemented, in particular, as we will discuss later and as should already be
apparent, by programs expressed in logical form.

Classes

OO makes it easy for the engineer to create new objects by instantiating more
general classes of objects.

For example, an engineer might create a new fox by creating a new
instance of the general class of all foxes. The class of foxes as a whole might
have general methods for dealing with such messages as the sight of another
animal having food and the appearance of food within its grasp. It might also
have typical values for such attributes as the colour of its fur and the shape of
its tail. The new fox would inherit these methods and values of attributes with
little or no modification, possibly with the addition of certain special methods
and attributes unique to itself.

Classes are organised in taxonomic hierarchies. So for example, the class
of all foxes might inherit most of its methods and attributes from the class of
all animals. The class of all animals might inherit them, in turn, from the
class of all animate beings; the class of all animate beings might inherit them
from the class of all material objects; and the class of all material objects
might inherit them from the class of all things.

Reconciling logic and objects

There is an obvious way to reconcile logic and objects: simply by using
Computational Logic to implement the methods associated with objects and
classes. An implementation of this logical kind might combine maintenance
goals, which respond to observations of incoming messages, with beliefs,
which reduce goals to subgoals, including actions of sending outgoing
messages. For example:

Goal: if I receive message of form S from object O
 then G.

Beliefs: G if conditions and I send message of form R to object P

Using CL to implement OO methods can benefit OO by providing it with
higher-level knowledge representation and problem solving capabilities.
 Conversely, using OO encapsulation and inheritance techniques can benefit
CL by providing a framework for combining individual logic-based agents

 200

into multi-agent communities. Individual agents can share their knowledge
and problem solving resources with other agents in the same community.
 In such a community of agents, complex problems can be decomposed into
simpler subproblems, and their solution can be distributed to different agents,
specialising in different problem domains. No single agent needs to know it
all, or to solve every problem on its own.
 Similarly, a complex connection graph of goals and beliefs might be
distributed among several agents. Relatively self-contained subgraphs with
sparse links to other subgraphs can be associated with individual agents. The
links between the subgraphs can serve as communication channels between the
agents, sending requests for help in solving subgoals and receiving solutions
and other information in return.

Message-passing or shared environment?

In Computing, there are two main alternative approaches to combining
agents into multi-agent systems: the communicating agents approach, in
which agents interact directly by communicating messages, and the shared
environment approach, in which agents interact indirectly through the
medium of a global database. Computational Logic is compatible with both
approaches, and suggests a natural way of combining them.
 CL supports the communicating message approach, when agents are
interpreted as subgraphs of a connection graph, and messages are interpreted
as links between subgraphs. But it supports the shared environment
approach, when the environment is viewed as a semantic structure that gives
meaning to an agent’s thoughts. In CL, these two views are compatible and
combined.
 The simplest way to combine and reconcile the two approaches in CL is
to use message passing as an internal mechanism to link subgraphs of the
connection graph of a single agent’s mind, and to use the environment as an
external medium to coordinate the agent’s interactions with other agents.
Viewed in this way, the main contribution of OO is the way in which it
structures knowledge and goals into manageable, semi-independent,
encapsulated, modular, and hierarchically organised components.

Semantic networks as a variant of object-orientation

There are a number of other Computing paradigms that structure knowledge in
similar object-oriented terms. Among the most notable of these are semantic
networks, which represent the world as a web of relationships among
individuals. For example, a semantic network representing the initial state of
the story of the fox and the crow might look like this:

 201

agent

Here circles (or nodes) represent individuals (or objects), and arcs represent
binary relationships between pairs of individuals. The representation can be
extended to non-binary relationships.

Semantic network representations are object-oriented, in the sense that they
store all the facts about an individual in a single place, namely surrounding the
node that represents the individual. These facts are represented by the arcs
connected to that node and by the other nodes to which those arcs are also
connected.

However, in contrast with orthodox OO, relationships are represented only
once, but are connected to all the individuals that participate in the
relationship. Moreover, they are visible to the outside world, and not merely
encapsulated inside objects.

Semantic networks have also been used to represent dynamic information,
by reifying events. For example:

 the crow

 object agent agent agent object

 agent agent

 the fox

 the crow is in the tree

 has

 the cheese is above

 the fox is on the ground

the cheese

praise then sing then fall then land then pick up

 202

In this network, the terms object and agent are only loosely associated with
our notions of object and agent.

Semantic networks have also been used to represent hierarchies of classes.
For example:

Semantic networks are like the semantic structures of Chapter A2, which are
just sets of atomic sentences. In fact, semantic network connections of the
form:

are simply graphical representations of atomic sentences of the form one
thing is related to another thing.

one thing is related to another thing

 thing

 is a

 material

 is a

 animate

 is a is a
 animal food

 is a is a is a

 fox crow cheese

 is a is a is a

the fox the crow the cheese

 203

Object-oriented structuring of natural language

Semantic networks are a graphical way of picturing object-oriented
structuring of information. OO structuring can also be applied to natural
language.

We noted earlier in Chapter 1 that sentences expressed in logical form are
context-independent and can be written in any order, but some sequences of
sentences are much easier to understand than others. Grouping sentences into
collections of sentences about objects is another way to make sentences
easier to understand.

For example, we can group the atomic sentences describing the beginning
of the story of the fox and the crow into collections of sentences about the
objects in the story:

 The crow: The crow has the cheese.
 The crow is in the tree.

 The tree: The tree is above the ground.

 The fox: The fox is on the ground.

Of course, we can also group the same sentences by means of other objects:

 The cheese: The crow has the cheese.

 The tree: The crow is in the tree.

 The ground: The tree is above the ground.
 The fox is on the ground.

To find a good organisation, it is necessary to decide which objects are the
most important. Generally, active objects, including agents, are generally
more important than passive objects.

Natural languages, like English, take object-orientation a step further, by
employing grammatical forms in which the beginning of a sentence indicates
its topic and the following part of the sentence expresses a comment about the
topic. This form often coincides with, but is not limited to, the grammatical
structuring of sentences into subjects and predicates.

The two forms of object-orientation – grouping sets of sentences by
object and structuring individual sentences by object – are often combined in
practice. Consider, for example, the pair of English sentences from (Brown
and Yule, 1983 page 130):

 204

 The prime minister stepped off the plane.
 Journalists immediately surrounded her.

Both sentences are formulated in the active voice, which conforms to the
guidelines for good practice advocated in all manuals of English style.

The two sentences refer to three objects, the prime minister (referred to as
“her” in the second sentence), journalists and the plane. The prime minister is
the only object in common between the two sentences. So, the prime minister
is the object that groups the two sentences together. However, the topic
changes from the prime minister in the first sentence to the journalists in the
second.

Now consider the following logically equivalent pair of sentences:

 The prime minister stepped off the plane.
 She was immediately surrounded by journalists.

Here, the two sentences have the same topic. However, the second sentence
is now expressed in the passive voice. Despite this fact and despite its going
against a naïve interpretation of the guidelines of good writing style, most
people find this second pair sentences easier to understand. This seems to
suggest that people have a strong preference for organising their thoughts in
object-oriented form, which is stronger than their preference for the active
over the passive voice.

Object-orientation is not the only way of structuring and ordering
sentences. In both of the two pairs of sentences above, the sentences are
ordered by the temporal sequence of events.

Now consider the following sequence of sentences:

 The fox praised the crow.
 The crow sang a song.
 The cheese fell to the ground.
 The fox picked up the cheese.

Here the sentences are ordered by temporal sequence. Individual sentences
are structured, not by object, but by agent, as reflected in the use of the active
voice.

Conclusions

In the same way that there are many systems of logic, there are many forms
of object-orientation. In extreme forms of OO, there is no distinction between
active and passive objects, and all interaction between objects is reduced to
sending and receiving messages.

 205

 Extreme OO takes equality of objects too far. Instead of treating all
objects as equal, it would be more natural to distinguish between active and
passive objects. Active objects, which have encapsulated methods, are like
agents, which have internal goals and beliefs. Passive objects, which have no
internal structure, simply participate in external relationships with other
objects.
 Extreme OO also takes the message passing metaphor too far. Instead of
forcing all interactions between objects to be messages, it would be more
natural to distinguish between messages sent from one active object to
another and messages that are really observations or actions.

The real value of object-orientation lies in moderate forms of OO in
which objects are encapsulated, modular collections of relatively self-
contained knowledge, most of which is inherited from more general classes.

The example of natural languages like English shows that logic and OO
have different areas of concern. Logic is concerned with representing
knowledge, whereas OO is concerned with structuring knowledge
representations. It would be interesting to see how OO notions of stucturing
might apply to the collection of sentences that make up this book.

 206

Chapter 15. Biconditionals

As we saw in Chapter 5, negation as failure has a natural meta-logical (or
autoepistemic) semantics, which interprets the phrase cannot be shown
literally, as an expression in the metalanguage or in autoepistemic logic. But
historically the first and arguably the simplest semantics is the completion-
semantics (Clark, 1978), which treats conditionals as biconditionals in
disguise.
 Both the meta-logical and the completion semantics treat an agent’s
beliefs as specifying the only conditions under which a conclusion holds. But
whereas the meta-logical semantics interprets the term only in the meta-
language, biconditionals in the completion semantics interpret the same term,
only, in the object language.
 Suppose for example, that we have complete information about whether
or not Mary will go to the party, and the only belief we have is:

 mary will go if john will go.

Then it follows that: mary will go only if john will go.

The meta-logical interpretation of negation as failure interprets this use of
only if in the meta-language:

 “mary will go if john will go”
 is the only way of showing “mary will go”.

However, the orthodox interpretation of only if in traditional logic interprets
only if in the object-language, understanding sentences of the form:

 conclusion only if conditions

as object-language conditionals of the form:

 conditions if conclusion.

Thus given a single conditional:

 conclusion if conditions

together with an assumption that the conditional describes the only conditions
under which the conclusion holds, traditional logic interprets the conditional
as the object language biconditional:

 conclusion if and only if conditions.

 207

More generally, in the propositional case (where there are no variables),
traditional logic interprets the assumption that the conditionals:

 conclusion if conditions1
 ………
 conclusion if conditionsn

are the only ways of establishing the given conclusion as the biconditional:

 conclusion if and only if conditions1 or ……… or conditionsn .

Written in this form, the conditions of the biconditional can be regarded as
giving a definition of the conclusion.
 If the conditional is a simple fact, then the biconditional is equivalent to a
definition of the form:

 conclusion if and only if true.

If an atomic predicate is the conclusion of no conditional, then it is
equivalent to a definition of the form:

 atomic predicate if and only if false.
Or equivalently: it is not the case that atomic predicate.

This is also equivalent to the constraint:

Constraint: if atomic predicate then false.

The biconditional form is more complicated in the non-propositional case.
For example, suppose that we have complete information about who will go
to the party, and that the only beliefs we have are:

 mary will go if john will go.
 john will go if bob will not go.

Then the biconditional form of the beliefs is:

 a person will go
 if and only if the person is identical to mary and john will go
 or the person is identical to john and bob will not go.

For simplicity, we ignore the non-propositional case in the rest of the book.

 208

Reasoning with biconditionals used as equivalences

The object-level interpretation of only-if was originally used by Clark (1979)
as a semantics for negation as finite failure. But it can also be used in its own
right as a basis for an object-level proof procedure, in which biconditionals
are used as equivalences, to replace atomic formulas that match their
conclusions by their defining conditions (Fung and Kowalski, 1997). Using
biconditionals in this way is a form of backward reasoning, which behaves
almost exactly like backward reasoning with normal conditionals. Moreover,
when applied to an atomic formula inside negation, it behaves almost exactly
like negation as failure. In fact, in every-day informal reasoning, it can be
hard to distinguish between ordinary backward reasoning and reasoning with
equivalences.

Suppose, for example, that we want to determine whether or not mary will
go to the party, but this time using biconditionals to represent the assumption
that the conditionals are the only ways of showing their conclusions:

 mary will go if and only if john will go.
 john will go if and only if it is not the case that bob will go.
 bob will go if and only if false.

Initial goal: mary will go.
Equivalent subgoal: john will go.
Equivalent subgoal: it is not the case that bob will go
Equivalent subgoal: it is not the case that false.

.

Equivalent subgoal: true.

Suppose Bob changes his mind:

 mary will go if and only if john will go.
 john will go if and only if it is not the case that bob will go.
 bob will go if and only if true.

Initial goal: mary will go.
Equivalent subgoal: john will go.
Equivalent subgoal: it is not the case that bob will go
Equivalent subgoal: it is not the case that true.

.

Equivalent subgoal: false.

Now suppose Bob is out of the picture, and we try to show mary will not go
with the beliefs:

 mary will go if and only john will go.
 john will go if and only if mary will go.

 209

Initial goal: it is not the case that mary will go
Equivalent subgoal: it is not the case that

.
john will go

Equivalent subgoal: it is not the case that
.

mary will go
Equivalent subgoal: it is not the case that

.
john will go

Ad infinitum: ……………
.

It is impossible to show that mary will not go and impossible to show that
mary will go. Similarly for John.
 This last result is different from the one we obtained with the same
example when we understood it is not the case that as it cannot be shown,
using negation as failure in Chapter 5. There the result was that mary will not
go, because it cannot be shown that mary will go. This shows that default
reasoning with biconditionals is a form of negation as finite failure.

Using biconditionals to simulate auto-epistemic failure

Reconsider the belief that a person is innocent unless proven guilty. Let’s
see what happens if we replace the meta-level negation it cannot be shown
by the object-level negation it is not the case that and we replace
conditionals by biconditionals17

:

 a person is innocent of a crime
 if and only if the person is accused of the crime
 and it is not the case that the person committed the crime.

 a person committed an act
 if and only if another person witnessed the person commit the act.

 bob is accused of robbing the bank if and only if true.

In addition, we need to represent a form of the closed world assumption for
predicates that do not occur either as facts or as the conclusions of
conditionals, for example to represent the initial situation in which no one
has seen bob commit the crime. This can be expressed as a negative fact in
biconditional form or as a constraint18

17 This discussion glosses over a number of details. For example, if bob is the only
person accused of committing a crime, then this could be represented by a person is
accused of committing a crime if and only if the person is identical to bob and the
crime is robbing the bank, where is identical to is a kind of equality (defined by X is
identical to X).

:

18 There are arguments for both representations. However, in practice, the two
representations behave similarly. The biconditional representation uses backward
reasoning to replace an atom by its definition false. The constraint representation

 210

 a person witnessed bob commit robbing the bank if and only if false.
or if a person witnessed bob commit robbing the bank then false.

To solve a goal, such as showing that bob is innocent of robbing the bank, it
suffices to repeatedly replace atomic formulas by their definitions,
performing obvious simplifications associated with true and false. In the
case of showing that bob is innocent of robbing the bank, this form of
backward reasoning generates the following transformation of the initial
goal into a sequence of equivalent expressions, representing subgoals.
Atomic formulae that are replaced by their definitions are underlined:

Initial goal: bob is innocent of robbing the bank
Equivalent subgoal:

.
bob is accused of robbing the bank

 it is not the case that
 and

 bob committed robbing the bank.
Equivalent subgoal: it is not the case that
 bob committed robbing the bank
Equivalent subgoal: it is not the case that

.

another person

Equivalent subgoal: it is not the case that false.
witnessed bob commit robbing the bank

Equivalent subgoal: true.

This solves the initial goal, because it is equivalent to true. Although
reasoning explicitly with true and false may seem a little awkward, it mirrors
the kind of reasoning that takes place implicitly when reasoning with meta-
level conditions of the form it cannot be shown.
 Reasoning with biconditionals in this way is defeasible, because if we
now replace the assumption that no one witnessed bob commmit robbing the
bank by:

 john witnessed bob commit robbing the bank if and only if true.

then the previous conclusion is withdrawn:

Initial goal: bob is innocent of robbing the bank
Equivalent subgoal:

.
bob is accused of robbing the bank

 it is not the case that
 and

 bob committed robbing the bank.
Equivalent subgoal: it is not the case that
 bob committed robbing the bank

uses forward reasoning from the atom to derive false and to conjoin false to the atom.
In both cases, logical simplification (of the kind described in Chapter A6) transforms
the atom and its conjuncts to false.

.

 211

Equivalent subgoal: it is not the case that

another person

Equivalent subgoal: it is not the case that true.
witnessed bob commit robbing the bank

Equivalent subgoal: false.

Remarkably, not only do both proofs mirror the search for proofs using
negation as failure, but they simulate the autoepistemic character of negation
as failure. This is because any conclusion derived using the biconditional
representation has an implicit global autoepistemic assumption that the
conclusion holds as far as I know.

Abduction or deduction?

Similarly to the way in which reasoning with biconditionals provides an
alternative way of performing default reasoning, it also provides an
alternative way of explaining observations by deduction rather than by
abduction. For example, to explain the observation that the grass is wet, it
uses biconditionals as equivalences to replace closed predicates by their
definitions, leaving open predicates as potential hypotheses:

Belief: the grass is wet if and only if it rained or the sprinkler was on.

Observation and initial goal: the grass is wet
Equivalent subgoal: it rained or the sprinkler was on.

.

Here the predicate the grass is wet is closed, whereas the predicates it rained
and the sprinkler was on are both open and serve as hypotheses to explain the
observation.
 Note that, using deduction with biconditionals, the disjunction or is
expressed in the object language. In contrast, using abduction with
conditionals, the same disjunction would be expressed in the meta-language
by saying that the grass is wet because it rained or the grass is wet because
the sprinkler was on.
 In the same way that forward reasoning can be used to deduce
consequences of hypotheses derived by abduction, forward reasoning can
also be used to deduce consequences of hypotheses derived by means of
biconditionals. For example, if it rained last night, then the clothes outside
will be wet. If you check the clothes, and observe they are dry, then you can
eliminate the possibility that it rained (using the fact that wet and dry are
contraries). This reasoning can be expressed more precisely in the following
way:

Beliefs: the grass is wet if and only if it rained or the sprinkler was on.
 the clothes outside are wet if and only if it rained.

 212

 the clothes outside are dry if and only if true.

Constraint: if the clothes outside are dry and the clothes outside are wet

then false.

Here we represent the fact that wet and dry are contraries as a constraint,
which we write (and use) in the same way as maintenance goals, but with
conclusion false.

Observation and initial goal: the grass is wet
Equivalently (by backward reasoning):

.
it rained

Equivalently (by forward reasoning):
 or the sprinkler was on.

 (it rained and the clothes outside are wet
Equivalently (by forward reasoning):

) or the sprinkler was on.

 (it rained and the clothes outside are wet
 and (if the clothes outside are dry
Equivalently (by backward reasoning):

 then false)) or the sprinkler was on.

 (it rained and the clothes outside are wet and false)
 or the sprinkler was on.
Equivalently: false or the sprinkler was on.
Equivalently: the sprinkler was on.

Here the atom is underlined if it is replaced by its definition using backward
reasoning, or if it is used for forward reasoning.

Deriving cause if effect from effect if cause

Interpreting a conditional conclusion if conditions as a biconditional
conclusion if and only if conditions in diguise explains why it is so easy to
confuse the conditional with its converse conditions if conclusion. It also
explains the relationship between the more natural effect if cause
representation of causality and the more efficient cause if effect
representation.
 For example, given an assumed complete effect if cause representation of
the alternative causes of smoke:

 there is smoke if there is a fire.
 there is smoke if there is teargas.

the completion semantics interprets the representation as a biconditional:

 there is smoke if and only if there is a fire or there is teargas.

 213

One half of the biconditional is the original pair of conditionals. The other
half of the biconditional is the converse of the original pair of conditionals,
and is a conditional with a disjunctive conclusion:

 there is a fire or there is teargas if there is smoke.

Conditionals with disjunctive conclusions are not very informative. If we had
statistical information about the relative frequency of different causes of
smoke, we could be more informative. For example:

 there is a fire with 99.9% probability if there is smoke.
 there is teargas with .1% probability if there is smoke.

This would be analogous to associating probabilities with the alternative
hypotheses in the more natural effect if cause representation.
 But we can obtain a similar effect if we rewrite the conditional having a
disjunctive conclusion as a logically equivalent conditional with an atomic
conclusion and a negative condition:

 there is a fire if there is smoke
 and it is not the case that there is teargas.

This conditional derives fire as the cause of smoke by default, avoiding both
the completely uninformative disjunctive conclusion and the overly
informative probabilistic conclusion.
 Again, we have a case of different levels of representation. The effect if
cause representation is higher-level. But it needs abduction to explain
observations, and such criteria as relative likelihood and explanatory power
to help decide between alternative hypotheses. The cause if effect
representation is lower-level. It gives similar results, but it does so more
efficiently, using deduction instead of abduction.

Truth versus proof in arithmetic

The two interpretations of negation as failure, the two ways of understanding
explanations, and the two ways of representing the relationship between
cause and effect are related to the difference between truth and proof in
arithmetic.
 Arguably, the meta-logical interpretation of negation as failure, the
abductive understanding of explanations, and the representation of cause and
effect in the form effect if cause are all more fundamental than their object-
level, deductive, and cause if effect alternatives. Similarly, truth in arithmetic
is more fundamental than proof.

 214

 For simplicity in mathematical logic, the natural numbers are represented
by repeatedly adding 1 to the number 0, so that X+1 is the number
immediately after X. For example, the numbers 0, 1, 2, 3,…come out looking
like:

 0, 0+1, (0+1)+1, ((0+1)+1)+1, ….

With this representation, arithmetic is just the set of all the properties of
addition and multiplication, defined by the conditionals:

 0 + Y = Y. (X+1) + Y = (Z+1) if X + Y = Z.
 0 × X = 0. (X+1) × Y = V if X × Y = U and U + Y = V

A more precise and more formal representation is given in the additional
Chapter A2, where X+1 is represented by the successor function s(X).
 Forward reasoning with these conditionals generates the addition and
multiplication tables for all of the natural numbers. Backward reasoning
reduces addition and multiplication problems to similar problems for smaller
numbers. For example, here is a computation by backward reasoning,
reducing the multiplication problem 1× 3 to the simpler subproblems of
multiplying 0 × 3 and adding 3 to the result:

Initial goal: (0+1) × (((0+1)+1)+1) = V
Subgoals: 0 × (((0+1)+1)+1) = U
Subgoal: 0 + (((0+1)+1)+1) = V

 and U + (((0+1)+1)+1) = V

which succeeds with: V = (((0+1)+1)+1), i.e. V = 3.

The addition and multiplication tables generated by forward reasoning have a
number of intuitive properties. For example, the order in which two numbers
are multiplied doesn’t matter:

 X × Y = Y × X

The intuition that such (universally quantified) properties are true is due to
the fact that they are true of the set of all the atomic facts that can be derived
from the definitions of addition and multiplication. This notion of truth is
more fundamental than any notion of proof in arithmetic.
 However, the notion of truth in arithmetic is non-constructive, in the same
way that negation as potentially infinite failure is non-constructive. In the
case of negation as failure, showing that the negation of a sentence is true
requires recognising infinite failure. In the case of arithmetic, showing that a
universally quantified sentence is true requires showing that potentially
infinitely many instances of the sentence are true.

 215

 In many, but not all cases, truth can be captured by proof. In the case of
negation as failure, the completion semantics, replacing conditionals by
biconditionals, captures finite failure. Moreover, with the addition of axioms
of induction, the completion semantics can also capture cases where infinite
failure is due to a regular loop.
 Similarly, many properties of arithmetic can be proved by finite means,
using the biconditional representations of addition and multiplication
augmented with axioms of induction. In fact, this representation is equivalent
to the standard set of axioms of arithmetic, called Peano arithmetic. The
analogy between the Peano axioms and the completion and induction axioms
used to prove properties of logic programs was investigated by Clark and
Tarnlund (1977).
 But in arithmetic, as we know from Gödel’s incompleteness theorem,
there exist true sentences (or properties of arithmetic) that cannot be proved
by any finite means. Similarly for logic programs and other conditionals,
there exist true negative sentences that hold by infinite failure that cannot be
proved using the completion, even augmented with axioms of induction or
sophisticated forms of loop detection.
 The incompleteness theorem for arithmetic is arguably the most important
result of mathematical logic in the 20th century. The analogy with negation as
failure shows that the theorem has similar importance for the relationship
between truth and proof in human reasoning more generally.

Conclusions

There are two ways to understand conditional beliefs. One way is to
understand them as representing the semantic structure of all the atomic facts
that can be derived from them by means of forward reasoning. This semantic
structure is the minimal model of the conditionals, which determines the truth
(or falsity) of all other sentences expressed in the same language. The other
way to understand conditional beliefs is as biconditionals in disguise.
 The first way, which is explored in the additional chapters A2, A3, A4
and A6, is arguably more fundamental. It specifies the notion of truth against
which all methods of proof need to be judged for soundness and
completeness. The second way is the standard way of trying to prove such
true sentences. It is sound, but incomplete, even augmented with axioms of
induction.
 Thus both ways of understanding conditionals have their place. The first
way identifies the goal, which is to determine the truth. The second way
seeks to achieve the goal constructively by finite means.
 However, it is not always easy to tell the two approaches apart. For
example, the ALP procedure of the additional Chapter A6, which is designed
to generate and determine truth in minimal models, is a modification of the

 216

IFF proof procedure for showing logical consequence by reasoning with
biconditionals.

 217

Chapter 16 Computational Logic and the Selection
Task

In Chapter 2, we saw that psychological studies of the selection task have
been used to attack the view that human thinking involves logical reasoning,
and to support the claim that thinking uses specialized algorithms instead. I
argued that these attacks fail to appreciate the relationship between logic and
algorithms, as expressed by the equation:

 specialised algorithm =
 specialised knowledge + general-purpose reasoning.

Specialised knowledge can be expressed in logical form, and general-purpose
reasoning can be understood largely in terms of forward and backward
reasoning embedded in an observe-think-decide-act agent cycle.
 I also argued that many of the studies that are critical of the value of logic
in human thinking fail to distinguish between the problem of understanding
natural language sentences and the problem of reasoning with logical forms.
This distinction and the relationship between them can also be expressed by
an equation:

 natural language understanding =
 translation into logical form + logical reasoning.

We saw that even natural language sentences already in seemingly logical
form need to be interpreted, in order to determine, for example, whether they
are missing any conditions, or whether they might be the converse of their
intended meaning. Because of the need to perform this interpretation, readers
typically use their own background goals and beliefs, to help them identify the
intended logical form of the natural language problem statement.
 However, even after taking these problems of representation and
interpretation into account, there remains the problem of reasoning with the
resulting logical forms. This problem is the topic of this chapter.

An abstract form of the selection task

Assume that an agent has been told that a sentence having the logical form:

 if P then Q.

ought to be true, but might be false. Assume, moreover, that P and Q are open
predicates that are directly observable. The abstract form of the selection task

 218

is to determine how the agent should respond to various observations of the
truth values of these predicates.
 I will argue that this is a natural way of presenting the selection task to an
agent in the context of the agent cycle. Because the agent believes that the
conditional ought to be true, it is natural for the agent to use the conditional to
assimilate observations by deriving their consequences. But because the agent
believes that the conditional might be false, it is also natural for the agent to
actively observe whether consequences that ought to be true if the conditional
is true are actually true.
 In our agent model, the agent’s response depends upon whether the agent
interprets the conditional as a goal or as a belief. If the agent interprets it as a
goal, then the possibility that the goal might be false means that the state of
the world may not conform to the goal. But if the agent interprets it as a
belief, then the possibility that the belief might be false means that the belief
may not conform to the state of the world.
 But classical logic does not distinguish between goals and beliefs.
According to classical logic, the correct responses are:

 From an observation of P deduce Q. (modus ponens)
 From an observation of not Q deduce not P. (modus tollens)

However, in psychological studies of some variants of the selection task,
including the original card version, most people:

 From an observation of P deduce Q. (modus ponens)
 From an observation of Q deduce P. (affirmation of the consequent)

They correctly perform modus ponens, but they commit the fallacy of
affirmation of the consequent, and they fail to perform modus tollens. In
theory, there is one additional response they could make:

 From an observation of not P to deduce not Q. (denial of the antecedent)

However, most people make this inference only rarely.
 The challenge is to explain why most people reason correctly in some
cases, and seemingly incorrectly in other cases. Part of the problem, of course,
is that the psychological tests assume that subjects have a clear concept of
deductive inference. But we have seen that even Sherlock Holmes had trouble
distinguishing deduction from abduction. And we have also seen that there is
good reason for this trouble, because abduction can be performed by
deduction if conditionals are understood as biconditionals. This explains why
most subjects commit the deductive fallacy of affirmation of the consequent,
which is not a fallacy at all, when these considerations are taken into account.
 I will argue that, given the above abstract form of the selection task:

 219

• Modus ponens is easy, no matter whether the conditional is

interpreted as a goal or as a belief, because in both cases, forward
reasoning derives Q from an observation of P.

• Affirmation of the consequent is a correct inference if the conditional
is interpreted as the only belief that implies its conclusion. It is
justified either by abduction if only is interpreted in the meta-
language, and by the biconditional formulation of the conditional if
only is interpreted in the object language. However, it is not justified
if the conditional is interpreted as a goal.

• Modus tollens is hard if the conditional is interpreted as a belief,
mostly because it is necessary to connect a positive observation Q’
with the negation not Q of the conclusion of the conditional if P then
Q. In many cases, this connection needs to be made through an
unstated background constraint if Q and Q’ then false.
 In such cases, modus tollens is easier if the conditional is
interpreted as a goal, because then it is natural to reason in advance
of obervations and to compile the conditional and the constraint into
the form if P and Q’ then false. Represented in this form, the
conditional can easily derive if P then false, i.e. not P from the
observation Q’.

• Denial of the antecedent is a theoretical possibility if the conditional
is interpreted as the only conditional implying its conclusion, but is
made harder by the need to derive the negative conclusion not P
from a postive observation P’. Arguably, the need both to interpret
the conditional as the only conditional and to derive a negative
conclusion makes denial of the antecedent harder and therefore less
likely.

A more accurate representation of the selection task

The abstract form of the conditional if P then Q is only an approximation to
the conditionals in the psychological experiments. It would be more accurate
to represent them in the form:

 if X has value u for property p then X has value v for property q.

For example:

 if a card X has letter d on the letter side
 then the card X has number 3 on the number side.

 if a person X is drinking alcohol in a bar
 then the person X has age at least eighteen years old.

 220

In many cases, the properties p and q have only a single value for a given
value of X19

. For example, a card has only one letter on the letter side of a
card, and only one number on the number side of the card. In the case of the
property q, this can be expressed as an integrity constraint:

 if X has value V for property q and X has value W for property q
 then W is identical to V.

where the predicate is identical to is defined by the clause:

 X is identical to X.

For example:

 if a card X has number N on the number side
 and the card X has number M on the number side
 then N is identical to M.

We will see that we need such integrity constraints - or something like them -
to derive negative conclusions from positive observations. A similar
constraint holds for the age of a person:

 if a person X has age at least eighteen years old
 and the person X has age under eighteen years old
 then false.

These integrity constraints are similar to the constraints:

 if predicate and contrary-predicate then false.

that we used to reason with negation when performing abduction, and which
we treated as a species of goal.
 We now consider in greater detail the case in which the conditional is
interpreted as a belief, and afterwards the case in which the conditional is
interpreted as a goal.

The conditional interpreted as a belief.

19 In mathematics this means that the relationship X has value V for property q is a
functional relationship, which in normally written q(X) = V, where q is now a function
symbol.

 221

If an agent understands the conditional as a belief, and has reasons to doubt
the belief, then the agent can test the belief by checking its consequences. If
these consequences are not already derivable from other beliefs, and if they
are observable, then the agent can attempt to observe the consequences to
confirm or refute the belief. For example, in the card version of the selection
task, if the agent observes what is on one side of a card and concludes what
should or should not be on the other side of the card, then the agent can turn
the card over to actively observe whether the conclusion is actually true.
 The situation is similar to the one in which an observation can be
explained by a hypotheses. The agent can test the hypothesis by checking its
consequences. Observing that a consequence is true adds to the weight of
evidence in favour of the hypothesis. But observing that a consequence is
false refutes the hypothesis once and for all, and excludes it from further
consideration.
 Thus, if the validity of a conditional belief is in doubt, then forward
reasoning from a true observation to consequences of the belief and observing
that a consequence is true increases confidence in the belief. But in the case of
a conditional belief with universally quantified variables, a true consequence
does not validate the belief, because other instances of the belief may be false.
On the other hand, the observation of a single false consequence refutes the
belief forever. In concrete versions of the selection task, it is usual to
formulate the instructions to encourage observations of consequences that can
falsify the conditional, and to discourage observations that can only confirm
that an instance of the conditional is true.

Modus Ponens. In Computational Logic, conditional beliefs are used to reason
both backwards and forwards. In particular, given a (passive) observation of a
positive predicate P, forward reasoning with the conditional if P then Q
derives the positive conclusion Q. This is a classically correct application of
modus ponens (together with any instantiations of the variables in the
conditional needed to match the observation with the condition P).
 If the conclusion Q is observable, and there is a reason to check Q,
because there is some doubt whether the conditional is actually true, then the
agent can actively observe whether Q is true. If Q fails to be true, then the
conditional is false. If Q is true, then the instance of the conditional matching
the observation P is true (although other instances may be false).

Affirmation of the Consequent. In Computational Logic, conditionals are also
used to explain observations. Given an observation of Q, backward reasoning
derives P as a candidate explanation of Q. This derivation can be viewed both
as abduction with the conditional if P then Q and as deduction with the
biconditional Q if and only if P. In classical logic, this form of reasoning is
called the fallacy of affirmation of the consequent.

 222

 As in the case of modus ponens, if P is observable, then the agent can
actively observe whether P is true. If P fails to be true, then the belief in its
conditional form fails to explain the observation, even though the belief itself
may be true; but the belief in its biconditional form is definitely false.

Modus Tollens. The main problem with modus tollens is that real
observations are positive and not negative. Negative conclusions have to be
derived from positive observations20

 The positive observation in the card version of the selection task is the
fact:

. The longer the derivation and the larger
the number of distracting, irrelevant derivations, the more difficult it is for the
agent to make the necessary, relevant derivation.

 the fourth card has number 7 on the number side.

To perform modus tollens with the belief:

 if a card X has letter d on the letter side
 then the card X has number 3 on the number side.

it is necessary first to derive the negative conclusion:

 it is not the case that the fourth card has number 3 on the number side.

But this derivation is hard to motivate. Why not also derive the irrelevant
conclusions:

 it is not the case that the fourth card has number 1 on the number side.
 it is not the case that the fourth card has number 2 on the number side.
 it is not the case that the fourth card has number 4 on the number side.
 ….etc.

However, the effect of modus tollens can be obtained more directly, without
the distraction of these additional conclusions, by using the integrity
constraint:

 if
 and the card X has number M on the number side

a card X has number N on the number side

 then N is identical to M.

20 A negative observation can also be obtained from the failure to make a positive
observation. However, the standard selection task examples involve only positive
observations from which “negative observations” need to be derived before modus
tollens can be applied.

 223

Forward reasoning with the observation:

 the fourth card has number 7 on the number side

.

using the constraint derives:

 if
 then 7 is identical to M.

the fourth card has number M on the number side

Backward reasoning using the conditional derives:

 if the fourth card has letter d on the letter side

then 7 is identical to 3.

At this point, the standard pattern of forward and backward reasoning
suggests that the condition the fourth card has letter d on the letter side
should be checked before deriving the conclusion 7 is identical to 3.
However, this condition can be checked only by performing an active
observation. But the active observation is unnecessary if the conclusion is
true, because a conditional with a true conclusion is always true, no matter
whether its conditions are true or false.
 In fact, if the constraint had been in the form:

 if a card X has number N on the number side
 and the card X has number M on the number side
 and N is not identical to M then false.

then we could check instead, the condition 7 is not identical to 3, using
negation as failure and the definition X is identical to X. We would then
obtain the desired result:

 if the fourth card has letter d on the letter side then false.
i.e. it is not the case that the fourth card has letter d on the letter side.

The single condition can then be checked by performing an active
observation.
 This reasoning is a minor variation of the standard pattern:

• Reason forwards to match an observation with a condition of a goal.
• Reason backwards to verify the other conditions.
• Reason forwards to derive the conclusion.
• Reason backwards to solve the conclusion.

 224

The derivation can also be viewed as activating links in a connection graph of
constraint and beliefs:

Arguably, viewed in these terms, the derivation is hard because the
connection between the positive observation and the conditional belief needs
to be made through a constraint/goal that is only loosely related with the
problem statement. I will argue in the next section that when the conditional is
interpreted as a goal, the connection is typically stronger and the derivation
easier.
 We considered the problem of modus tollens in the concrete case of the
original card version of the task. However, similar considerations apply in
other cases in which the conditional is interpreted as a belief. In general, the
harder an agent needs to work to derive a conclusion, the less likely it is that
the agent will be able to do so.
 It is a lot easier to recognise a solution than it is to generate it, because
generating a solution requires seach, but recognising the solution does not.
This would explain why many people fail to apply modus tollens in the
selection task, but still recognize its correct application when they see it.

Denial of the Antecedent. A less common mistake in the selection task is to
conclude not Q from an observation of not P. On the one hand, the inference
can be justified for the same reasons that affirmation of the consequent can be
justified. On the other hand, the inference is hard for the same reasons that
modus tollens is hard. However, since it is not a major issue in the selection
task, we ignore it here.

the fourth card has number
7 on the number side

a card X has number 3 on the number side
if the card X has letter d on the letter side

X is identical to X

Step 0:
Observation

Step 3 or 4:
Active observation

Step 2:
M = 3

Step 3 or 4:
N = M

Step 1:
N = 7
card = fourth card

Constraint: if a card X has number N on the number side
 and the card X has number M on the number side
 then N is identical to M.

 225

Conclusions. Thus if the conditional is interpreted as a belief, then reasoning
with Computational Logic in the agent cycle is compatible with psychological
studies of human performance on the selection task. In both Computational
Logic and human reasoning, modus ponens and affirmation of the consequent
are straight-forward. Modus tollens is possible but hard, mostly because
deriving negative conclusions from positive observations is hard. Denial of
the antecedent, is also possible but hard.
 I will argue in the next section that modus tollens is normally easier if the
conditional is interpreted as a goal.

The conditional interpreted as a goal.

In this book, we have seen a variety of uses for an agent’s conditional goals.
Their primary use is to help the agent maintain a harmonious personal
relationship with the changing state of the world. However, conditional goals
can also serve a secondary function of helping to maintain harmony in the
society of agents as a whole. In both cases, conditional goals regulate the
behaviour of agents, both generating and preventing actions that change the
state of the world.
 In the examples of both the bar version of the selection task and the
security measures on the London underground:

 if a person is drinking alcohol in a bar,
 then the person is at least eighteen years old.

 if a passenger is carrying a rucksack on his or her back,
 then the passenger is wearing a label with the letter A on his or her front.

it is natural to understand the conditional as a social constraint. An agent can
use the constraint to monitor states of the world by observing whether
instances of the constraint are true or false. Observations of false instances
violate the goal/constraint. Observations of true instances comply with the
goal/constraint.
 In well-regulated societies, agents normally conform to the rules, and
violations are exceptional. Therefore, in concrete formulations of the selection
task, in situations where the context makes it clear that the conditional is to be
interpreted as a goal, it is unnecessary to stress that the task is to detect
violations, because preventing violations is the normal purpose of such goals.
In Computing, integrity constraints perform a similar function in monitoring
database updates.
 I will argue that, when an agent interpets the selection task as one of
monitoring compliance with a conditional goal, then the inferences that are
easy in Computational Logic are the ones that are also correct according to the
standards of classical logic. The two main problems are to explain why

 226

affirmation of the consequent does not apply and why modus tollens is easy.
But first we need to confirm that modus ponens is easy.

Modus Ponens. The general pattern of reasoning with conditional goals is to
reason forwards from a fact or assumption that matches a condition of the
goal, backwards to verify the other conditions of the goal, and then forwards
one step to derive the conclusion. This pattern of reasoning includes the
classically correct application of modus ponens as the special case in which
the goal has no other conditions to be verified.
 If the conditional goal is a personal maintenance goal, then the conclusion
is an achievement goal, which the agent can attempt to solve by backward
reasoning and eventually by performing actions. If the conditional goal is a
social constraint, then the agent can actively attempt to observe whether the
conclusion is true. If the agent observes that the conclusion is true, then the
instance of the social constraint triggered by the initial observation or
assumption is satisfied, but if the agent observes that the conclusion is false,
then the social constraint is violated.

Affirmation of the Consequent. If the conditional if P then Q is interpreted as a
belief, then backward reasoning, either directly with the conditional or with
the biconditional can be used to derive P as an explanation of an observation
of Q.
 However, if the task is interpreted as monitoring the truth of the
conditional understood as a goal, then an observation that Q is true
immediately confirms that the conditional if P then Q is true. There is no
point in actively observing whether or not P is true, because the truth value of
P has no influence on the truth value of the conditional. In other words, no
observation of the truth value of P can uncover a violation of the conditional.

Modus Tollens. I argued before that modus tollens is hard when the
conditional is interpreted as a belief, mostly because it is hard to derive
negative conclusions. I will now argue that the derivation of negative
conclusions is normally easier when the conditional is interpreted as a goal.
The argument is supported by experience with the problem of checking
integrity constraints in Computing.
 In Computing, integrity checking is an expensive operation, which needs
to be performed whenever the database is updated. Because many different
integrity constraints can be affected by a single update, it is common to
optimise the constraints by doing as much of the reasoning in advance. For
this purpose, a common optimisation is to convert condition-action rules into
event-condition-action rules. The optimisation is so common, in fact, that
many systems, including active databases (Widom and Ceri, 1996), allow
rules only in event-condition-action form.

 227

 However, the more general conversion of conditional goals into event-
condition-conclusion form can be performed mechanically by reasoning in
advance. For example, the maintenance goal:

 if there is an emergency then get help

can be converted into:

 if there are flames then get help.
 if there is smoke then get help
 if one person attacks another then get help.
 if someone becomes seriously ill then get help.
 if there is an accident then get help.

The reasoning involved in this example was illustrated in Chapter 9 and is
formalised in Chapter A5. But notice that the reduction in Chapter 9 of the
conclusion get help to atomic actions does not affect efficiency to the same
extent as the reduction of the condition there is an emergency.
 The efficiency advantage of the converted rules is that they can be
triggered directly by external observations without the need to reason
forwards with intermediate beliefs. The disadvantage is that in some cases the
number of converted rules can become prohibitively large.
 In the case of the conditional goal in the selection task, if the derivation of
negative conclusions from positive observations is by means of a constraint of
the form if Q and Q’ then false, then this optimisation can be performed by
activating the link between the conditional and the constraint in advance of
any input observations. This compiles the initial conditional goal into a
denial:

Conditional goal: if P then Q.

Constraint: if Q and Q’ then false.

Compiled goal: if P and Q’ then false.
Or equivalently: it is not the case that P and Q’.

In this form, an observation that Q’ is true triggers the compiled goal, which
initiates an active observation of the value of P. If P is true then Q’ violates
the conditional goal. If P is false then Q’ satisfies the conditional goal. This is
not quite simple modus tollens, but it is the behaviour associated with modus
tollens, namely actively observing the truth value of P, given an observation
of the contrary of Q.
 For example, in the bar version of the selection task:

 228

Conditional goal: if a person X is drinking alcohol in a bar
 then the person X has age at least eighteen years old.

Constraint: if a person X has age at least eighteen years old
 and the person X has age under eighteen years old
 then false.

Compiled goal: if a person X is drinking alcohol in a bar

 and the person X has age under eighteen years old
 then false.
Or equivalently: it is not the case that
 a person X is drinking alcohol in a bar

 and the person X has age under eighteen years old

Denial of the Antecedent. Since only beliefs, and not goals, are used to
explain observations, it is not possible to conclude not Q from an observation
of not P. In particular, there is no link between:

Conditional goal: if P then Q.

Constraint: if P and P’ then false.

where P’ is the contrary of P.

Conclusions. Thus if the conditional is interpreted as a goal, then neither
affirmation of the consequent nor denial of the antecedent is applicable, and
modus ponens is straight-forward. Modus tollens is easy under the
assumption that the focus on checking for violations encourages reasoning in
advance, compiling the goal into a form that makes violations easier to
detect.
 This assumption about compiling the goal is similar to the argument of
(Sperber et al, 1995), that subjects are likely to reason in accordance with
classical logic and to perform modus tollens, if they interpret the conditional if
P then Q as a denial:

i.e. it is not the case that P and not Q.
or equivalently if P and not Q then false.

This analysis of the selection task is also compatible with the evolutionary
psychology view that people have an inbuilt cheater detection algorithm.
However, in Computational Logic, cheater detection is just a special case of
detecting violations of social integrity constraints.
 Applied to the bar version of the selection task compiled into the form:

 229

 if a person X is drinking alcohol in a bar
 and the person X has age under eighteen years old

 then false.

general-purpose integrity checking monitors observations that match one of
the conditions of the constraint. Given an observation of a person drinking
alcohol, the agent can attempt to actively observe the age of the person, and if
the person’s age is under eighteen years old, then the agent can infer that there
has been violation of the goal. Similarly, given an observation of a person
who is under eighteen years old, the agent can actively check whether the
person is drinking alcohol, and if he is, then the agent can similarly infer a
violation.

Security measures reconsidered

I started Chapter 2 with the imaginary example of improving security on the
London underground:

 if a passenger is carrying a rucksack on his or her back,
 then the passenger is wearing a label with the letter A on his or her front.

To solve the selection task in this example, the simple analysis of this chapter
needs to be refined.
 I don’t think there is any doubt that the conditional in this example is a
social constraint. There are no problems with modus ponens, affirmation of
the consequent or denial of the antecedent. But what about modus tollens?
 As in all the other examples, the main problem is to derive a negative
conclusion from a positive observation. You might notice, for example, that a
person on the underground has a rucksack on his back, is accompanied by a
dog or smoking a cigarette. But you do not spontaneously observe that the
person does not have the letter A pinned on his front, is not accompanied by a
scottish terrier or is not smoking a malboro.
 I have argued in this chapter that to obtain the effect of modus tollens, it is
necessary to connect a passive positive observation Q’ with a negative
conclusion not Q. I suggested that in many cases the necessary connection is
through an unstated background constraint if Q and Q’ then false. But is there
such a constraint in this example? For example, the constraint:

 if a person X has a letter L on the front
 and the person X has a letter M on the front
 then L is identical to M.

is obviously not good enough. What if the person is wearing a peace symbol
on his front? Or is topless? Or is obscuring his front with a replica Roman

 230

shield? There are just too many such possibilities to count as the contrary Q’
of the conclusion Q.
 To obtain the effect of modus tollens we need to compile the conditional
into a form that can be triggered by a relevant, passive positive observation.
The simplest such representation is probably:

 if a person is a passenger on the underground
 and the person is carrying a rucksack on his or her back,
 and the person is not wearing a label with the letter A on his or her front
 then false.

The is a minor variation of the form if P and not Q then false identified by
(Sperber et al, 1995) as facilitating the application of modus tollens.
 Given this compiled form of the conditional and a positive observation of
a passenger on the underground, you can actively observe either whether the
person is carrying a rucksack on his back or whether he is wearing the letter A
on his front. If it is easier to check the latter of these two conditions, and you
fail to observe the letter A on his front, then you should check the other
condition, to see whether he has a rucksack on his back. If not, then the
conditional has been violated. This is the behaviour associated with classical
modus tollens.
 The reader who studies Chapter A6 and pays close attention to the
analysis of modus tollens for the card version of the selection task in this
chapter will appreciate that what is involved in both of these examples is an
inference rule of the form:

Given an integrity constraint of the form if P then Q or R
derive the integrity constraint if P and not Q then R.

for the special case where R is just false. This inference rule is the converse of
the negation rewriting rule of Chapter A6.
 What the security measure example shows is that the inference rules of
Computational Logic need to be refined for dealing with certain cases of
negation, but as they currently stand they are pretty close to what is needed in
problems like the selection task.

Conclusions

The selection task is a worthy challenge for any theory of human reasoning.
In this chapter, I argued that with certain qualifications Computational Logic
embedded as the thinking component of the agent cycle is capable of meeting
that challenge. Computational Logic explains both cases where people reason
seemingly incorrectly according to the norms of classical logic and cases
where they reason correctly. It also explains why people might be able to

 231

recognize a correct solution even when they are unable to produce it
themselves.
 I have argued that this analysis of the selection task is compatible with
other analyses, most notably with that of (Sperber et al, 1995), but even with
that of (Cosmides, 1985, 1989) if generously understood.
 But as the example of the imaginary security measures on the London
underground shows, the inference rules of Computational Logic need further
elaboration. It is possible that the selection task and other psychological
studies of human reasoning may help to suggest some of the ways of filling in
the details.

 232

Chapter 17. Meta-logic

Do you want to get ahead in the world, improve yourself, and be more
intelligent than you already are? If so, then meta-logic is what you need.
 Meta-logic is a special case of meta-language. A meta-language is a
language used to represent and reason about another language, called the
object language. If the object language is a form of logic, then the meta-
language is also called meta-logic. Therefore, this book is an example of the
use of meta-logic to study the object language of Computational Logic.
 However, in this book we use meta-logic, not only to study
Computational Logic, but to do so in Computational Logic itself. In other
words, the language of meta-logic, as understood in this book, is also
Computational Logic. So, to paraphrase the first paragraph of this chapter, if
you want to be more intelligent, you should use Computational Logic as a
meta-logic to think about thinking.
 In fact, even if you are satisfied with your own level of intelligence, you
can use meta-logic to simulate the thinking of other agents, whether you
believe they are more or less intelligent than you are. For example, an
intelligent fox could use meta-logic to simulate the thinking of a stupid crow.
 We have already touched upon some of the applications of meta-logic as
early as Chapter 3, where we used it to represent the definition of truth. We
also used it in Chapter 6, to represent the purposes of subsection 1.1 and the
subgoal of satisfying the Secretary of State, and in Chapter 13, to represent
the situation calculus and event calculus. In this chapter, we will focus on its
use to represent and reason about reasoning. Here is a simple example, in
which the meta-language terms P, (P if Q), Q and (P and Q) name object-
language sentences. The parentheses are used to avoid ambiguities:

meta1: an agent believes P
 if the agent believes (P if Q) and the agent believes Q.

meta2: an agent believes (P and Q)
 if the agent believes P and the agent believes Q.

The example may seem fairly pointless, but it is a solid foundation on which
other, more elaborate examples can be built. But even in this simple case, the
example illustrates how an agent can be aware of its own thinking, even if
that thinking may not be very exciting.
 More elaborate variants of this example have wide-spread, practical use in
Computing, to implement meta-interpreters, which are computer programs
written in a meta-language to implement an object-language. Typically, the
object-language implemented in this way provides some desirable features
missing from the meta-language itself.

 233

 In English, it is common to use quotation marks to distinguish sentences
and other syntactic entities from their names. So for example, “Mary” is the
name of Mary, and “Mary is an intelligent agent” is the name of the sentence
inside the quotes. However, in many practical applications in Computing, it
turns out that quotation marks and other naming devices are unnecessary,
because the context makes it clear whether an expression belongs to the
object-language or the meta-language.
 Here is an example of the use of meta-logic to implement object-level
reasoning with disjunction (P or Q), without using disjunction in the meta-
language.

meta3: an agent believes P
 if the agent believes (P or Q) and the agent believes (not Q).

The terms or and not in this meta-sentence are not logical connectives in the
meta-language, but are names of logical connectives in the object-language.
 We will use meta3 to solve the wise man puzzle later in this chapter. We
will also need to reason that if an agent observes whether or not a fact is true,
then the agent believes the result of the observation. In the solution of the
wise man puzzle, this reasoning is needed only for the case of a negative
observation, which is an instance of negation as failure:

meta4: an agent believes (not Q)
 if the agent observes whether Q
 and not (Q holds).

Here the expression not occurs at both the object-level and the meta-level.
The first occurrence of not names the logical connective not of the object-
language, but the second occurrence of not is a logical connective in the
meta-language. This use of the same syntax for the object-language and meta-
language is called ambivalent sytax. It is not ambiguous, provided the
different usages can be distinguished by their context.

The semantics of belief

Without the use of quotation marks or some other device for naming
sentences, meta-logic looks like a modal logic. In modal logic, believes is a
logical connective like the connectives if and and. Even more remarkable, the
axioms of belief meta1 and meta2 in meta-logic are virtually indistinguishable
from the axioms of belief in modal logic. But meta-logic and modal logic
have different semantics.
 The modal logic semantics of belief is similar to the possible world
semantics of time, which we discussed briefly in Chapter 13. In modal logic,
sentences are given a truth value relative to a possible world W embedded in

 234

a collection of worlds. In such a collection of possible worlds, an agent
believes a proposition P in a possible world W, if P is true in every possible
world accessible to the agent from W.
 In meta-logic, an agent believes P if P is a belief in the agent’s language
of thought. With this meta-logical semantics of belief, the meta-beliefs meta1
and meta2 are literally false, because they fail to take into account the
limitations of real agents in practice. For this reason, the believes meta-
predicate might be better called the can-be-shown-in-theory predicate. In this
respect, it is similar to negation as failure, which might similarly be called
cannot-be-shown-in-theory.
 The relationship between modal logics and meta-logics of belief is a
complex issue, about which there is still no general agreement. However in
Computing, the combination of ambivalent syntax with meta-logical
semantics has proved to be very useful in practice. For this and other reasons,
it is this representation of belief that we use in this chapter.

How to make a good impression

Suppose you believe:

 mary is impressed with a person
 if mary believes the person is well-bred.

mary believes everyone who speaks the queen’s english
and has a noble character is well-bred.

Or, to put the second sentence more precisely:

mary believes ((a person is well-bred if the person speaks the queen’s english
and the person has a noble character) holds for all persons).

Intuitively, it follows that Mary will be impressed with you if she believes
you speak the Queen’s English and have a noble character. It doesn’t matter
whether you really do speak the Queen’s English or not, or whether you do
have a noble character or are a complete scoundrel. What matters is only
what Mary thinks about you. On the other hand, whether or not Mary believes
she is impressed is not the issue. It’s whether she actually is impressed that
counts.
 Making these intuitions water-tight is not be as simple as you might think.
Among other things, you need to reason that, because Mary believes in
general that a property holds for all people, then for every person she believes
in particular that the same property holds for that person. For this, you need
an extra meta-level belief, such as:

 235

meta5: an agent believes (S holds for a person)
 if the agent believes (S holds for all persons)

This belief is similar to the if-half of the definition of truth for universally
quantifed sentences mentioned in passing at the end of Chapter 3 and
presented more formally in Chapter A2. As in chapters 3 and A2, the meta-
belief can be expressed more generally for arbitrary types, and not only for
the type of persons. However, meta5 is simpler and sufficient for our
purposes.
 To understand better the consequences of your beliefs, it helps to put all
the relevant beliefs together in the same connection graph. The meta-beliefs
meta3 and meta4 are not relevant in this example, and so their connections are
not displayed.

mary believes ((a person is well-bred if the person speaks the queen’s
english and the person has a noble character) holds for all persons).

meta2: an agent believes (P’ and Q’)
 if the agent believes P’
 and the agent believes Q’.

 mary is impressed with a person
 if mary believes the person is well-bred.

meta1: an agent believes P
 if the agent believes (P if Q) and the agent believes Q.

meta5: an agent believes (S holds for a person)
 if the agent believes (S holds for all persons)

agent = mary
S = (a person is well-bred if the person speaks the queen’s
english and the person has a noble character)

agent = mary
P holds for a person = a person is well-bred

(P if Q) = (S holds for a person) Q = (P’ and Q’)

 236

The connection graph can be simplified by reasoning in advance, selecting
any link and deriving the resolvent, as described in detail in Chapter A5. In
fact, several links can even be activated in parallel. Suppose, in particular,
that we activate the two links among the three meta-beliefs meta1, meta2 and
meta5. We can replace the three general meta-beliefs by the resulting more
specialised meta-belief:

The resulting connection graph can be further simplified, by activating the
remaining two links and deriving:

 mary is impressed with a person
 if mary believes the person speaks the queen’s english
 and mary believes the person has a noble character.

Now, provided you are indeed a person, then this conclusion is the one you
were after.

How to satisfy the Secretary of State

mary believes ((a person is well-bred if the person speaks the queen’s
english and the person has a noble character) holds for all persons).

 mary is impressed with a person
 if mary y believes the person is well-bred.

 an agent believes P holds for a person
 if the agent believes ((P if P’ and Q’) holds for all persons)
 and the agent believes P’ holds for the person
 and the agent believes Q’ holds for the person.

agent = mary
P = a person is well-bred
P’ = the person speaks the queen’s english
Q’ = the person has a noble character

agent = mary
P holds for a person = a person is well-bred

 237

Here is another application of the three meta-beliefs meta1, meta2 and meta5,
but with a different purpose. Suppose, this time, that you want to think like
the Secretary of State, either because you aspire to take his place one day, or
because you have applied to naturalise as a British citizen and you want to
understand what he will think about your application. Suppose, in particular,
that you want to undertand whether the secretary of state is satisfied that you
fulfil the requirements of schedule 1 for naturalisation by 6.1, which is a
problem left over from the chapter on how to be a British citizen.
 To simplify matters, suppose that your application for naturalisation is
based on having been resident in the UK and not on any past or future service
to the crown. So the two most relevant provisions suitably simplified are:

sec1: the secretary of state may grant a certificate of naturalisation

 to a person by section 6.1
 if the person applies for naturalisation
 and the person is of full age and capacity
 and the secretary of state is satisfied that
 the person fulfils the requirements of schedule 1

for naturalisation by 6.1
 and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

sec2: a person fulfils the requirements of schedule 1 for naturalisation by 6.1
 if the person fulfils the residency requirements of subparagraph 1.1.2
 and the person is of good character
 and the person has sufficient knowledge of english,
 welsh, or scottish gaelic
 and the person has sufficient knowledge about life in the uk
 and the person intends to make his principal home in the uk
 in the event of being granted naturalisation.

The problem is how to link the third condition of the first provision sec1 with
the conclusion of the second provision sec2. The problem is similar to the
previous one of trying to determine whether Mary will be impressed.
 Obviously, to say that the Secretary of State is satisfied that something
holds is another way of saying that he believes that something holds.
Therefore, to simulate what the Secretary of State thinks about your
application for naturalisation, you can replace the phrase is satisfied that by
believes and use any relevant meta-beliefs about beliefs.
 You also need to reflect one level up, and assume that the Secretary
believes all the provisions of the British Nationality Act, and the second
provision sec2 in particular. We can put all the relevant provisions and
assumptions together with the relevant meta-beliefs in the same connection

 238

graph. To avoid unnecessary clutter, the matching instantiations of variables
are not displayed.
 Perhaps not surprisingly, this connection graph has a similar structure to
the connection graph for impressing Mary:

the secretary of state believes
((a person fulfils the requirements of schedule 1 for naturalisation by 6.1
 if the person fulfils the residency requirements of subparagraph 1.1.2
 and the person is of good character
 and the person has sufficient knowledge of english,
 welsh, or scottish gaelic
 and the person has sufficient knowledge about life in the uk
 and the person intends to make his principal home in the uk
 in the event of being granted naturalisation)
 holds for all persons).

meta2: An agent believes (P’ and Q’)
 if the agent believes P’
 and the agent believes Q’.

the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state believes the person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

meta1: An agent believes P
 if the agent believes (P if Q) and the agent believes Q.

meta5: An agent believes (S holds for a person)
 if the agent believes (S holds for all persons)

 239

Here the clauses meta1 and meta2 contain additional implicit, internal links
between their conditions and conclusions. The internal link in meta1 is not
needed in this example, but the internal link in meta2 needs to be activated
three times, to deal with the four conditions of the requirements of schedule
1. Activating all but the top-most link gives us the simplified connection
graph, which now contains the previously missing link between the two
original provisions that we started with:

To solve the problem left over from the chapter on how to be a British
citizen, it suffices to replace the term believes by the phrase is satisfied that.

A more flexible way to satisfy the Secretary of State

I would not blame you if you did not find these arguments entirely
convincing. You might think, for example, that the Secretary of State should
be more flexible, allowing for example a strong belief that a person has good
character to compensate for a weak belief that the person has sufficient
knowledge of English, Welsh or Scottish Gaelic. Fortunately, meta-logic

the secretary of state believes a person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
if the secretary of state believes that
 the person fulfils the residency requirements of subparagraph 1.1.2
and the secretary of state believes that the person is of good character
and the secretary of state believes that
 the person has sufficient knowledge of english, welsh, or scottish gaelic
 and the secretary of state believes that
 the person has sufficient knowledge about life in the uk
and the secretary of state believes that
 the person intends to make his principal home in the uk
 in the event of being granted naturalisation.

the secretary of state may grant a certificate of naturalisation
to a person by section 6.1
if the person applies for naturalisation
and the person is of full age and capacity
and the secretary of state believes the person fulfils
 the requirements of schedule 1 for naturalisation by 6.1
and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

 240

makes it possible to represent such more flexible ways of judging whether a
conjunction of conditions implies a conclusion. For example, we could
replace the two meta-beliefs meta1 and meta2 by:

meta1’: an agent believes P
 if the agent believes (P if Q)
 and the agent believes Q with strength S
 and S > t.

meta2’: an agent believes (P and Q) with strength S
 if the agent believes P with strength SP
 and the agent believes Q with strength SQ
 and SP + SQ = S.

If you are familiar with neural networks of the brain, you will see a
resemblance between such networks and meta1’ and meta2’. The condition S
> t is similar to the requirement that, for a neuron to fire, the strength of the
inputs to the neuron must exceed a certain threshold t. The sum SP + SQ = S
corresponds to summing the strengths of all the inputs of a neuron. The
neural network analogy could be pursued further, by associating weights with
the conditions P and Q. So for example, having good character might have
greater weight than the ability to speak one of the native British languages.
 At first sight, meta1’ and meta2’ may seem a long way from a represention
of Computational Logic as the language of an agent’s thoughts. But bear in
mind that an implementation of the connection graph proof procedure needs a
strategy for activating links. Meta1’ and meta2’ can be thought of as an
approximate representation of the best-first strategy sketched in chapters 4
and A5. But in any case, they show the power of a meta-logic without an
explicit notion of strength of belief to represent an object-level logic in which
strength of belief is explicit.

The two wise men

In this example, we will investigate a more impressive use of meta-logic to
simulate the thinking of another agent, to solve a problem that cannot be
solved by object-level thinking alone.
 The problem is usually formulated with a king and three wise men. To
simplify the problem and to bring it up-to-date, we will consider a queen and
two wise men version of the story. To avoid any embarassment to Mary, John
and Bob, we will refer to the participants in the story simply as “the Queen”,
“wise man one” and “wise man two”:

There are two wise men. Both of them have mud on their face. Each can
see the mud on the other wise man’s face, but not the mud on his own.

 241

The Queen tells them both that at least one of them has mud on his face.
After a short while, the first wise man announces that he does not know
whether he has mud on his face. The second wise man, who knows how
to do meta-level reasoning, after a short pause, declares that he knows
that he has mud on his face.

Wise man two can solve the problem by reasoning in two steps as follows:

Step 1: Wise man one knows that he has mud on his face
 or I have mud on my face.

 So if wise man one can see that I do not have mud on my face,
 then he would know that he has mud on his own face.

Step 2: Since wise man one does not know that he has mud on his face,
he does not see that I do not have mud on my face, and
therefore he must see that I do have mud on my face.

This kind of reasoning is a little more complicated than it may seem, partly
because it involves reasoning about knowing and seeing. But “seeing is
believing”, and “knowing” is a special case of “believing” too. So the
solution can be reformulated in terms of belief. Here is a connection graph
representation of the reasoning involved in step 1 formulated in terms of
belief:

Step 1 can be broken down into two substeps. The first substep performs
forward reasoning with wise1 and wise2, which in effect replaces meta3 by
meta3’ and meta4 by meta4’.

meta3: an agent believes P
 if the agent believes (P or Q) and the agent believes (not Q).

meta4: an agent believes (not Q)
 if the agent observes whether Q and not(Q holds).

wise1: wise man one believes
 (wise man one has mud on his face
 or wise man two has mud on his face).

wise2: wise man one observes whether
 (wise man two has mud on his face).

 242

The second substep, which activates the link between meta3’ and meta4’, is a
kind of forward reasoning with an assumption:

Step 2 connects the result of reasoning in step 1 with wise man one’s
assertion that he does not know whether he has mud on his face. Expressed in
terms of belief, this assertion has two subparts: He doesn’t believe that he has
mud on his face, and he doesn’t believe that he does not have mud on his
face. Only the first subpart is relevant to the solution:

The result of step 2 is equivalent to:

The equivalence can be justified either as reasoning with the totality
constraint not wise man two has mud on his face or wise man two has mud on
his face of chapters A4 and A6 or as using the negation rewriting rule
(replace if not P then false by P) of Chapter A6.

conclusion: wise man two has mud on his face.

result of step 2: if not wise man two has mud on his face then false.

result of step 1: wise man one believes wise man one has mud on his face
 if not wise man two has mud on his face.

wise0: if wise man one believes wise man one has mud on his face
 then false.

result of step 1: wise man one believes wise man one has mud on his face
 if not wise man two has mud on his face.

meta3’: wise man one believes wise man one has mud on his face
 if wise man one believes (not wise man two has mud on his face).

meta4’: wise man one believes (not wise man two has mud on his face)
 if not wise man two has mud on his face.

 243

The connection graph solution is presented in the style of a typical
mathematical proof, rather than in the style of the general pattern of
reasoning within the agent cycle.
 To present the solution as an instance of the general pattern, we need an
observation to trigger the pattern. Actually, in this example, there are two
observations, the Queen’s assertion that one of the wise men has mud on his
face, and wise man one’s assertion that he does not know whether he has
mud on his face. For simplicity, let’s ignore the first observation, since it
doesn’t really lead anywhere (for the same reason that wise man one says that
he doesn’t know whether he has mud on his face).
 Let’s focus instead on wise man two’s response to the second
observation, expressed as the positive atomic sentence:

wise-1: wise man one asserts I do not know whether
 (wise man one has mud on his face)

Whereas in the connection graph solution we took the negative conclusion:

wise0: if wise man one believes wise man one has mud on his face then false.

as our starting point, now we need to derive the negative conclusion wise0
from the positive observation wise-1 using an appropriate constraint (similar
to the derivation in the selection task in Chapter 16).
 Intuitively, wise man two is justified in deriving the negative conclusion
from the positive observation, if wise man two believes that wise man one’s
asssertion can be trusted. This belief can be represented at different levels of
abstraction. Here is a fairly concrete representation of the belief that wise
man one is trustworthy:

 wise-2: if wise man one asserts I do not know whether P
 and wise man one believes P then false.

Obviously, this belief could be derived from more general beliefs, for
example from a more general belief that all wise men are trustworthy.
 We can now present wise man two’s solution of the problem as a special
case of the general pattern:

Observation, wise-1: wise man one asserts I do not know whether
 (wise man one has mud on his face).

Forward reasoning with wise-2:
wise0: if wise man one believes wise man one has mud on his face

 then false.

Backward reasoning with meta3 to verify the other condition of wise-2:

 244

 if ((wise man one believes wise man one has mud on his face) or Q)
 and wise man one believes (not Q) then false.

Backward reasoning with wise1:
 if wise man one believes (not wise man two has mud on his face
 then false.

)

Backward reasoning with meta4:
 if wise man one observes whether wise man two has mud on his face
 and not wise man two has mud on his face then false.

)

Backward reasoning with wise2:
 if not wise man two has mud on his face then false.
Or equivalently:
 wise man two has mud on his face.

This solution is an instance of the general pattern, used not to derive a plan of
actions to solve an achievement goal, generated by the triggering of a
maintenance goal, but to generate an explanation of an observation. In this
instance, the general pattern generates wise man two has mud on his face as
an explanation of the observation wise man one asserts I do not know
whether (wise man one has mud on his face).

Combining object-language and meta-language

You may not have noticed that I cheated you. The three examples in this
chapter are not represented strictly in meta-logic alone, but rather in a
combination of object-language and meta-language. For example, the
sentence:

 mary is impressed with a person
 if mary believes the person is well-bred.

combines an object-level conclusion with a meta-level condition. This
combination makes for a much more expressive language than an object or
meta-language alone. It is made much simpler by using an ambivalent syntax.
 But not all applications of meta-logic can benefit from the simplifications
of ambivalent syntax. Some applications of meta-logic only make sense if the
distinction between using sentences and mentioning them is made explicit in
the syntax. The usual way of doing this in English is to use quotation marks.
But it is also possible to name sentences and other syntactic entities by
constant symbols and other expressions, like meta1 – meta5, as is common in
Mathematics.

 245

 The use of constants to name sentences makes it possible for sentences to
refer to themselves. The most famous self-referential sentence is the liar
paradox:

This sentence: This sentence is false.

The sentence is a paradox, because if it is true, then it is false, and if it is
false, then it is true.
 In formal logic, a common solution to such paradoxes is to ban self-
referential sentences completely. But most self-referential sentences are
completely innocuous. For example:

This sentence: This sentence contains 37 characters.

is true if you count spaces, and is false if you do not.
 In fact, banning self-referential sentences would outlaw one of the most
important theorems of mathematics and logic of all time, Gödel’s
Incompleteness Theorem. The proof of the Theorem constructs a true, but
unprovable, self-referential sentence of the form:

 this sentence cannot be proved.

In Gödel’s construction, sentences and other syntactic expressions, including
proofs, are named by a numerical code. It is because names are represented
by numbers that sentences about numbers can refer to themselves.
 A number of commentators, including most notably J. R. Lucas (1959)
and Roger Penrose (1989), in his prize-winning book, have argued that the
Incompleteness Theorem implies that people are not machines, because they
can recognise true sentences that a machine cannot prove. According to Hao
Wang (1974), Gödel himself also held similar views.
 However, it seems that most logicians and philosophers disagree with this
interpretation of the Incompleteness Theorem. Stewart Shapiro (1989), for
example, points out that, given any constructible set of axioms of arithmetic
to which Gödel’s theorem applies, the construction of the true, but
unprovable sentence is entirely mechanical. This sentence could be added to
the axioms, but then there would be a new, true, but unprovable sentence,
which could also be added to the axioms. This process of constructing and
adding true, but previously unprovable sentences can be continued ad
infinitum, and beyond (Feferman, 1962).

Conclusions and further reading

The combination of object-logic and meta-logic is a powerful knowledge
representation and problem-solving tool, which can be used by computers

 246

and humans alike. In Computing, it is used routinely to implement more
powerful object-languages in simpler meta-languages. In human thinking, it
allows people to reflect upon their own thoughts and to simulate the thinking
of other people.
 The combination of object-logic and meta-logic is also the key to the
proof of the Incompleteness Theorem. The Theorem shows that by looking at
an object language, arithmetic in this case, from the perspective of the meta-
language, it is possible to solve problems that cannot be solved in the object
language alone.
 The formal underpinnings of meta-logic and its combination with object-
logic in a logic programming setting are surveyed in (Perlis and
Subrahmanian, 1994), (Hill and Gallagher, 1998) and (Costantini, 2002).
Gillies (1996) discusses the significance of Gödel’s theorem for the question
of whether humans can solve problems that are not solvable by machines.

 247

Conclusions

I have made a case for a comprehensive, logic-based theory of human
intelligence, drawing upon and reconciling a number of otherwise competing
paradigms in Artificial Intelligence and other fields. The most important of
these paradigms are production systems, logic programming, classical logic
and decision theory.

Unification of competing paradigms

The production system cycle, suitably extended, provides the bare bones of
the theory: the observe-think-decide-act agent cycle. It also provides some of
the motivation for identifying an agent’s maintenance goals as the driving
force of the agent’s life.
 Logic programming opens the door to abductive logic programming, in
which beliefs are expressed as conditionals in logic programming form, and
goals are expressed in a variant of the clausal form of classical logic. Open
predicates represent the interface between thoughts in the agent’s mind and
things in the external world.
 The agent interacts with the external world through its observations,
which it assimilates into its web of goals and beliefs, and through the actions
it attempts to execute. Decision theory provides the agent with a normative
theory for deciding between alternative actions, taking into account the
uncertainty and the utility of their expected outcomes. It also provides a
bridge to more practical decision-making methods.
 In addition to these main paradigms explicitly contributing to the logic-
based agent model, other paradigms support the model implicitly.

Relationships with other paradigms

In Computing, the agent model receives support, not only from logic
programming, deductive databases and default reasoning, but also from
moderate forms of object-orientation. Whereas in extreme object-orientation
objects interact only by sending and receiving messages, in moderate forms,
objects are like agents that interact with one another through the medium of a
shared environment.
 However, the agent model receives its greatest support from paradigms
outside Computing. Most of these paradigms, like William’s (1990, 1995)
guidelines for good writing style, Checkland’s (2000) soft systems
methodology, Hammond, Keeney and Raiffa’s (1999) Smart Choices, and
Baron’s (2008) characterisation of thinking as search plus inference, are
informal theories, which are compatible with the more formal logic-based
agent model.

 248

 The agent model has also been influenced both by formal and informal
theories of legal reasoning. This is most obvious in relation to rule-based
theories, which hold that rule-based law promotes consistency, transparency
and replicability. Legal rules share with logical conditionals the properties
that rules need not be fully specified, may be subject to exceptions, and may
hold only by default.
 In legal reasoning and many other fields, rule-based reasoning operates in
tandem with case-based reasoning. Although the two kinds of reasoning may
seem to be conflicting paradigms, it can be argued that they are
complementary. For one thing, rules are often generated by induction from
cases. For another thing, rules are refined by evaluating their application in
particular cases, and modifying them if their consequences are judged to be
inappropriate. The conditional form of rules facilitates their modification,
because unacceptable conclusions can be withdrawn by adding extra
conditions, and missing conclusions can be added by adding extra rules.
 This process of using cases to generate and modify rules is the basic
technique of inductive logic programming (Muggleton and De Raedt, 1994),
which is a branch of machine learning in Artificial Intelligence. Donald
Gillies (1996) argues that the achievements of inductive logic programming
in such applications as generating expert systems and discovering laws of
protein structure have significant implications for the problem of induction in
the philosophy of science.
 Unfortunately, I have neglected this aspect of Computational Logic, as
well as other important areas. In particular, although I have touched upon the
need to integrate judgements of uncertainty into the decision-making
component of the agent cycle, I have not explored the broader relationships
between Computational Logic and Probability Theory. Much of the work in
this area combines probabilistic reasoning with inductive logic programming.
(De Raedt et al., 2008) contains a survey of representative work in this active
research area.
 The other major area that I have neglected is the relationship between
Computational Logic, neural networks and other connectionist models of the
brain. Although I have suggested a connectionist interpretation of connection
graphs, most of the work in this area has concerned the relationship between
logic programming and neural networks, starting with (Hölldobler and
Kalinke, 1994) and including (d'Avila Garcez, Broda and Gabbay, 2001) and
(Stenning and van Lambalgen, 2008). A good overview of the challenges in
this area can be found in (Bader, Hitzler and Hölldobler, 2006).
 The list of such topics goes on for longer than I can continue, and it has to
stop somewhere. But before finishing, I would like to mention briefly one
more area, which is too important to leave out, and where Computational
Logic may be able to contribute.

http://portal.acm.org/author_page.cfm?id=81100035610&coll=GUIDE&dl=&trk=0&CFID=98543464&CFTOKEN=53564855�

 249

Conflict resolution

We have seen that conflicts can arise when a single agent needs to make a
choice between two or more actions or goals: The crow wants to eat the
cheese and sing at the same time. The louse wants to eat and look for a mate.
Bob wants to stay friends with John, but stay out of jail. This kind of conflict
within a single agent is the source of conflict resolution in production
systems and the bread and butter of decision theory.
 Confict resolution is important enough when there is only one individual
involved, but it can be much more important when it involves two or more
agents: The man with the rucksack wants to blow up the train, but the
passengers want to stay alive. The fox wants to have the crow’s cheese, but
the crow wants to eat it himself. Bob wants to stay out of jail by turning
witness against John, and John wants to stay out of jail by turning witness
against Bob.
 We have seen in the example of the prisoner’s dilemma that conflicts
among several agents can be treated as a conflict for a single agent who cares
as much about other agents as she cares about herself. The application of
decision theory to this case is a form of utilitarianism: The greatest good for
the greatest number of people.
 But unbridled utilitarianism does nothing to protect an individual agent or
a minority of agents whose interests are dominated by the majority. The
protection of individual and minority rights requires constraints, which
prevent the maximisation of utility from getting out of hand. We saw how
such constraints might operate in the example of the runaway trolley in
Chapter 12.
 The Computational Logic agent model combines both constraints on
individual actions and conflict resolution for deciding between alternative
actions. But it also provides opportunities for conflict resolution at the
higher-levels of an agent’s hierarchy of goals. If a conflict cannot be resolved
at the action level, it may be possible to resolve the conflict by finding an
alternative way of solving goals at a higher level, and of reducing those goals
to new alternative actions that no longer create a conflict. The greater the
number of levels in the hierarchy and the greater the number of alternative
ways of reducing goals to subgoals, the more opportunities there are to avoid
and resolve potential conflicts.
 This hierarchy of goals and subgoals is determined by the agent’s beliefs.
Whether or not these beliefs actually help the agent to achieve its goals
depends on whether or not they are really true. The greater the number of true
beliefs, the greater the number of alternative ways the agent can try to
achieve its goals and avoid conflict with other agents.
 An agent obtains its beliefs from different sources. Some of these beliefs
may be hardwired into the agent from birth; but others, perhaps most, are
obtained through personal experience and from communications with other

 250

agents. But different agents have different experiences, which lead to
different beliefs, which can lead to conflicts between agents even when the
agents have the same top-level goals. Therefore, conflicts can often be
reconciled by reconciling different beliefs, acknowledging that they may
explain different experiences.
 This book has been an attempt to reconcile different paradigms for
explaining and guiding human behaviour, most notably to reconcile
production systems, logic programming, classical logic and decision theory.
To the extent that it has succeeded, it may exemplify the broader potential of
Computational Logic to help reconcile conflicts in other areas.

 251

Chapter A1. The Syntax of Logical Form

The Computational Logic language used in this book is an informal and
simplified form of Symbolic Logic. Until now, it has also been somewhat
vague and imprecise. This additional chapter is intended to specify the
language more precisely. It does not affect the mainstream of the book, and
the reader can either leave it out altogether, or come back to it later.

Atoms

In all varieties of logic, the basic building block is the atomic formula or
atom for short. In the same way that an atom in physics can be viewed as a
collection of electrons held together by a nucleus, atoms in logic are
collections of terms, like “train”, “ driver” and “station”, held together by
predicate symbols, like “in” or “stop”. Predicate symbols are like verbs in
English, and terms are like nouns or noun phrases.
 Where we have been writing informally:

 the driver stops the train

in Symbolic Logic, this would normally be written in the form:

 stop(driver, train)

Here the predicate symbol is written first, followed by the atom’s terms,
which are called its arguments, surrounded by parentheses and separated by
commas. Each predicate symbol has a standard number of arguments, written
in some fixed but arbitrary order. Here the predicate symbol stop has two
arguments, with its subject driver first and its object train second.

The advantage of the symbolic form of logic for writing atoms is that it
unambiguously distinguishes between the atom’s predicate symbol and its
arguments, and moreover it identifies the different roles (such as subject or
object) of its arguments by their positions inside the parentheses. It is this
precision that makes Symbolic Logic suitable for processing by computer.

However, this advantage is bought at the cost of having to over-specify an
atom’s components. For example, an equally legitimate representation of the
sentence the driver stops the train is the atomic formula:

 happens(stop, driver, train)

This alternative representation treats stop as a term rather than as a predicate
symbol. It is also possible, although not very useful, to represent the same
sentence with a predicate symbol having zero arguments, say as happens-

 252

stop-driver-train() written more simply as happens-stop-driver-train. In
fact, the representation that is closest to the intended, underlying meaning of
the English sentence is a collection of atomic sentences:

 happens(event-0014)
 type(event-0014, stop)
 agent(event-0014, 007)
 object(event-0014, the-flying-scotsman)
 isa(007, train-driver)
 isa(the-flying-scotsman, train)

This representation makes explicit that the driver 007 is a unique individual,
and that the train is a specific train with its own unique identification the-
flying-scotsman. Even the event itself is a unique event, with an identifier
event-0014 that distinguishes it from other events in which the same driver
stops the same train on other occasions.
 Although such representations are rather cumbersome by comparison
with English sentences, they are often necessary in computer
implementations of logic, where the distinctions they make are unavoidable.
Arguably, the same distinctions are unavoidable also in a human agent’s
language of thought.
 The informal representation we use in most of the book has the advantage
that it hides the underlying complexity involved in such precise
representations. However, the reader should be aware that, to represent the
intended meaning of seemingly simple English sentences, they would
normally need to be translated into the more precise kind of representation
illustrated here.

Predicate symbols

Predicate symbols can have zero, one or more arguments. Atomic formulas
whose predicate symbol has zero arguments are sometimes called
propositional formulas. This includes the two special atoms true and false.
The special case of Symbolic Logic, in which all atoms are propositional
formulas is called propositional logic. The more general case, in which
predicate symbols can have any number of arguments, is called predicate
logic.
 Propositional formulas are sentences that denote propositions. Predicate
symbols with one argument denote properties of individuals, and predicate
symbols with more than one argument denote relations between individuals.
This distinction between propositions, properties and relations is significant
in ordinary natural language, but is an unnecessary and unwelcome
complication in mathematics. It is simpler and more convenient to refer to all
three notions as relations, which may hold between zero, one or more

 253

individuals. Thus, with this terminology, we can say simply that predicate
symbols denote (or represent) relations.
 However, not all relations need to be represented by predicate symbols.
Relations can also be represented by predicates that are compound syntactic
expressions constructed from simpler expressions by joining them with
logical connectives like “and”, “or”, “not” and “if”. For example, the
property of being tall and handsome can be denoted by a predicate, say
tall(X) and handsome(X), which need not be expressed by a separate
predicate symbol. We will often find it convenient to speak of such
predicates, without implying that they are expressed by predicate symbols.

Denotation is a semantic relationship between symbols and the objects
those symbols represent. It is one of the great achievements of Symbolic
Logic, envied even by many of its critics, that it has a proper semantics. But
before discussing semantics, we need to complete our discussion of syntax.

Terms

The simplest kind of term is a constant, like 007, which denotes an
individual, say the person born on 1 April, 2000 to parents Mary Smith and
John Smith in Petworth, England. But terms also include variables, which
stand for whole classes of individuals. It is common in Symbolic Logic to use
letters, like X and Y for variables, as in the algebraic formula:

 X + Y = Y + X

which holds for all numbers X and Y. In this book, we use the convention,
borrowed from the logic programming language Prolog, that variables start
with an upper case letter, like X or Y, and constants and predicate symbols
start with a lower case letter.
 More complex terms can be constructed from simpler terms, like mother
of X, written mother(X), or 2 + 3, written +(2, 3), where mother and + are
function symbols. However, functions are a special case of relations, and
therefore function symbols are, strictly speaking, unnecessary. Instead of
writing, for example:

 mother(cain) = eve
 +(2, 3) = 5

we can write: mother(cain, eve)
 +(2, 3, 5)

Representing functions as relations has the advantage that function symbols
can be reserved for constructing names of individuals. Function symbols used

 254

in this way are sometimes called Skolem functions, in honour of the logician
Thoralf Skolem.
 Used for naming, function symbols make it possible to name an infinite
number of individuals with a finite vocabulary. For example, in mathematical
logic, it is common to name the natural numbers 0, 1, 2, … by the terms 0,
s(0), s(s(0)),…. where the function symbol s is called the successor function.
The term s(X) is equivalent to X + 1. Using the successor function and
representing the addition function as a relation, we can represent 2 + 3 = 5
by:

 +(s(s(0)), s(s(s(0))), s(s(s(s(s(0))))))

Not very pretty, but better suited for theoretical studies than the use of such
alternative numbers systems as decimal, binary or Roman numerals.
 Terms that contain no variables are called ground terms. They play a
special role in the semantics, because they are the pool from which the names
of individuals are drawn.

Conditionals

Strictly speaking, a conditional is a sentence of the form A → B, where A and
B are sentences. However, we use the term conditional more loosely to refer
to sentences that may contain variables. Moreover, for the most part, we
restrict attention to conditionals that can be written in either one of the two
equivalent forms:

C1 ∧ … ∧ Cn ∧ ¬D1 ∧ … ∧ ¬ Dm → E
i.e. if C1 and … and Cn and not D1 and … and not Dm then E

 E ← C1 ∧ … ∧ Cn ∧ ¬D1 ∧ … ∧ ¬ Dm
i.e. E if C1 and … and Cn and not D1 and … and not Dm

where the conclusion E is an atomic formula, the conditions Ci are atomic
formulas, and the conditions ¬ Dj are the negations of atomic formulas. Such
conditionals are also sometimes called clauses, and sets of conditionals are
also called logic programs.
 As is common with mathematical definitions, the number of positive
conditions n and the number of negative conditions m can be 0. If m is 0, then
the conditional is called a definite clause.
 Definite clauses are important for two reasons. First, they are adequate for
representing any computable predicate. Second, as we will see in Chapter A2,
they have a very simple semantics in terms of minimal models.

 255

 If the number of conditions n+m is 0, then the degenerate conditional E←
(or →E) is in effect just an atomic sentence, which is normally written
without the arrow, simply as E.
 The backward arrow ← is read if, and the forward arrow → is read with
the same meaning, but in the opposite direction. The symbol ∧ is used for the
logical connective and. Expressions connected by ∧ are called conjunctions.
 Predicate symbols and constant symbols appearing in different clauses are
the external glue that links different clauses together. Variables are another
kind of glue internal to clauses. For example, the variable X in the clause:

 amazing(X) ← can-fly(X)

has the effect of expressing that anything that can fly is amazing. In contrast,
the two variables in the clause:

 amazing(X) ← can-fly(Y)

have the effect of expressing that if something can fly then everything is
amazing!
 Variables in clauses are consequently said to be universally quantified
within the scope of the clause in which they appear. In Symbolic Logic the
quantification of variables is normally written explicitly with symbols ∀
standing for all and ∃ standing for there exists, and the scope of the
quantifiers is indicated by parentheses. Thus the two conditionals above
would be written:

 ∀X (amazing(X) ← can-fly(X))
 ∀X ∀Y ((amazing(X) ← can-fly(Y)))

Because all variables appearing in clauses are universally quantified and their
scope is the entire clause, there is no ambiguity if the quantifiers are omitted.
 Because conditionals can have no conditions, atomic sentences can also
contain universally quantified variables. Here is a fanciful example:

 likes(bob, X).

Atomic sentences that do not contain such variables are also called facts.

In the simplest versions of Symbolic Logic, variables like X and Y can refer
to any kind of individual. So, for example, the clause amazing(X) ← can-
fly(X) implies that if a rock can fly then the rock is amazing. Similarly the
mathematical equation X + Y = Y + X, if it were written in logical notation,
would imply that you could add two rocks together in either order and the
result would be the same.

 256

 To overcome the unnatural use of unrestricted variables, sorted or typed
logics have been developed, in which variables are restricted, so that they
refer only to individuals in designated classes, which are called sorts or types.
A similar effect can be obtained more tediously in unsorted logic by
including for every variable in a clause an extra condition whose predicate
expresses the sort of that variable.
 For example, to state that any animal that can fly is amazing, we would
need to write in unsorted logic, say:

 amazing(X) ← can-fly(X) ∧ animal(X)

To conclude that any person who can fly is amazing, we would need a clause
expressing that all people are animals:

 animal(X) ← person(X)

Or as adherents of object-orientation in Computing (see Chapter 14) would
prefer us to say, the class of all people inherits the property of flying from the
more abstract class of all animals.
 In the informal version of Computational Logic that we use in this book,
not only do we omit universal quantifiers, but we also sometimes express
unsorted variables by words like anything and everything and sorted variables
by common nouns, like an animal, a station, or a bird. The virtue of this
informal usage is that it is neutral with respect to whether it is formalised in
some version of sorted logic or formalised in unsorted logic with explicit
predicates for sorts. So, for example, instead of writing:

 ∀X (amazing(X) ← can-fly(X) ∧ animal(X)).

we simply write:

 if an animal can fly then the animal is amazing.
or any animal that can fly is amazing.

Moreover, the informal version is compatible with other formal
representations, such as:

 amazing(X) ← can-fly(X) ∧ isa(X, animal).
 isa(X, animal) ← isa(X, person.

Recursive definitions

Conditionals are often used to define predicates. For example, here is a
definition of the predicate natural-number:

 257

 natural-number(0).
 natural-number(s(X)) ← natural-number(X).

The definition is said to be recursive, because the predicate natural-number
defined in the conclusion of the second sentence recurs in the conditions (and
vice versa). The ability to express recursive definitions gives conditionals the
full power of a general-purpose programming language.
 Here is a recursive definition of addition:

 +(0, Y, Y).
 +(s(X), Y, s(Z)) ← +(X, Y, Z).

For simplicity, I have omitted the qualifying conditions that X, Y and Z are
natural numbers. In functional notation, the definition is much simpler and
looks like this:

 0 + Y = Y.
 s(X) + Y = s(X + Y).

This can also be written in the even simpler form (X + 1) + Y = (X + Y) + 1.
But this is misleading, because the plus sign + in the expression + 1 is
different from the plus sign + for example in (X + Y). I will have more to say
about the relationship between functions and relations a little later in this
chapter.

Goal clauses

In Computational Logic, we use conditionals (including facts and other
atomic sentences) to represent beliefs, all of whose variables are universally
quantified. In addition, we use conjunctions to represent goals whose
variables are all existentially quantified.
 In general, a goal clause is an existentially quantified conjunction of
atoms and negations of atoms:

∃ X1 …∃ Xm (C1 ∧ … ∧ Cn ∧ ¬D1 ∧ … ∧ ¬ Dm)
i.e. there exists X1... and there exists Xm such that
 C1 and … and Cn and not D1 and … and not Dm.

If m is 0, then the goal clause is called a definite goal clause.
 Because all variables in a goal clause are existentially quantified within
the scope of the goal clause in which they occur, it is normal to omit the
explicit use of existential quantifiers. For example, the goal clause:

 258

 likes(bob, X)
stands for ∃ X likes(bob, X)

Such existentially quantified goal clauses are sufficient for representing an
agent’s achievement goals. However, as we will see in greater detail later,
they are not sufficient for representing maintenance goals and constraints.
 Both definite clauses (including atomic sentences) and definite goal
clauses are also called Horn clauses after the logician Alfred Horn, who
studied some of their mathematical properties. Horn clauses are equivalent in
power to Turing Machines, which are the standard mathematical model of
mechanical computation.
 In logic programming, goal clauses represent the computation to be
performed. For example, the goal clause:

 +(s(s(0)), s(s(0)), X) ∧ +(X, Y, s(s(s(s(s(0))))))

represents the problem of computing the sum X of 2 plus 2 and computing a
number Y that added to X gives 5.

Other kinds of sentences

Conditionals, used to represent beliefs, and goal clauses, used to represent
achievement goals, have a very simple syntax. However, conditionals are
logically equivalent to more complex sentences in the syntax of classical
logic. Here are some examples of such equivalences:

 ∀X ∀Y (amazing(X) ← can-fly(Y)).
is equivalent to: ∀X (amazing(X) ← ∃ Y can-fly(Y)).

 amazing(X) ← can-fly(X).
 amazing(X) ← movie-star(X).
are equivalent to: amazing(X) ← (can-fly(X) ∨ movie-star(X)).

 generous-to(X, Z) ← likes(X, Y) ∧ gives(X, Y, Z)
is equivalent to: (generous-to(X, Z) ← likes(X, Y)) ← gives(X, Y, Z)

The symbol ∨ is used for the logical connective or. Expressions connected
by ∨ are called disjunctions. In general, a disjunction has the form:

 C1 ∨ … ∨ Cn
i.e. C1 or … or Cn

 259

We will see later that, in addition to allowing the use of existential quantifiers
and disjunctions, it is useful to extend the syntax of conditional logic to
represent more complex goals and beliefs. In particular, it is useful to include
existential quantifiers and disjunctions in the conclusions of maintenance
goals. For example:

Maintenance goals: hungry(me) → ∃X eat(me, X).
 attacks(X, me) → runaway(me) ∨ attacks(me, X).

Existential quantifiers in the conclusions of conditional goals are so common,
that it is convenient to omit them, with the convention that variables in the
conclusion of a conditional goal that are not in the conditions of the goal are
existentially quantified, with scope the conclusion of the goal. For example:

Maintenance goal: hungry(me) → eat(me, X).

The inclusion of disjunctions in the conclusions of conditionals gives the
logic of conditionals the power of classical logic. We shall have more to say
about the relationship between the logic of conditionals and classical logic in
Chapter A2. We focus on the conditional form of logic in this book, because
it is easier for both computers and humans to understand.
 Arguably, the relationship between classical logic and the logic of
conditionals is like the relationship between the language of human
communication and the language of human thought. One way to understand
this relationship is to view reasoning as involving two kinds of inference
rules, applied in two stages. The first kind of rule, applied in the first stage,
translates complicated sentences into simpler sentences. The second kind,
applied in the second stage, reasons with the resulting simpler sentences.
 This two stage reasoning process is used in many of the proof procedures
developed for classical logic in Computing. In systems based on the
resolution principle (Robinson, 1965) in particular, the first stage translates
sentences of classical logic into clausal form. The second stage processes
clauses using refinements of the resolution rule of inference. We discuss the
resolution principle in the additional Chapter A5.
 Understanding human communications in natural language can be viewed
as a similar two stage process. The first stage translates (or compiles)
sentences of natural language into simpler sentences in the language of
thought. The second stage processes these simpler sentences using rules of
inference, like forward and backward reasoning, which are simple cases of
resolution. The closer the natural language sentences are to the language of
thought, the less effort is needed to translate those sentences into the
language of thought, and the easier it is to understand them.

Negation

 260

In classical logic, negative and positive sentences have the same status. To be
or not to be – there is no reason to prefer one to the other. But in
Computational Logic, positive sentences are more basic than negative
sentences, and negative sentences typically just fill in the gaps between
positive sentences. This more basic status of positive sentences is reflected in
the syntax of conditionals, which normally have only positive conclusions,
but may have negative conditions ¬ C (also written not C), for example:

 liable-to-penalty(X) ← press-alarm(X) ∧ not emergency.
 can-fly(X) ← bird(X) ∧ not penguin(X).

As we have seen in Chapter 5 and elsewhere, it is natural to conclude that a
negative condition not C holds if the corresponding positive condition C fails
to hold. This interpretation of negation is called negation as failure. So given
a situation in which we are told bird(john), but have no reason to believe
penguin(john), it follows by negation as failure that can-fly(john).
 Here is a definition of the odd and even numbers, using only positive
conclusions and a negative condition:

 even(0).
 even(s(s(X))) ← even(X).
 odd(X) ← not even(X).

Because it cannot be shown that even(s(0), it follows from these clauses and
negation as failure that odd(s(0)).
 In addition to negative conditions interpreted by negation as failure,
negative sentences can have the form of constraints, which are conditional
goals with conclusion false. For example, in the context of an agent
monitoring its candidate actions, the constraint:

liable-to-penalty(X) → false
i.e. Do not be liable to a penalty.

functions as a prohibition, which prevents actions, like your pressing the
alarm signal button improperly or your failing to pay your taxes, that are
liable to a penalty.
 Moreover, as we have seen in the chapter on abduction, a constraint, such
as:

even(X) ∧ odd(X) → false
i.e. Nothing is both odd and even.

 261

which is a property of the definitions of the even and odd numbers, can be
used to eliminate candidate explanations of observations.
 We will see later that both kinds of negation (negation as failure and
constraints) have the same semantics as negation in classical logic. However,
they perform different functions in knowledge representation and reasoning.

Functions, relations and equality

In this book, we use function symbols sparingly, only to construct composite
names of individuals. Other kinds of functions are treated as relations (or
predicates), as in relational databases. Instead of writing f(X) = Y, where f is a
function symbol, we write f(X, Y), where f is a predicate (or relation) symbol.
In this relational representation, the fact that the relation is a function is
represented by the constraint:

 f(X, Y1) ∧ f(X, Y2) → Y1 = Y2

We combine this relational representation of functions with a simple notion
of equality, understood as identity, and defined by the simple axiom:

 X = X.

This representation, of functions as relations and of equality as identity,
works well only if individuals have unique names. Thus, for example, it’s not
good enough to say bob stops the train if same person is also called robert
and if more than one person is also called bob. We have to give bob a unique
name, 007 for example, and say something like:

 stops(007, the train)
 first-name(007, bob)
 first-name (007, robert)
 first-name (008, bob).

Similar considerations apply to the name of the train, of course, and maybe to
the name of the event, as we saw earlier in this section.
 The definition of equality as identity, means that two individuals are
identical if and only if they have the same unique name. This constrasts with
the more conventional notion of equality, in which the same individual can
have several names. For example:

 the morning star = the evening star
 doctor jekyll = mister hyde

 262

To reason with equalities of this kind, it is normal to use additional axioms,
such as the definite clauses:

 X = X
 f(X1 ,…, Xn) = f(Y1 ,…, Yn) ← X1 = Y1 ∧ … ∧ Xn = Yn

 p(X1,…, Xn) ← p(Y1,…, Yn) ∧ X1 = Y1 ∧ … ∧ Xn = Yn

for every function symbol f and every predicate symbol p. However,
reasoning with such axioms is computationally expensive. Moreover, their
use needs to be exercised with caution, if we want to make such distinctions
as:

 good(doctor jekyll) ∧ bad(mister hyde).

Classical Logic

The syntax of classical logic is an extension of the syntax of the conditional
form of logic used in this book. Terms and atomic formulas in classical logic
are the same as in the logic of conditionals. However, non-atomic sentences
can be constructed using arbitrary combinations of the logical connectives →,
∧, ∨ and ¬, and the quantifiers ∀ and ∃.
 Classical logic is less well-structured than the conditional form of logic.
For example, in conditional form, there is only way to express that all birds
can fly and John is a bird, namely:

 can-fly(X) ← bird(X).
 bird(john).

But in classical logic, the same beliefs can be expressed in many logically
equivalent ways, including:

 ¬(∃X((¬can-fly(X) ∧ bird(X)) ∨ ¬bird(john)))
 ¬(∃X((¬can-fly(X) ∨ ¬bird(john)) ∧ (bird(X) ∨ ¬bird(john))))

To translate classical logic into the conditional form of logic, it is necessary
to use such equivalence-preserving rules of inference as:

 replace ¬∃X ¬A by ∀X A

replace ¬A ∨ ¬B by ¬(A ∧ B)
 replace A ∨ ¬B by A ← B

Classical logic and conditional logic differ also in their use of quantifiers. In
conditional logic, all variables in conditionals are universally quantified, and

 263

all variables in goal clauses are existentially quantified, and therefore
quantifiers can be ommitted. But in classical logic, all variables can be
universally or existentially quantified, and therefore quantifiers need to be
explicit.
 In conditional logic, existential quantifiers are avoided by giving
everything that exists a name, which is either a constant or a function symbol
applied to other names. Instead of saying, for example, ∃X bird(X), we say
bird(john) or bird(007). We do so because giving individuals explicit names
conveys more information. If you know that john is a bird, why conceal
John’s identity by saying only that someone is a bird, especially if you are
talking to yourself in your own language of thought.

The relationship among classical logic, clausal logic
and Computational Logic

Anything that can be said in classical logic can also be said in the conditional
form of logic, but it has to be said using only universally quantified variables,
and allowing disjunctions in the conclusions of conditionals. To be more
precise, any sentence of classical logic can be translated into a set of clauses
of the form:

 C1 ∧ … ∧ Cn → D1 ∨ … ∨ Dm

where each condition Ci and conclusion Dj is an atomic formula, and all
variables in the clause are implicitly universally quantified with scope the
entire clause. If n is 0, then C1 ∧ … ∧ Cn is equivalent to true. If m is 0, then
D1 ∨ … ∨ Dm is equvalent to false.

Traditionally, such clauses are written in the logically equivalent form of
universally quantified disjunctions (also called clausal form):

 ¬C1 ∨ … ∨ ¬Cn ∨ D1 ∨ … ∨ Dm

Although sentences of classical logic can always be translated into clausal
form, the original sentence and its translation are not always logically
equivalent. For example, the sentence ∀X ∃Y (mother(X, Y) ← person(X))
can be translated into the clause mother(X, mom(X)) ← person(X). The
clause uses a Skolem function to name names, and is in a sense more
informative than the original sentence.
 In theory, the use of Skolem functions to replace existential quantifiers
entails the need to reason with equality. For example, mom(cain) = eve.
However, such existential qualifiers typically occur in the conclusions of
goals, rather than in beliefs. The proof procedure of Chapter A6 works with
explicit existential quantifiers in the conclusions of goals. So the problems of

 264

reasoning with equality created by the use of Skolem functions seems not to
arise much in practice.

In clausal logic, achievement goals are solved by reductio ad absurdum,
assuming their negation and deriving false from the resulting set of clauses.
For example, the negation of the achievement goal:

 ∃ X1 …∃ Xm (C1 ∧ … ∧ Cn)

is equivalent both to the (universally quantified) denial:

C1 ∧ … ∧ Cn) → false

and to the ordinary (universally quantified) clause:

¬C1 ∨ … ∨ ¬Cn

Maintenance goals in clausal logic are solved in the same way, by converting
their negation into clausal form and deriving false. However, because
maintenance goals are universally quantified, their negations are existentially
quantified, and these existential quantifiers need to be replaced by Skolem
constants. For example, to solve the maintenance goal:

 attacks(X, me) → runaway(me) ∨ attacks(me, X)

it is necessary to replace the variable X by a Skolem constant, say , and
convert the negation of the Skolemised conditional into the clauses:

 attacks(, me)
 ¬ runaway(me)
 ¬ attacks(me,)

If this way of solving maintenance goals succeeds (by deriving false), then it
succeeds in solving them once and for all.
 However, in this book, we solve maintenance goals differently, by showing
that whenever their conditions are true, their conclusions are true. This
alternative treatment of maintenance goals is discussed informally in Chapter
8 and formalised in Chapter A6.
 This different treatment of maintenance goals reflects that fact that, neither
classical logic nor clausal logic makes a fundamental distinction between
goals and beliefs. In contrast, we distinguish between goals and beliefs, by
employing a minor variant of clausal form for goals, and the closely related
logic programming form:

 C1 ∧ … ∧ Cn ∧ ¬D1 ∧ … ∧ ¬ Dm → E

 265

or E ← C1 ∧ … ∧ Cn ∧ ¬D1 ∧ … ∧ ¬ Dm

for beliefs. As mentioned before, the conclusions of goals (but not of beliefs)
may contain both disjunctions and existentially quantified variables.
 Somewhat confusingly, as is common in the literature, I use the term
clause to refer either to clauses written as conditionals, to clauses written as
disjunctions or to logic programming clauses. Perhaps even more
confusingly, I use the term conditional both for clauses written as
conditionals with disjunctive conclusions and for logic programming clauses.
I also call the resulting combination of the two kinds of conditionals the
conditional form of logic, as well as the form of Computational Logic used in
this book. Hopefully, in most cases the context makes the intended meaning
obvious.

Conclusions and further references

This whirlwind tour of the syntax of the conditional form of logic and its
relationship with both the standard and clausal forms of classical logic has
covered a lot of ground, but only touched the surface.
 The conditional form of logic is as powerful as, but simpler than, the
unstructured form of sentences in classical logic. The inference rules of the
conditional form are also correspondingly simpler. The inference rules of
classical logic are more complex, because in effect, in addition to the rules
needed to reason with conditionals, they also include rules to translate
sentences of classical logic into the equivalent of conditional form.
 This distinction between the two kinds of inference rules in classical logic
corresponds to the distinction between two kinds of reasoning in natural
language. The inference rules needed to translate classical logic into
conditionals corresponds to the reasoning needed to translate natural
language into the LOT; and the inference rules needed to reason with
conditionals corresponds to the reasoning needed in the LOT.
 I have been supported in this view of the relationship between classical
logic and conditional logic and between natural language and the LOT by the
guidelines for good writing style given in such books as William’s (1990,
1995). These guidelines, advocating clarity, simplicity and coherence, can be
viewed as encouraging a writing style that minimises the difference between
the syntax of natural language communications and the representation of their
meanings in the LOT.

The conditional form of logic evolved from the clausal form of logic, and the
clausal form of logic evolved from standard classical logic. One of the
earliest uses of clausal form was by Martin Davis and Hillary Putnam (1960)
in one of the first mechanical proof procedures for classical logic. It was also
used for the resolution rule developed by Alan Robinson (1965a).

 266

 The application of clausal form to knowledge representation and of
resolution to problem solving was pioneered by Cordell Green (1969).
However, the resolution theorem provers available at that time did not behave
sensibly, and were vulnerable to attacks against the resolution-based
approach by advocates of procedural, as opposed to declarative,
representations of knowledge (Hewitt, 1971; Winograd, 1971, 1972).
 In defence of clausal logic, Kowalski and Kuehner (1971) argued that SL-
resolution, essentially a resolution interpretation of Loveland’s (1968) model
elimination proof procedure, could be understood procedurally in goal-
reduction terms. In 1971 and 1972, I collaborated with Alain Colmerauer in
Marseille, resulting in Colmerauer’s development of Prolog in 1972, and in
the procedural interpretation (Kowalski, 1974) of SLD-resolution, a variant
of SL-resolution, applied to Horn clauses.
 In Logic for Problem Solving (Kowalski, 1974, 1979), I argued more
generally for the use of clausal form for knowledge representation and
reasoning. A detailed analysis of the relationship between clausal logic and
classical logic can be found in chapters 2 and 10 of that book. The
combination in Computational Logic of clausal logic for goals and logic
programming for beliefs comes from abductive logic programming (ALP)
(Kakas, Kowalski and Toni, 1998). The technical underpinnings of ALP are
dealt with in Chapter A6.

 267

Chapter A2. Truth
This additional chapter explores the semantics of classical logic and
conditional logic. In classical logic, the semantics of a set of sentences S is
determined by the set of all the interpretations (or semantic structures), called
models, that make all the sentences in S true. The main concern of classical
logic is with the notion of a sentence C being a logical consequence of S,
which holds when C is true in all models of S.
 Semantic structures in classical logic are arbitrary sets of individuals and
relationships, which constitute the denotations of the symbols of the language
in which sentences are expressed. In this chapter, I argue the case for
restricting the specification of semantic structures to sets of atomic sentences,
called Herbrand interpretations.
 The semantics of conditionals, which we use in this book, inherits the
semantics of classical logic, but also has a related minimal model semantics.
This minimal model semantics associates with every definite clause program
a unique minimal model, which has the property that a definite goal clause is
true in all models of the program if and only if it is true in the minimal
model.
 I argue that, for definite clauses, truth in minimal models is more
fundamental than truth in all models. I support the argument by observing
that the standard model of arithmetic is the minimal model of a simple
definite clause program defining addition and multiplication. According to
Gödel’s Incompleteness Theorem, truth in this minimal model can only be
approximated by truth in all models of any computable set of axioms for
arithmetic.

Truth and consequences

All variants of Symbolic Logic are formal systems, in which rules of
inference are used to manipulate symbolic expressions and derive new
symbolic expressions without paying attention to their intended meaning.
However, without any meaning, these expressions and their manipulations
are not only meaningless, but useless.

In the case of an agent embedded in the Real World, symbolic
expressions in the agent’s language of thought represent actual or potential
situations in the World. Beliefs that are true in the World help the agent to
anticipate the consequences of its actions and to achieve its goals. Goals that
the agent can realistically make true in the World help the agent to maintain a
harmonious relationship with the World and to change the World for its own
benefit. Rules of inference, which manipulate thoughts and which derive new
thoughts from existing thoughts, help the agent to derive logical

 268

consequences of its goals, beliefs and hypotheses, and guide its interactions
with the World.

In classical logic, the notion of logical consequence provides the criterion
for judging whether or not a set of inference rules performs its intended
function:

 A sentence C is a logical consequence of a set of sentences S
 (or S logically implies C) if (and only if) C is true whenever S is true.

 A set of inference rules is sound (or truth-preserving) if (and only if)
 whenever it derives a sentence C from a set of sentences S,
 then C is a logical consequence of S.

A set of inference rules is complete if (and only if) whenever a sentence C
is a logical consequence of a set of sentences S, then there exists a
derivation, by means of the inference rules, of C from S.

These concepts of logical consequence, soundness and completeness depend
upon the notion of truth, which applies only to well-formed formulas that are
sentences. A well-formed formula is an expression constructed from atomic
formulas using the logical connectives, →, ∧, ∨ and ¬, and the universal
quantifiers ∀ and ∃. A sentence is a well-formed formula all of whose
variables are explicitly or implicitly quantified using the quantifiers ∀ and ∃.
 The notion of truth is relative to an interpretation of the symbols of the
language in which the sentences are expressed. An interpretation is a
collection of individuals (called the domain of discourse), which are the
denotations (or meanings) of the constants and other ground terms of the
language, together with a set of relations, which are the denotations of the
predicate symbols. The relations belonging to an interpretation determine the
truth of the atomic sentences of the language, and the truth of the atomic
sentences, in turn, determines the truth values of all other sentences.
 For example, if the conditional

 amazing(john) ← can-fly(john)

is interpreted in such a way that the constant john denotes my cat, the
predicate symbols amazing and can-fly denote the properties of being lazy
and sleeping all day respectively, then the conditional means:

 My cat is lazy if my cat sleeps all day.

And because my cat sleeps all day and my cat is lazy, the sentences can-
fly(john) and amazing(john) are both true. As a consequence, the conditional
amazing(john) ← can-fly(john) is also true.

 269

 For convenience, we include the atomic sentences true and false in the
language. We sometimes use the atom true to represent an empty conjunction
and the atom false to represent an empty disjunction. We also use the atom
false in the conclusions of conditionals, to represent constraints.
Unfortunately, these usages are easily confused with the truth values true and
false. When it is necessary to distinguish between these atoms and the truth
values, we refer to them as the atoms true or false and the truth values true or
false, respectively.
 The truth values true and false are asymmetric, because falsity is defined
in terms of truth:

 A sentence that is not true is also said to be false.

 A negative sentence ¬ C is true if (and only if) the sentence C is false.

 An atomic sentence of the form p(c1,…, cn), where c1,…, cn are ground
terms, is true in an interpretation if (and only if) the individuals denoted
by the terms c1,…, cn are in the relation denoted by the predicate symbol
p. If the atomic sentence is a predicate symbol with no arguments (i.e.
n=0), then the sentence is true if (and only if) the interpretation simply
assigns it the truth value true. The atomic sentence true is always
assigned the truth value true. The atomic sentence false is never assigned
the truth value true (and therefore has the truth value false).

A sentence that is a conjunction C1 ∧ … ∧ Cn is true in an
interpretation if (and only if) all of Ci are true. (Therefore, if n = 0, then
the conjunction is true.)

A sentence that is a disjunction C1 ∨ … ∨ Cn is true in an
interpretation if (and only if) at least one of Ci is true. (Therefore, if n = 0,
then the disjunction is not true.)

A sentence that is a conditional C → D is true in an interpretation if
(and only if) C has the truth value false or D has the truth value true.
(Therefore a conditional of the form C → false is true if and only if C has
the truth value false.)

A universally quantified sentence ∀X C is true if (and only if) every
ground instance of C (obtained by replacing the variable X by a ground
term) is true.

An existentially quantified sentence ∃X C is true if (and only if) some
ground instance of C is true.

Finally, an interpretation of a set of sentences is said to be a model of
the set of sentences if (and only if) every sentence in the set is true in the
interpretation.

It is this sense of the term model that explains the use of the term model-
theoretic semantics. There is another sense of the term model, which is more
common in English, and which we also use in this book. This is its sense as a

 270

synonym for theory. It is this more common sense of the term that we intend
when we speak, for example, of an agent model, a cognitive model or of a
model of the mind. If necessary, we use the term semantic model, to
distinguish it from model in the sense of a theory.

The semantics of conditionals

According to the semantics of classical logic, a conditional (also called
material implication) of the form C → D is logically equivalent to a
disjunction ¬ C ∨ D. This implies that the conditional is true whenever the
conclusion D is true, no matter whether the condition C is true or false. The
conditional is also true whenever the condition C is false, no matter whether
the conclusion D is true or false. For example, the conditionals:

 john can fly → 2 + 2 = 4
 the moon is made from green cheese → john can fly

are both true in any interpretation in which 2 + 2 = 4 is true and the moon is
made from green cheese is false, no matter whether john can fly is true or
false.
 These properties of the semantics of conditionals are sufficiently
unintuitive that they have come to be known as the paradoxes of material
implication. The desire to avoid such paradoxes has given rise to various
non-classical logics, the most influential of which is Relevance Logic
(Anderson and Belnap, 1975).
 However, there are some cases where these properties seem to make
sense. For example:

 john can fly → I am a monkey’s uncle

On the obviously intended assumptions that my assertion is true and that I am
an monkey’s uncle is false, it must be that I mean to imply that john can fly is
false. This implication relies upon the semantics of the material implication
as understood in ordinary classical logic.
 The semantics of conditionals in this book is the classical semantics. The
paradoxes are avoided, partly by invoking pragmatic, rather than semantic,
considerations, as argued for example by (Grice, 1989). The role of
pragmatics is most obvious in the case of disjunctions. For example, why
assert the weak disjunction, even if it is true:

 I am going to the party ∨ I will stay at home

if I have no intention of going to the party, but I am planning to stay at home
instead?

 271

 In Computational Logic, the paradoxes are avoided for the additional
reason that practical proof procedures eliminate weak disjunctions and weak
conditionals for the sake of computational efficiency. In the case of
propositional logic, they eliminate any disjunction C ∨ D that is subsumed
by a stronger disjunction, say D alone. They also eliminate any weak
conditional B ∧ C → D or C → D ∨ E that is subsumed by a stronger
conditional C → D.
 In the more general case of sentences containing variables, subsumption
also eliminates any sentence that is an instance of another sentence. For
example, if I believe likes(bob, X) and you ask me what Bob likes, I will tell
you that Bob likes everything, partly because it is more informative, and
partly because if I had a more specific belief, say that likes(bob, mary), I
would have eliminated it to avoid cluttering my mind with unnecessary
details. We will discuss subsumption and related matters in greater detail in
Chapter A5.

Universal quantifiers and Herbrand interpretations

According to the semantics of universal quantifiers, a sentence of the form
∀X C is true if and only if every ground instance of C is true. This simple
definition (called the substitution interpretation of quantifiers) works
correctly only if there are enough ground terms in the language to name all
the individuals in the interpretation. The set of ground terms needs to include
not only the names of all the individuals in the set of sentences under
consideration, but also a pool of names for talking about any individuals that
might need talking about in the future.

Assuming that there are enough names to talk about all the individuals
that might need talking about makes it possible to do away with the mystery
of what counts as an individual and what counts as a relation. It allows us
simply to identify an interpretation with the set of all the atomic sentences
that are assigned the truth value true in the interpretation.

The fact that an interpretation directly identifies only those atomic
sentences that are true, and that the definition of truth for a negative sentence
¬ C reduces to the failure of C to be true reflects the asymmetry between
truth and falsity. In the conditional form of logic, this asymmetry is further
reflected in the fact that sentences with positive conclusions are more basic
than sentences with negative conclusions. In the agent model, it is reflected in
the fact that an agent’s basic observations are represented by positive atomic
sentences.

Sets of atomic sentences regarded as interpretations or as semantic
models are called Herbrand interpretations or Herbrand models, in honour
of the logician Jacques Herbrand. The mathematical attraction of Herbrand
interpretations is the property that if there exists any other kind of model then

 272

there exists a Herbrand model as well. Arguably, for our purpose, such
Herbrand interpretations are more useful than arbitrary interpretations.

Indeed, for our purpose, the only interpretation that really matters is the
Real World, and the only semantic relationship that really matters is the
relationship between an agent’s thoughts and the succession of states of the
world.

The interface between the Real World and the agent’s goals and beliefs is
the set of observations that the agent encounters and the set of actions that the
agent performs. This interface is as close as the agent needs to get to the Real
World, to determine whether its beliefs are true and whether its goals can be
made true. The use of Herbrand interpretations restricts the agent’s
knowledge of the world to this interface, and avoids trying to identify the true
nature of the World without describing it in some other language.

Minimal models of definite clause programs

In classical logic, a sentence C is a logical consequence of a set of sentences
S if (and only if) C is true in every model of S. Typically, the set of sentences
S has many, often infinitely many, models. However, in the case of definite
clauses, there is a single model that stands out from all the others. It is the
Herbrand model M that is generated by instantiating universally quantified
variables with ground terms and by reasoning forwards.
 Consider, for example, the recursive definite clauses E:

 even(0).
 even(s(s(X))) ← even(X).

Forward reasoning generates the infinite sequence of atomic sentences:

 even(0), even(s(s(0))), even(s(s(s(s(0))))),…..ad infinitum.

This set is a Herbrand model of E. In fact, it is the smallest Herbrand model
that makes the two sentences in E both true.
 The smallest Herbrand model of a definite clause program H always
exists, and it is called the minimal model of H. This model is minimal in the
sense that it is contained in every other Herbrand model of H.21

21 However, the minimal model depends upon the vocabulary of the underlying
language of H. This vocabulary includes all the ground terms that can be constructed
from the terms occurring in H, but it could also include other constants or function
symbols. These other, unused symbols might be held in reserve to be used in future
extensions of H. But in any case, these ground terms need to be sorted (or well-typed),
to exclude such terms as s(bob).

 In fact, every

 273

larger set of atomic sentences is also a model. This includes the maximal
model in which all the ground atoms are true.
 The maximal model is one of those models that give the semantics of
classical logic a bad name. The minimal model, on the other hand, has all the
good properties that the critics desire. In particular, it has the remarkable
property that, as far as goal clauses (or achievement goals) are concerned,
truth in the minimal model is equivalent to truth in all models:

For every definite clause program H, there exists a unique minimal
model M such that for all definite goal clauses G:

 G is a logical consequence of H (i.e. G is true in all models of H)
 if and only if G is true in M.

This property is a direct consequence of a theorem proved in (van Emden
and Kowalski, 1976) for the case where G is an atomic fact. It also holds for
disjunctions of definite goal clauses, i.e. sentences of the form G1 ∨ … ∨ Gn
where each Gi is an (existentially quantified) definite goal clause. However,
it does not hold for sentences containing negation or universal
quantification.
 For example, the sentences:

 not even(s(s(s(0))))
 ∀X (even(s(s(X))) → even(X))

are both true in the minimal model M of E, but they are not logical
consequences of E. The first sentence is true in M, because the atomic
sentence even(s(s(s(0)))) is not true in M. However, it is not a logical
consequence of E, because it is not true, for example, in the maximal model
of E.
 The second sentence ∀X (even(s(s(X))) → even(X)) is true in M, because
for all ground terms t that can be constructed from the constant 0 and the
function symbol s:

if even(s(s(t))) is true in M, then it must have been derived by forward
reasoning using the ground instance even(s(s(t))) ← even(t) of the
conditional in E. But then the condition even(t) of this ground instance
must also be true in M.

Notice that this second sentence is the converse of the second conditional in
E. It is not true in all models of E, because there exist non-Herbrand models
containing weird individuals, for example the individual named weird, such that
even(s(s(wierd))) is true, but even(wierd) is not true. The simplest and smallest
such model is just the minimal model augmented with the one additional
atomic sentence even(s(s(wierd))).

 274

Arguably, it is the minimal model of a definite clause program H that is
the intended model of H, and it is relative to this model that the truth or
falsity of arbitrary sentences of classical logic should be judged.

This way of looking at models separates sentences into two kinds:
sentences like definite clauses that determine minimal models, and arbitrary
sentences of classical logic that are true in such minimal models.

 The difference between these two kinds of sentences is analogous to
the difference between an agent’s beliefs and its goals. Beliefs, including the
agent’s observations, have the form of logic programs, and represent a
minimal model of the agent’s world. Goals have the form of arbitrary
sentences of classical logic, and represent properties of the world that the
agent would like to hold.

This difference between beliefs and goals is most striking in the case of
maintenance goals, which are universally quantified conditionals. We will see
in Chapter A6 that the semantics of a maintenance goal G can be naturally
understood as generating a set of atomic sentences Δ describing atomic
actions, such that G is true in the minimal model of B ∪ Δ, where B is the set
of the agent’s observations and beliefs. With this semantics, forward
reasoning can be viewed as trying to make G true by making its conclusion
true whenever its conditions are made true. This process of forward
reasoning goes on forever, unless no new atomic sentences can be observed
or derived.
 Any model generated by forward reasoning in this way is minimal, not
only in the sense that B ∪ Δ has a minimal model, but also in the sense that
atomic sentences are made true by adding them to Δ only when necessary. In
particular, there is no need to make conditions of maintenance goals true for
no reason.

Truth in arithmetic

The case for viewing minimal models as intended models is supported by the
fact that the standard model of arithmetic is the minimal model of a definite
clause program. Here is a definite clause representation of addition and
multiplication in terms of relations, along with a more conventional
representation in terms of functions on the right:

 +(0, Y, Y). i.e. 0 + Y =Y.
 +(s(X), Y, s(Z)) ← +(X, Y, Z). i.e. s(X) + Y = s(X + Y).

 ×(0, Y, 0). i.e. 0 × Y =0.
 ×(s(X), Y, V) ← ×(X, Y, U) ∧ +(U, Y, V). i.e. s(X) × Y = (X × Y) + Y.

The functional representation is undoubtedly easier to understand, but the
relational representation more clearly distinguishes between the undefined

 275

function symbol s, used to construct the natural numbers, and addition and
multiplication, which are defined by the conditionals. Moreover, the
relational representation avoids the need for a separate equality predicate.
 Arguably, the relational representation also has a more obvious semantics
in terms of the minimal model A defined by the four definite clauses. It is this
model that we mean when we speak of the intended model of arithmetic and
of truth in arithmetic (as remarked in effect by Martin Davis (1980)).
 Consider, for example, the sentence:

 ∀X (+(X, 0, X))

where X is a natural number. This sentence is not a goal clause, because X is
universally quantified. However, it is easy to show that the sentence is true in
the minimal model A. Here is a proof by mathematical induction:

Base case: X = 0. Then +(X, 0, X) is just +(0, 0, 0),
 which is true in A
 because it is an instance of the clause +(0, Y, Y).

Inductive case: X = s(n). By induction hypothesis, +(n, 0, n) is true in A.
 We need to show +(s(n), 0, s(n)) is true in A.

But this follows by one step of forward reasoning,
using the clause (s(X), Y, s(Z)) ← +(X, Y, Z).

This semantic argument can be expressed purely syntactically, by
augmenting the definite clauses with additional axioms, including axioms for
induction. The induction axiom needed for this example is an instance of the
axiom schema22

:

 P(0) ∧ ∀N(P(N) → P(s(N))) → ∀X P(X).

where P(X) is any predicate containing an unquantified variable X. The
instance of P(X) needed in the example is +(X, 0, X).
 In the example, the universally quantified sentence ∀X (+(X, 0, X)) is
both true and provable using induction. However, Gödel’s incompleteness

22 An axiom scheme is a collection of axioms, one for each predicate P(X) (not
restricted to predicate symbols). However, induction can also be represented as a
single sentence in either meta-logic or so-called second-order logic. In meta-logic, P
ranges over names of formulas. In second-order logic, P ranges over subsets of the
natural numbers. From a mathematical point of view, the big difference between the
meta-logical and second-order representations, is that the set of formulas is infinite
but countable, whereas the set of all subsets of the natural numbers is infinite but
uncountable.

 276

theorem shows that there are universally quantified sentences of arithmetic
that are true but unprovable using any constructible set of axioms for
arithmetic. Intuitively, this is because to show that a universally quantified
sentence is true, it is necessary to show that every ground instance of the
sentence is true, and there are infinitely many such ground instances, one for
every natural number.
 In many cases, the infinitely many instances display a recurrent pattern
that can be captured finitely with proof by induction. But in the case of the
sentence constructed in the proof of the incompleteness theorem, it cannot.
The sentence is constructed by coding sentences of arithmetic by natural
numbers, and by representing the provability predicate of arithmetic as an
arithmetical predicate. In this way, arithmetic becomes its own meta-
language, and sentences about arithmetic become sentences of arithmetic.
 The true, but unprovable sentence, is a sentence that says of itself that it is
unprovable. If the sentence is false, then it is not true that the sentence is
unprovable, and the sentence can actually be proved, in which case the
axioms of arithmetic are inconsistent. If the sentence is true, then it cannot be
proved, in which case the axioms of arithmetic are incomplete. Therefore any
constructive axiomatisation of arithmetic that is consistent is incomplete.
Moreover, any such axiomatisation is certain to have non-minimal,
unintended models, in which sentences that are true in the standard model of
arithmetic are false.

Conclusions

In this chapter, we investigated the notions of truth, logical consequence and
minimal models. I sketched an argument for restricting attention to Herbrand
interpretations, which are sets of atomic sentences. In the case of an agent
embedded in the Real World, the advantage of Herbrand interpretations is
that they avoid the philosophical problems of trying to identify the true nature
of the World, and they focus instead on just specifying the interface between
the agent’s thoughts and the World.
 I also sketched a further argument for regarding minimal models as
intended models, and pointed out that, in the case of definite clauses, a
definite goal clause is true in all models if and only if it is true in the minimal
model.
 I argued that in the case of arithmetic, the truth or falsity of arbitrary
sentences is best understood as truth or falsity in the minimal model of the
definite clause program defining addition and multiplication. I also sketched
an argument that the semantics of an agent’s maintenance goals can similarly
be understood as generating a minimal model in which the maintenance goals
are all true.
 The fact that forward reasoning can be understood as generating minimal
models also draws support from mental model theory, which argues that

 277

people reason, by constructing model-like structures in the mind. In chapters,
A3 and A6, we will see how the inference rules of forward reasoning,
backward reasoning and negation as failure can be understood in semantic
terms, as determining the truth of sentences in minimal models.

 278

Chapter A3. Forward and Backward Reasoning

We have already looked informally at forward and backward reasoning with
conditionals without negation (definite clauses). This additional chapter
defines the two inference rules more precisely and examines their semantics.
 Arguably, forward reasoning is more fundamental than backward
reasoning, because, as shown in Chapter A2, it is the way that minimal
models are generated. However, the two inference rules can both be
understood as determining whether definite goal clauses are true in all models
of a definite clause program, or equivalently whether the definite goal clauses
are true in the minimal model.

Forward reasoning

Of the two rules of inference, only forward reasoning is truth-preserving, in
the sense that, if the sentences it starts with are true in an interpretation, then
the derived sentence is also true in the same interpretation. It follows that any
sentence obtained by repeatedly applying forward reasoning, starting from an
initial set of premises is a logical consequence of the premises. Therefore,
forward reasoning is a sound rule of inference. We will see later that forward
reasoning with H definite clauses is also complete.
 To see how forward reasoning preserves truth, consider the case of John
who buys a lottery ticket in the hope of becoming rich:

 buys-ticket(john, 150541)
 buys-ticket(X, Y) ∧ chosen(Y) → rich(X)

Forward reasoning can be applied if the variables can be instantiated in such
a way that the fact and one of the conditions of the conditional become
identical. If such an instantiation is possible, then forward reasoning
instantiates the conditional:

Step 1: buys-ticket(john, 150541) ∧ chosen(150541) → rich(john)

This is equivalent to the non-standard conditional:

 buys-ticket(john, 150541) → (chosen(150541) → rich(john))

Forward reasoning with this equivalent conditional then derives the
conclusion. This is just classical modus ponens:

Step 2: chosen(150541) → rich(john)

 279

Both steps are truth-preserving. Step 1 is truth-preserving, because a
conditional is true if and only if every instance is true. Step 2 is truth-
preserving because if a conditional is true and its conditions are true then its
conclusion must also be true.
 In the more general case, forward reasoning involves an atomic sentence
and a conditional both of which may contain universally quantified variables.
For example:

 likes(bob, X)
 likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z)

If the atomic sentence and the conditional can be instantiated, so that the
resulting atomic sentence and one of the conditions of the conditional are
identical, then instantiation is performed:

Step 1: likes(bob, X)
 likes(bob, X) ∧ gives(bob, X, Z) → generous-to(bob, Z)
Equivalently: likes(bob, X) → (gives(bob, X, Z) → generous-to(bob, Z))

Notice that the variable X in the original sentences is actually two different
variables, because the “scope” of a variable is limited to the sentence in
which it occurs. Outside of that scope, the name of the variable looses its
significance, and inside that scope, all occurrences of the variable can be
renamed, without affecting the semantics of the sentence. Notice also that the
instantiation of the two sentences is the most general instantiation that does
the job of making the two atoms identical.
 In the next step, forward reasoning deletes from the instantiated
conditional the condition that is identical to the instantiated atom:

Step 2: gives(bob, X, Z) → generous-to(bob, Z)

In general, starting from an atomic sentence and a conditional

 atomic sentence
 conditions → conclusion

forward reasoning first instantiates both sentences, so that the instantiated
atomic sentence is identical to one of the conditions of the instantiated
conditional:

Step 1: atomic sentence’
 atomic sentence’ ∧ other-conditions’ → conclusion’.

 280

This instantiation of terms for variables is the most general instantiation that
makes the two atoms identical, and is called the (most general) unifier of the
two atoms. All other common instances of the two atoms are instances of this
most general unifier. The operation of most general instantiation is called
unification; and the resulting atoms are said to be unified. The unifier of two
atoms, if there is one, is unique up to the renaming of variables.
 Having performed unification, forward reasoning deletes from the
instantiated conditional the condition that is now identical to the instantiated
atomic sentence:

Step 2: other-conditions’ → conclusion’.

Note that atomic sentence’ can occur anywhere in the conditions of the
conditional. However, for simplicity, both here and elsewhere, it is written
first, because the order in which formulas appear in a conjunction doesn’t
matter, and because it makes the description of the inference rule simpler.

Backward reasoning

With backward reasoning, truth is preserved in the opposite direction: If the
subgoals that are derived are true, and the conditional used to derive the
subgoals is true, then the initial goals from which the subgoals are derived
are true. To see this, consider first the simple case of a single atomic goal
clause:

Initial goal clause: generous-to(X, mary)
Conditional: likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z)

Here the variable X in the goal clause is existentially quantified and different
from the universally quantified variable X in the conditional, despite having
the same (local) name.
 Backward reasoning attempts to unify the atomic goal and the conclusion
of the conditional. If the attempt succeeds, then both sentences are
instantiated by applying the unifier:

Step 1: generous-to(X, mary)
 likes(X, Y) ∧ gives(X, Y, mary) → generous-to(X, mary)

Instantiation of the conditional is truth-preserving, because all of its variables
are universally quantified, and if the conditional is true then all of its
instances are true. In this example, the instantiation of the goal clause is
unnecessary.
 However, in the general case, when the goal clause needs to be
instantiated, this instantiation is not truth-preserving, because all of the

 281

variables in the goal clause are existentially quantified. But if an instance of a
goal clause is true, then the goal clause itself is true, because an existentially
quantified sentence is true if an instance is true.
 Having instantiated the goal clause and the conditional, backward
reasoning continues by replacing the goal atom by the conditions of the
conditional, as subgoals:

Step 2, subgoals: likes(X, Y) ∧ gives(X, Y, mary)

Here the variables X and Y are existentially quantified. (To find someone who
is generous to Mary, it suffices to find someone who gives something he/she
likes to Mary. He/she does not need to give everything he/she likes to Mary.)
If the subgoals and the conditional are true, then the original goal is also true
in the same interpretation.
 In general, starting from a selected atomic goal in an initial goal clause
and a conditional:
 selected-goal ∧ other-goals
 conditions → conclusion

backward reasoning attempts to unify the selected-goal with the conclusion
of the conditional. If the unification is possible, then the unifier is applied to
both sentences:

Step 1, instantiation: selected-goal’ ∧ other-goals’
 conditions’ → selected-goal’

Backward reasoning then replaces the instantiated selected goal by the
conditions of the instantiated conditional:

Step 2: conditions’ ∧ other-goals’.

In the special case where there are no other-goals, the second step is simply
modus ponens in reverse. In the special case where there are no conditions,
the conditions are equivalent to true, and the conditional is in effect a fact.
 Below is an example of the way in which backward reasoning is used for
computation in logic programming. The example uses the theoretically
elegant, though hopelessly inefficient representation of the natural numbers
using only 0 and the successor function s. The inefficiency of the
computation is not an inherent property of logic programming, but rather a
property of this specific representation.
 Consider the goal of adding 2 plus 2, using the definition of addition
given in Chapter A1. Here the names of variables are chosen to make the
matching instantiations more obvious:

 282

Initial goal clause: +(s(s(0)), s(s(0)), X)
New goal clause: +(s(0), s(s(0)), X’) where X = s(X’)
New goal clause: +(0, s(s(0)), X’’) where X’ = s(X’’)
New goal clause: true where X’’ = s(s(0))

The cumulative instantiations of the existentially quantified variables
compute the sum X = s(s(s(s(0)))).

Soundness and completeness

As we have seen, forward reasoning is sound. Backward reasoning, on the
other hand, is backwards sound: Given an initial goal clause and a derived
goal clause obtained by reasoning backwards with a conditional, the initial
goal clause is true in any interpretation in which the derived goal clause and
the conditional are true. Moreover, if the derived goal clause is the atom true
(an empty conjunction of subgoals), then the initial goal clause is true,
simply if the conditional is true.
 Thus forward and backward reasoning are two different, but sound ways
to solve a goal clause C1 ∧ … ∧ Cn. Forward reasoning can be understood as
solving the goal clause by deriving atomic sentences C1’… Cn’ such that the
conjunction C1’ ∧ … ∧ Cn’ is an instance of the goal clause C1 ∧ … ∧ Cn.
Backward reasoning can be understood as solving the goal clause by deriving
the goal atom true from the original goal clause.
 The soundness of forward reasoning and the backward soundness of
backward reasoning ensure that if a goal clause is solved using either forward
or backward reasoning, then the goal clause is true in every interpretation in
which the conditionals used in the derivation are true.

The backward soundness of backward reasoning can be turned into ordinary
soundness if goal clauses G are turned into denials G → false, and if solving
a goal clause is understood as deriving true → false, which is equivalent to
false.23

 This way of looking at backward reasoning makes it easier to see that
both backward and forward reasoning are special cases of the resolution rule,
presented in Chapter A5. It also makes it easier to obtain completeness by
means of refutation completeness:

 Let C be any sentence of classical logic,
 and S any set of sentences of classical logic.
 Then C is a logical consequence of S
 if (and only if) the sentences S and C → false have no model;
 if (and only if) S and C → false logically imply false.

23 Note that the denial of a goal clause ¬(∃ X1 …∃ Xm (C1 ∧ … ∧ Cn)) is equivalent
to a conditional constraint∀ X1 …∀ Xm (C1 ∧ … ∧ Cn → false).

 283

Therefore, A set of inference rules is refutation complete
if (and only if) whenever C is a logical consequence of S,

 then there exists a derivation (called a refutation)
by means of the inference rules, of false from S and C → false.

Both forward and backward reasoning are refutation complete for Horn
clauses. If G is a definite goal clause without negation and S is a definite
clause program, then the following are equivalent:

• G is a logical consequence of S.
• G is true in the minimal model of S.
• There exists a derivation of false from the clauses S and G → false

 both by forward reasoning and by backward reasoning.

Conclusions

In this chapter, we saw that forward and backward reasoning are both sound
and refutation complete for Horn clauses. In Chapter A4, we will see how to
extend reasoning with Horn clauses by means of negation as failure. In
Chapter A5, we will see how to extend forward and backward reasoning to
the resolution rule, which is sound and refutation complete for the clausal
form of full classical logic.

 284

Chapter A4. Minimal Models and Negation

To a first approximation, the negation as failure rule of inference is straight-
forward. Its name says it all:

 to show that the negation of a sentence holds
 try to show the sentence, and
 if the attempt fails, then the negation holds.

But what does it mean to fail? Does it include infinite or only finite failure?
To answer these questions, we need a better understanding of the semantics.

Consider, for example, the English sentence:

 bob will go if no one goes.

Ignore the fact that, if Bob were more normal, it would be more likely that
bob will go if no one else goes. Focus instead on the problem of representing
the sentence more formally as a logical conditional.

The variable X in the obvious representation:

 bob will go ← not(X will go).

is universally quantified with scope the entire conditional:

 ∀X (bob will go ← not(X will go))
i.e. bob will go ← ∃ X not(X will go)
i.e. bob will go ← not∀X (X will go)
i.e. bob will go if not everyone will go.

What we really want is:

 bob will go ← not ∃ X (X will go)

In fact, that is what we actually get if we apply the negation as failure
inference rule in the obvious way ignoring quantification:

Initial goal: bob will go
Subgoal: not X will go

 Naf: X will go
 Subgoal: not X’ will go (where X = bob)

 Naf: X’ will go
 Subgoal: not X’’ will go (where X’ = bob)

 285

ad infinitum ……………..

But then we have two problems: The problem we started with, that all
variables in conditionals are implicitly universally quantified, when what we
need is an existentially quantified variable inside negation; and the problem
of the infinite loop.
 But as we have just seen, the first problem is not a problem, but a solution
to a problem that we may not have realised we had. In general, negation as
failure interprets variables in negative conditions that do not occur elsewhere
as existentially quantified inside the negation; and for most applications this
is exactly what we want! We will see later that this is also what we want and
what we get with variables in the conclusions of maintenance goals that do
not occur in the conditions.
 It is the infinite loop that is the real problem. But before we try to tackle
the problem in this particular example, let’s sharpen our intuitions by
considering some simpler cases first. The simplest case is the one without
any negation at all.

Negation in minimal models

We have seen in Chapter A2 that every set H of conditionals without
negation (i.e. Horn clause program) has a unique minimal model M, which is
generated by instantiating universally quantified variables with ground terms
and by forward reasoning. I have argued that it is this minimal model that is
the intended model of H. Viewed this way, the semantics of negation as
failure is simply the normal semantics of negation in classical logic:

 a sentence not p holds by negation as (potentially infinite) failure
 if and only if not p is true in M
 if and only if p is not true in M.

In fact, the negation as failure inference rule can be understood simply as
reasoning backwards with the definition of truth, to show that not p is true in
M, by showing that p is not true in M.
 Remember the simple definite clause program E:

 even(0).
 even(s(s(X))) ← even(X).

with its infinite Herbrand model M consisting of the atomic sentences:

 even(0), even(s(s(0))), even(s(s(s(s(0))))),…..ad infinitum.

Consider the problem of determining if not even(s(s(s(0)))) is true in M:

 286

if and only if even(s(s(s(0)))) is not true in M
if and only if even(s(s(s(0)))) does not belong to M,
which is the case.

The negation as failure inference rule gives the same result without the need
to generate the model M explicitly:

 even(s(s(s(0))))) can be shown
if and only if even(s(0)) can be shown
but only if s(0) can be unified either with 0 or with s(s(0)).
But it cannot. So not even(s(s(s(0)))) can be shown.

Intended models of general logic programs

The minimal model semantics of definite clauses can be extended to
conditionals with negative conditions, which are also called general logic
programs. The first step, given such a general logic program P, is literally to
extend P with a set Δ of negations not a of atom sentences a, treating these
negations as though they were positive atoms (as in strong negation).
 The second step is then to treat the expanded set P∪ Δ as though it were a
definite clause program, with its own unique minimal model MΔ. If the set Δ
is appropriately restricted, so that, among other things, MΔ does not include
both an atom a and its negation not a, then MΔ is an intended model of P. We
will see later that a program P can have several such extensions Δ.
 Before discussing in greater detail the conditions necessary to ensure that
Δ is appropriately restricted, consider the even/odd program:

 even(0).
 even(s(s(X))) ← even(X).
 odd(X) ← not even(X).

Ignoring, to begin with, the definition of odd, let Δ be the set of all ground
negations that are true in the minimal model of the Horn clause program E,
i.e. let Δ be the set:

 not even(s(0)), not even(s(s(s(0)))),
 not even(s(s(s(s(s(0)))))), ….. ad infinitum.

Let M be the minimal model of even/odd ∪ Δ, treating Δ as a set of positive
atoms. This adds to the minimal model of E the additional positive atoms:

 odd(s(0)), odd(s(s(s(0)))),
 odd(s(s(s(s(s(0)))))), ….. ad infinitum.

 287

Arguably, M is the unique intended model of the program even/odd. Notice
that the constraint even(X) ∧ odd(X) → false is true in M.
 There exists a large class of general logic programs having a unique
minimal model that can be generated in this way. This is the class of so-
called locally stratified programs (Przymusinski, 1988). Intuitively, locally
stratified programs can be layered into strata in such a way that negative
conditions in higher strata are defined in lower strata, in the way that odd is
defined in terms of even.
 In the next section, we will investigate the unstratified program:

 bob will go ← not john will go.
 john will go ← not bob will go.

But first, we need to identify the restrictions necessary to ensure that Δ is
appropriate, in both the stratified and unstratified cases. The most important
restriction is obviously that:

 Δ is consistent with P.
i.e. If not a is in Δ then a is not true in the minimal model M of P∪ Δ.
i.e. For all atoms a, the constraint a ∧ not a → false is true in M.

The only other restriction that Δ needs to satisfy is that Δ should be
sufficiently large. This condition can be understood in different ways, the
simplest of which is that:

 Δ is total.
i.e. If a is not true in M, then not a is true in M ,
 and therefore not a is in Δ.
i.e. For all atoms a, the “constraint” a ∨ not a is true in M.

These two restrictions, consistency and totality, define the stable model
semantics of general logic programs (Gelfond and Lifschitz, 1988):

 The minimal Herbrand model M obtained by treating P∪ Δ
 as a definite clause program is a stable model of P if and only if
 not a is in M if and only if a is not in M.

In the stable model semantics, not a can be understood both as not a is true
and a cannot be shown.

Examples of stable models

Let us return now to the example we started with. Call it the program B:

 288

 bob will go ← not ∃ X (X will go)

The only ground atom that can be constructed from the vocabulary of B is the
atom bob will go. However, the language in which the sentence is expressed
might contain other constants for other individuals and objects not mentioned
in the sentence. We can ignore this slight complication, because it has no
impact on the following argument.
 The problem is to determine whether there is a stable model and whether
bob will go is true or false in this model. Suppose there is such a stable model
MΔ, which is the minimal model of some extension B∪ Δ of B. Now consider
whether the negative sentence not bob will go is in Δ:

 If not bob will go is in Δ, then bob will go is in MΔ,
 and then Δ is not consistent with the program B.

 If not bob will go is not in Δ, then neither bob will go
 nor not bob will go is in MΔ, and then Δ is not total.

Therefore the program B has no such stable extension Δ and therefore no
stable model. It is simply inconsistent. Moreover, any larger program
containing the sentence is also inconsistent and has no stable model.

In the stable model semantics, a logic program can have more than one
minimal model, as in the case of the program BJ:

 bob will go ← not john will go.
 john will go ← not bob will go.

The program has one stable model in which not john will go and bob will go,
and another stable model in which not bob will go and john will go.
 In cases where a program has more than one minimal model, an agent can
be either credulous or sceptical. In the stable semantics, a credulous agent
may choose to believe a sentence if and only if it is true in some minimal
model. But a sceptical agent believes a sentence if and only if it is true in all
minimal models. Of course, an agent may be credulous in some situations,
but sceptical in others.
 In the last example, according to a sceptical semantics, it is impossible to
say whether or not bob will go or john will go. This is like the situation in
classical logic, where the two conditionals above would be written as a
disjunction:

 bob will go ∨ john will go.

 289

Conclusions

In classical logic, a sentence C is a logical consequence of a set of sentences
S if and only if C is true in every interpretation in which S is true. However,
for the applications in this book, it is intended interpretations, rather than
arbitrary interpretations, that matter.

For beliefs in the form of definite clauses, these intended interpretations
are minimal models, which can be generated by instantiation and forward
reasoning. For more general beliefs that are general logic programs, the
intended interpretations are minimal models obtained by extending the
beliefs with the negations of atomic sentences. Viewing semantics in terms of
such minimal models is in the spirit of virtually all of the logics that have
been developed for default reasoning in Artificial Intelligence. These logics
include circumscription (McCarthy, 1980), default logic (Reiter, 1980),
modal non-monotonic logic (McDermott and Doyle, 1980), and
autoepistemic logic (Moore, 1985).

Thus, the argument for viewing thinking in terms of determining truth in
minimal models, rather than in terms of logical consequence, is supported by
the examples of default reasoning, arithmetic, and the Real World. Johan van
Benthem discusses some of these and many other examples in (van Benthem,
1989).

 290

Chapter A5. The Resolution Rule

This additional chapter shows that both forward and backward reasoning are
special cases of the resolution rule of inference. Resolution also includes
compiling two clauses, like:

into one:

In the propositional case, given two clauses of the form:

 D →E ∨ a

where B and D are conjunctions of atoms including the atom true, and C and
E are disjunctions of atoms including the atom false, resolution derives the
resolvent:

 D ∧ B → E ∨ C.

The two clauses from which the resolvent is derived are called the parents of
the resolvent, and the atom A is called the atom resolved upon.
 Resolution was originally defined by Robinson (1965a) for clauses that
are disjunctions represented as sets of literals, where a literal is an atom or
the negation of an atom. For example, the conditional D ∧ B → E ∨ C, where
C and D are single atoms, is interpreted as the disjunction ¬D ∨ ¬B ∨ E ∨ C
and is represented by the set of literals {¬D, ¬B, E, C}.
 The representation of clauses as sets of literals, interpreted as
disjunctions, builds into the resolution rule several inference rules of classical
logic, which would otherwise have to be stated separately and explicitly. For
example, the following logical equivalences are implicit in the set
representation of clauses:

 A ∨ A is equivalent to A
 A ∨ B is equivalent to B ∨ A
 A ∨ (B ∨ C) is equivalent to (A ∨ B) ∨ C.

In the propositional case, the resolvent of two clauses represented as sets:

you deal with the emergency appropriately ← you get help.

you get help ← you alert the driver.

you deal with the emergency appropriately ← you alert the driver.

A ∧ B → C

 291

 {A} ∪ F and {¬A} ∪ G

is the clause F ∪ G.

In this book, we represent clauses as conditionals, but we treat the conditions
and conclusions of clauses as sets of atoms. This simplifies the statement of
the resolution rule, because it means that the atom A that is resolved upon can
occur anywhere in the conclusion of one parent and anywhere in the
conditions of the other parent. It also means that if an atom occurs in the
conditions of both parents or in the conclusions of both parents, then the
duplicate occurrences of the atom are automatically merged into one
occurrence in the resolvent. Merging duplicate atoms is also called factoring.
 Resolution is sound and refutation complete. If a set of clauses has no
model, then there exists a derivation of false using only the resolution rule of
inference (including factoring).
 The refutation completeness of resolution suffices for showing logical
consequence in classical first-order logic: To show that a set of sentences S
logically implies a sentence C in classical logic, translate S and the negation
of C into clausal form and use resolution to derive false.
 The unrestricted resolution rule is very elegant, but also very inefficient.
To improve efficiency, numerous refinements, have been developed. Most of
these refinements are generalisations of forward and backward reasoning. For
example, hyper-resolution (Robinson, 1965b) is a generalisation of forward
reasoning and SL-resolution (Kowalski and Kuehner, 1971) is a
generalisation of backward reasoning. The connection graph proof procedure
(Kowalski, 1976 and Chapter 8 1979), on the other hand, performs
unrestricted resolution, but deletes links when resolutions are performed to
avoid redundacies.
 In the case of propositional definite clauses, forward reasoning is the
special case of resolution in which B → C is derived from A and A ∧ B → C.
Backward reasoning is, in effect, the special case in which D ∧ B → false is
derived from D → A and A ∧ B → false.

Unification and factoring

In the non-propositional case, in which clauses can contain (universally
quantified) variables, the resolution rule needs to be extended with
unification, to make the two atoms resolved upon identical. Given two
clauses:

 D →E ∨ A1

 A2 ∧ B → C

 292

such that A1 and A2 are unifiable, the resolvent is:

 D’∧ B’ → E’ ∨ C’

where B’, C’, D’ and E’ are obtained by applying the most general unifier of
A1 and A2 to B, C, D and E respectively.
 The original resolution rule is a little more complicated than this, because
it includes additional unifications, to make two literals in the same clause
identical, to factor them into one literal. Factoring is unnecessary in the case
of Horn clauses, but is necessary in some other cases.
 Consider the example of the barber paradox, in which a barber, John,
shaves everyone who does not shave himself, but shaves no one who does
shave himself. Ignoring the complication that the variable standing for the
shaved person ought to be restricted to some appropriate sort (as mentioned
in chapters A1 and 6), the example can be represented in the clausal form:

 shaves(john, X) ∨ shaves(X, X)
 shaves(john, X) ∧ shaves(X, X) → false

These two clauses have four resolvents (two of which are duplicates):

 shaves(X, X) → shaves(X, X)
 shaves(john, john) → shaves(john, john)
 shaves(john, john) → shaves(john, john)
 shaves(john, X) → shaves(john,X)

No matter how many further resolutions are performed, it is impossible to
derive false, because every resolution step deletes two atoms, leaving two
atoms behind in the resolvent.
 In cases such as these, the simple resolution rule needs to be augmented
with factoring: Given a clause of one of the two forms:

 D → E ∨ A1 ∨ A2

or A1 ∧ A2 ∧ B → C

such that A1 and A2 have a most general instance A, factoring derives the
clause

 D’ → E’ ∨ A

or A ∧ B’ → C’

where B’, C’, D’ and E’ are obtained by applying the most general unifier of
A1 and A2 to B, C, D and E respectively.

 293

 Applied to the barber paradox, factoring generates two additional clauses
from the two original clauses:

 shaves(john, john) → false
 shaves(john, john)

Resolution derives false in one step, proving that no such barber exists.

Connection graphs

The efficiency of resolution can be greatly enhanced by storing clauses, their
unifying links, and their unifiers in connection graphs. These links can then
be activated later when needed, without having to search for the connections.
 Reasoning is performed by activating a link - any link at all - adding the
resolvent to the graph, deleting the activated link, and adding new links
between the newly added resolvent and other clauses in the graph.
 The deletion of a link may cause a parent clause to contain an unlinked
atom. When this happens, the parent clause can be deleted along with all its
other links. This deletion can sometimes have a rippling effect, leading to the
deletion of other clauses and their links. Here is an example from (Kowalski,
1979):

The connection graph proof procedure, like resolution, is a refutation
procedure. So it succeeds, if the clause false is derived. Notice that the clause
playing(bob) ∨ working(bob) is a non-Horn clause. So strict forward or
backward reasoning is not possible.
 Any link in the graph can be activated. Let’s see how close we can come
to reasoning forward with breadth-first seach. The obvious place to start is
with the link connected to the “fact” employs(john, bob). When the
associated resolvent is generated and the link is deleted, both parent clauses
have unlinked atoms, and therefore both parents can be deleted, along with

happy(U) → false

playing(X) → happy(X) working (Y) ∧ employs(X, Y)→ happy(X)

playing(bob) ∨ working(bob) employs(john, bob)

U = X U = X

X = bob Y = bob X = john
Y = bob

 294

all their other links. Doing so, in effect, replaces the two parents by the
resolvent, because the resolvent inherits its parents’ links. However, the
unifiers associated with these inherited links are now the result of combining
the unifier of the activated link with the unifiers of the inherited links.

Again we can activate any link. Reasoning forward with the disjunction this
time, choosing the link with the unifier X = bob, the resolvent clause replaces
both its parents again:

Activating the link between the two occurrences of the atom working(bob),
we obtain:

happy(U) → false

playing(X) → happy(X) working (bob) → happy(john)

playing(bob) ∨ working(bob)

U = john U = X

X = bob

happy(U) → false

happy(bob)∨ working(bob) working (bob) → happy(john)

U = john U = bob

happy(U) → false

happy(bob)∨ happy(john)

U = john U = bob

 295

The two remaining links can be activated in any order, and even in parallel.
Either way, the clause false is derived in two steps, and the rest of the
connection graph is empty. The happy person we are looking for is U = bob
or U = john.

A recursive clause, like +(s(X), Y, s(Z)) ← +(X, Y, Z) , can resolve with a
copy of itself, giving in this case the resolvent +(s(s(X)), Y, s(s(Z))) ← +(X,
Y, Z). Self-resolving clauses give rise to internal links within the same clause,
standing for links between two different copies of the clause. In such cases,
similar rules about deletion and inheritance of links apply. Here is a
connection graph for computing the sum of 2 + 2:

In theory, any link, including the internal link could be selected for
activation. However, the standard program execution strategy activates links
backwards from the goal. Applying this strategy systematically gives rise to
the following sequence of connection graphs, renaming variables in the
recursive clause, to avoid confusion:

false ← +(s(0), s(s(0)), Z)

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’)

X’ = 0, Y’ = V, Z’ = V

X’ = 0, Y’ = s(s(0)), Z = s(Z’)

false ← +(s(s(0)), s(s(0)), U)

+(0, V, V) +(s(X), Y, s(Z)) ← +(X, Y, Z)

X = 0, Y = V, Z = V

X = s(0), Y = s(s(0)), U = s(Z)

 296

The cumulative instantiations U = s(Z), Z = s(Z’), Z’ = s(s(0)) compute the
sum U = s(s(s(s(0)))).
 In examples like this, if you ignore that fact that the connection graph is
just facilitating resolution, it looks like the goal clause is being repeatedly
overwritten, in the way that computers execute conventional computer
programs. If you can stretch your imagination a little further, then you might
even imagine that the unifying substitutions are like signals that are
transmitted along a network of neural connections in a brain.
 This imaginative view of connection graphs, as a kind of connectionist
model of the mind, is supported by their similarity with Maes’ (1990)
spreading activation networks. As in activation networks, different levels of
strength can be associated with different initial goals, reflecting their relative
importance. Different levels of strength can also be associated with different
observations, reflecting perhaps some instinctive judgement of their
significance. As in activation networks, these activation levels can be
transmitted from clause to clause along links in the connection graph.
 Such activation levels are similar to utility measures in decision theory;
and, like utility measures, they can be weighted by measures of uncertainty.
In the case of connection graphs, these weights might reflect the frequency
with which the activation of a link has contributed to successful outcomes in
the past. The resulting level of activation weighted by likelihood of leading to
a useful result can be used to select a link expected to have the best outcome
in the current situation based upon past experience.

false

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’)

X’ = 0, Y’ = V, Z’ = V

false ← +(0, s(s(0)), Z’)

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’)

X’ = 0, Y’ = V, Z’ = V

V = s(s(0)), Z’ = s(s(0))

 297

Connection graphs as an agent’s language of thought

The connection graph implementation of resolution shows how different the
syntax of sentences in LOT can be from the linear syntax of traditional logic
and of natural languages like English.
 One of the most important characteristic of connection graphs, inherited
from resolution, is that the ordering of sentences and of conditions within
sentences doesn’t matter. Thus, for example, the two English sentences:

 I get wet if I do not take an umbrella and it will rain.
 I get wet if it will rain and I do not take an umbrella.

have the same logical form, and therefore represent the same belief.
 A less obvious, but even more important characteristic of connection
graphs is that the names of predicates and their arguments do not matter. All
that matters is the connections, both the connections within the graph and the
connections to the Real World outside the agent’s mind. For example:

Subsumption

The connection graph proof procedure is only one among a great number of
refinements of resolution that have been developed to improve the efficiency
of automated reasoning. Another such enhancement, which is compatible

 if ##!!

##!!

Goal: if then

 if $$£££

$$££

 298

with connection graphs, is the deletion of subsumed clauses. This improves
efficiency, because if there exists a refutation using a subsumed clause, then
there exists an even shorter refutation using the subsuming clause. There is
no need to keep both clauses, because the subsuming clause is both more
informative and more efficient than the subsumed clause. Provided it is done
carefully, deletion of subsumed clauses does not affect soundness or
completeness.
 Suppose, for example, that I believe:

 mary is going to the party
 mary is going to the party → X is going to the party
 I am going to the party ∨ I will stay at home

From the first two clauses, I can derive that everyone (or everything) is going
to the party:

 X is going to the party

This subsumes the disjunction I am going to the party ∨ I will stay at home,
which therefore can be deleted.
 As noted in Chapter A2, deletion of subsumed clauses is a pragmatic way
of dealing with the paradoxes of material implication, without abandoning
classical logic.

Paraconsistency

The paradoxes of material implication are closely related to be property of
classical logic that an inconsistent set of sentences logically implies every
sentence. This unintuitive property of classical logic comes from interpreting
whenever in the definition of logical consequence:

 A sentence C is a logical consequence of a set of sentences S
 (or S logically implies C) if (and only if) C is true whenever S is true.

as material implication in the meta-language. Interpreting whenever in this
way, if S is inconsistent, then it is false that S is true in any interpretation.
Therefore C is a logical consequence of S, and it doesn’t matter whether or
not C is true in any interpretation. However, it would be more informative to
say:

 Given that C is a logical consequence of S and that S is inconsistent,
 it is impossible to say whether or not C is true in any interpretation.

 299

Looked at like this, there is nothing wrong with interpreting whenever as
material implication. What’s wrong is thinking that it is informative to tell
someone that a sentence is a logical consequence of an inconsistent set of
sentences.
 In fact, resolution, whether or not it is augmented with subsumption,
derives only informative consequences of a set of clauses. Consider the
simplest possible case of two clauses, p and not p. Only one application of
resolution is possible, and it derives false in one step. It doesn’t derive that
the moon is made of green cheese, or that the world is coming to an end.
 However, there is a perverse sense in which resolution can be used to
show that any sentence q is a logical consequence of p and not p:

 To show q is a logical consequence of p and not p,
 represent not q as a set of clauses not-Q,
 use resolution to refute the set of clauses {p, not p} ∪ not-Q, and
 ignore the fact that none of the clauses in not-Q
 participate in the refutation.

But with backward reasoning (generalised to arbitrary clauses as in SL-
resolution), even this perverse approach will not work. Backwards reasoning
from the conclusion reduces goals to subgoals using only relevant clauses. If
the inconsistent clauses are not relevant to the solution, then they will not
contribute to a proof. For example, if q is an atomic sentence, then q cannot
be shown at all by backward reasoning using the inconsistent and irrelevant
clauses p and not p.
 In the same way that the paradoxes of material implication have led to
relevance logic and other non-classical logics, the fact that inconsistent sets
of sentences logically imply any sentence has led to the development of non-
classical, paraconsistent logics (Priest, 2002). As the discussion in this
section shows, these problems can be solved in classical logic, by treating
them as pragmatic problems in the spirit of (Grice, 1989).

Conclusions

The resolution rule in an elegant and powerful rule of inference, which
includes forward and backward reasoning as special cases. When it was first
invented (or discovered?) by its author, Alan Robinson (1965a), it was
presented as a machine-oriented inference principle, suitable for computer
implementation, but not for human use. In my 1979 book, I argued, on the
contrary, that special cases of resolution have a natural interpretation in
human-oriented terms.
 These two contrary views of resolution are in fact complementary, and
are supported by dual process theories of human reasoning. Moreover, the
connection graph implementation of resolution is compatible with the view

 300

that the human mind is like a machine. Its software is the clausal form of
logic, and its hardware is the resolution principle. Reasoning in connection
graphs is sound, because resolution is sound. However, despite many
attempts to prove completeness (Siekmann, and Wrightson, 2002), it is not
known whether or not it is complete.
 Although completeness is an important theoretical property, the difficulty
of demonstrating its completeness is somewhat paradoxically an argument in
its favour. Completeness is easy to show when a proof procedure allows
many different, but essentially equivalent ways of generating the same proof.
It is more difficult to show when there are fewer ways of generating a proof.
As long as there are no proofs that cannot be generated, the difficulty of
demonstrating completeness suggests that the connection graph proof
procedure is efficient because it contains few redundancies.
 In Chapter A2, I argued that subsumption solves the paradoxes of
material implication, and in this chapter I argued that resolution solves the
problem that an inconsistent set of sentences logically implies every
sentence. In both cases, the solution treats these as pragmatic problems,
which do not affect the semantics and proof procedures of classical logic.
 Resolution and the connection graph proof procedure were developed as
refutation procedures for showing logical consequence in classical first-order
logic. However, I have argued in other chapters that it is truth in minimal
models rather than logical consequence that we should be aiming for.
 In fact, without acknowledging it, many of the connection graphs
presented in other chapters do not conform to the official resolution rule,
because they contain links between atoms in the conclusions of conditional
goals and atoms in the conclusions of conditional beliefs. These non-
conformist connection graphs are needed for showing that conditional goals
are true in minimal models, as shown implicitly in Chapter A6.

 301

Chapter A6. The Logic of
Abductive Logic Programming

In this additional chapter, we provide the technical support for abductive
logic programming (ALP), which is the basis of the Computational Logic
used in this book. ALP uses abduction, not only to explain observations, but
to generate plans of action.
 ALP extends ordinary logic programming by combining the closed
predicates of logic programming, which are defined by clauses, with open
predicates, which are constrained directly or indirectly by integrity
constraints in a variant of classical logic. Integrity constraints in ALP include
as special cases the functionalities of condition-action rules, maintenance
goals and constraints.
 More formally, an abductive logic program <P, O, IC> consists of a
logic program P, a set of open predicates O and a set of integrity constraints
IC. The open predicates are restricted so they do not occur in the conclusions
of clauses in P. This restriction is not essential, but it simplifies the
technicalities.
 There are many variants of ALP, with different syntax, semantics and
proof procedures. In this book, we express integrity constraints in the form of
generalised conditionals, which are like ordinary conditionals, but which may
have existential quantifiers and disjunctions in their conclusions. The
inclusion of disjunctions in the conclusions of integrity constraints means
that, in the propositional case, they have the full power of classical logic.24

 In ALP, we are concerned with the problem of solving a goal clause G,
which may simply be an atomic sentence in the case of explaining an
observation, or may be a conjunction of conditions in the case of planning. In
both cases, a solution of G is a set Δ of ground instances of the open
predicates O such that:

The inclusion of existential quantifiers in conclusions means that, in the non-
propositional case the use of Skolem functions to eliminate existential
quantifiers, as discussed in Chapter A1, can be minimised.

 G holds with respect to the program P∪ Δ and
 Δ satisfies IC.

The notions of holding and satisfying are deliberately vague (or abstract).
This is because many different notions of holding and satisfying have been
explored, and there is still no general agreement about which notions are
most appropriate.

24 In the general case they have the power of range-restricted clauses, in which every
variable occurring in the conclusion of an integrity constraint also occurs in the
conditions of the constraint.

 302

 Several competing views of the semantics of integrity constraints,
associated with different proof procedures for checking database integrity,
were investigated intensively in the field of deductive databases in the 1980s.
To begin with, the two main views were the consistency view and the
theoremhood view. In the consistency view, an integrity constraint is satisfied
if it is consistent with the database. In the theoremhood view, it is satisfied if
it is a theorem, true in all models of the database. Reiter (1988) proposed an
epistemic view, according to which integrity constraints are true statements
about what the database knows.

Reiter (1988) also showed that in many cases these three views are
equivalent for databases with the closed world assumption. For relational
databases, the three views are also equivalent to the standard view that a
database satisfies an integrity constraint if the integrity constraint is true in
the database regarded as a Herbrand interpretation.

However, there are also many cases in which these different views result
in different judgements of integrity satisfaction. The simplest example is the
program consisting of the single Horn clause C ← C and the integrity
constraint C → false. According to the consistency and epistemic views, the
integrity constraint is satisfied; but according to the standard theoremhood
view, it is not.

The different views can be understood as different ways of interpreting
negation as failure. The consistency and epistemic views understand it as
infinite failure, and the theoremhood view interprets it as finite failure. For
Horn clause programs, the consistency and epistemic views are equivalent to
the view that an integrity constraint is satisfied if and only if it is true in the
unique minimal model.
 Having been involved in the debates about the semantics of integrity
constraints, developed proof procedures for both integrity checking (Sadri
and Kowalski, 1988) and ALP (Fung, and Kowalski, 1997; Kowalski, Toni
and Wetzel, 1998), and argued against conventional model-theoretic
semantics (Kowalski, 1995), I am now convinced that semantics in general,
and the semantics of ALP in particular, is best understood in terms of truth in
minimal models:

 A set Δ of ground instances of the open predicates O is a solution of G
 if and only if {G}∪ IC is true in some minimal model of P∪ Δ.

The notion of minimal model is clear-cut in the case in which P∪ Δ is a Horn
clause program. Although this case may seem very restricted, it is the basis
for all other cases and extensions. The extension to the case where P and IC
are not ground is quite straightforward, involving mainly just performing
instantiation or unification. The extension to the case with negation is similar
to the extension from minimal models of Horn clause programs to stable

 303

models of logic programs with negation. We will discuss the treatment of
negation and other extensions later in the chapter.

A system of inference rules for ground Horn ALP

A ground Horn abductive logic program <P, O, IC> consists of a program P,
which is a ground (variable-free) Horn clause program, a set of open
predicates O, and integrity constraints IC, which are ground conditionals of
the form:

 A ∧ B → C.

where A is an open atom (i.e. an atom with an open predicate in O), and B
and C are conjunctions of atoms25

 The problem is to solve a ground Horn goal clause G0, which is a
conjunction of variable-free atoms.

. Integrity constraints of this form are like
the event-condition-action rules of active databases (Widom and Ceri, 1996).
The atom A is like an event that is not defined by the database.

 The following definition of abductive derivation is adapted from the IFF
proof procedure for ALP (Fung and Kowalski, 1997). Whereas the IFF proof
procedure uses logic programs expressed in the biconditional, if and only if
form, the abductive proof procedure of this chapter employs similar inference
rules for logic programs in conditional form. The two proof procedures differ
mainly in their semantics. The IFF proof procedure employs the theoremhood
view, whereas the abductive proof procedure of this chapter employs the
minimal model view.
 The proof procedure uses forward and backward reasoning in the attempt
to generate a solution Δ of G0 by generating an abductive derivation G0 , G1 ,
… GN such that GN contains the set Δ but no other goals that need to be
solved. Each Gi+1 is obtained from the previous Gi by one of the following
inference rules:

F1: Forward reasoning with a selected open atom A in Gi and an integrity

constraint in IC. Suppose the integrity constraint has the form A ∧ B

→ C and Gi has the form A ∧ G. Then Gi+1 is (B → C) ∧ A ∧ G.
(Notice that this introduces a conditional into the goal clause. For this
reason, we call the resulting goal clauses generalised goal clauses.)

25 Note that the atom A can occur anywhere in the conditions of the constraint. Note
also that if there is no B, then this is equivalent to B being true. If there is no C, then
this is equivalent to C being false.

 304

F2: Forward reasoning can also be used with a selected open atom A and
a conditional in Gi . Suppose Gi has the form (A ∧ B → C) ∧ A ∧ G.

 Then Gi+1 is (B → C) ∧ A ∧ G.

B1: Backward reasoning with a selected atom C in Gi and a clause in P.
Suppose the clause has the form C ← D and Gi has the form C ∧ G.

 Then Gi+1 is D ∧ G.

B2: Backward reasoning with a selected atom C in a conditional in Gi

having the form (C ∧ B → H) ∧ G. Suppose C ← D1 ……..C ← Dm are
all the clauses in P having conclusion C.

 Then Gi+1 is (D1 ∧ B → H) ∧….∧ (Dm ∧ B → H) ∧ G.

Fact: Factoring between two copies of an open atom A in Gi .
 If Gi has the form A ∧ A ∧ G, then Gi+1 is A ∧ G.
 (Any previous applications of F1 and F2 to any occurrence of A
 are deemed to have been done to the resulting single copy of A.)

S: Logical simplification: Replace true → C by C.
 Replace true ∧ C by C.
 Replace false ∧ C by false.

An abductive derivation G0 , G1 , … GN using these inference rules is a
successfully terminating derivation of a set of open atoms Δ if and only if:

 GN is not false,
 GN has the form (B1 → C1) ∧… ∧ (Bm→ Cm) ∧ A1 ∧ … ∧ An , m ≥ 0, n ≥ 0,
 where each Ai is an open atom,
 no further applications of the inference rules can be performed on GN
 no matter which atom is selected, and Δ = { A1 , … , An}.

The residual conditionals Bi → Ci in a successfully terminating derivation are
conditionals introduced by F1 but whose remaining conditions Bi are not true
in the minimal model of P∪ Δ. The conditions Bi of these residuals may
consist solely of open atoms not in Δ; or they may contain closed atoms C
that are not the conclusions of any clauses in P. In the latter case, it is as
though there were a clause of the form C ← false in P (as a result of which Bi
is false, and the residual can be simplified to true and be ignored).
 Note that if Gi has the form C ∧ G, where C is a closed atom that is the
conclusion of no clause in P, then Gi cannot be part of a successfully
terminating derivation. It is as though there were a clause of the form C ←
false in P (as a result of which C is false, and Gi can be simplified to false).

 305

 Together the inference rules F1, F2, and B2 check whether the conditions
of an integrity constraint hold true in the minimal model of P∪ Δ; and if they
do, logical simplification adds the conclusion of the integrity constraint to the
goals. The inference rule B1 uses ordinary backward reasoning to solve both
the initial goal and any new goals introduced from the conclusions of
integrity constraints. In effect, the factoring rule Fact treats the open
predicates added to Δ as though they were facts added to P. The inference
rules F1, F2, B1, B2, Fact and S are sound:

Theorem: Given a ground Horn abductive logic program <P, O, IC> and
ground Horn goal clause G0:

 If there exists a successfully terminating derivation of Δ,
 then {G0 }∪ IC is true in the minimal model of P∪ Δ.

The inference rules are not complete, because they do not recognise infinite
failure.

Infinite success and incompleteness

Consider the abductive logic program < {C ← C}, {A}, {A ∧ C → false}>
and the goal A. The inference rules generate the non-terminating derivation:

G0 A given
G1 (C → false) ∧ A by F1
G2 (C → false) ∧ A by B2
 ad infinitum …….. by B2

This infinite derivation is the only derivation possible. However, Δ = {A} is a
solution of G0 because both the integrity constraint and the initial goal are
true in the minimal model of P∪ {A}. The integrity constraint A ∧ C → false
is true, because C is false.
 It is possible to capture this kind of non-terminating “successful”
derivation by broadening the notion of successful derivation:

An abductive derivation G0 , G1 , … GN is a successful derivation of a set
of open atoms Δ if and only if:

 GN is not false,
 GN has the form (B1 → C1) ∧… ∧ (Bm→ Cm) ∧ A1 ∧ … ∧ An , m ≥ 0, n ≥ 0,
 where each Ai is an open atom,
 no further applications of the inference rules can be performed on the Ai ,
 Δ = { A1 , … , An} and

 306

 the conditions Bi of the residues are not true
 in the minimal model of P∪ Δ.

Implementing the requirement that the conditions of the residues are not true
in P∪ Δ can be done by trying to show that the conditions are true and
failing. However, as the example above shows, this necessitates recognising
infinite failure. This is impossible in general, but can be solved effectively in
many cases (including the ground case) by the use of tabling (Sagonas, Swift
and Warren, 1994).
 With the new definition, the inference rules are complete in the following
sense:

Theorem: Given a ground Horn abductive logic program <P, O, IC>, a
ground Horn goal clause G0 and a set of ground open atoms Δ:

 If {G0 }∪ IC is true in the minimal model of P∪ Δ,
 then there exists a successful derivation of Δ’, such that Δ’ ⊆ Δ.

Proof procedures for ground Horn ALP

The inference rules F1, F2, B1, B2, Fact and S determine the form of abductive
derivations. To obtain a proof procedure, it is necessary to specify how the
search space of derivations is generated and explored. It is important to note
that only B1 generates alternative derivations, corresponding to alternative
ways of reasoning backwards from a selected atomic goal C in Gi using
alternative clauses C ← D in P. All the other inference rules simply
transform one (generalised) goal clause Gi into another. Moreover, the order
in which the inference rules are applied doesn’t matter, because they all have
to be applied (except for the alternative ways of applying B1) in order to
generate a successful derivation. However, for efficiency, the simplification
rules S and Fact should be applied as soon as they are applicable.
 The search space of all possible derivations has the form of an or-tree (or
search tree):

R The initial goal G0 is the root of the tree.

S/Fact Given any node Gi in the search tree,
 if a rule in S or Fact can be applied,
 then the node has a single successor Gi+1

 obtained by applying one such rule.

Select Otherwise, some atom C either in the position C ∧ G
 or in the position (C ∧ B → H) ∧ G in Gi

 307

 is selected for application of the inference rules:

F If the selected atom C is an open atom in the position C ∧ G, then

F1 is used with an integrity constraint in IC or F2 is used with some
conditional in Gi to generate Gi+1. In both cases, this application of
F1 or F2 should not have been performed before.

 B1 If the selected atom C is a closed atom in the position C ∧ G, then
there are as many successor nodes Gi+1 as there are ways of
applying B1 with some clause in P with conclusion C.

B2 If the selected atom C is in the position (C ∧ B → H) ∧ G, then B2
is used to generate Gi+1.

It is important to note that there are as many such search trees as there are
ways of applying a simplification or factoring rule in step S/Fact and of
selecting an atom in step Select. It is necessary to explore only one such
search tree in the attempt to generate a successful derivation. This makes it
worthwhile to put some effort into deciding which atoms to select, to make
the resulting search space as easy and efficient to search as possible. Any
search strategy, including depth-first, breadth-first, best-first, serial or
parallel, can be used to explore the selected search space. In particular, the
search tree could be embedded in a connection graph, and the best-first
search strategy sketched in Chapter 4 could be used to guide the search.

Integrity constraints with disjunctive conclusions

Several of the examples in the book involve integrity constraints with
disjunctive conclusions:

 C → D1 ∨ … ∨ Dm

To deal with such integrity constraints, it suffices to add the additional
inference rule:

Splitting: If Gi has the form (D1 ∨ … ∨ Dm) ∧ G, then there are as many

successor nodes Gi+1 of the form Di ∧ G as there are disjuncts Di.

Splitting needs to be performed when the conditions of an integrity constraint
have been reduced to true, and the disjunctive conclusion has been conjoined
to the subgoals in Gi.
 In the propositional case, integrity constraints with disjunctive
conclusions give them the power of the clausal form of classical logic. The
splitting rule, together with the forward reasoning rules F1 and F2, turns the
proof procedure into a model generator for clausal logic. In fact, the proof
procedure for the case <P, O, IC> where P is empty and O is the set of all

 308

predicates in the language, is equivalent to the SATCHMO (Manthey and
Bry, 1988) model-generator (and proof procedure) for the clausal form of
classical logic.
 We will see how splitting can be used to implement the totality restriction
of the stable model semantics of negation as failure, in the next section.

Negation through abduction with
contraries and constraints

The minimal model semantics of ALP blends smoothly with the stable model
semantics of logic programs with negation. In both cases, the semantics is
defined in terms of the minimal model of a Horn clause program P extended
with a set Δ. In the case of abduction, Δ consists of open ground atoms; and in
the case of logic programs with negation, Δ consists of negations of ground
atoms treated as positive atoms.
 The stable model semantics can be interpreted as a special case of ALP,
by treating all negations of atoms not a as positive, open atoms, say non-a,
and by using integrity constraints to express that a and non-a are contraries26

.
The most important integrity constraint needed for this is the consistency
constraint:

 non-a ∧ a → false

We also need to ensure that Δ is sufficiently large. To capture the stable
model semantics, we need the totality constraint:

 true → non-a ∨ a

With this representation, for every logic program with negation P, there is a
corresponding abductive logic program <P’, O, IC> where O is the set of
positive contraries of the negations of atoms in P, P’ is the Horn clause
program obtained from P by replacing negations of atoms with their positive
contraries in O, and IC is the set of consistency and totality constraints.
 With this correspondence the stable models of P coincide with the
minimal models of P’∪ Δ, where Δ is a solution of the initial goal true
(Eshghi and Kowalski, 1989). In fact, the very definition of stable model
coincides with the definition of abductive solution in this special case.
 However, there is a problem with the correspondence: It requires the
satisfaction of all the totality constraints whether they are relevant to the

26 Treating negations as positive contraries makes it easier to compare the treatment
of negation in ALP with the treatment of negation in the stable model semantics.
However, it is also possible to treat negations directly as open formulas, as in the IFF
proof procedure.

 309

initial goal G0 or not. We will investigate this problem and discuss its
solution in the following sections.

The case for ignoring the totality constraints

Consider the program from Chapter A4:

P: bob will go ← not john will go.
 john will go ← not bob will go.

To reformulate the program in ALP terms, reexpress the negative conditions
as positive open predicates, say in the form:

P’: bob will go ← john stays away.
 john will go ← bob stays away.
O: {john stays away, bob stays away}
IC: bob will go ∧ bob stays away → false.
 john will go ∧ john stays away → false.

Ignore the totality constraints for now, and consider the initial goal G0 = bob
will go. The proof procedure generates only one successfully terminating
derivation with solution Δ1= {john stays away} as follows:

G0 bob will go
G1 john stays away
G2 (john will go → false) ∧ john stays away
G3 (bob stays away → false) ∧ john stays away

Similarly, the proof procedure generates the solution Δ1= {bob stays away}
for the initial goal G0 = john will go. The results are the same as those
obtained with the stable model semantics, but without the totality constraints.

The case for the totality constraints

The following example shows that we need the totality constraints, or
something like them. Consider the program consisting of the clauses:

P: john can fly ← john is a bird ∧ not(john is abnormal)
 john is a bird

Under the closed world assumption and the stable model semantics, since it
cannot be shown that john is abnormal, it follows that not(john is abnormal)
and therefore that john can fly. But it cannot be shown that not(john can fly).

 310

 But it is possible to show not(john can fly) reexpressed as a positive
predicate john is flightless, using the corresponding abductive logic program
<P’, O, IC> without the totality constraints, where:

P’ john can fly ← john is a bird ∧ john is normal
 john is a bird
O {john is flightless, john is normal}
IC: john is flightless ∧ john can fly → false.
 john is normal ∧ john is abnormal → false.

According to the semantics of ALP without the totality constraint, john is
flightless has the undesirable solution Δ = {john is flightless}. This same
solution is also generated by the abductive proof procedure:

G0 john is flightless
G1 (john can fly → false) ∧ john is flightless
G2 (john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal → false) ∧ john is flightless

It seems that we need the totality constraint (or something like it), after all27

.
With the totality constraint:

 true → john is normal ∨ john is abnormal

the undesired solution disappears, because neither john is normal nor john is
abnormal is true in the minimal model of P’∪ Δ, where Δ = {john is
flightless }.
 Here is what the proof procedure (with one particular selection strategy)
does with the same problem augmented with the totality constraint above
(ignoring the other totality constraint, to avoid clutter). The first three steps of
the derivation are the same. However, the initial goal can be regarded as
containing the disjunctive conclusion of the totality constraint, because the
condition of the constraint true is true:

G0 (john is normal ∨ john is abnormal) ∧ john is flightless
G1 (john is normal ∨ john is abnormal) ∧
 (john can fly → false) ∧ john is flightless
G2 (john is normal ∨ john is abnormal) ∧

 (john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal ∨ john is abnormal) ∧

27 This is also a counter-example to replacing the totality requirement of the stable
model semantics by the requirement that P∪ Δ or P’∪ Δ be maximally consistent.

 311

 (john is normal → false) ∧ john is flightless
G4 john is normal ∧ (john is normal → false) ∧ john is flightless
G5 john is normal ∧ john is flightless ∧ false
G6 false

G4’ john is abnormal ∧ (john is normal → false) ∧ john is flightless

The generalized goal clause G3 has two successor nodes G4 and G4’. The
successor node G4 leads to a failing derivation of false. The successor node
G4’ terminates unsuccessfully, because john is abnormal is not an open atom
and no inference rules can be applied to G4’. So with the totality constraint,
the undesired solution disappears, both in the semantics and in the proof
procedure.

An alternative to the totality constraints

Unfortunately, the totality constraints are computationally very expensive.
They require the global consideration of a totality constraint for every ground
atom in the language, whether the ground atom is relevant to the goal or not.
This is bad enough in the ground case; but in the case with variables, it is
prohibitively expensive.
 An alternative to checking all the totality constraints is to check only
those totality constraints that are locally relevant to the problem at hand. In
addition to avoiding the computational problems of the global constraints, the
local alternative has other merits. Among its other properties, the alternative
is inconsistency tolerant, deals with the problem of preventative maintenance,
and has a nice interpretation in terms of arguments for and against the initial
goal. The effect of restricting the totality constraints to those that are locally
relevant can be obtained by adding a minor variant of the negation rewriting
rule of the IFF proof procedure, together with an additional simplification
rule:

Neg: If Gi has the form (non-C ∧ B → H) ∧ G,
 then Gi+1 is (B → H ∨ C) ∧ G.

 Replace non-C ∧ C by false
 Replace false ∨ C by C.

We assume that the set of integrity constraints IC is a set of clauses possibly
with disjunctive conclusions, but without negation. Therefore, negation
rewriting deals only with negation introduced from the conditions of logic
programs by backward reasoning using B2. But if a negation non-C is
introduced by B2 into the conditions of a maintenance goal, then Neg makes it

 312

possible to satisfy the maintenance goal by making C true, thereby preventing
the need to achieve the conclusion of the maintenance goal.
 To see how negation rewriting compares with the totality constraints,
reconsider the example of the last section G0 = john is flightless using the
same abductive logic program:

P’ john can fly ← john is a bird ∧ john is normal
 john is a bird
O {john is flightless, john is normal}
IC: john is flightless ∧ john can fly → false.
 john is normal ∧ john is abnormal → false.

The first three steps are the same as they were before without the totality
constraint:

G0 john is flightless
G1 (john can fly → false) ∧ john is flightless
G2 (john is a bird ∧ john is normal → false) ∧ john is flightless
G3 (john is normal → false) ∧ john is flightless

Whereas before, without totality, the derivation terminated successfully with
G3, now negation rewriting applies, and the derivation terminates
unsuccessfully with G4:

G4 john is abnormal ∧ john is flightless

The derivation terminates unsuccessfully, for the same reason that G4‘ failed
when we used the totality constraint before, because the subgoal john is
abnormal is not an open atom, and no further inference rules can be applied.
 Thus negation rewriting eliminates the same undesired solution
eliminated by the totality constraint before, but now by means of a local
inference rule, which applies only when it is relevant.
 Before we discuss the semantics of the proof procedure with negation
rewriting, reconsider the goal G0 = bob will go using the abductive logic
program:

P’: bob will go ← john stays away.
 john will go ← bob stays away.
O: {john stays away, bob stays away}
IC: bob will go ∧ bob stays away → false.
 john will go ∧ john stays away → false.

The example is significant both because the proof procedure obtains the same
results as the stable model semantics, and because these results are different

 313

from those of the IFF proof procedure, on which the abductive proof
procedure is based.
 The first three steps are the same as they were without the totality
constraint:

G0 bob will go
G1 john stays away
G2 (john will go → false) ∧ john stays away
G3 (bob stays away → false) ∧ john stays away

Before the derivation terminated successfully with G3. Now negation
rewriting applies, and the derivation terminates successfully with G6:

G4 bob will go ∧ john stays away
G5 john stays away ∧ john stays away
G6 john stays away

The derivation terminates, because the only inference rule, namely F1, that
can be applied to john stays away has already been applied to the earlier copy
of john stays away and is treated as having been applied to the new single
copy in accordance with the definition of Fact.

Preventative maintenance

The combination of Neg and Splitting makes it possible to satisfy
maintenance goals by preventing the need to achieve their conclusions. For
example if you have an exam coming up and you fail the exam then you need
to retake the exam later. If you don’t like the idea of retaking the exam, you
can reason as follows:

P: you will fail the exam ← you do not study.
O: {you have an exam, you study, you do not study, you retake the exam}
IC: you have an exam ∧ you do not study → you retake the exam.
 you study ∧ you do not study → false.

G0 you have an exam
G1 you have an exam ∧ (you do not study → you retake the exam)
G2 you have an exam ∧ (you study ∨ you retake the exam)
G3 you have an exam ∧ you study
G3’ you have an exam ∧ you retake the exam

So the choice is up to you. Either you study or you retake the exam.

 314

An argumentation-theoretic interpretation

An abductive derivation G0, G1 , … GN using Neg for logic programs P with
negation, but without other open predicates and other integrity constraints
can be viewed as constructing an argument to support and defend the claim
G0:

 The inference rule B1 reduces the initial goal, and all other goals

needed to support it, to subgoals, and ultimately to open subgoals of
the form non-a. If the derivation is successful then the set of all these
open subgoals is the set Δ.

 When an open atom non-a is generated by B1, to be added to Δ, the

inference rule F1 is used with the consistency constraint to derive a →
false, in an attempt to attack the argument being constructed by B1 by
undermining non-a. However, no attempt is made to undermine non-a
if non-a already belongs to Δ. Instead, Fact is used to merge the two
copies of non-a into a single copy, and to avoid attacking and
defending non-a redundantly.

 The inference rule B2 reduces a in a → false to alternative arguments

attacking non-a. Each such attacking argument is ultimately reduced
to a conjunction of open subgoals of the form non-b.

 For each such attacking argument, reduced to open atoms, the proof

procedure attempts to undermine one such open atom non-b and
defeat the attack. This is done by using the inference rules Neg and
Splitting, to generate a counter-attack, by showing b. However, no
attempt is made to counter-attack non-b if non-b belongs to Δ. Instead,
F2 is used to eliminate non-b from the attack.This also ensures that Δ
does not attack itself.

In a successful derivation, this dialectic process of support, attack and
counter-attack continues until every attack against the open atoms in Δ has
been considered and counter-attacked, and all the goals and subgoals needed
for this purpose have been reduced to open atoms in Δ.

An argumentation-theoretic semantics

This view of abductive derivations in terms of arguments and counter-
arguments can be given an argumentation-theoretic semantics. Moreover, it
suggests that the stable model semantics itself can also be understood in
argumentation terms: Given an abductive logic program <P’, O, IC>

 315

corresponding to a normal logic program P, the stable model semantics can
be understood as sanctioning a set Δ of open atoms as a solution of a goal G0
if and only if:

 P’∪ Δ supports an argument for G0.
 No argument supported by P’∪ Δ attacks Δ.
 For every non-b not in Δ,
 P’∪ Δ supports an argument that attacks non-b.

In the stable model semantics, argumentation is all-out warfare: For Δ to be
stable, every non-b has to take a side, either with or against Δ. If non-b is not
with Δ, then Δ attacks non-b.
 With abductive derivations, Δ is an admissible solution of G0, if and only
if:

 P’∪ Δ supports an argument for G0.
 No argument supported by P’∪ Δ attacks Δ.
 For every argument supported by P’∪ Δ’ that attacks Δ,
 P’∪ Δ supports an argument that attacks Δ’.

In the admissibility semantics, argumentation is merely self-defence.
 The inference rules F1, F2, B1, B2, Fact, S and Neg are sound:

Theorem: Given an abductive logic program <P’, O, IC> corresponding to a

ground logic program P with negation, but without other open
predicates and other integrity constraints, and given a goal clause
G0:

 If there is a successfully terminating derivation of Δ,
 then Δ is an admissible solution of G0.

As in the case of ground Horn ALP, to obtain completeness, the definition of
successful derivation needs to be extended to the possibly non-terminating
case. A discussion of these and related issues can be found in (Dung,
Kowalski and Toni, 2006) in the context of proof procedures for abstract
argumentation.

Extensions of the abductive proof procedure

The most important extension is, of course, to the case of non-ground
abductive logic programs. In the case of the IFF proof procedure, on which
the abductive proof procedure is based, this extension, involves a number of
additional inference rules, for dealing with substitutions represented by

 316

means of equations. However, in the case of the abductive derivations of this
chapter, the extension to the non-ground case requires mainly just adding
unification for forward reasoning, backward reasoning and factoring. It also
requires the range-restriction on variables, which is not too difficult to live
with in practice.28

 Four other extensions are needed to deal with the topics in this book:

 Unfortunately, there is not sufficient space to deal with this
extension and the issues it raises in this book.

We need to generalize forward reasoning, so that the atom A in Gi
used for forward reasoning can be a closed atom. This allows the
consequences of hypothetical actions and explanations to be
considered without the need to reduce them to open atoms.

We need to extend clauses/beliefs to include conditionals in the
conditions of conditionals; for example, to represent the wood louse
designer’s beliefs in the Chapter 9.

We need to extend forward reasoning, to reason forwards using
beliefs, and not only using integrity constraints. This involves relaxing
the restriction that every integrity constraint contains an atom with an
open predicate.

We need to integrate the abductive and the connection graph proof
procedures.

The first extension is trivial. The restriction that A be an open atom was
imposed for simplicity. The restriction can be removed without further ado.

The second extension is also very easy. We already have conditionals in
generalized goal clauses introduced by forward reasoning with integrity
constraints. They could just as easily have been introduced by backward
reasoning with clauses.

The third extension requires a little more work. Integrity checking methods
that reason forwards with clauses were developed for deductive databases in
the 1980s (Sadri and Kowalski, 1988). These could be integrated with the
abductive proof procedure presented in this chapter. However, it is interesting
to note that many practical systems in Computing restrict rules to the form of
event-condition-action rules, which are obtained in effect by reasoning in
advance.

28 With a minor modification of this restriction, integrity constraints can contain
existentially quantified variables in their conclusions, and these existential quantifiers
may be left implicit.

 317

The fourth extension is not very difficult in theory, because forward and
backward reasoning are special cases of resolution, and the connection graph
proof procedure is just a vehicle for implementing resolution more
efficiently. However, as remarked at the end of Chapter A5, the connection
graph proof procedure was developed as a refutation procedure to show
logical consequence. To adapt it to the generation of minimal models in ALP,
conclusions of conditional goals need to be linked to the conclusions of
conditional beliefs.

Note that the combination of abduction with open predicates and default
reasoning with negative predicates requires no extension at all, but simply the
inclusion of both kinds of predicates, their associated integrity constraints,
and negation rewriting in the same abductive logic program.

Conclusions

This chapter has presented the technical support for the main reasoning
techniques studied in this book. However, there remain a number of
extensions needed for a comprehensive framework. Many of these extensions
are straightforward, because all of them have been developed as individual
components or in combination with other components in other frameworks.
Their harmonious integration into a single encompassing framework is a
topic for further research.
 This chapter also introduced an argumentation semantics and proof
procedure for abductive logic programming. The semantics and proof
procedure build upon recent advances in logic-based argumentation in AI.
One of the most important achievements of this argumentation-based
approach is the demonstration that almost all of the original logic-based
formalisms developed for default reasoning in AI can be understood
uniformly in argumentation terms (Bondarenko et al., 1997). This approach
has been especially influential in the field of AI and Law (Prakken and
Sartor, 1996). A recent survey can be found in (Rahwan and Simari, 2009).

 318

References

Allen, L. E., and Saxon, C.S. (1984). "Computer Aided Normalizing and

Unpacking: Some Interesting Machine-Processable Transformation of
Legal Rules", Computing Power and Legal Reasoning (C. Walter, ed.)
West Publishing Company, 495-572.

Almor, A. and Sloman, S. (2000). Reasoning versus text processing in the
Wason selection task: A non-deontic perspective on perspective effects.
Memory & Cognition, 28 (6), 1060-1070.

Anderson, J. R. and Lebiere, C. (1998). The Atomic Components of Thought.
Mahwah, NJ: Erlbaum.

Anderson, A. R. and Belnap, N. (1975). Entailment: the logic of relevance
and necessity, vol. I. Princeton University Press.

d'Avila Garcez, A. S., Broda, K. and Gabbay, D. M. (2001). Symbolic
knowledge extraction from trained neural networks: a sound approach.
Artificial Intelligence Volume 125 , Issue 1-2 155 - 20 .

Bader, S., Hitzler, P. and Hölldobler, S. (2006). The Integration of
Connectionism and First-Order Knowledge Representation and
Reasoning as a Challenge for Artificial Intelligence. Information 9 (1).

 Baron, J. (2008). Thinking and Deciding. (fourth edition). Cambridge
University Press.

van Benthem, J. (1989). Semantic parallels in natural language and
computation. In H.-D. Ebbinghaus, editor, Logic Colloquium 1981,
pages 331-375, Elsevier Science Publishers.

Bertossi, L. and Chomicki, J. (2003). Query Answering in Inconsistent
Databases. Logics for Emerging Applications of Databases. J. Chomicki,
G. Saake and R. van der Meyden (eds.), Springer, 43-83.

Bondarenko, A., Dung, P. M., Kowalski, R., and Toni, F. (1997). An
Abstract Argumentation- theoretic Approach to Default Reasoning.
Journal of Artificial Intelligence 93 (1-2), 63-101.

Brooks, R. A. (1991). Intelligence Without Reason. MIT AI Lab Memo l293,
April l99l. Reprinted in Proceedings of l2th International Joint
Conference on Artificial Intelligence, Sydney, Australia, l-21.

Brown, G. and Yule, G. (1983). “Discourse Analysis” Cambridge University
Press.

Bundy, A., Byrd, L., Luger, G. Mellish, C. Palmer, M. (1979). Solving
mechanics problems using meta-level inference. Proceedings of the 6th
international joint conference on Artificial intelligence.

Byrne, R. M. J. (1989). Suppressing valid inferences with conditionals.
Cognition 31, 61–83.

Carruthers, P. (2004). Practical Reasoning in a Modular Mind. Mind &
Language, 19(3), 259-278.

http://portal.acm.org/author_page.cfm?id=81100035610&coll=GUIDE&dl=&trk=0&CFID=98543464&CFTOKEN=53564855�
http://www.scholar.google.com/url?sa=U&q=http://www.blackwell-synergy.com/links/doi/10.1111/j.1468-0017.2004.00258.x/enhancedabs/�

 319

Checkland, P. (2000). Soft Systems Methodology: A Thirty Year
Retrospective. Systems Research and Behavioral Science Syst. Res. 17,
S11–S58.

Cheng, P. W. and Holyoak, K. J. (1985). Pragmatic reasoning schemas.
Cognitive Psychology, 17, 391-416.

Cheng, P. D. and Juang J. Y. (1987). A parallel resolution procedure based
on connection graph. Sixth National Conference on Artificial
Intelligence.

Chisholm, R. (1963). Contrary-to-Duty Imperatives and Deontic Logic.
Analysis, 24: 33–36

Clark, K.L. (1978) Negation by failure. In Gallaire, H. and Minker, J. [eds],
Logic and Databases, Plenum Press, 293-322.

Clark, K.L. and Tärnlund, S.-A. (1978). A first-order theory of data and
programs. In Proceedings of the 1FIP Congress 77, 939-944.

Colmerauer, A. and Roussel, P. (1992). The birth of Prolog. The second ACM
SIGPLAN conference on History of programming languages, p. 37-
52.

Costantini, S. (2002) Meta-reasoning: A Survey. In Kakas, A.C., Sadri, F.
(Eds.): Computational Logic: Logic Programming and Beyond.
Springer Verlag. Vol. 2. 253-288.

Cosmides, L. (1985). Deduction or Darwinian algorithms : an explanation of
the "elusive" content effect on the Wason selection task. Ph.D. thesis.
Harvard University.

Cosmides, L. (1989). The logic of social exchange: has natural selection
shaped how humans reason? Studies with the Wason selection task.
Cognition 31, 187 -276.

Dávila, J. and Uzcátegui, M. (2005) Agents that learn to behave in Multi-
Agent Simulations. Proceedings of /Fifth IASTED International
Conference on Modelling, Simulation and Optimization (MSO'2005). 51-
55. See also http://galatea.sourceforge.net

Davis, M. (1980). The Mathematics of Non-Monotonic Reasoning. Journal
of Artificial Intelligence,13 73-80.

Davis, M. and Putnam, H. (1960). A Computing Procedure for Quantification
Theory. Journal of the ACM 7 (3): 201–215.

Dennis, L.A. Farwer, B. Bordini, R.H. Fisher, M. Wooldridge, M. A. (2008).
Common Semantic Basis for BDI Languages LICS 4908, Springer-
Verlag, 124-139.

De Raedt, L., Frasconi, P., Kersting, K. and Muggleton, S. (Eds.) (2008).
Probabilistic Inductive Logic Programming. Springer-Verlag.

Dung P. M. (1991). Negation as hypothesis: an abductive foundation for logic
programming. Proc. 8th International Conference on Logic
Programming. MIT Press.

https://www.aaai.org/Papers/AAAI/1987/AAAI87-003.pdf�
https://www.aaai.org/Papers/AAAI/1987/AAAI87-003.pdf�
http://www.lim.univ-mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19november92.pdf�
http://www.worldcat.org/search?q=au%3ALeda+Cosmides&qt=hot_author�
http://www.worldcat.org/search?q=au%3ALeda+Cosmides&qt=hot_author�
http://galatea.sourceforge.net/�
http://en.wikipedia.org/wiki/Journal_of_the_ACM�

 320

Dung, P. M., Kowalski, R., and Toni, F. (2006). Dialectic proof procedures
for assumption-based, admissible argumentation. Journal of Artificial
Intelligence 170(2), 2006,114-159.

van Emden, M. and Kowalski, R. (1976) The Semantics of Predicate Logic as
a Programming Language JACM , Vol. 23, No. 4, 733-742.

Eshghi, K. and Kowalski, R. (1989) Abduction Compared with Negation by
Failure. In Sixth International Conference on Logic Programming,
(eds. G. Levi and M. Martelli) MIT Press, 234-254.

Feferman, S. (1962). Transfinite recursive progressions of axiomatic theories,
Journal of Symbolic Logic, vol. 27 (1962), 259-316.

Fodor, J. (1975). The Language of Thought, Harvard University Press.
Fung, T.H. and Kowalski, R. (1997) The IFF Proof Procedure for Abductive

Logic Programming. Journal of Logic Programming.
Gardner, H. (1983). "Frames of Mind: The Theory of Multiple Intelligences."

New York: Basic Books.
Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic

programming. In: Proceedings of the Fifth International Conference on
Logic Programming (ICLP), 1070-1080.

Gillies, D. (1996). Artificial intelligence and scientific method. Oxford
University Press.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme, I. Monatshefte für Mathematik
und Physik 38: 173-98.

Gödel, K. (1951). Some basic theorems on the foundations of mathematics
and their implications in Solomon Feferman, ed., 1995. Collected works
/ Kurt Gödel, Vol. III. Oxford University Press: 304-23.

Green, C. (1969). Application of theorem proving to problem solving.
Proceedings of the 1st International Joint Conference on Artificial
Intelligence. Morgan Kaufmann. 219-239.

Grice, H. P. (1989). Studies in the Way of Words. Cambridge MA: Harvard
University Press.

Hammond, J., Keeney, R. and Raiffa, H. (1999). Smart Choices - A practical
guide to making better decisions. Harvard Business School Press.

Hauser, M. Cushman, F. Young, L. Mikhail, J. (2007) A Dissociation
Between Moral Judgments and Justifications: Mind and Language. Vol.
22, No 1, 1-21.

Hewitt, C. (1971). Procedural Embedding of Knowledge In Planner.
Proceedings of the 2nd International Joint Conference on Artificial
Intelligence. Morgan Kaufmann.

Hill, P.M. and Gallagher, J. (1998). Meta-programming in logic
programming. In Handbook of Logic in Artificial Intelligence and Logic
Programming, ed. D. Gabbay, C.J. Hogger and J. A. Robinson. Vol. 5.
Oxford University Press. 421-497.

http://www.doc.ic.ac.uk/~rak/papers/kowalski-van_emden.pdf�
http://www.doc.ic.ac.uk/~rak/papers/kowalski-van_emden.pdf�
http://en.wikipedia.org/wiki/Basic_Books�
http://www.cs.utexas.edu/users/vl/papers/stable.ps�
http://www.cs.utexas.edu/users/vl/papers/stable.ps�
http://en.wikipedia.org/wiki/Solomon_Feferman�

 321

Hodges, W. (1993). The logical content of theories of deduction.
Behavioral and Brain Sciences, Volume 16, Issue 02, 353-354.

Hodges, W. (2006). Two doors to open. In D. Gabbay, S.Goncharov and M.
Zakharyaschev, editors,Volume 4, Mathematical Problems from
Applied Logic I: Logics for the XXIst Century. Springer, 277-316.

Hölldobler, S. and Kalinke, Y. (1994). Toward a new massively parallel
computational model for logic programming, In: Proc. Workshop on
Combining Symbolic and Connectionist Processing, ECAI-94.
Amsterdam. 68-77.

Johnson-Laird, P. (1983). Mental models. Cambridge University Press.
Johnson-Laird, P. N. and Byrne, R. M. J. (1991). Deduction. Psychology

Press.
Kahneman, D. and Frederick, S. (2002). Representativeness revisited:

Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin
and D. Kahneman (Eds) Heuristics of Intuitive Judgment: Extensions and
Application. New York: Cambridge University Press.

Kakas, A., Kowalski, R. and Toni, F. (1998). The Role of Logic
Programming in Abduction, Handbook of Logic in Artificial Intelligence
and Programming 5, Oxford University Press, 235-324.

Kowalski, R. (1975). A Proof Procedure Using Connection Graphs, JACM,
22(4), 572-595.

Kowalski, R. (1974, 1979) Logic for Problem Solving. DCL Memo 75,
Department of Artificial Intelligence, U. of Edinburgh (1974).
Expanded edition published by North Holland Elsevier (1979). Also
at http://www.doc.ic.ac.uk/~rak/.

Kowalski, R. (1995). Logic without Model Theory, In What is a logical
system? (ed. D. Gabbay), Oxford University Press.

Kowalski, R. and Kuehner, D. (1971). Linear Resolution with Selection
Function. Artificial Intelligence, Vol. 2, 227-60.

Kowalski, R. A. and Sadri, F. (1990). Logic programs with exceptions.
Proceedings of the Seventh International Conference on Logic
Programming, MIT Press, 598-613.

Kowalski, R. A. and Sadri, F. (2010). An Agent Language with Destructive
Assignment and Model-theoretic Semantics. In CLIMA XI -
Computational Logic in Multi-Agent Systems (eds. J. Dix, G.
Governatori, W. Jamroga and J. Leite) Springer.

Kowalski, R. and Sergot, M. (1986). A Logic-based Calculus of Events. In
New Generation Computing, Vol. 4, No.1, 67-95. Also in The Language
of Time: A Reader (eds. Inderjeet Mani, J. Pustejovsky, and R.
Gaizauskas) Oxford University Press. 2005.

Kowalski, R. (1992). “Database Updates in the Event Calculus”, in Journal
of Logic Programming, Vol. 12, No. 162, 121-146.

Kowalski, R. and Toni, F. (1996) Abstract argumentation. Journal of
Artificial Intelligence and Law, 4(3-4):275–296.

http://www.doc.ic.ac.uk/~rak/�
http://www.doc.ic.ac.uk/~rak/papers/CLIMA%20XI.pdf�
http://www.doc.ic.ac.uk/~rak/papers/CLIMA%20XI.pdf�

 322

Kowalski, R., Toni, F. and Wetzel, G. (1998) Executing Suspended Logic
Programs. Fundamenta Informatica 34 (3), 1-22.
Laird, Rosenbloom, Newell, John and Paul, Allen (1987). "Soar: An

Architecture for General Intelligence". Artificial Intelligence, 33: 1-64.
Lenat, D. and Guha, R. V. (1989). Building Large Knowledge-Based

Systems; Representation and Inference in the Cyc Project - Addison-
Wesley Longman Publishing Co., Inc. Boston. K An up-to-date
overview can be found at http://www.cyc.com/.

Loveland, D. W. (1968). Mechanical theorem-proving by model elimination.
 Journal of the ACM, 15, 236-251.

Lucas, J. R. (1959). Minds, Machines and Gödel. Philosophy, XXXVI, 1961.
Reprinted in The Modeling of Mind, Kenneth M. Sayre and Frederick J.
Crosson, eds., Notre Dame Press, 1963, and in Minds and Machines, ed.
Alan Ross Anderson, Prentice-Hall, 1964.

Luger, G. (2009). Artificial Intelligence, Structures and Strategies for
Complex Problem Solving. Pearson Education limited.

Manthey, R. and Bry, F. (1988). SATCHMO: A Theorem Prover
Implemented in Prolog. Proceedings CADE 1988. Lecture Notes in
Computer Science 310, Springer, 415-434.

Maes, P. (1990). Situated agents can have goals. Robot. Autonomous Syst.
Vol. 6, no. 1-2, 49-70.

McCarthy, J. (1980) Circumscription - A form of non-monotonic
reasoning. Artificial Intelligence, 13:27-39.

McCarthy, J. and Hayes, P. J. (1969). `Some Philosophical Problems from
the Standpoint of Artificial Intelligence. In D. Michie (ed), Machine
Intelligence 4, American Elsevier, New York, NY.

McDermott, D. and Doyle, (1980) Nonmonotonic logic I," Artificial
Intelligence, 13:41-72.

Mikhail, J. (2007). Universal Moral Grammar: Theory, Evidence, and the
Future, Trends in Cognitive Sciences, Vol. 11, No. 4, 143-152.

Moore, R. C. (1985). Semantical considerations on nonmonotonic logic.
Artificial Intelligence, 25, 75-94.

Mueller, E. (2006). Commonsense Reasoning. Elsevier.
Muggleton, S. H. and De Raedt, L. (1994). Inductive logic programming:

Theory and methods. Journal of Logic Programming, 19, 20: 629-679.
Newell, A. (1973). Production Systems: Models of Control Structure. In W.

Chase (ed): Visual Information Processing, New York: Academic Press,
463-526.

Nilsson, N. (1998). Artificial Intelligence: A New Synthesis. Morgan
Kaufmann Publishers, Inc.

Nute, D. (1997). Defeasible Deontic Logic. Kluwer Academic Pub.
Panton, C., Matuszek, D., Lenat, D., Schneider, M., Witbrock, N., Siegel, and

Shepard, B. (2006). Common Sense Reasoning – From Cyc to Intelligent

http://en.wikipedia.org/wiki/John_Lucas_%28philosopher%29�
http://www.informatik.uni-trier.de/~ley/db/conf/cade/cade88.html#MantheyB88�
http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html�
http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html�
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=978307�
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=954398�
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=954398�

 323

Assistant. In Y. Cai and J. Abascal (Eds.): Ambient Intelligence in
Everyday Life, LNAI 3864, Springer-Verlag Berlin Heidelberg, 1 – 31.

Peirce, C. S. (1931). Collected Papers. C. Hartshorn & P. Weiss (eds.)
Cambridge, MA: Harvard University Press.

Penrose, R. (1989). The Emperor's New Mind: Concerning Computers,
Minds, and The Laws of Physics. Oxford University Press.

Pereira, L. M. and Saptawijaya, A. (2007). Moral Decision Making with
ACORDA, in: N. Dershowitz, A.Voronkov (eds.), 14th Intl. Conf. on
Logic for Programming Artificial Intelligence and Reasoning
(LPAR'07).

Pereira, L. M. and Saptawijaya, A. (2009). Modelling Morality with
Prospective Logic, in: International Journal of Reasoning-based
Intelligent Systems (IJRIS), 1(3/4): 209-221. Also to appear in: M.
Anderson, S. Anderson (eds.), "Machine Ethics", Cambridge University
Press.

Perlis, D. and Subrahmanian, V.S. (1994). Metalanguages, reflection
principles and self-reference. In D.M. Gabbay, C.J. Hogger and J.A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Vol 2, 328-358.

Pinker, S. (1997). How the Mind Works. New York: Norton.
Pollock, J. (1995). Cognitive Carpentry. Cambridge, Mass: MIT Press.
Poole, D. (1997). The Independent Choice Logic for Modeling Multiple

Agents Under Uncertainty. Artificial Intelligence, Vol. 94, 7—56.
Poole, D., Goebel, R. and Aleliunas R. (1987) Theorist: a logical reasoning

system for defaults and diagnosis. In N. Cercone and G. McCalla (Eds.)
The Knowledge Frontier: Essays in the Representation of Knowledge,
Springer Verlag, New York, 331-352.

Poole, D. and Mackworth, A. (2010) Artificial Intelligence: Foundations of
Computational Agents. Cambridge University Press.

Post, E. (1943). Formal Reductions of the General Combinatorial Decision
Problem. American Journal of Mathematics, Vol. 65, No. 2, 197-215.

Prakken, H. and Sartor, G. (1996) A dialectical model of assessing conflicting
arguments in legal reasoning. Journal of Artificial Intelligence and Law,
4(3-4).

Prakken, H. and Sartor, G. (1996). Logical models of legal argumentation.
Kluwer.

Priest, G. (2002). Paraconsistent Logic, Handbook of Philosophical Logic
(Second Edition), Vol. 6, D. Gabbay and F. Guenthner (eds.), Dordrecht:
Kluwer Academic Publishers, 287-393.

Przymusinski, T. (1988). On the declarative semantics of deductive databases
and logic programs. In Foundations of deductive databases and logic
programming. Morgan Kaufmann Publishers Inc. 193 – 216.

Quine, W. V. O. (1963). Two dogmas of empiricism. In From a logical point
of view. Harper & Row, 20-46.

http://en.wikipedia.org/wiki/The_Emperor%27s_New_Mind�
http://en.wikipedia.org/wiki/The_Emperor%27s_New_Mind�
http://centria.fct.unl.pt/~lmp�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/lpar07-short.pdf�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/lpar07-short.pdf�
http://www.lpar.net/2007/�
http://www.lpar.net/2007/�
http://centria.fct.unl.pt/~lmp�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/ijris09-moral.pdf�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/ijris09-moral.pdf�
http://www.inderscience.com/browse/index.php?journalCODE=ijris�
http://www.inderscience.com/browse/index.php?journalCODE=ijris�

 324

Rahwan, I. and Simari, G. (Eds.) (2009) Argumentation in Artificial
Intelligence. Springer.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13:81-
132.

Reiter, R. (1988). On Integrity Constraints. In: 2nd Conference on
Theoretical Aspects of Reasoning about Knowledge, 97—111.

Robinson, J. A. (1965a) A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(1) 23 – 41.

Robinson, J. (1965b), Automatic deduction with hyper-resolution,
International J. Computer Math. 1, 3. 227-234.

Russell, S.J. and Norvig, P. (2010). Artificial Intelligence: A Modern
Approach. Third Edition. Upper Saddle River, NJ: Prentice Hall.

Sadri F. and Kowalski R. (1988). A Theorem-Proving Approach to Database
Integrity. In: Minker, J. [ed.], Foundations of Deductive Databases and
Logic Programming, Morgan Kaufmann, 313-362.

Sagonas, K., Swift, T., and Warren, D. S. (1994). XSB as an efficient
deductive database engine. SIGMOD Rec. 23, 2 442-453.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P. and
Cory, H. T. (1986). " The British Nationality Act as a logic program",
CACM, Vol. 29, No. 5, 370-386.

Shanahan, M.P. (1997). Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia, MIT Press.

Shapiro, S. (1989). Incompleteness, Mechanism, and Optimism. The Bulletin
of Symbolic Logic, Vol. 4, No. 3, 273-302.

Siekmann, J. and Wrightson, G. (2002). Strong Completeness of R.
Kowalski's Connection Graph Proof Procedure. In A. Kakas and F. Sadri
(eds.) Computational Logic: Logic Programming and Beyond. Springer
Lecture Notes on AI, vol 2408, 231-252.

Simon H. A. (1957). Administrative behaviour (2nd ed.). Macmillan: New
York.

Simon H. A. (1960). The New Science of Management Decision. Harper &
Row: New York. (1977 revised edn, Prentice-Hall: Englewood Cliffs,
NJ.)

Simon, H. A. (1999). Production Systems. In Wilson, R. and Keil, F. (eds.):
The MIT Encyclopedia of the Cognitive Sciences. The MIT Press. 676-
677.

Sperber, D. and Wilson, D. (1986). Relevance. Blackwell Oxford.
Sperber, D., Cara, F., & Girotto, V. (1995). Relevance theory explains the

selection task. Cognition, 52, 3-39.
Stenning, K. and van Lambalgen M., (2008). Human reasoning and cognitive

science. MIT Press.
Thagard, P. (2005) Mind: Introduction to Cognitive Science. Second edition.

M.I.T. Press.
van Lambalgen, M. and Hamm, F. (2005). The Proper Treatment of Events.

Blackwell Publishing.

 325

Vickers, G. (1965). The Art of Judgment. Chapman & Hall: London.
Wang, H. (1974). From Mathematics to Philosophy, Routledge & Kegan

Paul, London.
Wason, P. (1968) 'Reasoning about a rule', The Quarterly Journal of

Experimental Psychology, 20:3, 273 – 281.
Widom, J. and Ceri, S. (1996) Active Database Systems: Triggers and Rules

for Advanced Database Processing. Morgan Kaufmann, San Francisco,
California.

Williams, J. (1990, 1995). Style: Toward Clarity and Grace. Chicago:
University of Chicago Press.

Winograd, T. (1971). Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language MIT AI TR-235.

Winograd, T. (1972). Understanding Natural Language . Academic Press,
New York.

http://en.wikipedia.org/wiki/Style:_Toward_Clarity_and_Grace�
http://hdl.handle.net/1721.1/7095�
http://hdl.handle.net/1721.1/7095�

	Chapter A6 The Logic of Abductive Logic Programming ………… 301
	The fourth sentence as an inhibitor of action
	Programs with purpose
	Where do we go from here?
	An animal has an object

	I am near the cheese
	if the crow has the cheese
	and the crow sings.
	the crow sings if I praise the crow.
	to have an object, be near the object and pick up the object.
	to be near the cheese, check the crow has the cheese
	and make the crow sing.
	to have an object, you can be near the object
	and you can pick up the object.
	The fox’s reduction of her original goal to the two action subgoals can be visualized as searching for a solution in the connection graph that links her top-level goal to the web of her beliefs. Of course, the totality of all her beliefs is bound to b...
	Starting from the original, top-level goal and following links in the graph, the fox can readily find a sub-graph that connects the goal either to known facts, such as the crow has the cheese, or to action subgoals, such as I praise the crow and I pic...
	An animal has an object
	if the animal is near the object and the animal picks up the object.

	An animal has an object
	I am near the cheese
	if the crow has the cheese
	and the crow sings.
	The crow sings if I praise the crow.
	The crow has the cheese.
	We have been using the related terms identification, instantiation, matching and unification informally. These terms have precise definitions, which are presented in Chapter A3. For the purposes of this example, it suffices to note that these definit...
	Representation and meaning
	an animal has an object
	mary will go to the party if john will go to the party.
	an animal has an object at a time

	An animal has an object if
	I am near the cheese if
	The crow sings if
	I praise the crow.
	The crow has
	the cheese.
	the crow sings.
	the crow has the cheese
	mary will go to the party if
	john will go to the party if
	The representation of cause and effect is sufficiently complex that we give it detailed consideration in Chapter 13. But, even ignoring such considerations, there are still major knowledge representation issues at stake. In fact, we skirted around th...
	There, the primary motivation was simply to make the example sufficiently simple, not to get bogged down in excruciating detail. But there was another reason: There is so much knowledge that could be relevant to the fox’s goal that it would be hard to...
	Chapter 6. How to Become a British Citizen
	an animal has an object at a time
	Chapter 7. The Louse and the Mars Explorer
	Behaviourism
	Production systems
	The production system cycle
	Production systems with no representation of the world
	In the simplest case, an agent’s mental state might consist solely of production rules, without any mental representation of the world. All of the conditions of a rule are verified simply by matching them against the agent’s current observations. In s...
	What it’s like to be a louse
	Production systems with internal state
	Condition-action rules with implicit goals
	The use of production systems for forward reasoning
	The use of production systems for goal reduction

	Logic versus production rules
	Conclusions
	Chapter 8 Maintenance Goals as the Driving Force of Life

	The semantics of beliefs
	The semantics of goals
	To connect the achievement goal with the rest of the story, the fox needs to have the taxonomic knowledge that cheese is a kind of food and that food is a kind of object. This knowledge can be represented in a number of different ways, and there are e...
	The time factor
	an animal has an object at a time

	We will return to this revised story in the section after next.
	Maintenance goals as the driving force of life
	Embedding goals and beliefs in the agent cycle
	The London underground revisited
	The semantics of maintenance goals reconsidered
	Prohibitions
	Constraints
	Summary
	Chapter 9. The Meaning of Life

	The mind body problem
	Dual process theories of intuitive and deliberative thinking
	Two kinds of thinking on the underground
	A computational interpretation of intuitive and deliberative thinking
	The relationship between intuitive and deliberative thinking
	Conclusions
	Chapter 10. Abduction

	The grass is wet
	The London underground revisited again
	What counts as a reasonable explanation?
	Not every set of abductive hypotheses that deductively implies an observation is a reasonable explanation of the observation. To be a reasonable explanation, the hypotheses:
	 should be relevant to the observation, and should not include arbitrary hypotheses that have no bearing on the observation and
	 should be consistent with the agent’s existing beliefs.
	Contraries and strong negation
	What counts as a best explanation?
	Conclusions
	The situation calculus
	An event-oriented approach to change
	Here the crow’s singing is treated as an action/event that is caused by the action/event of praising the crow. This causal relationship can be viewed as yet another instance of the general pattern:
	In this case, the actions/events in the relationship are associated with the times of their occurrence:
	A simplified calculus of events
	The event calculus for predicting
	consequences of events
	The event calculus and the frame problem
	Keeping track of time
	Historical background and additional reading
	Objects as individuals
	Encapsulation
	Methods
	Classes
	Reconciling logic and objects
	Message-passing or shared environment?
	Semantic networks as a variant of object-orientation
	Semantic networks are like the semantic structures of Chapter A2, which are just sets of atomic sentences. In fact, semantic network connections of the form:
	Object-oriented structuring of natural language
	Conclusions
	Chapter 17. Meta-logic
	Minimal models of definite clause programs
	Truth in arithmetic
	P(0) ((N(P(N) (P(s(N))) ((X P(X).
	Chapter A4. Minimal Models and Negation
	Initial goal: bob will go
	Negation in minimal models
	Intended models of general logic programs
	Examples of stable models
	Conclusions
	In classical logic, a sentence C is a logical consequence of a set of sentences S if and only if C is true in every interpretation in which S is true. However, for the applications in this book, it is intended interpretations, rather than arbitrary in...
	For beliefs in the form of definite clauses, these intended interpretations are minimal models, which can be generated by instantiation and forward reasoning. For more general beliefs that are general logic programs, the intended interpretations are m...
	Thus, the argument for viewing thinking in terms of determining truth in minimal models, rather than in terms of logical consequence, is supported by the examples of default reasoning, arithmetic, and the Real World. Johan van Benthem discusses some o...
	Chapter A6. The Logic of
	Abductive Logic Programming
	More formally, an abductive logic program <P, O, IC> consists of a logic program P, a set of open predicates O and a set of integrity constraints IC. The open predicates are restricted so they do not occur in the conclusions of clauses in P. This res...
	There are many variants of ALP, with different syntax, semantics and proof procedures. In this book, we express integrity constraints in the form of generalised conditionals, which are like ordinary conditionals, but which may have existential quanti...
	G holds with respect to the program P∪ Δ and
	Δ satisfies IC.
	The case for ignoring the totality constraints
	The case for the totality constraints
	An alternative to the totality constraints
	Preventative maintenance
	The combination of Neg and Splitting makes it possible to satisfy maintenance goals by preventing the need to achieve their conclusions. For example if you have an exam coming up and you fail the exam then you need to retake the exam later. If you don...
	An argumentation-theoretic interpretation
	An argumentation-theoretic semantics
	As in the case of ground Horn ALP, to obtain completeness, the definition of successful derivation needs to be extended to the possibly non-terminating case. A discussion of these and related issues can be found in (Dung, Kowalski and Toni, 2006) in t...
	Extensions of the abductive proof procedure
	Conclusions
	This chapter has presented the technical support for the main reasoning techniques studied in this book. However, there remain a number of extensions needed for a comprehensive framework. Many of these extensions are straightforward, because all of th...
	This chapter also introduced an argumentation semantics and proof procedure for abductive logic programming. The semantics and proof procedure build upon recent advances in logic-based argumentation in AI. One of the most important achievements of t...
	References
	Lenat, D. and Guha, R. V. (1989). Building Large Knowledge-Based Systems; Representation and Inference in the Cyc Project - Addison-Wesley Longman Publishing Co., Inc. Boston. K An up-to-date overview can be found at http://www.cyc.com/.
	Panton, C., Matuszek, D., Lenat, D., Schneider, M., Witbrock, N., Siegel, and Shepard, B. (2006). Common Sense Reasoning – From Cyc to Intelligent Assistant. In Y. Cai and J. Abascal (Eds.): Ambient Intelligence in Everyday Life, LNAI 3864, Springer-V...
	Peirce, C. S. (1931). Collected Papers. C. Hartshorn & P. Weiss (eds.) Cambridge, MA: Harvard University Press.

