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Preface 
 
The mere possibility of Artificial Intelligence (AI) – of machines that can 
think and act as intelligently as humans – can generate strong emotions. 
While some enthusiasts are excited by the thought that one day machines 
may become more intelligent than people, many of its critics view such a 
prospect with horror. 
 Partly because these controversies attract so much attention, one of the 
most important accomplishments of AI has gone largely unnoticed: the fact 
that many of its advances can also be used directly by people, to improve 
their own human intelligence. Chief among these advances is Computational 
Logic. 
 Computational Logic builds upon traditional logic, which was originally 
developed to help people think more effectively. It employs the techniques of 
symbolic logic, which has been used to build the foundations of mathematics 
and computing. However, compared with traditional logic, Computational 
Logic is much more powerful; and compared with symbolic logic, it is much 
simpler and more practical.  
 Although the applications of Computational Logic in AI require the use of 
mathematical notation, its human applications do not. As a consequence, I 
have written the main part of this book informally, to reach as wide an 
audience as possible. Because human thinking is also the subject of study in 
many other fields, I have drawn upon related studies in Cognitive 
Psychology, Linguistics, Philosophy, Law, Management Science and English 
Composition.  
 In fact, the variant of Computational logic presented in this book builds 
not only upon developments of logic in AI, but also upon many other 
complementary and competing knowledge representation and problem 
solving paradigms. In particular, it incorporates procedural representations of 
knowledge from AI and Computing, production systems from AI and 
Cognitive Science, and decision analysis from Management Science, 
Cognitive Psychology and Philosophy. 
 Because Computational Logic has so many applications and so many 
relations with other fields, the ideal, ultimate use of this book would be as a 
companion text for an undergraduate degree in practical thinking. Such a 
degree course would combine the traditional virtues of a liberal arts 
education with the argumentation skills of analytic philosophy, the rigours of 
scientific method and the modern benefits of information technology. It 
would provide the student with the transferable thinking and communication 
skills needed not only for more specialised studies, but also for problems that 
do not fall into neatly classified areas.  
 As far as I know, nothing approaching such a degree course exists today; 
and as far as I can see, no such degree course is likely to exist in the near 
future. Logic as an academic discipline, as it exists today, is fragmented 
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between Mathematics, Philosophy and Computing. Moreover, the practical 
applications of Informal Logic are mostly buried inside other academic 
disciplines, like Law, Management Science and English Composition. None 
of these disciplines could host such a degree course on its own, and few of 
them would welcome such an expansion of Logic in their own field. 
 Perhaps one day, an educational institution will make room for a degree 
course focussing on how to think. In the meanwhile, this book can be used as 
a supplement to more conventional courses. For those who have already 
completed their formal education, it can provide a glimpse into a possible 
future world. 
 In writing this book, I have taken pains to avoid misrepresenting the 
subject by over-simplification. For this reason, I have included a number of 
additional, more advanced chapters, which fill in some of the otherwise 
missing technical detail. These chapters can be safely skipped by the casual 
reader. Taken on their own, they provide a self-contained introduction and 
reference to the formal underpinnings of the Computational Logic used in 
this book. 
 I have also been sensitive to the fact that, because I address issues of 
English writing style, I am inviting attention to the inadequacies of my own 
writing style. In defence, let me argue that without the help of Computational 
Logic, my writing would be a lot worse.  
 When I started my undergraduate studies at the University of Chicago 
years ago, my writing was so bad that I failed the placement examination and 
had to take an extra, non-credit, remedial course. I finished the year with As 
in all my other subjects, but with a D in English writing skills. It took me 
years to diagnose the problems with my writing and to learn how to improve 
it. In the course of doing so, I learned more about practical logic than I did in 
any of my formal logic courses. I like to believe that my writing is a lot better 
today than it was during my first year in Chicago. But more importantly, I 
hope that the lessons I learned will also be helpful to some of the readers of 
this book. 
 
I gave a short course based on this book at The International Center for 
Computational Logic (ICCL) 2008 summer school on Computational Logic 
and Cognitive Science. A copy of the slides that accompanied the course can 
be found at: http://www.computational-logic.org/content/events/iccl-ss-
2008/lectures.php?id=24 
 
Jacinto Davila, has used an earlier draft of this book for a course at 
Universidad de Los Andes, Venezuela. Here is a link to his Spanish 
translation: http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-
de-agentes.html 
 

http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24�
http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24�
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html�
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html�
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Summary and Plan of the Book  
 
Because this book ranges over a wide variety of topics, it is useful to 
summarise the relationships between the different chapters in one place. 
However, instead of placing this summary at the end of the book, where all 
of its terms will have already been explained in detail, I have decided to 
present it here, in keeping with the general spirit of the book that is better to 
work backwards from your destination, than to stumble forward, wondering 
where you are going. 
 Therefore, this summary may be read either before or after the main body 
of the book. But it can also be read in parallel, to get a better orientation of 
how the individual chapters are related.  
  
Introduction. In Artificial Intelligence, an agent is any entity, embedded 
in a real or artificial world, that can observe the changing world and perform 
actions on the world to maintain itself in a harmonious relationship with the 
world. Computational Logic, as used in Artificial Intelligence, is the agent’s 
language of thought. Sentences expressed in this language represent the 
agent’s beliefs about the world as it is and its goals for the way it would like 
it to be. The agent uses its goals and beliefs to control its behaviour.   
 The agent uses the inference rules of Computational Logic, applying 
them to its thoughts in logical form, to reason about the world and to derive 
actions to change the world for its own benefit. These inference rules include 
both forward reasoning to derive consequences of its observations, and 
backward reasoning to reduce its goals to subgoals and actions. The agent 
can also use forward reasoning to deduce consequences of candidate actions, 
to help it choose between alternative candidates.  
 Although the main purpose of Computational Logic is to represent an 
agent’s private thoughts and to control its behavour, the agent can also use 
Computational Logic to guide its public communications with other agents. 
By expressing its communications in a more logical form, a speaker or writer 
can make it easier for the listener or reader to translate those 
communications into thoughts of her own. 
 
Chapter 1 Logic on the Underground. The London Underground 
Emergency Notice illustrates the way in which the meanings of English 
communications can be understood as thoughts in logical form. In 
Computational Logic, these thoughts have both a logical and computational 
character. Their logical character is apparent in their explicit use of logical 
connectives, like any, if, and and not; and their computational character is 
manifest in their use as procedures for reducing goals to subgoals. Because 
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of this dual logical and computational character, sentences expressed in this 
form are also called logic programs. 
 The Emergency Notice also illustrates how the coherent use of English 
communications can be understood in terms of logical connections between 
the meanings of those communications and other thoughts in an agent’s web 
of goals and beliefs. Once the agent has made the connections, the agent can 
activate them by forward or backward reasoning, when the need arises. 
Connections that are activated frequently can be collapsed into derived goals 
or beliefs, which can be used more directly and more efficiently in the future. 
 
Chapter 2 The Psychology of Logic. The most influential and widely 
cited argument against logic comes from psychological experiments about 
reasoning with natural language sentences in conditional form. The most 
popular interpretation of these experiments is that people do not have a 
natural general-purpose ability to reason logically, but have developed 
instead, through the mechanisms of Darwinian evolution, specialised 
algorithms for solving typical problems that arise in their environment.  
 In this chapter I discuss some of the issues involved in solving these 
reasoning tasks, and argue that one of the main problems with the 
experiments is that they fail to appreciate that the natural language form of a 
conditional is only an approximation to the logical form of its intended 
meaning. Another problem is that the interpretation of these experiments is 
based upon an inadequate understanding of the relationship between 
knowledge and reasoning. In Computational Logic applied to human 
thinking, this relationship can be expressed rather loosely as an equation: 
thinking = specialised knowledge + general-purpose reasoning. 
 
Chapter 3 The Fox and the Crow. Aesop’s fable of the fox and crow 
illustrates the backward reasoning of a clever fox, to generate a plan to 
achieve the goal of having the cheese of a not so clever crow. It contrasts the 
fox’s proactive, backward reasoning with the crow’s reactive, forward 
reasoning, to respond to the fox’s praise by breaking out in song, thereby 
dropping the cheese to the ground, where the fox can pick it up. Both the fox 
and the crow reason in accordance with the inference rules of Computational 
Logic, but the fox has a better knowledge of the world, and has more 
powerful ways of using that knowledge for her own benefit. 
 If the crow knew as much as the fox and were able to reason preactively, 
thinking before he acts, then he could reason forward from the hypothetical 
performance of his candidate actions, predict their likely consequences, and 
choose an alternative action, like flying away or swallowing the cheese, that 
achieves a better expected resulting state of affairs. 
 
Chapter 4 Search. In Computational Logic, a proof procedure consists of 
a collection of inference rules and a search strategy. The inference rules 
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determine both the structure of proofs and the search space of all possible 
proofs relevant to the solution of a goal. The search strategy determines the 
manner in which the search space is explored in the search for a solution. 
 Many different search strategies are possible, including both parallel 
strategies, which explore different parts of the search space at the same time, 
and best-first strategies, which aim to find the best solution possible in the 
shortest amount of time.  
 
Chapter 5 Negation as Failure. In the semantics of Computational 
Logic, the world is a positive place, characterised by the positive atomic 
sentences that are true at the time. Because the ultimate purpose of an 
agent’s goals and beliefs is to manage its interactions with the world, the 
syntactic form of the agent’s thoughts also has a corresponding positive bias. 
In many cases, syntatically negative thoughts arise from the failure to 
observe or derive positive information.  
 Negation as failure is a natural way to reason by default with incomplete 
information, deriving conclusions under the assumption that the agent knows 
it all, but then gracefully withdrawing those conclusions if new information 
shows that they do not hold. It also facilitates higher-level ways of 
organising goals and beliefs into hierarchies of rules and exceptions, in 
which the rules represent only the most important conditions, and the 
exceptions add extra conditions when they are needed. 
 
Chapter 6 How to Become a British Citizen. The British Nationality 
Act is a body of English sentences, which states precisely the conditions 
under which a person may acquire, renounce or be deprived of British 
citizenship. The Act is designed to be both unambiguous, so there is little 
doubt about its intended meaning, and flexible, so that it can be applied to 
changing circumstances. Its English style resembles the conditional form of 
sentences in Computational Logic. 
 In addition to its use of conditional form, the British Nationality Act 
illustrates many other important features of Computational Logic, including 
the representation of rules and exceptions, and meta-level reasoning about 
what it takes for a person, like you or me, to satisfy the Secretary of State 
that the person fulfils the requirements for naturalisation as a British citizen. 
 In contrast with the British Nationality Act, the University of Michigan 
Lease Termination Clause shows how an ambiguous, virtually unintelligible 
English text can be made understandable by reformulating it in 
Computational Logic style. 
 
Chapter 7 The Louse and the Mars Explorer. Arguably, the most 
influential computational model of human thinking in Cognitive Psychology 
is the production system model, as illustrated in this chapter by the wood 
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louse and the Mars explorer robot. Production systems combine a working 
memory of atomic facts with condition-action rules of the form if conditions 
then actions. The working memory is like a model of the current state of the 
world, and the rules are like an agent’s goals and beliefs.  
 The condition-action rules are embedded in an observation-thought-
decision-action cycle and are executed by matching the conditions of rules 
with facts in the working memory and generating the actions of rules as 
candidate actions. This manner of execution is called forward chaining, 
which is similar to forward reasoning. If more than one candidate action is 
generated in this way, then a process, called conflict resolution, is used to 
decide between the candidates. The chosen action is then executed, changing 
the state of the working memory, simulating the way an agent’s actions 
change the state of the world.  
 From a logical point of view, there are three kinds of condition-action 
rules: reactive rules, which are like instinctive stimulus-response 
associations; goal-reduction rules, which reduce goals to subgoals by 
forward chaining; and forward reasoning rules, which perform genuine 
logical forward reasoning. 
 
Chapter 8 Maintenance Goals as the Driving Force of Life. The 
agent model presented in this book combines the functionalities of logic and 
production systems in a logical framework. The framework takes from 
production systems the observation-thought-decision-action cycle, but 
replaces condition-action rules by goals and beliefs in the logical form of 
conditionals. It replaces reactive rules by maintenance goals used to reason 
forwards, goal-reduction rules by beliefs used to reason backwards, and 
forward reasoning rules by beliefs used to reason forwards. 
 In the logical agent model, the agent cycle responds to observations of 
the environment by reasoning forwards with beliefs, until it derives a 
conclusion that matches one of the conditions of a maintenance goal. It 
reasons backwards, to check the other conditions of the maintenance goal. If 
all the conditions of the maintenance goal are shown to hold in this way, it 
reasons forwards one step, deriving the conclusion of the maintenance goal 
as an achievement goal. It then starts to reason backwards using its beliefs to 
reduce the achievement goal to a plan of candidate actions. It decides 
between different candidate actions, and starts to execute a plan. If 
necessary, it interrupts the execution of the plan, to process other 
observations, interleaving the plan with other plans. 
 
Chapter 9 The Meaning of Life. The logical framework of the 
preceeding chapter views an agent’s life as controlled by the changes that 
take place in the world, by its own goals and beliefs, and by the choices the 
agent makes between different ways of achieving its goals. The combination 
of its beliefs and its highest-level goals generates a hierarchy of goals and 
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subgoals. However, for the sake of efficiency, this hierarchy may be 
collapsed into a collection of more direct stimulus-response associations, 
whose original goals are no longer apparent, but are implicit and emergent. 
 In Artificial Intelligence and Computing more generally, it is common 
for an intelligent designer to implement an artificial agent that does not 
contain an explicit representation of its higher-level goals. The designer is 
aware of the agent’s goals, but the agent itself is not.  As far as the agent is 
concerned, its life may seem to be entirely meaningless.  
 In this chapter, we contrast the seemingly meaningless life of an 
imaginary, artificial wood louse, with the more meaningful life of an 
intelligent agent, in which stimulus-response associations and awareness of 
higher-level goals are combined.  
 
Chapter 10 Abduction. One of the main functions of an agent’s beliefs is 
to represent causal relationships between its experiences. The agent uses 
these causal representations both proactively to generate plans to achieve its 
goals, and preactively to derive consequences of candidate actions to help it 
choose between alternative candidate actions. However, the agent can also 
use the same causal beliefs abductively to generate hypotheses to explain its 
observations, and to derive consequences of candidate hypotheses to help it 
choose between alternative hypotheses. This process of generating and 
choosing hypotheses to explain observations is called abduction.  
 Like default reasoning with negation as failure, abduction is defeasible in 
the sense that new information can cause a previously derived conclusion to 
be withdrawn.  
 
Chapter 11 The Prisoner's Dilemma. The problem of deciding 
between alternative abductive explanations of an observation is similar to the 
problem of deciding between alternative actions, which is exemplified by the 
Prisoner’s Dilemma. In this chapter, we see how an agent can use a 
combination of Computational Logic and decision theory to decide between 
alternatives. According to decision theory, the agent should choose an 
alternative that has the best expected outcome. The expected outcome of an 
action is determined by appropriately combining judgements of the utility (or 
desirability) of the action’s consequences with judgements of the probability 
(or likelihood) that the consequence will actually happen. 
 Decision theory is a normative theory, which requires detailed 
knowledge of utilities and probabilities, but neglects the motivations of an 
agent’s actions. In practice, agents more typically employ heuristic goals and 
beliefs (or rules of thumb), which approximate the decision-theoretic norms. 
But heuristics often go astray. When it is important to make smarter choices, 
it is better to use the more encompassing framework of the agent cycle, to 
analyse the motivations of actions and to ensure that a full range of 
alternatives is explored. 
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Chapter 12 Motivations Matter. Decision Theory leads to 
consequentialist theories of morality, which judge the moral status of actions 
simply in terms of their consequences. But in psychological studies and the 
law, people judge actions both in terms of their consequences and in terms of 
their motivations. We show how Computational Logic can model such moral 
judgements by using constraints to prevent actions that are deemed to be 
morally or legally unacceptable. 
 
Chapter 13 The Changing World. An agent’s life is a continuous 
struggle to maintain a harmonious relationship with the ever-changing world. 
The agent assimilates its observations of the changing state of the world, and 
it performs actions to change the world in return.  
 The world has a life of its own, existing only in the present, destroying its 
past and hiding its future. To help it survive and prosper in such a changing 
environment, an intelligent agent uses beliefs about cause and effect, 
represented in its language of thought. In this chapter we investigate in 
greater detail the logical representation of such causal beliefs and the 
semantic relationship between this logical representation and the changing 
world. 
 
Chapter 14 Logic and Objects. Whereas in Cognitive Psychology 
production systems are the main competitor of Logic, in Computing the main 
competitor is Object-Orientation. In the object-oriented way of looking at the 
world, the world consists of objects, which interact by sending and receiving 
messages. Objects respond to messages by using encapsulated methods, 
invisible to other objects, and inherited from methods associated with 
general classes of objects. 
 Computational Logic is compatible with Object-Orientation, if objects 
are viewed as agents, methods are viewed as goals and beliefs, and messages 
are viewed as one agent supplying information or requesting help from 
another. Viewed in this way, the main contribution of Object-Orientation is 
two-fold: It highlights the value both of structuring knowledge (goals and 
beliefs) in relatively self-contained modules, and of organising that 
knowledge in abstract hierarchies. 
 
Chapter 15 Biconditionals. In this chapter we explore the view that 
conditional beliefs are biconditionals in disguise. For example, given only 
the two alternative conditions that can cause an object to look red: 
 
  an object looks red if the object is red. 
  an object looks red if it illuminated by a red light. 
 
the two conditionals can  be understood as standing for the biconditional: 
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  an object looks red if and only if  
  the object is red or the object is illuminated by a red light. 
 
Both negation as failure and abduction can be understood as reasoning with 
such biconditionals as equivalences, replacing atomic formulas that match 
the conclusion by the disjunction of conditions (connected by or) that imply 
the conclusion. 
 
Chapter 16 Computational Logic and the Selection Task. In this 
chapter we return to the problem of explaining some of the results of 
psychological experiments about reasoning with conditionals. We investigate 
the different ways that Computational Logic explains these results, 
depending on whether a conditional is interpreted as a goal or as a belief. If it 
is interpreted as a belief, then it is often natural to interpret the conditional as 
specifying the only conditions under which the conclusion holds. This 
explains one of the two main mistakes that people make when reasoning 
with conditionals, when judged by the standards of classical logic. 
 The other main mistake is that people often fail to reason correctly with 
negation. This mistake is explainable in part by the fact that an agent’s 
observations are normally represented by positive atomic sentences, and that 
negative conclusions have to be derived from positive observations. In many 
cases this derivation is easier with conditional goals than with conditional 
beliefs. 
 
Chapter 17 Meta-logic. In this chapter we explore how meta-logic can 
be used to simulate the reasoning of other agents, and to solve problems that 
cannot be solved in the object language alone. We illustrate this with a 
variant of the wise man puzzle, and with Gödel’s theorem that there are true 
but unprovable sentences in arithmetic. 
 
Conclusions. This concluding chapter takes a step back from the details, 
and takes a broader look at the main aim of the book, which is to show how 
Computational Logic can reconcile conflicting paradigms for explaining and 
guiding human behaviour. It also suggests how Computational Logic may 
help to reconcile conflicts in other areas. 
 
Chapter A1 The Syntax of Logical Form. This additional, more 
formal chapter gives a more precise formulation of Computational Logic as a 
logic of sentences having the conditional form if conditions then conclusion 
or equivalently having the form conclusion if conditions. In its simplest 
form, the conclusion of a conditional is an atomic expression, consisting of a 
predicate and a number of arguments. The conditions are a conjunction 
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(connected by and) of atomic expressions or the negations of atomic 
expressions. 
 In this chapter, I compare the conditional form of logic with standard 
classical logic. I argue that classical logic is to conditional logic, as natural 
language is to the language of thought. In both cases, there are two kinds of 
reasoning, performed in two stages. The first stage translates sentences that 
are unstructured and possibly difficult to understand into simpler sentences 
that are better structured. The second stage derives consequences of the 
resulting simpler sentences. The logic of conditional forms is the logic of 
such simpler and better structured sentences. 
 
Chapter A2 Truth. Conditionals in Computational Logic represent an 
agent’s goals and beliefs in its private language of thought. They also 
represent the meanings of its public communications with other agents, and 
for this reason they can be said to represent the semantics of natural language 
sentences. However, sentences in logical form also have a semantics in terms 
of their relationship with states of the world.  
 This additional chapter makes a start on the discussion of this semantics, 
and of the relationship between truth in all models and truth in minimal 
models. It argues from the example of arithmetic that truth in minimal 
models is more fundamental than truth in all models.  
 
Chapter A3 Forward and Backward Reasoning. This chapter 
defines the forward and backward rules of inference more precisely, and 
shows how they can be understood in semantic terms, as showing how the 
truth of one set of sentences implies the truth of another. This semantic point 
of view applies both to the use of these inference rules to determine truth in 
all models and to their use to generate and determine truth in minimal 
models.  
 
Chapter A4 Minimal Models and Negation. This chapter shows how 
the semantics of negation as failure can be understood in terms of the 
minimal model semantics of Chapter A2. 
 
Chapter A5 The Resolution Rule of Inference. In this chapter we 
see that forward and backward reasoning are both special cases of the 
resolution rule of inference, and that resolution is the underlying mechanism 
for reasoning in connection graphs.  
 Resolution was originally presented as a machine-oriented rule of 
inference, whereas forward and backward reasoning are human-oriented 
ways of understanding human thinking. This combination of human and 
machine-orientation is reflected in the fact that the human mind can be 
regarded as a computing machine whose software is a conditional form of 
logic and whose hardware is a connectionist form of resolution. 
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Chapter A6 The Logic of Abductive Logic Programming. This 
chapter provides most of the technical support for the combination of 
forward reasoning, backward reasoning and negation as failure, which are 
the basic inference rules of the Computational Logic used in this book. 
 The proof procedure presented in this chapter can be understood in 
semantic terms, as generating a minimal model in which an agent’s goals and 
beliefs are all true. However, it can also be understood in argumentation 
terms, as generating an argument in favour of a claim, both by providing 
support for the claim and by defeating all attacking arguments with counter-
arguments. 
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Introduction 
 
Computational Logic has been developed in Artificial Intelligence over the 
past 50 years or so, in the attempt to program computers to display human 
levels of intelligence.  It is based on Symbolic Logic, in which sentences are 
represented by symbols and reasoning is performed by manipulating 
symbols, like solving equations in algebra. However, attempts to use 
Symbolic Logic to solve practical problems by means of computers have led 
to many simplifications and enhancements. The resulting Computational 
Logic is not only more powerful for use by computers, but also more useful 
for the original purpose of logic, to improve human thinking.  
 Traditional Logic, Symbolic Logic and Computational Logic are all 
concerned with the abstract form of sentences and how their form affects the 
correctness of arguments. Although traditional logic goes back to Aristotle in 
the fourth century B.C., Symbolic Logic began primarily in the nineteenth 
century, with the mathematical forms of logic developed by George Boole 
and Gottlob Frege. It was considerably enhanced in the twentieth century by 
the work of Bertrand Russell, Alfred North Whitehead, Kurt Gödel and 
many others on its application to the Foundations of Mathematics. 
Computational Logic emerged in the latter half of the twentieth century, 
starting with attempts to mechanise the generation of proofs in mathematics, 
and was extended both to represent more general kinds of knowledge and to 
perform more general kinds of problem solving. The variety of 
Computational Logic presented in this book owes much to the contributions 
of John McCarthy and John Alan Robinson. 
 The achievements of Symbolic Logic in the past century have been 
considerable. But they have resulted in mainstream logic becoming a branch 
of Mathematics and loosing touch with its roots in human reasoning. 
Computational Logic also employs mathematical notation, which facilitates 
its computer implementation, but obscures its relevance to human thinking.  
 In this book, I will attempt to show that the practical benefits of 
Computational Logic are not limited to Mathematics and Artificial 
Intelligence, but can slso be enjoyed by ordinary people in everyday life, 
without the use of mathematical notation. Nonetheless, I include several 
additional, more technical chapters at the end of the book, which can safely 
be omitted by the casual reader. 

 
The relationship between logic and thinking 
 

Logic in all its varieties is concerned with formalising the laws of 
thought. Along with related fields such as Law and Management Science, it 
focuses on the formulation of normative theories, which prescribe how 
people ought to think. Cognitive Psychology is also concerned with thinking, 
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but it focuses almost exclusively on descriptive theories, which study how 
people actually think in practice, whether correctly or not. For the most part, 
the two kinds of theories have been developed in isolation, and bear little 
relationship with one another. 

However, in recent years, cognitive psychologists have developed Dual 
Process theories, which can be understood as combining descriptive and 
normative theories. Viewed from the perspective of Dual Process theories, 
traditional descriptive theories focus on intuitive thinking, which is 
associative, automatic, parallel and subconscious. Traditional normative 
theories, on the other hand, focus on deliberative thinking, which is rule-
based, effortful, serial and conscious. In this book, I will argue that 
Computational Logic is a dual process theory, in which intuitive and 
deliberative thinking are combined. 

But logic is concerned, not only with thinking in the abstract, but with 
thoughts represented in the form of sentences and with thinking treated as 
manipulating sentences to generate new thoughts. In Computational Logic, 
these logical manipulations of sentences also have a computational 
interpretation. Viewed in this way, Computational Logic can be regarded as 
a formalisation of the language of human thought. 
 
Computational Logic and the language of thought 
 
As used in Artificial Intelligence, Computational Logic functions first and 
foremost as an intelligent agent’s language of thought. It includes a syntax 
(or grammar), which determines the form of the agent’s thoughts, a 
semantics, which determines the contents (or meaning) of those thoughts, 
and an inference engine (or proof procedure), which generates (or derives or 
infers) new thoughts as consequences of existing thoughts. In this role, 
Computational Logic can be regarded as a private language, representing the 
agent’s goals and beliefs, and helping the agent to regulate its behaviour. 
This private language is independent from, and more fundamental than, 
ordinary, natural languages like English. 

However, in multi-agent systems in Artificial Intelligence, the private 
language of an individual agent also serves the secondary function of 
representing the meanings of its communications with other agents. These 
communications are expressed in a shared public language, which may differ 
from the private languages of individual agents. The task of a 
communicating agent is to translate thoughts from its private language into 
the public language, in such a way that the receiving agent can readily 
translate those public communications into appropriate thoughts in its own 
private language. 

It would be easier if all agents shared the same private language, and if 
that private language were identical to the public language of the community 



 16 

of agents. This can be arranged by design in an artificial multi-agent system, 
but it can only be approximated in a society of human agents. 

The distinction between private and public languages, which is so clear 
cut in Artificial Intelligence, has been proposed in the Philosophy of 
Language to explain the relationship between human thinking and 
communication. Many of these proposals, which for simplicity can be 
lumped together as Language of Thought (LOT) proposals, maintain that 
much human thinking can be understood as taking place in a language of 
thought. The most famous proposal along these lines is Fodor’s hypothesis 
that the LOT is a private language, which is independent of the Babel of 
public languages (Fodor, 1975). Other proposals, notably (Carruthers, 2004), 
argue that a person’s LOT is specific to the public language of the person’s 
social community.  

No matter where they stand on the relationship between private and 
public languages, most proposals seem to agree that the LOT has some kind 
of logical form. However, for the most part these proposals are remarkably 
shy about the details of that logical form. By comparison, the proposal that I 
present in this book – that Computational Logic can be regarded as a 
formalisation of the LOT – is shamelessly revealing. I draw the main support 
for my argument from the uses of Computational Logic in Artificial 
Intelligence. But I also draw support from the relationship between 
Computational Logic and normative theories of human communication. 
 
Computational Logic and human communication  
 
Much of the time, when we speak or write, we simply express ourselves in 
public, without making a conscious effort to communicate effectively. But 
when it really matters that we are understood - like when I am writing this 
book - we try to be as clear, coherent and convincing as possible. The 
difference is like the difference between descriptive and normative theories 
of thinking; and, as in the case of the two kinds of thinking, the two kinds of 
communication are studied mainly in different academic disciplines. 
Whereas linguistics is concerned with developing descriptive theories about 
how people use language in practice, Rhetoric and allied disciplines such as 
English Composition and Critical Thinking are concerned with normative 
theories about how people should use language to communicate more 
effectively.  

In this book, I present a normative theory of intelligent thinking, 
communication and behaviour. But I pay attention to descriptive theories, 
because descriptive theories help to understand where we are coming from, 
whereas normative theories show us where we are aiming to go. 

The descriptive theory of communication that comes closest to a 
normative theory is probably Relevance theory (Sperber and Wilson, 1986). 
It is based on a more general theory of cognition, which loosely speaking 
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hypothesizes that, given competing inputs from their environment, people 
direct their attention to those inputs that provide them with the most useful 
information for the least processing cost. Applied to communication, the 
theory hypothesizes that, given a potentially ambiguous communication as 
input, readers or listeners translate the input into a logical form that 
maximises the amount of information it contains, while minimising the 
computational effort needed to generate that logical form. 

Relevance theory is compatible with the hypothesis that Computational 
Logic, or something like it, is the logic of the language of thought. Like 
Computational Logic, Relevance theory also has both logical and 
computational components. Moreover, it provides a link with such normative 
theories of communication as Joseph Williams’ guides to English writing 
style (Williams, 1990/1995).  

One way to interpret Williams’ guidance is to understand it in logical 
terms, as including the advice that writers should express themselves in a 
form that is as close as possible to the logical form of the thoughts they want 
to communicate. In other words, they should say what they mean, and they 
should say it in a way that makes it as easy as possible for readers to extract 
that meaning. Or to put it still differently, the public expression of our 
private thoughts should be as close as possible to the logical form of those 
thoughts. 

If our private language and public language were the same, we could 
literally just say what we think. But even that wouldn’t be good enough; 
because we would still need to organise our thoughts coherently, so that one 
thought is logically connected to another, and so that our readers or listeners 
can relate our thoughts to thoughts of their own. 

Williams’ guidance for achieving coherence includes the advice of 
placing old, familiar ideas at the beginning of a sentence and placing new 
ideas at its end. In a succession of sentences, a new idea at the end of a 
sentence becomes an old idea that can be put at the beginning of the next 
sentence.  

Here is an example of his advice, which uses an informal version of the 
syntax of Computational Logic, and which incidentally shows how 
Computational Logic can be used to represent an agent’s goals and beliefs to 
guide its behaviour: 
 
   You want to be more intelligent. 
   You will be more intelligent if you are more logical.   
   You will be more logical if you study this book. 
   So (given no other alternatives) you should study this book. 
 
It may not be poetry, and you might not agree with it, but at least it’s clear, 
coherent and to the point.  
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What is Computational Logic? 
 
The version of Computational Logic presented in this book combines a 
simplified form of language for representing information with mechanical 
(or automatic) ways of using information to infer its consequences. 
Sentences in this language have the simple form of conditionals: if 
conditions then conclusion (or equivalently conclusion if conditions). The 
basic rules of inference are forward and backward reasoning. 
 Forward reasoning is the classical rule of inference (also called modus 
ponens) used to derive conclusions from conditions. For example, given the 
belief that in general a person will be more logical if the person studies this 
book, forward reasoning derives the conclusion that Mary will be more 
logical from the condition that Mary studies this book. Forward reasoning 
includes the special case in which an agent derives consequences of its 
observations, to determine how those consequences might affect its goals. 
 Backward reasoning works in the opposite direction, to derive conditions 
from conclusions. For example, given the belief that in general a person will 
be more intelligent if the person is more logical as the only way of 
concluding that a person will be more intelligent, backward reasoning 
derives the condition that John should be more logical from the conclusion 
John will be more intelligent. Backward reasoning can be regarded as a form 
of goal-reduction, in which the conclusion is a goal, and the conditions are 
subgoals. Backward reasoning includes the special case in which an agent 
derives subgoals that are actions, which the agent can perform in the world. 

Backward reasoning gives Computational Logic the power of a high-
level computer programming language, in which all programs consist of 
goal-reduction procedures. Indeed, the programming language, Prolog, 
which stands for Programming in Logic, exploits this form of computation 
mainly for applications in Artificial Intelligence. 

Computational Logic, in the more general form that we investigate in this 
book, also includes the use of inference to help an agent choose between 
alternative courses of action. For example, having used backward reasoning 
to derive two alternative subgoals, say John is more logical or John takes 
intelligence-enhancing drugs, for achieving the goal John is more intelligent, 
John can use forward reasoning to infer the possible consequences of the 
alternatives before deciding what to do. In particular, if John infers the 
consequence that John may suffer irreversible brain damage if John chooses 
the second alternative, John takes intelligence-enhancing drugs, then it will 
encourage John to choose the first alternative, John is more logical, instead.  

 
What is Artificial Intelligence? 
 
Artificial Intelligence (AI) is the attempt to program computers to behave 
intelligently, as judged by human standards. Applications of AI include such 
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problem areas as English speech recognition, expert systems for medical and 
engineering fault diagnosis, and the formalisation of legal reasoning.  

The tools of AI include such techniques as search, symbolic logic, 
artificial neural networks and reasoning with uncertainty. Many of these 
tools have contributed to the development of the Computational Logic we 
investigate in this book. However, instead of concerning ourselves with 
Artificial Intelligence applications, we will focus on the use of 
Computational Logic to help ordinary people think and behave more 
intelligently. 

Thinking of people in computational terms might suggest that people can 
be treated as though they were merely machines. On the contrary, I believe 
instead that thinking of other people as computing agents can help us to 
better appreciate our common nature and our individual differences. It 
highlights our common need to deal with the cycle of life in an ever-
changing world; and it draws attention to the fact that other people may have 
other experiences, goals and beliefs, which are different from our own, but 
which are equally worthy of understanding, tolerance and respect. 
 
Computational Logic and the cycle of life 
 
The role of Computational Logic in the mind of an intelligent agent can be 
pictured approximately like this: 
 

 
 

 

Forward  
reasoning 
 

Forward  
reasoning 

Backward  
reasoning 

Consequences 
of alternative 
candidate actions 

Decide 

Maintenance goal Achievement goal 

Observe Act 
The world 

stimulus-response associations 
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In this way of looking at the relationship between an agent and the world, the 
mind of the agent is a syntactic structure, which represents the agent’s beliefs 
about the world as it is and its goals for the way it would like the world to 
be. These beliefs and goals are represented in the agent’s private language of 
thought, whose sentences have the syntactic form of conditionals. 
 The world, on the other hand, is a semantic structure, which includes the 
agent’s body, and gives meaning to the agent’s thoughts. It is a dynamic 
structure, which is continuously changing, and exists only in the here and 
now. However, the agent can record its changing experiences in its language 
of thought, and formulate general beliefs about the causal relationships 
between its experiences. It can then use these beliefs, which explain its past 
experiences, to help it achieve its goals in the future.  

The agent observes events that take place in the world and the properties 
that those events initiate and terminate. It uses forward reasoning to derive 
conclusions of its observations. In many cases, these conclusions are actions, 
triggered by instinctive or intuitive stimulus-response associations, which 
can also be expressed in the logical form of conditionals. The agent may 
execute these actions by reflex, automatically and immediately. Or it may 
monitor them by performing higher-level reasoning, as in dual process 
models of human thinking. 
 But whether an agent is tempted to react immediately with stimulus-
response associations or not, the agent can reason forwards to determine 
whether the observation affects any higher-level goals that need to be 
maintained to keep it in a harmonious relationship with its environment. 
Forward reasoning with higher-level maintenance goals of this kind 
generates achievement goals for the future. The agent can reason backwards, 
to reduce these achievement goals to subgoals and to search in its mind for 
plans of actions to achieve these goals. 

The agent may find that there are several, alternative plans all of which 
achieve the same goal; and, if there are, then the agent needs to decide 
between them. In classical Decision Theory, the agent uses the expected 
consequences of its candidate plans to help it make this decision. With its 
beliefs represented in the logical form of conditionals, these consequences 
can be derived by reasoning forwards from conditions that represent the 
hypothetical performance of alternative candidate actions. The agent can 
evaluate the consequences, reject actions that have unintended and 
undesirable consequences, and choose actions that have the most desirable 
expected outcomes (or utility). 

However, the consequences of an agent’s actions may depend, not only 
its own actions, but also on the actions of other agents or other conditions 
that are outside the agent’s control. The agent may not be able to determine 
for certain whether these conditions hold in advance, but it may be able to 
judge their likelihood (or probability). In such cases, the agent can use the 
techniques of Decision Theory, to combine its judgements of probability and 
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utility, and choose a course of actions having highest expected utility. 
Alternatively, the agent may use more pragmatic, precompiled plans of 
action that approximate the Decision-Theoretic ideal. 

Among the criteria that an agent can use to decide between alternative 
ways of accomplishing its goals, is their likely impact on the goals of other 
agents. Alternatives that help other agents achieve their goals, or that do not 
hinder the achievement of their goals, can be given preference over other 
alternatives. In this way, by helping the agent to understand and appreciate 
that other agents have their own experiences, goals and beliefs, 
Computational Logic can help the agent avoid conflict and cooperate with 
other agents. 

This book aims to show that these benefits of Computational Logic, 
which have had some success in the field of Artificial Intelligence, also have 
great potential for improving human thinking and behaviour. 
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Chapter 1. Logic on the Underground 
 
If some form of Computational Logic is the language of human thought, then 
the best place to look for it would seem to be inside our heads. But if we 
simply look at the structure and activity of our brains, it would be like 
looking at the hardware of a computer when we want to learn about its 
software. Or it would be like trying to do sociology by studying the 
movement of atomic particles instead of studying human interactions. Better, 
it might seem, just to use common sense and rely on introspection. 

But introspection is notoriously unreliable. Wishful thinking can trick us 
into seeing what we want to see, instead of seeing what is actually there. The 
behavioural psychologists of the first half of the 20th century were so 
suspicious of introspection that they banned it altogether. 

Artificial Intelligence offers us an alternative approach to discovering the 
language of thought, by constructing computer programs whose input-output 
behaviour simulates the externally visible manifestations of human mental 
processes. To the extent that we succeed in the simulation, we can regard the 
structure of those computer programs as analogous to the structure of human 
mind, and we can regard the activity of those programs as analogous to the 
activity of human thinking.  

But different programs with different structures and different modes of 
operation can display similar behaviour. As we will see later, many of these 
differences can be understood as differences between levels of abstraction. 
Some programs are closer to the lower and more concrete level of the 
hardware, and consequently are more efficient; others are closer to the higher 
and more abstract level of the application domain, and consequently are 
easier to understand. We will explore some of the relationships between the 
different levels later in the book, when we explore dual process theories of 
thinking in Chapter 9. In the meanwhile, we can get an inkling of what is to 
come by first looking closer to home. 

If human thoughts have the structure of language, then we should be able 
to get an idea of that structure by looking at natural languages such as 
English. Better than that, we can look at English communication in situations 
where we do our best to express ourselves as clearly, coherently and 
effectively as possible. Moreover, we can be guided in this by the advice we 
find in books on English writing style.  

For the purpose of revealing the language of thought, the most important 
advice is undoubtedly the recommendation that we express ourselves as 
clearly as possible - making it as easy as we can for the people we are 
addressing to translate our communications into thoughts of their own. 
Everything else being equal, the form of our communications should be as 
close as possible to the form of the thoughts that they aim to convey. 

What better place to look than at communications designed to guide 
people how to behave in emergencies, in situations where it can be a matter 
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of life or death that the recipient understands the communication as intended 
and with as little effort as possible. 

Imagine, for example, that you are travelling on the London underground 
and you hear a suspicious ticking in the rucksack on the back of the person 
standing next to you. Fortunately, you see a notice explaining exactly what to 
do in such an emergency:  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The public notice is designed to be as clear as possible, so that you can 
translate its English sentences into your own thoughts with as little effort as 
possible. The closer the form of the English sentences to the form in which 
you structure your thoughts, the more readily you will be able to understand 
the sentences and to make use of the thoughts that they communicate. 
  The thoughts that the management of the underground wants you to have 
are designed to make you behave effectively in an emergency, as well as to 
prevent you from behaving recklessly when there isn’t an emergency. They 
are designed, therefore, not only to be clear, but to be to the point – to tell 
you what to do if there is an emergency and what not to do if there isn’t one. 
But they are also intended to be coherent, so that you can easily relate the 
new thoughts that new sentences communicate to existing thoughts you 
already have in your head. These existing thoughts include both thoughts that 
were already there before you started reading and thoughts that might have 
been conveyed by earlier sentences in the text you are reading. 
 
The emergency notice as a program  
 
The purpose of the emergency notice is to regulate the behaviour of 
passengers on the London underground. It does so much in the same way that 

Emergencies  
 
Press the alarm signal button 
to alert the driver.  
 
The driver will stop  
if any part of the train is in a `station.  
 
If not, the train will continue to the next station, 
where help can more easily be given.  
 
There is a 50 pound penalty  
for improper use. 
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a computer program controls the behaviour of a computer. In general, much 
of our human communication can be understood in such computational 
terms, as one human attempting to program another, to elicit a desired 
behaviour.  

I do not mean to suggest that people should be treated as though they 
were merely machines. I mean to propose instead that thinking of people as 
computing agents can sometimes help us to communicate with them in more 
effective and more efficient terms. Our communications will be more 
effective, because they will better accomplish our intentions; and they will be 
more efficient, both because they will be easier for other people to 
understand, and because the information they convey will be easier for other 
people to use for their own purposes. 

Understanding a communication is like the process that a computer 
performs when it translates (or compiles) a program written in an external 
source language into an internal target language that the computer already 
understands. When a computer compiles the source program, it needs both to 
translate individual sentences of the program into the target language and to 
place those sentences into a coherent internal structure expressed as a target 
program. Compiling a program is efficient when it can be done with as little 
processing as necessary. Analogously, understanding an English 
communication is efficient when compiling it from its English form into a 
mental representation can be done with as little effort as possible. 

Using the information in a communication is like executing a target 
program, after it has been compiled. When a computer executes a program, it 
follows the instructions mechanically in a systematic manner. When a person 
uses the information in a communication, the person combines that 
information with other information that the person already has and uses the 
combined information to solve problems. People perform much of this 
process of using information systematically, automatically and 
unconsciously. Like a computer program, the information that people use to 
solve problems is efficient if it helps them to solve problems with as little 
effort as possible. 
 
The computational nature of the emergency notice is most obvious in the first 
sentence: 
 

Press the alarm signal button 
 to alert the driver. 
 
This has the form of a goal-reduction procedure:  
 

Reduce the goal of alerting the driver  
to the subgoal of pressing the alarm signal button. 
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Goal-reduction procedures are a common form of human knowledge 
representation. They structure our knowledge in a way that facilitates 
achieving goals and solving problems. Here the thought communicated by 
the sentence is that the goal of alerting the driver can be reduced to the 
subgoal of pressing the alarm signal button.  

To understand and make use of the goal-reduction procedure, you need to 
assimilate it into your existing goals and beliefs. For example, you might 
already know that there could be other ways of alerting the driver, such as 
shouting out loud. You probably know that alerting the driver is one way of 
getting help, and that there are other ways of getting help, such as enlisting 
the assistance of your fellow passengers. You probably recognize that if there 
is an emergency then you need to deal with it appropriately, and that getting 
help is one such way, but that other ways, such as running away or 
confronting the emergency head on yourself, might also be worth 
considering. 

Goal-reduction procedures are also a common form of computer 
knowledge representation, especially in Artificial Intelligence. Liberally 
understood, they can serve as the sole construct for writing any computer 
program. However, almost all computer languages also use lower-level 
programming constructs. Most of these constructs bear little resemblance to 
human ways of thinking.  

But there is one other construct that is even higher-level than goal-
reduction, and which may be even closer to the way humans structure their 
thoughts. This construct is exemplified by the logical form of the conditional 
sentences found in the second and third sentences of the emergency notice. 
 
The logic of the second and third sentences  
 
Many linguists and philosophers subscribe to some form of Language of 
Thought hypothesis (LOT), the hypothesis that many of our thoughts have a 
structure that is similar to the structure of natural languages such as English. 
Most of those who subscribe to LOT also seem to believe that the language 
of thought has a logical form. In this book, I will explore the more specific 
hypothesis that the language of thought has the logical form of conditional 
sentences. This hypothesis is supported by the English form of the second 
and third sentences of the emergency notice. 

Indeed, the second and third sentences of the emergency notice both have 
the logical form of conditionals (also called implications). Conditionals are 
sentences of the form: 
 
      if conditions then conclusion 
or equivalently   conclusion if conditions.   
 
A more precise definition is given in the additional Chapter A1. 
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In the emergency notice, the second sentence is written with its conclusion 
first; and the third sentence is written the other way around, with its implicit 
conditions first.  

In formal logic, it is normal to write conditionals in the forward direction 
if conditions then conclusion. This is why reasoning from conditions to 
conclusions is called forward reasoning, and why reasoning from conclusion 
to conditions is called backward reasoning. However, no matter whether 
conditionals are written conditions-first or conclusion-first, they have the 
same meaning. But we often write them one way rather than the other when 
we have one preferred direction of use in mind, or when we want to write 
them more coherently in the context of other sentences. 

I have argued that the notice is designed to be as easy as possible to 
understand, and that as a consequence its external form should be a good 
indication of the internal form of its intended meaning. In particular, the 
external, conditional form of the second and third sentences suggests that 
their intended meaning also has the logical form of conditionals.  

However, whatever the form of the LOT, one thing is certain: Its 
sentences are unambiguous, in that they mean what they say. In contrast, 
English sentences are often ambiguous, because they can have several 
different meanings. For example, the English sentence the first passenger 
attacked the second passenger with a rucksack has two possible meanings. 
Either the first passenger carried out the attack with a rucksack or the second 
passenger had a rucksack, and the first passenger attacked the second 
passenger in some indeterminate manner. The difference between the two 
meanings could make a big difference in a court of law. 

Ambiguity is the enemy of clarity. It creates confusion, because the reader 
does not immediately know which of the several possible interpretations of 
the communication is intended; and it creates extra effort for the reader, 
because the reader has to explore different interpretations, to find an 
interpretation that makes the most sense in the context of the reader’s 
background goals and beliefs.  

You might be surprised, therefore, to discover that the second and third 
sentences of the notice are more ambiguous than they first appear. In 
particular, the second sentence does not explicitly state what the driver will 
actually stop doing. It is unlikely, for example, that: 
 

The driver will stop causing the emergency 
   if any part of the train is in a station.  
 
Instead, it is more likely that:  
 
   The driver will stop the train in a station 
   if any part of the train is in the station.  
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But even this interpretation does not fully capture the sentence’s intended 
meaning. Understood in the context of the first sentence, the second sentence 
has an additional implicit condition, namely that the driver has been alerted 
to an emergency. Therefore, the intended meaning of the second sentence is 
actually: 
 
   The driver will stop the train in a station 
   if the driver is alerted to an emergency 

and any part of the train is in the station.  
 
Without the additional condition, the sentence on its own literally means that 
the driver will stop the train whenever the train is in a station, whether or not 
there is an emergency. If that were the case, the train would never leave a 
station once it was there. To understand the sentence, the reader of the notice 
needs both general background knowledge about the way train drivers 
normally behave and specific knowledge about the context of the earlier 
sentences in the notice. 

In the spirit of our interpretation of the second sentence, it should now be 
clear that the intended meaning of the third sentence is: 
 

The driver will stop the train at the next station 
and help can be given there better than between stations 

   if the driver is alerted to an emergency 
and not any part of the train is in a station. 
 

In natural language, it is common to leave out some conditions, such as any 
part of the train is in the station, that are present in the context. In more 
formal logic, however, the context needs to be spelled out explicitly. In other 
words, sentences in formal logic, to represent information unambiguously, 
need to stand on their own two feet, without relying for support on the 
context around them.  
 
The web of belief 
 
Because the meaning of individual sentences expressed in purely logical form 
does not rely on context, collections of sentences in logical form can be 
written in any order. In theory, therefore, if this book were written in purely 
logical form, I could write it - and you could read it - forwards, backwards, or 
in any other order, and it would still have the same meaning. In fact, you 
could take any text written as a sequence of sentences in logical form, write 
the individual sentences on little pieces of paper, throw them up in the air like 
a pack of cards, and pick them up in any order. The resulting sequence of 
sentences would have the same meaning as the text you started with. 
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In contrast, much of the work in writing a book like this is in trying to 
find an order for presenting the ideas, so they are as clear, coherent, and 
convincing as possible. No matter whether I spell out all of the contexts of 
individual sentences in detail, I need to present those sentences in a coherent 
order, which relates consecutive sentences both to ideas you had before you 
started reading and to ideas you obtained from reading earlier sentences.  

One way to achieve coherence is to follow Williams’s advice of placing 
old, familiar ideas at the beginnings of sentences and new ideas at their ends. 
Sometimes, as a limiting case, if an “old” idea is particularly salient, because 
it has just been introduced at the end of the previous sentence, then the old 
part of the next sentence can be taken for granted and simply left out. This is 
what happens in the emergency notice, both in the transition from the first 
sentence to the second sentence, where the condition the driver is alerted to 
an emergency has been left out, and in the transition from the second 
sentence to the third sentence, where any part of the train is in a station has 
been left out. 

If the language of thought is a logic of conditional forms, then the 
simplest way to achieve coherence is by linking the beginnings and ends of 
consecutive sentences by means of the conclusions and conditions of the 
thoughts they express, using such obvious patterns as: 
 
  If condition A then conclusion B. 
  If condition B then conclusion C. 
 
and 
 
  conclusion C if condition B. 
  conclusion B if condition A. 
 
The need for coherence in human communication suggests that the language 
of thought is not an unstructured collection of sentences, after all. Rather, it is 
a linked structure in which sentences are connected by means of their 
conclusions and conditions.  

Connection graphs (Kowalski, 1975, 1979), which link conclusions and 
conditions of sentences in logical form, have been developed in Artificial 
Intelligence to improve the efficiency of automated reasoning. The links in 
connection graphs pre-compute much of the thinking that might be needed 
later. Here is a connection graph representing some of a person’s goals and 
beliefs before reading the emergency notice: 
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Here is the same connection graph, augmented with additional beliefs, after 
the person reads the emergency notice, assuming the person believes 
everything written in the notice: 
 
 

Goal: If there is an emergency  
  then you deal with the emergency appropriately. 
 
 

You deal with the emergency appropriately  
if you get help. 

You get help  
if you alert the driver. 

You alert the driver  
if you shout for help.  
 

You get help  
if you enlist the assistance of your neighbors. 
 

You deal with the emergency appropriately  
if you confront the emergency yourself. 
 

You deal with the emergency appropriately  
if you run away. 
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We will see in later chapters that the kind of conditional represented by the 
sentence if there is an emergency then you deal with the emergency 
appropriately is a maintenance goal, which a person tries to make true by 
making its conclusion true whenever its conditions become true. 

Goal: If there is an emergency  
  then you deal with the emergency appropriately. 
 
 

You deal with the emergency appropriately  
if you get help. 

You get help  
if you alert the driver. 

You alert the driver  
if you press the alarm signal button. 
 

The driver will stop the train immediately  
if the driver is alerted to an emergency  
and any part of the train is in a station. 

The driver will stop the train at the next station  
if the driver is alerted to an emergency  
and not any part of the train is in a station. 

You alert the driver  
if you shout for help.  
 

You get help  
if you enlist the assistance of your neighbors. 
 

You deal with the emergency appropriately  
if you confront the emergency yourself. 
 

You deal with the emergency appropriately  
if you run away. 

There is a fifty pound penalty  
if you press the alarm signal button 
and you do so improperly. 
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Connection graphs are related to W. V. Quine’s (1963) web of belief. 
Quine argued that scientific theories, and human beliefs more generally, form 
a web of beliefs, which are linked to the world of experience by means of 
observational sentences at the periphery. Beliefs in scientific theories stand 
and fall together as a whole, because any belief, no matter how theoretical, 
might be involved in the derivation of an empirically testable, observational 
consequence. If an observational consequence of a theory is contradicted by 
experience, consistency can be restored by revising any belief involved in the 
derivation of the contradiction. 

Connection graphs can be viewed as a concrete realization of the web of 
belief, in which goals and beliefs are connected by links between their 
conditions and conclusions. Although in principle it might be possible to find 
a chain of connections between any two beliefs, in practice connections seem 
to cluster in relatively self-contained domains, like modules in a computer 
program and like the different kinds of intelligence in Howard Gardner’s 
(1983) Theory of Multiple Intelligences.  

There will be more to say about connection graphs in later chapters. But 
in the meanwhile, we have a more pressing concern: How does the 
connection graph view of the mind, as a web of conditionals, relate to goal-
reduction procedures? The simple answer is that goal-reduction procedures 
are one way of using the connections. 
 
The first sentence as part of a logic program 
 
The first sentence of the Notice, written in the form of a goal-reduction 
procedure, hides an underlying logical form. In general, goal-reduction 
procedures of the form: 
 

Reduce goal to subgoals 
 
hide logical conditionals of the form: 
 

Goal if subgoals. 
 
The goal-reduction behaviour of procedures can be obtained from 
conditionals by backward reasoning: 
 

To conclude that the goal can be solved,  
show that the subgoals can be solved. 

 
 Thus, the first sentence of the Emergency Notice has the hidden logical form: 

 
You alert the driver, 
if you press the alarm signal button. 
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Viewed in connection graph terms, backward reasoning is one way in which 
a thinking agent can use links between conditionals to direct its attention 
from one thought to another. Backward reasoning directs the agent’s 
attention from a goal to a conclusion that matches the goal. For example: 
 

 
The use of backward reasoning to turn conditionals into goal-reduction 
procedures is the basis of logic programming, which in turn is the basis of the 
programming language Prolog. 

Backward reasoning contrasts with forward reasoning, which is probably 
more familiar to most people. Given a conditional of the form: 
 
     If conditions then conclusion. 
 
and a collection of statements that match the conditions, forward reasoning 
derives the conclusion as a logical consequence of the conditions. For 
example, given the statements: 
 

You alert the driver. 
A part of the train is in a station. 
 

forward reasoning uses the conditional: 
 
     The driver will stop the train immediately 

 if the driver is alerted to an emergency 
and any part of the train is in a station. 

 
to derive the conclusion that the driver will stop the train immediately. 
 Viewed in connection graph terms, forward reasoning directs attention 
from the conclusion of a belief to a belief whose conditions are linked to 
those conclusions. For example: 
 

You deal with the emergency appropriately  
if you get help. 

Goal: You deal with the emergency appropriately. 
 
 



 33 

 
Backward reasoning is also called top-down reasoning, or analysis. Forward 
reasoning is also called bottom-up reasoning, or synthesis.   
 When and how to combine backward and forward reasoning are one of 
the main topics of this book. However, the connection graph view of the 
mind suggests that pure backward or forward reasoning are not the only ways 
of reasoning. Connections can also be activated in different parts of the mind 
simultaneously and in parallel (Cheng and  Juang, 1987). Moreover, 
connections that are activated frequently can be short-circuited, and their 
effect can be compiled into a single goal or belief. For example, the link: 
 
 
 
 
 
 
 
between two beliefs can be compiled into the single belief: 
 
 
 
 
The fourth sentence as an inhibitor of action 
 
In natural language, the logical form of conditionals is often hidden below 
the surface, sometimes appearing on the surface in procedural form, at other 
times appearing in declarative form. For example, the last sentence of the 
Notice is a declarative sentence, which hides its underlying conditional form: 
 
   There is a fifty pound penalty if 
   you press the alarm signal button and 
   you do so improperly. 
 
The sentence does not say that you will necessarily receive the penalty for 
improper use. So its conclusion, more precisely stated, is only that, under the 
condition that you use the alarm signal button improperly, you will be liable 

The driver will stop the train immediately 
 if the driver is alerted to an emergency 
and any part of the train is in a station. 
 

You alert the driver. 
 

A part of the train is in a station. 
 
 

You deal with the emergency appropriately  
if you get help. 

You get help  
if you alert the driver. 

You deal with the emergency appropriately  
if you alert the driver. 
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to the penalty. Backwards reasoning turns this conditional into a goal-
reduction procedure: 
 

To be liable to a 50 pound penalty, 
press the alarm signal button and  
do so improperly. 

 
It is very unlikely that a passenger would want to get a 50 pound penalty, and 
very unlikely, therefore, that the passenger would want to use the conditional 
as such a goal-reduction procedure. It is more likely that the passenger would 
use it to reason forward instead, to conclude that using the alarm signal 
button improperly could have an undesirable consequence.  
 In subsequent chapters, we will see two ways of dealing with the 
undesirability of the possible consequences of actions. The first is to use 
decision theory, associating probabilities and utilities with the consequences 
of actions, and choosing an action having the best expected outcome. The 
other is to use deontic constraints on actions, formulated in terms of 
obligations, permissions and prohibitions. 
 In standard logical representations, the deontic notions of obligation, 
permission and prohibition are accorded the same status as the logical 
connectives and, or, if and not, in so-called deontic logics. However, in the 
approach we take in this book, we treat obligations and prohibitions more 
simply as a species of goal. Obligations are represented by conditional goals 
whose conclusion the agent attempts to bring about if the conditions hold. 
Prohibitions (or constraints) are represented by conditional goals with 
conclusion false, whose conclusion the agent attempts to prevent, by ensuring 
that the conditions do not hold. In the case of the fourth sentence of the 
emergency notice, this prohibition could be stated in the form: 
 
          Do not be liable to a penalty. 
Or, stated as a conditional goal:  If you are liable to a penalty then false. 
 
Although it may seem a little strange, we will see later that representing 
probibitions and other constraints as conditional goals (with conclusion false) 
has the advantage that then they share the same semantics and the same rules 
of inference as other conditional goals. When used to reason forward and to 
derive the conclusion false, they eliminate any hypothesis or candidate action 
that leads to the derivation of false.   
 Thus, in conjunction either with the use of decision theory or with the use 
of deontic constraints, the fourth sentence acts as an inhibitor of action rather 
than as a motivator of actions. This explains why the sentence is written 
declaratively and not procedurally. 
 In fact, only the first sentence of the Emergency Notice is written in 
procedural form, and only this first sentence of the Notice functions as a 
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normal program, to evoke the behaviour that is desired of passengers on the 
underground. The fourth sentence functions as a constraint, to prevent 
undesired behaviour. 

The second and third sentences, on the other hand, describe part of a 
program to be executed by a different agent, namely by the driver of the train. 
These sentences are written declaratively and not procedurally precisely 
because they are to be executed by a different agent, and not by the agent 
observing the emergency. However, passengers can use these two sentences, 
like the fourth sentence, to derive the likely consequences of pressing the 
alarm signal button. 
 
Programs with purpose 
 
It is implicit that the purpose1

 

 (or goal) of the Notice is to explain how you 
can get help from the driver in an emergency. That is why the third sentence 
includes a phrase that explains why the driver does not stop the train 
immediately when it is not in a station, but waits to stop until the next station: 

   where help can more easily be given. 
 
The Notice makes sense because the first sentence, in particular, coheres with 
the goals and beliefs that you probably already had before you started reading 
the Notice. For example, with such sentences as: 
 
   If there is an emergency then 

deal with the emergency appropriately. 
 
You deal with the emergency appropriately if 
 you get help. 
 
You get help if you alert the driver. 

 
Although I have deliberately written the second and third sentences here 
conclusion-first, because it is natural to use them conclusion-first, backwards, 
as procedures for dealing with emergencies, I have written the first sentence 
condition-first, because it is natural to use it condition-first, forwards, to 
respond to emergencies. 

The first sentence also has the form of a conditional. But here its 
conclusion is written imperatively (deal with the emergency appropriately) 
rather than declaratively (you deal with the emergency appropriately). This 

                                                        
1 The terms “goal” and “purpose” are interchangeable. Other terms that sometimes 
have the same meaning are “motivation”, “reason”, “interest”, “desire”, “objective” 
“mission”, “target”, “value”, etc. 
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follows English grammar, in which beliefs are expressed as declarative 
sentences, but goals, including commands and prohibitions, are expressed as 
imperative sentences.  

The difference between goals and beliefs is that beliefs describe an 
agent’s understanding of the world as it is, whereas goals describe the agent’s 
view of the world as the agent would like it to be. This distinction between 
goals and beliefs has been largely neglected in symbolic, mathematical logic, 
because in mathematics truth is eternal, and there are no actions that a 
mathematical theory can do to make a sentence become true. However, the 
distinction is important in Artificial Intelligence, because the ability to 
perform actions to achieve goals is an essential property of an agent’s nature. 

Ordinary natural languages distinguish between goals and beliefs by using 
imperative sentences for goals and declarative sentences for beliefs. 
However, in the Computational Logic used in this book, both kinds of 
sentences are expressed declaratively. For example, we represent the 
conditional-imperative sentence: 
 
   If there is an emergency then 

deal with the emergency appropriately. 
 
as the declarative sentence: 
 

If there is an emergency then 
you deal with the emergency appropriately. 

 
We distinguish between goals and beliefs, not by means of syntax, but by 
assigning them to different categories of thought.  
 
Where do we go from here? 
 
This chapter has been intended to give an impression of the book as a whole. 
It shows how English sentences can be viewed in both computational and 
logical terms; and it shows how the two views are combined in 
Computational Logic. 

Traditional logic, on which Computational Logic is based, has fallen out 
of fashion in recent years. Part of the problem is that its use of symbolic 
notation can give the impression that logic has little to do with everyday 
human experience. But another part of the problem is that it fails to address a 
number of issues that are important in human thinking and behaviour. These 
issues include the need: 
 

• to distinguish between goals and beliefs 
• to be open to changes in the world  
• to combine thinking about actions with deciding what to do 
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• to combine thinking and deciding with actually performing actions 
• to reason by default and with rules and exceptions. 

 
We will see how Computational Logic addresses these issues in the following 
chapters. For the moment, we can picture the problem we face roughly like 
this: 
 
 
 
 
 
 
 
 

            ?     
 
 
  

 
Computational Logic as  
the thinking component  
of an intelligent agent 

 

    
        The world 
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Chapter 2. The Psychology of Logic 
 
In this chapter, I will discuss two psychological experiments that challenge 
the view that people have an inbuilt ability to perform abstract logical 
reasoning. The first of these experiments, the Selection Task, has been widely 
interpreted as showing that, instead of logic, people use specialized 
procedures for dealing with problems that occur commonly in their 
environment. The second, the Suppression Task, has been interpreted as 
showing that people do not reason using rules of inference, like forward and 
backward reasoning, but instead construct a model of the problem and inspect 
the model for interesting properties. I will respond to some of the issues 
raised by these experiments in this chapter, but deal with them in greater 
detail in a later chapter, after presenting the necessary background material. 

To motivate the discussion of the selection task below, consider its 
potential application to the problem of improving security on the London 
underground. Suppose that the management of the underground decides to 
introduce a security check, as part of which security officers stick a label with 
a letter from the alphabet to the front of every passenger entering the 
underground. Suppose that the security officers are supposed to implement 
the following conditional: 
 
 if a passenger is carrying a rucksack on his or her back, 
 then the passenger is wearing a label with the letter A on his or her front. 
 
Imagine that you have the task of checking whether the security officers have 
properly implemented the conditional. Which of the following four 
passengers do you need to check? In the case of Bob and John you can see 
only their backs, and in the case of Mary and Susan you can see only their 
fronts: 
 
  Bob, who is carrying a rucksack on his back.  
  Mary, who has the label A stuck to her front. 
  John, who is carrying nothing on his back. 
  Susan, who has the label B stuck to her front. 
 
Unfortunately, I have had only limited experience with trying this test 
myself. So I’m not entirely sure what to expect. But if you are like most 
ordinary people, and if the task I have asked you to perform is sufficiently 
similar to some of the psychological experiments that have been performed 
on ordinary people, then depending on how you interpret the task your 
performance may not be very logical.  

If you were being logical, then you would certainly check Bob, to make 
sure that he has the label A stuck to his front; and most people, according to 
psychological studies, correctly perform this inference. So far so good.  
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But, if you were being logical according to the standards of classical 
logic, then you would also check Susan, because she might be carrying a 
rucksack on her back, in which case she would have the incorrect label B 
stuck to her front. Unfortunately, in many psychological experiments with 
similar reasoning tasks, most people fail to make this correct inference. If you 
were to make the same mistake in this version of the selection task, the 
failure could be disastrous, because Susan could be a terrorist carrying a 
bomb in a rucksack on her back. Not so good. 

According to classical logic, those are the only cases that matter. It is not  
necessary to check Mary, because the conditional does not state that carrying 
a rucksack on the back is the only condition under which the letter A is stuck 
to a person’s front. There could be other, alternative conditions, for example 
like carrying a hand grenade in a waist belt, that might also require the 
security officers to stick the letter A on a person’s front. But you have not 
been asked to check whether Mary might be a terrorist. That is the security 
officers’ job. You have been asked to check only whether the security 
officers have correctly implemented the one stated conditional. Checking to 
see whether Mary has a rucksack on her back is going beyond the call of 
duty. However, in many psychological experiments with similar tasks, most 
subjects do indeed perform this additional, logically unnecessary step. 

It remains to consider the case of John, who has nothing on his back. 
Logically, it doesn’t matter what letter he has stuck to his front. It could be 
the letter B, or even be the letter A. There is no need to check John at all. In 
psychological studies with similar tasks, most people also reason “correctly”, 
concluding that the letter stuck to John’s front is entirely irrelevant. Even 
most people who interpret the conditional as expressing the only condition 
under which the letter A is stuck to a person’s front conclude that it is 
unnecessary to check John. (But if they really believed that the conditional 
expresses the only such condition, then they should check that the conclusion 
that John has the letter A stuck to his front doesn’t hold under any other 
conditions, such as the condition that he has nothing on his back.) 

You might think that the psychologists who devise these experiments 
would be disappointed with the evidence that most people appear not to be 
very logical. But many psychologists seem to be absolutely delighted. 
 
The Wason selection task 
 
The first and most famous of these experiments was performed by Peter 
Wason (1968).  In Wason’s experiment, there are four cards, with letters on 
one side and numbers on the other. The cards are lying on a table with only 
one side of each card showing: 
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The task is to select those and only those cards that need to be turned over, to 
determine whether the following conditional holds: 
 

If there is a d on one side, 
then there is a 3 on the other side. 

 
Variations of this experiment have been performed numerous times, mainly 
with College students. The surprising result is that only about 10% of the 
subjects give the logically correct answer. 

Almost everyone recognizes, correctly, that the card showing d needs to 
be turned over, to make sure there is a 3 on the other side. This is a logically 
correct application of the inference rule modus ponens, which is also called 
forward reasoning. Most people also recognise, correctly, that the card 
showing f does not need to be turned over. Although, if you ask them why, 
they might say “because the conditional does not mention the letter f”, which 
(as you will see in a moment) is not the right reason. 

Many subjects also think, incorrectly, that it is necessary to turn over the 
card showing 3, to make sure there is a d on the other side. This is logically 
incorrect, because the conditional does not claim that having a d on one side 
is the only condition that implies the conclusion that there is a 3 on the other 
side. This further claim is expressed by the so-called converse of the 
conditional: 
 

If there is a 3 on one side, 
then there is a d on the other side. 
 

The two conditionals are the converse of one another, in the same way that 
the two conditionals: 
 

If it is raining, then there are clouds in the sky. 
If there are clouds in the sky, then it is raining. 
 

are also mutually converse. In fact, (in case it’s not obvious) the first 
conditional is true and the second conditional is false.  

 
d 

 
3 

 
7 

 
f 
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However, more disturbingly, only a small percentage of subjects realise 
that it is necessary to turn over the card showing 7, to make sure that d is not 
on the other side. It is necessary to turn over the 7, because the original 
conditional is logically equivalent to its contrapositive: 
 

If the number on one side is not 3 (e.g. 7), 
then the letter on the other side is not d. 

 
Similarly, the second sentence in the pair of sentences: 
 

If it is raining, then there are clouds in the sky. 
If there are no clouds in the sky, then it is not raining. 

 
is the contrapositive of the first sentence, and the two sentences are also 
logically equivalent. Notice that it is logically necessary to turn over the card 
showing 7 (because the number 3 is not the number 7) even though the 
original conditional does not mention the number 7 at all. 

The obvious conclusion, which many psychologists draw, is that people 
are not logical, and that logic has relatively little to do with real human 
reasoning. 
 
A variant of the selection task  
 
Psychologists have shown that people perform far better when the selection 
task experiment is performed with a problem that is formally equivalent to 
the card version of the task but has meaningful content. The classic 
experiment of this kind considers the situation in which people are drinking 
in a bar, and the subject is asked to check whether the following conditional 
holds: 
 

If a person is drinking alcohol in a bar, 
then the person is at least eighteen years old. 
 

Again there are four cases to consider, but this time instead of four cards 
there are four people. We can see what two of them are drinking, but not how 
old they are; and we can see how old two of them are, but not what they are 
drinking: 
 

Bob, drinking beer. 
Mary, a senior citizen, obviously over eighteen years old. 

  John, drinking cola. 
  Susan, a primary school child, obviously under eighteen years old. 
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In contrast with the card version of the selection task, most people solve the 
bar version correctly, realising that it is necessary to check Bob to make sure 
that he is at least eighteen years old, and to check Susan to make sure that she 
is not drinking alcohol, but that it is not necessary to check Mary and John. 

Cognitive psychologists have proposed a bewildering number of theories 
to explain why people are so much better at solving such versions of the 
selection task compared with other, formally equivalent variations, like the 
original card version. The most generally cited of these theories, due to Leda 
Cosmides (1985, 1989), is that humans have evolved a specialized algorithm 
(or procedure) for detecting cheaters in social contracts. The algorithm has 
the general form: 
 

If you accept a benefit, 
then you must meet its requirement. 

 
In the bar version of the selection task, the “benefit” is “drinking beer” and 
the “requirement” is “being at least eighteen years old”. 

Cosmides and her co-workers also argue that humans have evolved other 
specialized algorithms for dealing with other kinds of problems, for example 
an algorithm for avoiding hazards: 
 

If you engage in a hazardous activity, 
then you should take the appropriate precaution. 

 
Stephen Pinker (1997) cites Cosmides’ evolutionary explanation approvingly 
in his award winning book, How the Mind Works. He points out that the 
cheater algorithm explanation doesn’t always justify the logically correct 
solution. For example, given the conditional if he pays $20 he receives a 
watch, subjects typically select the person who doesn’t pay $20, to check he 
hasn’t received a watch. But logically, this is unnecessary, because the 
conditional doesn’t say that he receives a watch only if he pays $20. The 
conditional is entirely compatible, for example, with a person receiving a 
watch if he takes early retirement. Thus, according to Cosmides and Pinker, 
evolutionary algorithms explain human performance on selection tasks, 
whether or not that performance coincides with the dictates of classical logic. 

At about the same time as Cosmides developed the evolutionary theory, 
Cheng and Holyoak (1985) put forward a related theory that people reason 
about realistic situations using specialised algorithms. But for Cheng and 
Holyoak, these algorithms are “pragmatic reasoning schemes”. Chief among 
these pragmatic schemes are ones involving deontic notions concerned with 
permission, obligation and prohibition. In English these notions are typically 
signalled by the use of such words as “can”, “should”, “need” and “must”. 
But these explicit linguistic signals can be omitted if the context makes it 
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obvious that an obligation or prohibition is involved, as in the formulation of 
the bar version of the selection task above. 

In fact, if Cheng and Holyoak are right, then the security check version of 
the selection task shouldn’t be hard at all, because the most natural 
interpretation of the conditional: 
 
 If a passenger is carrying a rucksack on his or her back, 
 then the passenger is wearing a label with the letter A on his or her front. 
 
is deontic: 
 
 If a passenger is carrying a rucksack on his or her back, 
 then the passenger should be wearing a label with the letter A 
  on his or her front. 
 
But then the real problem isn’t just how people reason with conditionals in 
logical form, but also how people interpret natural language conditionals and 
translate them into conditionals in logical form.  

But both Cosmides and Cheng and Holyoak draw a different conclusion. 
They argue that people do not have an in-built, general-purpose ability for 
abstract logical reasoning, but instead employ specialised procedures for 
dealing with classes of practical problems that arise naturally in the world 
around them. I will discuss the selection task in greater detail in Chapter 16, 
but the relationship between general-purpose and special-purpose methods is 
too important not to address it here. It is part of the more fundamental 
relationship between knowledge representation and problem solving, which 
is one of the main themes of this book. 
 
Thinking = knowledge representation  
+ problem solving 
 
In Artificial Intelligence, the ultimate goal of an agent is to maintain itself in 
a harmonious relationship with the world. For this purpose, intelligent agents 
employ a mental representation of the world and use that representation to 
respond to threats and opportunities that arise in their environment. They do 
so by observing the current state of the world, generating appropriate goals, 
reducing those goals to actions, and performing actions, to change the world 
for their benefit. In Computational Logic, these mental representations are 
expressed in a logical language of thought; and both the generation of goals 
from observations and the reduction of goals to actions are performed by 
logical reasoning.  
 Thus, an intelligent agent needs both specialized knowledge (in the form 
of goals and beliefs), and general-purpose reasoning abilities (including 
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forward and backward reasoning). The agent needs specialised knowledge, 
both to deal with everyday problems that occur as a matter of course, and to 
deal with problems that might never occur but could have life-threatening 
consequences if they do. But the agent also needs general-purpose reasoning, 
to be able to use its knowledge flexibly and efficiently. 
 The relationship between knowledge representation and reasoning is like 
the relationship between a computer program and program execution. 
Knowledge is like a computer program, consisting of specialised procedures 
for solving problems that are particular to a problem domain. Reasoning is 
like program execution, employing general-purpose methods to execute 
programs in any domain. In Computational Logic, programs are represented 
in logical form, and program execution is performed by applying rules of 
inference. 
 Compared with conventional computer programs, whose syntax consists 
of instructions for a machine, programs in logical form are much higher-
level, in that their syntax more closely mirrors the semantic structure of the 
world that they represent. However, in Computational Logic the application 
of general-purpose inference rules to domain-specific knowledge behaves 
like specialised algorithms and procedures. This relationship can be 
expressed in the form of an equation: 
   
     algorithm = knowledge + reasoning. 
 
I will argue later in the book that the kind of specialised algorithm involved 
in cheater detection can be viewed as combining a goal (or constraint) of the 
logical form: 
 

if a person accepts a benefit  
and the person does not meet its requirement 
then false. 
 

with general-purpose reasoning with goals that have the form of such 
conditionals. In general, given a goal of the logical form: 
 

if conditions then conclusion. 
 

• reason forward to match an observation with a condition of the goal, 
• reason backward to verify the other conditions of the goal, and 
• reason forward to derive the conclusion as an achievement goal. 

 
In the special case where the achievement goal is false and therefore 
unachievable, then this pattern of reasoning detects violation of the goal. In 
the special case where the other conditions are properties that can be 
observed in the agent’s environment, then the agent can attempt to verify 
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these properties by actively attempting to observe whether or not they are 
true. 
 This analysis of the cheater detection algorithm applies without prejudice 
to the issue of whether or not people actually use such algorithms to solve 
selection tasks. Moreover, it is compatible with the argument of (Sperber, 
Cara and Girotto, 1995) that people are more likely to solve selection task 
problems in accordance with the norms of classical logic, the more natural it 
is for them to represent the conditional: 
 
      if conditions then conclusion  
 
in the form:   it is not the case that 
      conditions and not conclusion. 
 
or equivalently:  if conditions and not conclusion then false. 
 
This analysis of the cheater detection algorithm is also compatible with the 
argument of (Cheng and Holyoak, 1985) and (Stenning and van Lambalgen, 
2008) that people more readily solve selection task problems in accordance 
with classical logic if they interpret those problems in deontic terms. It is 
even compatible with Cosmides argument that people use Darwinian 
algorithms, because the analysis is independent of the source of the agent’s 
knowledge. The agent might have obtained its knowledge by learning it 
through its own experience, by learning it from parents, teachers or friends, 
or by inheriting it through the mechanisms of Darwinian evolution.  
 Although this analysis may explain some of the cases in which people 
reason correctly in terms of classical logic, it does not explain those cases, as 
in the card version of the selection task, where they reason with the converse 
of the conditional or where they fail to reason with the contrapositive. We 
will return to this problem in Chapter 16. But before we leave this chapter, 
we will look at another example that challenges the claim that people reason 
using logical rules of inference. 

 
The suppression task 
 
Consider the following pair of premises: 

 
If she has an essay to write, then she will study late in the library. 

   She has an essay to write. 
 
Most people correctly conclude: 
  

She will study late in the library. 
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Suppose I now say in addition: 
 

If the library is open, then she will study late in the library. 
 
Given this additional information, many people (about 40%) suppress their 
earlier conclusion that she will study late in the library. 
 This problem was originally studied by Ruth Byrne (1989) and used as 
evidence to argue that people do not reason with logical rules of inference, 
such as modus ponens (forward reasoning), but reason instead by 
constructing and inspecting mental models, which are like architects’ models 
or diagrams, whose structure is analogous to the structure of the situation 
they represent.  
 Mental models, as (Johnson-Laird, 1983) and (Johnson-Laird and Byrne, 
1991) describe them, look a lot like the semantic structures that we 
investigate in later, mainly additional chapters. But they also look like sets of 
atomic sentences, and consequently are ambiguous by the rigorous standards 
of mathematical logic (Hodges; 1993, 2006). It would be easy to dismiss 
mental models as confusing syntax and semantics. But it might be a sign of a 
deeper relationship between syntax and semantics than is normally 
understood. 
 Indeed, somewhat in the spirit of mental models, I will argue later in the 
book that the appropriate semantics for Computational Logic is one in which 
semantic structures are represented syntactically as sets of atomic sentences. I 
will also argue that the kind of reasoning that is most useful in Computational 
Logic is the reasoning involved in generating such a synactically represented 
semantic structure, in order to make or show that a given set of sentences 
may be true. We will see that it is hard to distinguish between reasoning 
about truth in such syntactic/semantic structures and reasoning with purely 
syntactic rules of inference. 
 Like the Wason selection task, the suppression task has generated a 
wealth of alternative explanations. The explanation that comes closest to the 
approach of this book is the explanation of (Stenning and van Lambalgen, 
2008) that solving problems stated in natural language is a two-stage process 
of first identifying the logical form of the problem and then reasoning with 
that logical form. The mistake that many psychologists make is to ignore the 
first stage of the process, assuming that if the syntax of a natural language 
statement already has an apparently logical form, then that apparent form is 
the intended form of the statement’s meaning.  
 We saw a clear example of the difference between the apparent logical 
form of an English sentence and its intended logical form in Chapter 1, in the 
case of the second sentence of the London underground emergency notice: 
 

The driver will stop  
if any part of the train is in a station.  
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where its intended meaning was:  
 

The driver will stop the train in a station 
   if the driver is alerted to an emergency 

and any part of the train is in the station.  
 
The intended meaning of the sentence contains both the missing object, the 
train, of the verb stop and an extra condition, coming from the context of the 
previous sentence press the alarm signal button to alert the driver. Because 
this missing condition is already present in the context, it is relatively easy 
for the reader to supply it without even noticing it isn’t actually there.  

Arguably, the situation in the suppression task is similar, in that the 
English language sentence if she has an essay to write, then she will study 
late in the library is also missing an extra condition, namely the library is 
open, needed to represent the logical form of its intended meaning: 
 
   If she has an essay to write and the library is open, 
   then she will study late in the library. 

 
 But in the suppression task, the missing condition comes in a later sentence, 
rather than in an earlier one. In any case, it is hard to argue that the later 
sentence if the library is open, then she will study late in the library means 
what it actually says. Taken literally, the sentence says that she will study late 
in the library, whether or not she has an essay to write, as long as the library 
is open. It is also hard to argue that the sentence measures up to the standards 
of clarity advocated in books on good English writing style. 
 There are a number of ways that the task could be reformulated, to 
conform to better standards of English style. Perhaps the formulation that is 
closest to the original statement of the problem is a reformulation as a rule 
and an exception: 
 

If she has an essay to writen, she will study late in the library. 
But, if the library is not open, she will not study late in the library. 

 
Exceptions are a conventional way of adding extra conditions to a rule, after 
a simplified form of the rule has been presented. In general, rules and 
exceptions have the form: 
 
Rule:    a conclusion holds if conditions hold. 
Exception:  but the conclusion does not hold if other conditions hold. 
 
Expressed in this form, the meaning of the rule depends upon the context of 
the exception that follows it. However, the rule can also be expressed 
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context-independently, as strict logical form requires, by adding to the rule an 
extra condition: 
 
Context independent rule: a conclusion holds if conditions hold  

and other conditions do not hold. 
 

In the suppression task, the extra condition is equivalent to the positive 
condition the library is open.   

We will see other examples of rules and exceptions in later chapters. We 
will see that the kind of reasoning involved in the suppression task, once its 
intended logical form has been identified, is a form of default (or defeasible) 
reasoning, in which the conclusion of a rule is deemed to hold by default, but 
is subsequently withdrawn (or suppressed) when additional information 
contradicting the application of the rule is given later. 
 Before we leave the suppression task, note that the exception, when 
correctly expressed in the form if the library is not open, then she will not 
study late in the library, is the contrapositive of the converse if she will study 
late in the library, then the library is open of the original English sentence if 
the library is open, then she will study late in the library. So the suppression 
task can be regarded as an example of the communicator incorrectly 
expressing information in the converse of its intended meaning. 
 
Natural language understanding  
versus logical reasoning 
 
Communicating effectively in natural language is a challenge not only for the 
writer (or speaker) but also for the reader (or listener). It is a challenge for the 
writer, who needs to express her thoughts as clearly, coherently and 
effectively as possible; and it is a challenge for the reader, who needs to 
construct a logical form of the communication, assimilate that logical form 
into his web of goals and beliefs, and act appropriately if necessary. 

As we well know, the syntax of English sentences is only an imperfect 
conveyor of a writer’s thoughts. In particular, English sentences frequently 
omit conditions (like the driver is alerted to an emergency and the library is 
open) and other qualifications (the driver will stop the train) needed to 
reconstruct their meaning. As a consequence, although a reader needs to use 
the syntax of English sentences to help him reconstruct their logical form, he 
cannot rely exclusively upon their syntax. In many cases, there can be 
several, alternative candidate logical forms for the same English sentence, 
and consequently the reader needs to draw on other resources to help him 
choose between the alternatives. 

The only other resource a reader can draw upon are his own goals and 
beliefs, including the goals and beliefs he has extracted from previous 
sentences in the discourse, and including his beliefs about the writer’s goals 
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and beliefs. In choosing between the alternative meanings of a sentence, the 
reader needs to choose a logical form that is as coherent as possible with this 
context.  

There are different ways to judge coherence. Obviously, a logical form 
that has no connections with the reader’s understanding of the writer’s goals 
and beliefs is less coherent than a logical form that does have such 
connections. A logical form that confirms this understanding is more 
coherent than a logic form that conflicts with this understanding. In a 
sequence of English sentences, a logical form that has connections with the 
logical forms of previous sentences is more coherent than a logical form that 
does not.  

I have already argued, following Stenning and van Lambalgen, that the 
suppression task is a clear-cut case in which the first stage of solving the 
problem, namely constructing its logical form, is much harder than the 
second stage of reasoning with that logical form. In particular, it is hard 
because the writer has expressed one of the sentences in the converse form of 
its intended meaning. By comparison, the selection task is even more 
difficult, because both stages are hard. 

The first stage of the selection task is hard, because the reader has to 
decide whether the conditional has any missing conditions, whether it is the 
only conditional having the given conclusion, and whether it is to be 
interpreted as a goal or as a belief. To help in making these decisions, the 
reader needs to assimilate the logical form of the conditional as coherently as 
possible into his existing goals and beliefs. Sperber, Cara and Girotto (1995) 
argue that, because there is so much variation possible in the first stage of the 
selection task, it is impossible to form any judgement about the correctness of 
the reasoning processes involved in the second stage. This view is also 
supported by the results of experiments by Almor and Sloman (2000) who 
showed that, when subjects are asked to recall the problem after they have 
given their solution, they report a problem statement that is consistent with 
their solution rather than with the original problem statement. 

The second stage of the selection task is hard, mostly because negation is 
hard. For one thing, it can be argued that positive observations are more 
fundamental than negative observations. For example, we observe that a 
person is tall, fat and handsome, not that she is not short, not thin and not 
ugly. Such negative sentences have to be inferred from positive observations 
or assumptions, and the longer the chain of inferences needed to derive a 
conclusion, the harder it is to derive it.  

We will look at reasoning with negation in greater detail in subsequent 
chapters. In the meanwhile, there is another issue, which goes to the heart of 
the relationship between logical and psychological reasoning, namely 
whether the given task is to be solved in the context of an agent’s goals and 
beliefs, or whether it is to be solved in a context in which those goals and 
beliefs are temporarily suspended. 
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Reasoning in context 
 
I argued above that, because natural language is ambiguous, readers often 
need to choose between alternative logical forms as a representation of the 
writer’s intended meaning. The syntax of an English sentence is only one 
guide to that intended meaning. Coherence with the reader’s existing goals 
and beliefs, including logical forms of earlier sentences in the same 
discourse, as well as the reader’s beliefs about the writer’s goals and beliefs, 
all play a part in helping to identify the intended logical form of a new 
sentence in the discourse. 
 Most of the time we understand communications intuitively, 
spontaneously and unconsciously, without being aware of these difficulties, 
relying perhaps more on our expectations of what the writer wants to say, 
than on what the writer actually says.  
 Sometimes, when communications have little connection with our own 
experience, they go in one ear and out the other, as though they were a kind 
of background noise. And sometimes we just understand sentences in our 
own, private way, only loosely connected to what the writer has written, and 
even more loosely connected to what the writer had in mind.  
 In contrast with sentences in natural language, sentences in logical form 
say exactly what they mean. But because different people have different 
goals and beliefs, the same sentence in logical form has different significance 
for different people. So, although the sentence has the same meaning for 
different people when the sentence is regarded in isolation, it has a different 
meaning (or significance) when the sentence is understood in the context of a 
person’s goals and beliefs. 
 Assume, for example, that the sentence Susan has a rucksack on her back 
means exactly what it says, and is already in logical form. But if I believe 
that Susan has a bomb in the rucksack and you believe that Susan has only 
her lunch in the rucksack, then the same belief that Susan has a rucksack on 
her back has a different significance for the two of us. 
 Understanding sentences for their significance in the context of the 
reader’s goals and beliefs is a higher kind of logic than understanding 
sentences in the isolated context of a psychological experiment. But most 
psychological studies of human reasoning make the opposite assumption: that 
logical reasoning means interpreting natural language problem statements 
context-independently, using only the sentences explicitly presented in the 
experiment. 
 Such ability to suspend one's own goals and beliefs and to reason context-
independently, as studied in psychological experiments, is indeed an 
important and useful skill, but it is not quite the same as reasoning logically. 
In some cases, it is more like failing to see the wood for the trees. 
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 Computational Logic is concerned with representing goals and beliefs in 
logical form and with reasoning with those representations to solve problems 
that arise in the Real World. Compared with representations in logical form, 
communications in natural language are generally only a poor approximation 
to the logical forms of those communications. As a consequence, reasoning 
tasks presented in natural language are often only an approximation to 
reasoning tasks performed on pure logical forms. 

Before we conclude this chapter, we will look at yet another example that 
illustrates the confusion between natural language understanding and logical 
reasoning. 

 
The use of conditionals to explain observations 
 
The philosopher John Pollock (1995) uses the following example, not to 
argue that people are illogical, but to support the view that real logic involves 
a sophisticated form of argumentation, in which people evaluate arguments 
for and against a given conclusion. Here I use the same example to illustrate 
the difference between the apparent logic of the natural language statement of 
a problem and the underlying logic of the problem when it is viewed in the 
context of an agent’s goals and beliefs. 
  Suppose I tell you that: 
    
  An object is red if it looks red. 
 
Try to suspend any other goals and beliefs you might have about being red 
and looking red, and treat the sentence as meaning exactly what it says. Now 
suppose I also tell you that:  
 

This apple looks red. 
 
You will probably draw the obvious conclusion that this apple is red. Now 
suppose I say in addition: 
 
  An object looks red if it is illuminated by a red light. 
 
It is likely that you will now withdraw your previous conclusion. 
 The example is similar to the suppression task, because the third sentence 
can be interpreted as drawing your attention to a missing condition in the first 
sentence: 
 
  An object is red if it looks red and it is not illuminated by a red light. 
 
Pollock explains the example in terms of competing arguments for and 
against the conclusion that this apple is red. But there is an alternative 



 52 

explanation: namely, that you understand the first sentence in the context of 
your existing beliefs, which already include, perhaps naively, the belief that 
looking red is caused by being red, represented in the natural effect if cause 
form: 
 
   An object looks red if it is red. 
 
Thus the first sentence of the discourse is the converse of your pre-existing 
causal belief. It tells you in effect that the writer believes that the only cause 
of an object looking red is that it actually is red. Given only this first sentence 
of the discourse, you conclude that the apple is red because that is the only 
way of explaining the observation that the apple looks red. 
 However, the third sentence of the discourse gives an additional possible 
cause for an object looking red. Either you already have this additional causal 
belief, and the writer is simply drawing your attention to it, or you add this 
new causal belief to your existing beliefs. In both cases the logical form of 
the third sentence is coherent with your existing beliefs. And in both cases 
you withdraw the assumption that being red is the only explanation for the 
apple looking red. 
 This way of thinking about the example views it as a problem of 
abductive reasoning, which is the problem of generating hypotheses to 
explain observations. Abductive reasoning is the topic of Chapter 10. 
 
Conclusions 
 
In this chapter, we considered the claim, supported by the selection task, that 
people reason by means of specialised algorithms rather than by means of 
general-purpose logic. I attacked this claim by arguing that it fails to 
appreciate that specialised algorithms combine specialized knowledge with 
general-purpose reasoning.  

Following Sperber, Cara and Girotto (1995) and Stenning and van 
Lambalgen (2008), I argued that the discussion of psychological experiments 
of reasoning also fails to pay adequate attention to the first stage of solving 
such problems, which is to translate them from natural language into logical 
form. Moreover, it fails in particular to take into account the need for those 
logical forms to be coherent with the reader’s other goals and beliefs. 

However, even taking these arguments into account, there remain 
problems associated with the second stage of reasoning with the resulting 
logical forms. Some of these problems, as illustrated by both the suppression 
task and the red light examples, have to do with the relationship between 
conditionals and their converse. Other, more difficult problems have to do 
with reasoning with negation. Both kinds of problems, reasoning with 
converses and reasoning with negation, will be taken up in later chapters.  
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 We also considered the argument, supported by the suppression task, that 
people reason by means of mental models rather than by means of rules of 
inference. In the more advanced chapters A2, A3, A4 and A6, I will argue 
that forward and backward reasoning can both be viewed as determining 
truth in minimal models. This observation lends support to a variant of the 
mental model theory of deduction, reconciling it with the seemingly contrary 
view that people reason by means of rules of inference. 
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Chapter 3 The Fox and the Crow 
 
In this chapter we revisit the ancient Greek fable of the fox and the crow, to 
show how the proactive thinking of the fox outwits the reactive thinking of 
the crow. In later chapters, we will how reactive and proactive thinking can 
be combined. 

The fox and the crow are a metaphor for different kinds of people. Some 
people are proactive, like the fox in the story. They like to plan ahead, 
foresee obstacles, and lead an orderly life. Other people are reactive, like the 
crow. They like to be open to what is happening around them, take advantage 
of new opportunities, and to be spontaneous. Most people are both proactive 
and reactive, at different times and to varying degrees. 
 
The fox and the crow  
 
Most people know the story, attributed to Aesop, about the fox and the crow. 
It starts, harmlessly enough, with the crow perched in a tree with some 
cheese in its beak, when along comes the fox, who wants to have the cheese.  
 

 
 
In this version of the story, we consider the fox’s point of view. To model her 
proactive way of thinking, we represent her goals and beliefs in logical form: 
 
Goal:   I have the cheese. 
 
Beliefs:  the crow has the cheese. 

 
Goal: The fox has cheese. 
 

Beliefs: The crow has cheese. 
 

An animal has an object 
if the animal is near the object 
and the animal picks up the object. 
 

The fox is near cheese if the crow sings.   
    

The crow sings if the fox praises the crow. 

? 
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    An animal has an object 

if the animal is near the object 
and the animal picks up the object. 

 
     I am near the cheese 

if the crow has the cheese  
and the crow sings. 

 
     the crow sings if I praise the crow. 
 
As you can see, the fox is not only a logician of sorts, but also an amateur 
physicist. In particular, her belief about being near the cheese if the crow 
sings combines in a single statement her knowledge about her location 
relative to the crow with her knowledge of the laws of gravity. Reasoning 
informally, the single statement can be derived from other more fundamental 
statements in the following way: 
  

The fox knows that if the crow sings,  
then the crow will open its beak  
and the cheese will fall to the ground under the tree.  
 
The fox also knows that, because the fox is under the tree,  
the fox will then be near the cheese.  
 
Therefore, the fox knows she will be near the cheese if the crow sings. 
 

The fox is also an amateur behavioural psychologist. Being a behaviourist, 
she is interested only in the crow’s external, input-output behaviour, and not 
in any internal methods that the crow might use to generate that behaviour. In 
particular, although the fox represents her own beliefs about the crow in 
logical terms, she does not assume that the crow also uses logic to represent 
any beliefs about anything. As far the fox is concerned, the crow’s behaviour 
might be generated by means of condition-action rules without any logical 
form. Or his behaviour might even be “hardwired” directly into his body, 
without even entering into his mind.  

Like the fox’s belief about being near the cheese if the crow sings, the 
fox’s belief that the crow will sing if the fox praises the crow might also be 
derived from other, more fundamental beliefs. They might be derived perhaps 
from more general beliefs about the way some naive, reactive agents respond 
to being praised, without thinking about the possible consequences of their 
actions. 

The fox also has ordinary common sense. She knows that an animal will 
have an object if she is near the object and picks it up. As with her other 
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beliefs, she can derive this belief from more basic beliefs. For example, she 
can derive this belief from the simpler belief that an animal will have an 
object if the animal picks up the object, by combining it with the constraint 
that to pick up an object the animal has to be near the object (ignoring other 
constraints like the weight and size of the object). 

The fox holds this belief about the conditions under which she will have 
an object as a general law, which applies universally to any animal and to any 
object (although she doesn’t seem to know that the law also applies to robots, 
unless she views robots as another species of animal). She also knows 
enough logic to be able to instantiate the general law, in other words, to 
apply it to special instances of animals and objects, such as the fox and the 
cheese respectively. 
 
The fox’s beliefs as a logic program 
 
The fox’s beliefs have not only logical form, but they also have the more 
specialised form of conditionals: 
 
     conclusion if conditions. 
 
Both the conclusion and the conditions are written in declarative form. The 
conditionals are written backwards, conclusion first, to indicate that they can 
be used to reason backwards, from conclusions to conditions. Using 
backward reasoning, each such conditional behaves as a goal-reduction 
procedure: 
 
    to show or make the conclusion hold,  
    show or make the conditions hold. 
 
Even “facts”, which record observations, like the belief that the crow has the 
cheese, can be viewed as conditionals that have a conclusion, but no 
conditions: 

 
    conclusion if nothing. 
 
Or in more logical terms: 

  
    conclusion if true. 
 
Such facts also behave as procedures: 
 
    to show or make the conclusion hold, show or make true hold.  
or    to show or make the conclusion hold, do nothing.  
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Therefore, the fox’s beliefs can be used as a collection of procedures: 
 
 to have an object, be near the object and pick up the object. 
 to be near the cheese, check the crow has the cheese  
 and make the crow sing. 
 to make the crow sing, praise the crow. 
 to check that the crow has the cheese, do nothing. 
 
Notice that the subgoals in these procedures are expressed in the imperative 
mood. This manner of expression is risky. What do you do if you have two 
alternative procedures for achieving the same goal? For example: 
 
  to have an object, make the object. 
 
There is no problem with a declarative formulation: 
 
  An animal has an object if the animal makes the object. 
 
But the two procedures, with two imperatives, create a conflict. We will see 
later in Chapter 7 that the need for conflict resolution, to choose between 
conflicting imperatives, also arises with condition-action rules. However, in 
the meanwhile, we can avoid such explicit conflicts by treating the subgoals 
of procedures, not as imperatives, but as recommendations: 
 
  to have an object, you can be near the object 
   and you can pick up the object. 
  to have an object, you can make the object. 
 
You wouldn’t get very far with such irresolute language in the army, but at 
least you would avoid the need for conflict resolution. However, let’s not 
worry about these niceties for now, and return to our story of the fox and the 
crow. 

The fox can use these procedures (whether expressed imperatively or as 
recommendations), one after the other, to reduce the top-level goal  I have the 
cheese to the two action subgoals I praise the crow and I pick up the cheese. 
Together, these two actions constitute a plan for achieving the top-level goal. 
 
Backward reasoning in connection graphs 
 
The fox’s reduction of her original goal to the two action subgoals can be 
visualized as searching for a solution in the connection graph that links her 
top-level goal to the web of her beliefs. Of course, the totality of all her 
beliefs is bound to be huge, and the search would be like looking for a needle 
in a haystack. However, the strategy of backward reasoning guides the 
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search, so that she needs to consider only relevant beliefs whose conclusion 
matches the goal. 

Starting from the original, top-level goal and following links in the graph, 
the fox can readily find a sub-graph that connects the goal either to known 
facts, such as the crow has the cheese, or to action subgoals, such as I praise 
the crow and I pick up the object, that can be turned into facts by executing 
them successfully in the real world. This subgraph is a proof that, if the 
actions in the plan succeed, and if the fox’s beliefs are actually true, then the 
fox will achieve her top-level goal. The fox’s strategy for searching the 
graph, putting the connections together and constructing the proof is called a 
proof procedure. 

 

 
 
Backward reasoning is performed by matching (or better unifying) a goal 
with the conclusion of a conditional and deriving the conditions of the 
conditional as subgoals. For example, the top-level goal: 
 
   I have the cheese. 
 
matches the conclusion of the conditional:  
 

Goal: I have the cheese. 
 

An animal has an object 
if the animal is near the object 
     and the animal picks up the object. 

I am near the cheese 
if the crow has the cheese  
  and the crow sings. 
     

The crow sings if I praise the crow. 
 
 

An animal has an object 
if the animal makes the object. 
 

The crow has the cheese. 
 
 

possibly other beliefs 
 

 other beliefs 
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  An animal has an object 
  if the animal is near the object and the animal picks up the object. 

 
Backward reasoning derives the two subgoals: 
  
   I am near the cheese and I pick up the cheese. 
 
by instantiating the general terms the animal and the object with the specific 
terms I and the cheese respectively.  

The second of these two subgoals is an action, which matches the 
conclusion of no conditional in the connection graph. It can be solved only by 
performing it successfully. However, the first subgoal can be reduced to other 
subgoals by three further steps of backwards reasoning. The final result of 
this chain of backward reasoning is a logical proof that the fox has the cheese 
if she praises the crow and picks up the cheese.  

 In traditional logic, it is more common to present proofs in the 
forward direction. In this case, a traditional proof would look more like this: 
 

I praise the crow. 
Therefore    the crow sings. 
 
      the crow has the cheese. 
Therefore    I am near the cheese. 
 
      I pick up the cheese. 
Therefore    I have the cheese. 
 
Although forward reasoning is a natural way to present proofs after they have 
been found, backward reasoning is normally a more efficient way to find 
them. Both forward and backward reasoning involve search; but given a goal 
to be solved, backward reasoning is goal-directed, and focuses attention on 
beliefs that are relevant to the goal.  
 The connection graph pictured above illustrates only a fraction of the 
beliefs that are potentially relevant to the goal. Some of the links, like the one 
linking the top-level goal to the belief that an animal has an object if the 
animal makes the object do not feature in the plan that the fox eventually 
finds to solve her goal. The belief is relevant to the goal, because its 
conclusion matches the goal. But for simplicity, I have ignored, for now, the 
possibility that the fox might explore this alternative way of solving her top-
level goal.  
 In a more realistic representation of the graph, there would be many more 
such potentially relevant links. Some of them might lead to other solutions, 
for example to the solution in which the fox climbs the tree and snatches the 
cheese from the crow. Others might lead to useless or even counter-
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productive attempted solutions, for example to the fox leaping at the crow, 
but frightening him away in the process.  
 The fox needs both a strategy to guide her search for solutions and a 
strategy to compare solutions and decide between them. We will discuss the 
problem of searching for solutions in Chapter 4, and the problem of deciding 
between solutions in later chapters.  
 But, first, notice that, in addition to other links, which lead to other ways 
of trying to solve the top-level goal I have the cheese, there is another way of 
trying to solve the goal, which doesn’t even make it, as a link, into the graph, 
namely by trying to use the fact the crow has the cheese. Remember this fact 
is actually a kind of degenerate conditional the crow has the cheese if true, 
which behaves as the simple procedure to check that the crow has the cheese, 
do nothing. This procedure could be used to try to solve the top-level goal I 
have the cheese, by trying to identify (match or unify) the two specific terms 
I and the crow. If this identification were possible, backward reasoning with 
the fact would solve the top-level goal in one step. 
 We have been using the related terms identification, instantiation, 
matching and unification informally. These terms have precise definitions, 
which are presented in Chapter A3. For the purposes of this example, it 
suffices to note that these definitions preclude the possibility of identifying 
different specific terms with one another. So, unless the fox is having an 
identity crisis, she cannot match the conclusion of the degenerate conditional 
the crow has the cheese if true with her goal I have the cheese. The 
connection graph does not include a link between the fact and the goal, 
because it pre-computes unifying instantiations, and recognizes that the 
identification of the specific terms I with the crow is impossible. This pre-
computation is independent of the different purposes to which such a link 
might contribute. 
 Thus backward reasoning, connection graphs and a host of other 
techniques developed in the field of Automated Reasoning in Artificial 
Intelligence significantly reduce the amount of search that an agent needs to 
perform to solve its goals. But even with all of these refinements, the 
problem of search is inescapable, and we will return to it in Chapter 4, where 
it gets a whole chapter of its own. 
 
The end of the story of the fox and the crow? 
 
For a Logic Extremist, this would be the end of the story. For the Extremist, 
there is no difference between the fox’s world and the fox’s beliefs about the 
world, and no difference between the fox’s plan for getting the cheese and the 
fox’s actually having it.  

However, Common Sense tells us that there is more to life than just 
thinking. In addition to thinking, an agent needs to observe changes in the 
world and to perform actions to change the world in return. Logic serves 
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these purposes by providing the agent with a means of constructing symbolic 
representations of the world and of processing those representations to reason 
about the world. We can picture this relationship between the world and logic 
in the mind of an agent like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Representation and meaning 
 
This relationship can be looked at in different ways. On the one hand, 
sentences in logical form represent certain aspects of the agent’s 
experience of world. On the other hand, the world is an interpretation, 
which gives meaning (or semantics) to sentences expressing the agent’s 
goals and beliefs.  
 This notion of meaning, by the way, is quite different from the meaning 
that we were concerned with before, when we understood meaning as the 
thoughts that people attempt to communicate by means of sentences in 
natural language. There, the meaning of a public sentence was a private 
sentence in the communicator’s language of thought. Here it is the meaning 
of that private sentence in relationship to the world. These relationships 
between different kinds of meaning can be pictured like this: 
 

 
 
 
 
  agent 

Logical 
representation  
of the world 

act observe 

 The world 
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Whereas before we were concerned with so-called speaker’s meaning, here 
we are concerned with logical meaning. Linguists and philosophers are also 
concerned with linguistic meaning, understood in terms of the relationship 
between natural language sentences and the world. But in my opinion, 
ordinary natural language communications are too imprecise and too clumsy 
to have a meaning that is independent of the logical meaning of their 
speaker’s meaning. 
 We can better understand the notion of logical meaning if we consider it 
in general terms, as a relationship between sentences in logical form and 
interpretations (sometimes also called models or possible worlds), including 
artificial and imaginary worlds, like the world in the story of the fox and the 
crow. An interpretation is just a collection of individuals and relationships 
among individuals. For simplicity, properties of individuals are also regarded 
as relationships.  

An interpretation in traditional logic normally corresponds to a single, 
static state of the world. For example: 

 
In the story of the fox and the crow, the fox, crow, cheese, tree, ground 
under the tree, and airspace between the crow and the ground can be 
regarded as individuals; and someone having something can be 
regarded as a relationship between two individuals. The sentence “The 
crow has the cheese.” is true in the interpretation at the beginning of 
the story and false in the interpretation at the end of the story. 

 
The simplest way to represent an interpretation in symbolic form is to 
represent it by the set of all the atomic sentences that are true in the 
interpretation. In this example we might represent the interpretation at the 
beginning of the story by the atomic sentences: 
 

 the crow has the cheese. 
 the crow is in the tree. 
 the tree is above the air. 
 the air is above the ground. 
 the tree is above the ground. 
 the fox is on the ground. 

Thoughts expressed in 
logical form 

Sentences expressed in 
natural language 

The World 

speaker’s 
meaning 

logical 
meaning 

linguistic 
meaning 
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The difference between such atomic sentences and the interpretation they 
represent is that in an interpretation the individuals and the relationships 
between them can be understood as having an existence that is independent 
of language.  
 Atomic sentences are only symbolic expressions, consisting of a predicate 
(or predicate symbol) and zero, one or more arguments. As explained in 
Chapter A1, a predicate symbol represents a property of an individual or a 
relation among several individuals, represented by the arguments of the 
predicate. For example, words and phrases like the crow, the cheese, the tree, 
etc. are names of individuals, and has and is in are predicates that name 
relations between individuals. 

The attraction of logic as a way of representing the world lies largely its 
ability to represent regularities (or rules) by means of non-atomic sentences. 
For instance, in the atomic sentences above, the fact that the tree is above the 
ground can be derived from the more basic facts that the tree is above the air 
and the air is above the ground, given the non-atomic sentence: 
 

one object is above a second object  
if the first object is above a third object  
and the third object is above the second object. 

 
Or, looking at it differently, the non-atomic sentence is true in the 
interpretation represented by the atomic sentences. 
 The ultimate purpose of interpretations is to determine whether sentences 
are true or false. In the case an agent embedded in the Real World, beliefs 
that are true are normally more useful than beliefs that are false. Goals that 
are easy to make true are normally more useful than goals that are difficult to 
make true.  
 In general, the problem of determining the truth value of a non-atomic 
sentence in an interpretation reduces to the problem of determining the truth 
values of simpler sentences. For example: 
 

 A sentence of the form conclusion if conditions is true 
 if  conditions is false  or  conclusion is true.   
  
 A sentence of the form everything has property P is true 
 if for every thing T in the interpretation, T has property P is true. 
 

Backward reasoning with such meta-sentences (sentence about sentences) 
eventually reduces the problem of determining the truth value of an arbitrary 
sentence to the problem of determing the truth values of atomic sentences 
alone.  
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 Thus, for the purpose of determining whether arbitrary sentences are true 
or false, it is unnecessary to know what are the real individuals and 
relationships in an interpretation. It is sufficient merely to know which 
atomic sentences are true and which atomic sentences are false.  
 We will investigate semantics in greater detail in the more advanced 
Chapter A2, and the representation of changing states of the world in Chapter 
13. But before we leave this chapter: 
 
What is the moral of the story of the fox and the crow? 
 
Presumably Aesop’s fable had a purpose – a lesson that it is not safe to take 
another agent’s words and actions at face value, without trying to understand 
the agent’s underlying goals and intentions. Or, even more simply, that 
before you do something you should think about its possible consequences. 

The crow in Aesop’s fable reacts to the fox’s praise spontaneously - 
without thinking, you could say. A more intelligent crow would monitor his 
intended actions, before performing them, to determine whether they might 
have any unintended and undesirable consequences. 

If only the crow knew what the fox knows, then the crow might be able to 
reason preactively as follows: 
 
 I want to sing.  
 But if I sing, then the fox will be near the cheese. 
 If the fox is near the cheese and picks up the cheese,  
 then the fox will have the cheese. 
 Perhaps the fox wants to have the cheese and therefore will pick it up. 
 But then I will not have the cheese. 
 Since I want to have the cheese, I will not sing. 
 
This line of reasoning uses some of the same beliefs as those used by the fox, 
but it uses them forwards rather than backwards. We will investigate this dual 
use of beliefs for both backward and forward reasoning in future chapters. In 
the meanwhile, we note that, whether or not the use of logic might seem to be 
the most natural way to think, it can often help us to think and behave more 
effectively.  
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Chapter 4 Search  
 
It is a common view in some fields that logic has little to do with search. For 
example, Paul Thagard (2005) in Mind: Introduction to Cognitive Science  
states on page 45: “In logic-based systems, the fundamental operation of 
thinking is logical deduction, but from the perspective of rule-based systems, 
the fundamental operation of thinking is search.” 
 Similarly, Jonathan Baron (2008) in his textbook Thinking and Deciding 
writes on page 6: “Thinking about actions, beliefs and personal goals can all 
be described in terms of a common framework, which asserts that thinking 
consists of search and inference. We search for certain objects and then make 
inferences from and about the objects we have found.” On page 97, Baron 
states that formal logic is not a complete theory of thinking because it 
“covers only inference”. 
 In this book, we see the inference rules of logic as determining a search 
space of possible solutions of goals, and search strategies as determining 
proof procedures for finding solutions of goals. But like Baron, we also see 
the need to use the inference rules of logic to infer consequences of candidate 
solutions. Moreover, we also distinguish thinking, which generates solutions 
and infers their consequences, from deciding, which evaluates solutions and 
chooses between them. In Chapter 8, we will see that rule-based systems, 
championed by Thagard, can also be understood in logical terms. 
 The relationship between search and backward reasoning is easy to see 
when the search space generated by backward reasoning is pictured as an 
and-or tree. Nodes in the tree represent atomic goals, with the top-level goal 
at the top of the tree. There are two kinds of arcs: or-arcs linking an atomic 
goal with all the alternative ways of solving the goal, and and-arcs 
connecting all of the subgoals in the same alternative.  
 There is a clear relationship between such and-or trees and connection 
graphs. Or-arcs correspond to links in a connection graph, and and-arcs 
correspond to the conjunction of all the conditions in a conditional. Here is 
the and-or tree for the fox’s goal of having the crow’s cheese: 
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And-or trees have been used extensively for problem-solving in Artificial 
Intelligence, especially for two-person games, such as chess. In game-
playing, or-arcs represent the first player’s alternative moves, and and-arcs 
represent all of the second player’s possible reponses. To win the game, the 
first player must have a move that defeats every move of the second player. 
 In very large games, such as chess, it is impossible for a player to search 
the tree completely before deciding on the next move. However, even in such 
games, it is often possible to compute an approximate measure of the value of 
a node, and to use that measure to guide the search for the best solution 
within the time and other resources available. The minimax search strategy, 
for example, uses such a measure to choose a move that minimises the value 
of the best moves for the other player. Similar search strategies can be used 
for more general and-or trees corresponding to backward reasoning in 
connection graphs. 
 In conventional and-or trees, the subgoals associated with the same 
alternative are independent of one another. But in connection graphs, 
subgoals are often interdependent. For example, if you are an animal and you 
try to use the belief: 
 

An animal has an object if 
 
     

   I have the cheese. 
 

I am near the cheese if 
     

  The crow sings if 
   I praise the crow. 
 
 

  An animal has an object if 
  the animal makes the object. 
 

  The crow has  
  the cheese. 
 
 

possibly other beliefs 
 

 other beliefs 
 

the animal is     
near the object.
      
 

the animal picks 
up the object. 
     
 

the crow sings. 
 

the crow has 
the cheese  
 

or 

and 

and 

or 
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    an animal has an object 
if the animal is near the object 
and the animal picks up the object. 
 

to have an object, then you have two subgoals, to find an object you are near 
and to find an object you can pick up. But the object you find should be the 
same for both subgoals. In theory, you could solve the two subgoals 
independently, finding nearby objects and picking up arbitrary objects, and 
then trying to find an object that belongs to both sets of solutions afterwards. 
In practice, however, you would be far better off first finding an object near 
you, and then trying to pick it up. 
 Because of this interdependence between subgoals, it is often more 
convenient to represent the search space for backward reasoning as a simple 
or-tree, whose nodes are conjunctions of all the subgoals associated with an 
alternative. Whereas the and-or tree and connection graph representations 
display the original goals and beliefs, the or-tree shows only the goals and 
subgoals generated by beliefs. Here is what such an or-tree looks like for the 
fox’s goal of having the crow’s cheese: 
 
 

 
 

   I make the cheese. 
 

possibly other beliefs 
 

 other beliefs 
 

   the crow has the cheese and the crow sings and I pick up the cheese. 
 
 

or 

or 

   the crow sings and I pick up the cheese. 
 
 

   I praise the crow and I pick up the cheese. 
 
 

   I am near the cheese and I pick up the cheese. 
 
 

   I have the cheese. 
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The underlined subgoal in each node is the subgoal selected for goal-
reduction, which gives rise to the next level of nodes lower in the search 
space. 
 Because of their simplicity, it is easy to see how to define a variety of 
different search strategies for searching or-tree search spaces. The most naïve 
strategy is to search breadth-first, level by level, first generating all nodes one 
step away from the top-level goal, then all nodes two steps away, etc. If there 
is any solution to the top-level goal, then breadth-first search is guaranteed to 
find the shortest solution. But breadth-first search is combinatorially 
explosive. If every node has two alternative successor nodes, one level lower 
in the tree, then if the shortest solution involves two goal-reductions, the 
search strategy needs to generate only 22 = 4 branches. If it involves 10 goal 
reductions, it needs to generate 210 = 1,024 branches. But if it needs 50 goal-
reductions, then it needs to generate 250 = 1,125,899,906,842,624 branches. 
No wonder many critics believe that AI is impossible. 
 There are two ways around the problem. One is to use a better search 
strategy. The other is to use a better search space. We will come back to the 
second way later. But first consider the same situation as before, in which 
every node has two successors, but now suppose that half of the branches 
contain a solution, say at the same level 50 steps away from the top-level 
goal. Then, on the average, depth-first search needs to generate only 100 
nodes to find the first solution.  
 Depth-first search is the opposite of breadth-first search, it explores only 
one branch at a time, backtracking to try other branches only when necessary. 
It is very efficient when the search space contains lots of solutions. But it can 
go disasterously wrong if it contains infinite branches and they are explored 
before alternative finite branches containing solutions. Here is a connection 
graph for a simple example: 
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Now consider the or-tree search space for same problem: 

 
      

   bob will go to the party. 
 
 

ad infinitum 

   john will go to the party. 
 
 

   Who will go to the party. 
 

Who = mary 

  john will go to the party. 
 
 

   mary will go to the party. 
 
 

Who = bob 

   mary will go to the party. 
 
 

Who = john 

  mary will go to the party. 
 
 

   john will go to the party. 
 
 

ad infinitum 

Goal: Who will go to the party? 
 

mary will go to the party if 
john will go to the party. 

bob will go to the party. 
 

Who = bob 
 

Who = mary 

john will go to the party if 
mary will go to the party. 

Who = john 
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If you are interested in finding only one solution, and you do a breadth-first 
search, then you find your answer Who = bob in one step. But it you do a 
depth-first search, and you consider the branch in which Who = mary or the 
branch in which Who = john, then you can go on forever, but you will never 
find a solution. 
 The programming language Prolog searches or-trees generated by 
backward reasoning depth-first, using the order in which clauses are written 
to determine the order in which branches are explored. If the clauses are 
written in the order: 
 
  mary will go to the party if john will go to the party. 
  john will go to the party if mary will go to the party. 
  bob will go to the party. 
 
then Prolog goes into an infinite loop. But if the third sentence bob will go to 
the party is written first, then Prolog finds a solution in one step. Of course, 
in this case, the problem can easily be solved by the programmer controlling 
the order in which clauses are written. But there are many other more 
complicated cases where this easy solution doesn’t work. 
 It seems that this kind of unintelligent behaviour is one of the main 
reasons that logic programming languages, like Prolog, went out of fashion in 
the 1980s. Many alternative solutions to the looping problem and related 
inefficiencies have been explored since the 1970s, but the one that seems to 
have been the most effective is the use of tabling (Sagonas, Swift and 
Warren, 1994), which is now incorporated in several Prolog systems.  
 Tabling, maintains subgoals and their solutions in a table. When a 
previously generated subgoal is re-encountered, the search strategy reuses 
solutions from the table, instead of re-doing inferences that have already been 
performed. In the example just given, if it generates the subgoal mary will go 
to the party and later generates it again, it will recognise the loop, fail, and 
backtrack to an alternative branch of the search space. 

The problem of search is a well-developed area of Artificial Intelligence, 
featuring prominently in such introductory textbooks as those by Russell and 
Norvig (2010), Poole and Mackworth (2010) and Luger (2009). The search 
strategies described in these books apply equally well to the problem of 
searching for solutions in Computational Logic. For the most part, these 
search strategies are general-purpose methods, such as depth-first, breadth-
first, and best-first search.  
 
Best-first search 
 
Best-first search strategies are useful when different solutions of a problem 
have different values. For example, assuming that the fox in our story judges 
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that having the crow’s cheese is more valuable than making her own food, 
she could use best-first search to guide her search for the best solution. 
 To use best-first search, you need to be able to evaluate and compare 
different solutions. For example, if you want to go from A to B, then you 
might prefer a travel plan that takes the least time, costs the least money or 
causes the least harm to the environment. No single plan is likely to be best 
for all of these attributes, so you may have to weigh and trade one attribute 
off against the other. Given such weights, you can use the weighted sum of 
the values of the attributes as a single measure of the overall value of a 
solution. 
 It is often possible to extend the measure of the value of a complete 
solution to a measure of the value of a partial solution. For example, suppose 
you want to travel from Bridgeport in Connecticut to Petworth in England, 
and you are exploring a partial travel plan that involves flying from New 
York to London, but haven’t figured out the rest of the plan. You know that 
the best cost of any complete travel plan that extends the partial plan will 
need to include the cost of the flight. So you can add together the cost of the 
flight with an estimate for the best costs of any additional travel, to estimate 
the cost of the best travel plan that includes this partial plan. 
 Best-first search uses this measure of the value of partial solutions to 
direct its search for complete solutions. The breadth-first variant of best-first 
search does this by picking a branch that has currently best value, and 
generating its successor nodes. Under some easily satisfied conditions, the 
first solution found in this way is guaranteed to be the best (optimal) solution. 
 Although such best-first search is better than simple breadth-first search, 
it suffers from similar disadvantages. It too is computationally explosive, 
especially when there are many solutions that differ from one another only 
slightly in value. These disadvantages can be avoided to some extent by a 
depth-first version of best-first search, which like simple depth-first search, 
explores only one branch of the search space at a time. 
 The depth-first version of best-first search keeps a record of the best 
solution found so far. If the current branch is not a solution, and the branch 
can be extended, then it extends the branch by generating a successor node 
that has highest estimated value. However, if the estimated value of the 
extended branch exceeds the value of the best solution found so far (if there 
is one), then the extended branch terminates in failure and the search strategy 
backtracks to an earlier alternative. 
 If the current branch is a new solution, then the search strategy compares 
its value with the value of the best solution found so far (if there is one), and 
it updates its record of the currently best solution. In this way, the search 
strategy can be terminated at any time, having generated the best solution that 
can be found within the computational resources available. 
 Both variants of best-first search complement the use of decision theory 
for choosing the best solution, once it has been found. The depth-first variant 
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has the further advantage that it interprets “best solution” more realistically 
as “the best solution given the computational resources available”. Morever, 
its measure of the value of solutions and of partial solutions can be extended 
to include, not only their utility, but also the probability of their actually 
achieving their expected outcomes. The resulting measure of value as 
expected utility, combining utility and probability, integrates best-first search 
into a classical decision-theoretic framework. 
 
The connection graph of an agent’s goals and beliefs can also help with best-
first search, by associating with links statistical information about the degree 
to which the links have proved useful in the past. This information can be 
used to increase or decrease the strength of connections in the graph. 
Whenever the agent solves a new goal, it can increase the strength of links 
that have contributed to the solution, and decrease the strength of links that 
have led it down the garden path. The strength of links can be used for best-
first search, by activating stronger links before weaker links.  
 The strength of links can be combined with activation levels associated 
with the agent’s current goals and observations. Activation levels can be 
spread through the graph in proportion to the strength of links, reasoning 
bidirectionally both backwards from the goals and forwards from the 
observations. Any candidate action subgoal whose level of activation exceeds 
a certain threshold can be executed automatically.  
 The resulting action execution combines a form of best-first search with a 
form of decision-theoretic choice of best action, in an algorithm that 
resembles a connectionist model of the brain. An agent model employing this 
approach has been developed by Pattie Maes (1990). The model does not use 
logic or connection graphs explicitly, but it can be understood in such purely 
logical terms. 
 Connection graphs can also be used to combine search with compiling 
general-purpose goals and beliefs into more efficient special-purpose form. 
This is because very strong links between goals and beliefs behave as though 
the links were goals or beliefs in their own right. Generating these goals or 
beliefs explicitly and adding them to the graph short-circuits the need to 
activate the links explicitly in the future. For example, the fox’s specialised 
belief that the crow sings if I praise the crow can be generated from such 
more general-purpose beliefs as: 
 

 

an agent does Y if I do X and the agent reacts to X by doing Y 
 

agent = the crow      X = praise         Y = sing 

the crow reacts to praise by singing 
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I will argue later in Chapter 9 that this kind of compiling links into new goals 
and beliefs can be viewed in some cases as a kind of compiling of conscious 
thought into subconscious thought.  
 
Knowledge representation matters 
 
But efficient search strategies and other general-purpose problem-solving 
methods are only half of the story of what it takes to solve problems 
efficiently. The other half of the story concerns knowledge representation. In 
our story of the fox and the crow, in particular, we have employed a 
simplified representation, which vastly over-simplifies the knowledge 
representation issues involved. 

To start with, the representation completely ignores temporal 
considerations. It is obvious that the action of an agent picking up an object 
initiates the property of the agent possessing the object afterwards. This 
property continues to hold until it is terminated by some other action or 
event, such as the agent giving the object away, loosing it or consuming it. 
Thus, to be more precise, we should have expressed the relationship between 
picking up an object and possessing it more like this:  

 
   an animal has an object at a time  
   if the animal is near the object at an earlier time 
   and the animal picks up the object at the earlier time 
   and nothing terminates the animal having the object between the two times. 
 
In fact, as we will see in Chapter 13, this representation combines in a single 
belief a more basic law of cause and effect (that a state of possession is 
initiated by picking up an object) with a constraint (that a precondition of 
picking up an object is being near the object).  
 The representation of cause and effect is sufficiently complex that we 
give it detailed consideration in Chapter 13. But, even ignoring such 
considerations, there are still major knowledge representation issues at stake. 
In fact, we skirted around these issues earlier when we argued informally that 
the fox might derive the belief I am near the cheese if the crow has the 
cheese and the crow sings from more basic beliefs concerning the laws of 
gravity and her location in relation to other objects. 

There, the primary motivation was simply to make the example 
sufficiently simple, not to get bogged down in excruciating detail. But there 
was another reason: There is so much knowledge that could be relevant to the 
fox’s goal that it would be hard to know where to stop. If Quine were right 
about the web of belief, that every belief is connected to every other belief, 
an agent would potentially need to consider all of its beliefs, in order to solve 
any goal that might arise in its environment. It is this knowledge 
representation problem, more than any problem to do with general-purpose 
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reasoning, that is the major bottleneck in developing Artificial Intelligence. 
Arguably, it is also the biggest problem for understanding and improving 
human intelligence. To put it more directly, knowledge is more important 
than raw problem-solving power. 

Probably the most ambitious attempt to address this knowledge 
representation problem is the Cyc Project (Lenat and Guha, 1989; Panton et 
al, 2006), which has assembled a collection of several million assertions 
encoding the common sense knowledge of human experience. Assertions in 
Cyc are formulated in a variety of Computational Logic, similar to the one 
investigated in this book, and its inference engine is based primarily on 
backward reasoning.  

Cyc organizes its knowledge in collections of micro-theories, concerning 
such separate domains as science, society and culture, climate and weather, 
money and financial systems, health care, history, and politics. These micro-
theories, in turn, are organised in hierarchies, in which micro-theories lower 
in the hierarchy inherit assertions from more abstract micro-theories higher in 
the hierarchy. Micro-theories in Cyc are like classes in object-oriented 
computer programming languages and like modules in some computational 
theories of the mind. We will have more to say about such classes and 
modules later in Chapter 14. 
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Chapter 5. Negation as Failure 
 
It’s easy to take negation for granted, and not give it a second thought. Either 
it will rain or it won’t rain. But definitely it won’t rain and not rain at the 
same time and in the same place. Looking at it like that, you can take your 
pick. Raining and not raining are on a par, like heads and tails. You can have 
one or the other, but not both. 
 So it may seem at first glance. But on closer inspection, the reality is 
different. The world is a positive, not a negative place, and human ways of 
organising our thoughts about the world are mainly positive too. We directly 
observe only positive facts, like this coin is showing heads, or it is raining. 
We have to derive the negation of a positive fact from the absence of the 
positive fact. The fact that this coin is showing heads implies that it is not 
showing tails, and the fact that it is sunny implies, everything else being 
equal, that it is not raining at the same place and the same time.  
 From an agent’s point of view, an observation can be passive or active. A 
passive observation is an observation over which you have no control. The 
world forces it upon you, and you have to take it on board, like it or not. 
Because our conceptualisation of the world consists of positive facts, these 
passive observations are positive, atomic sentences. 
 An active observation, on the other hand, is one that you actively perform 
to determine the value of some atomic predicate. If the predicate contains no 
variables2

 

, then the result of the observation is either true or false. If it 
contains variables whose values are unknown, then either the observation 
succeeds and returns values for the unknowns, or the observation fails and 
returns a negative observation. In either case, you can use the result and just 
forget about it, or you can record it for possible future use. For example: 

 You look out the window and fail to see any raindrops falling from the 
sky. You conclude that is not raining. 

 
It is just before bedtime and time for a mid-night snack, but you are on 
a diet. You pause to monitor the sensations in your body. Failing to 
feel pangs of hunger, you decide you are not hungry, and stick to your 

                                                        
2 Variables in symbolic logic are similar to variables in mathematics, but more 
precise. In mathematics, it is common to make no distinction between the different 
roles that the variable X plays in the two equations: 2X = 2,  X + Y = Y + X. In the 
first equation X is an unknown, and implicitly, the equation represents the existentially 
quantified goal of showing that there exists an X such that 2X = 2, namely the value X 
= 1. However, in the second equation X and Y stand for arbitrary numbers, and 
implicitly the equation represents the universally quantified sentence expressing that 
for any pair of numbers X and Y it doesn’t matter in which order you add them, the 
result is the same.  
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diet. You are lucky this time. Not only has the active obervation of the 
state of your body returned a negative response, but you have not been 
attacked by unprovoked, “passive” feelings of hunger. 
 
You are a robot looking for life on mars, moving one step at a time on 
uncertain terrain. Every time you move forward one step, you observe 
and record how far you have gone. If your attempt to move has failed, 
then you have observed that you haven’t moved at all. 

 
We will see later that negative observations can be represented by means of 
constraints, which are conditional goals with conclusion false. But in the 
meanwhile here are a couple of examples: 
 
      if raining then false. 
i.e.      it is not the case that it is raining. 
 
      if I am hungry then false 
i.e.      it is not the case that I am hungry. 
 
We will also see that negative observations can also be derived from positive 
observations, using constraints. For example: 
 
Observation:   the grass is wet. 
Constraint:   if an object is wet and the object is dry then false. 
i.e.      it is not the case that  

an object is wet and the object is dry. 
Forward reasoning:  it is not the case that the grass is dry. 
 
Mental representations have a positive bias 
 
In the semantics of Computational Logic, it is convenient to identify the 
world, at any given point in time, with the set of all the atomic sentences that 
are true in the world at that time. This is the source of our positive 
observations. It gives our goals and beliefs a positive bias too, because the 
main function of our mental representations is to help us to deal with the 
world around us. Even emotionally negative thoughts, like being lonely, sad, 
or disgruntled, which reflect the way we feel about our situation in the world 
and which affect the decisions we make, have logically positive mental 
representations. 
 Further evidence that our mental representations have a positive bias is in 
the way we record information in history books and computer databases. For 
example: 
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We record that Columbus discovered America in 1492 - not in 1493, 
not in 2010, not in any other year, but in and only in 1492.  
 
The last train to leave London Victoria for Pulborough, West Sussex 
from Monday to Friday, between 17 May 2010 and 12 December 
2010 is at 22:52 – not 22:51 and not 22:53. If you arrive at Victoria 
at 22:53 and you miss the train, then it’s your fault, and not the fault 
of the timetable. 

  
But mental representations involve more than just records of positive facts. 
They also involve the use of conditionals to represent facts more compactly 
by means of general rules. Since the facts are positive, the conclusions of the 
conditionals used to derive the facts are positive too. For example, the time of 
the last train to Pulborough could be represented by means of a conditional 
whose conclusion gives the time and whose conditions restrict the days of the 
week and the calendar period: 
 
  the last train from victoria to pulborough leaves at 22:52 on a day 
  if the day is a weekday and the day is in the period  
  between 17 may 2010 and 12 december 2010. 
 
Of course, to complete the representation, the conditional would need to be 
augmented with additional, lower-level conditionals with positive 
conclusions to represent the days of the week and the days in the period 
between two days.  
 This use of conditionals to represent data more compactly is associated 
with deductive databases and the database family of languages called 
Datalog. But most conventional computer databases either store the data 
explicitly or compactify it by using conventional, low-level computer 
programming techniques. 
 Conditionals in logic programming and in the programming language 
Prolog can also be used to represent programs and to execute them by 
systematically reducing goals to subgoals. But programs, no matter what 
language they are written in, also have a positive bias. For example, they 
compute positive arthmetic relationships like addition and multiplication, and 
not negative relationships like non-addition and non-multiplication. For one 
thing, it would be hard to know where to draw the line. Sure: 
 
     2 + 2 ≠ 1 and 2 + 2 ≠ 5. 
 
But what about: 2 + 2 ≠ a pot of gold? 
 
Where do goals and beliefs come from? 
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To do justice to the role that negation plays in our goals and beliefs, we 
would need to tackle larger issues concerning the nature and sources of all 
our goals and beliefs. The argument about the primacy of positive 
information, presented so far, relates only to beliefs that are obtained first-
hand from experience, that generalise experience, or that are computed by 
programs. It ignores two other important sources of goals and beliefs, namely 
those that we may have been born with, and those that we may have obtained 
second-hand as the result of the testimony, persuasion or coercion of other 
agents. 
 These other sources of goals and beliefs often do have an essentially 
negative character in the form of constraints. For example: 
 
  Nothing is both big and small. 
  No number is both odd and even. 
  No letter is both a vowel and a consonant. 
  Do not drink alcohol in a bar if you are under eighteen years old. 
  Do not harm a person who is not threatening any harm. 
  Do not steal. 
  Do not talk with your mouth full. 
   
We will see later that such constraints play an important role in monitoring 
and eliminating both candidate actions and candidate explanations of 
observations. In the meanwhile, however, we will focus on the simpler source 
of negative information, which is from the failure to derive positive 
information. 
 
Negation as failure and the closed world assumption 
 
The derivation of negative conclusions from the lack of positive information 
about a predicate is justified by a belief or assumption that we have all the 
positive information that there is to be had about the predicate. This applies 
both to the conclusions we derive by actively observing the world, and to the 
conclusions we derive by consulting our beliefs. For example: 
 

You look for your keys in their usual place, and you cannot find 
them. On the assumption that you have done a thorough 
investigation, you conclude that they are not in their usual place. 
 
If you believe that Christopher Columbus discovered America in 
1492, and you believe that a person can discover something only 
once, then it follows that Christopher Columbus did not discover 
America in 2010 or in any year other than 1492.  
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 If you believe that the last train is at 22:52, and you believe that the 
only trains on a given day are between the first and last train, then 
there is no train scheduled to leave at 22:53 or at any other time after 
22:52 on the same day. 

 
 If you believe that you know how to add two numbers, that every 

pair of numbers has only one sum, and that when you add 2 + 2 you 
get 4, then you can conclude that 2 + 2 ≠ a pot of gold.   

 
Deriving a negative conclusion from the failure to solve a positive goal is 
called negation as failure in logic progamming: 
 

to show that the negation of a positive sentence holds, 
  show that the positive sentence does not hold. 
 
 Negation as failure extends the much simpler if-then-else statement of more 
conventional programming languages. Analogues of the if-then-else 
statement are also familiar in natural languages like English. For example, 
the second and third sentences of the London underground emergency notice 
are expressed in a variant of the if-then-else form: 
 

if any part of the train is in a station, 
 then the driver will stop the train,  

    else the driver will stop the train at the next station. 
 
The use of negation as failure to derive a negative conclusion is justified by 
the closed world assumption that you have complete knowledge about all the 
conditions under which the positive conclusion holds. It might better be 
called the closed-mind assumption, since an agent’s beliefs are not held 
externally in the world, but internally in its mind. The assumption can be 
represented as a meta-belief: 

 
the negation of a sentence holds  
if the sentence does not hold. 
 

This meta-belief is a meta-sentence, because it talks about sentences. It can 
also be understood as an epistemic or auto-epistemic sentence3

 

, because it 
can be phrased in terms of what an agent knows or believes: 

the negation of a sentence holds  

                                                        
3 Epistemic logic and meta-logic are very similar when understood informally, but 
they are very different when they are formalised. The relationship between them is 
touched upon in later chapters, but to some extent is still an open research issue. 
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if I do not know (or believe) that the sentence itself holds. 
 
The term epistemic comes from the same root as epistemology, the study of 
knowledge. 
 As we will see in Chapter 17, the language of Computational Logic can 
be extended to include goals and beliefs that are meta-logical or epistemic. 
Because the closed world assumption has conditional form, it can be used to 
reason backwards or forwards, like any other conditional. Backward 
reasoning with the closed world assumption is equivalent to negation as 
failure. Therefore, negation as failure is a natural complement to the use of 
backward reasoning in general. Given a conditional with negative conditions 
of the form: 
 
   positive conclusion if positive conditions and negative conditions 
 
backward reasoning uses the conditional as a goal-reduction procedure: 
 
  to show or make the positive conclusion hold,  
  show or make the positive conditions hold and     
  show or make the negative conditions fail to hold. 
 
To illustrate the negation as failure rule (abbreviated naf), suppose that we 
are trying to decide on whether or not to go to a party and suppose: 
 
    mary will go if john will go. 
    john will go if bob will not go. 
 
Suppose we are interested in whether mary will go. Then we can reason 
backwards as follows: 
 
Initial goal:   mary will go.  
Subgoal:    john will go.  
Subgoal:    bob will not go. 

 
  Naf:  bob will go. 
  Failure: no! 
 

Success:    yes! 
 
In accordance with the closed world assumption, because we have no way of 
showing that bob will go, it follows that bob will not go.  
 The same conclusion that mary will go can also be derived by reasoning 
forward, once we get off the ground by starting with the assumption that bob 
will not go: 
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Assume:     bob will not go 
Forward reasoning:  john will go. 
Forward reasoning:  mary will go. 
 
Now suppose Bob decides to be difficult. Believing that mary will go, he 
decides to go as well. Let’s see what Mary thinks about that: 
 
Initial goal:    mary will go.  
Subgoal:     john will go.  
Subgoal:    bob will not go. 

 
   Naf:  bob will go. 
   Success: yes! 
 

Failure:    no! 
 
So it seems that Bob will be going to the party on his own. The addition of 
the new information that bob will go defeats the previous argument that mary 
will go. It similarly defeats any attempt to show that john will go. 
 This property of negation as failure and the closed world assumption is 
called defeasibility or non-monotonicity.4

 Looked at in this way, the closed world assumption is not so close-
minded after all, because any conclusion obtained with its aid is always 
subject to revision. It is as though the conclusion had an extra, hidden auto-
epistemic qualification, as far as I know. For example: 

 It is a form of default reasoning, in 
which an agent jumps to a conclusion, but then withdraws the conclusion 
given new information that leads to the contrary of the conclusion. 

 
Conclusion:   Mary and John will not go the party, as far as I know. 
 
The development of logics for default reasoning has been one of the most 
important achievements of Artificial Intelligence. Most of the research has 
been concerned with exploring alternative “semantics” of default reasoning 
and with developing efficient proof procedures. The closed world assumption 
is an informal semantics, but it needs to be refined to deal with more difficult 
cases, as the following example shows. 
 Suppose that Bob is now out of the picture, but Mary and John are still 
having trouble deciding what to do: 
 
                                                        
4 Monotonicity in mathematics means that the more you put into a system, the more 
you get out. Classical logic is monotonic in this sense. Default reasoning is non-
monotonic, because putting in more information can result in previously derived 
conclusions being withdrawn. 
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    mary will go if john will go. 
    john will go if mary will go. 
 
Initial goal:   mary will go.  
Subgoal:    john will go.  
Subgoal:    mary will go. 
Ad infinitum   …………….. 

 
Since it cannot be shown that mary will go, it follows from the closed world 
assumption that mary will not go. Similarly john will not go. As far as we 
know. 
 The example shows that default reasoning can involve the need to reason 
with an infinite amount of resources. For this reason, the semantics is said to 
be non-constructive. However, in this as in many other cases, the infinite 
chain of reasoning needed to show that a negative conclusion holds can be 
detected finitely by noticing that the same subgoal reoccurs as a subgoal of 
itself. But in the general case, infinite failure cannot be detected by finite 
means.  
 This is an example of the same phenomenon underlying Kurt Gödel’s 
(1931, 1951) proof of the incompleteness theorem, which states that there 
exist true, but unprovable sentences of arithmetic. We will return to this issue 
in chapters 15, 17 and A2. Moreover in Chapter 15, we will investigate a 
finite, constructive version of negation as failure and discuss its relationship 
with proof in arithmetic. 
 
An intelligent agent needs to have an open mind 
 
Granted that we tend to view the world in positive terms, and to derive 
negative conclusions from the failure to show positive conclusions, it doesn’t 
follow that we need to have a closed mind about everything. We can 
distinguish between closed predicates, about which we have complete 
knowledge, and open predicates, about which our knowledge is incomplete. 
Closed predicates are appropriate for concepts that we use to organise and 
structure our thoughts, and which do not directly represent our interactions 
with the world. They include predicates that classify observations and actions 
into more abstract categories, like emergencies and getting help, as well as 
more complex predicates, like being eligible for Housing Benefit and being a 
British citizen. 
 But there are other predicates about which it makes no sense to believe 
that we have complete knowledge. These are open predicates that describe 
states of affairs in the external world about which we have little or no 
experience. Did it rain last night in Port Moresby in Papua New Guinea? In 
the event of my applying for naturalisation as a British citizen, will the 
Secretary of State deem fit to grant me a certificate of naturalisation? Was a 

http://en.wikipedia.org/wiki/Port_Moresby�
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child found abandoned in the UK born to parents at least one of whom was a 
British citizen? You would have to be self-confident to the point of 
recklessness to believe you could use the closed world assumption to answer 
all such questions.  
 
Relaxing the closed world assumption 
 
Many of the benefits of reasoning with the closed world assumption can be 
achieved more modestly without assuming that we know it all, but by the 
selective use of conditions of the form cannot be shown in otherwise normal 
conditionals. For example, the closed world assumption can be applied 
selectively to a single particular sentence, formalizing an agent’s meta-belief 
that if the particular sentence were true, then the agent would know (and 
believe) that the particular sentence is true; otherwise the sentence is false. 
This can be stated in the same form as the more general closed world 
assumption, but restricted to the single particular sentence rather than 
applied to all atomic sentences. Robert Moore (1985) gives the following 
example of such a selective closed world assumption: 
 

“Consider my reason for believing that I do not have an older brother. 
It is surely not that one of my parents once casually remarked, “You 
know, you don’t have any older brothers”. Nor have I pieced it 
together by carefully sifting other evidence. I simply believe that if I 
did have an older brother I would surely know about it, and since I 
don’t know of any older brothers, I must not have any.” 

 
Moore’s belief that he does not have an older brother follows from the 
selective closed world assumption: 
 

  I do not have an older brother 
if I cannot show that I have an older brother.  

 
Default reasoning 
 
From the selective closed world assumption, it is only a small step to full-
blown default reasoning without the closed world assumption. Instead of 
limiting expressions of the form cannot be shown to closed world and 
selective closed world assumptions, they can be used in the conditions of 
any conditional. The negation as failure inference rule can be generalised 
accordingly: 
 
   to show that a sentence cannot be shown 
   show that all ways of trying to show the sentence result in failure. 
 



 84 

Consider the belief that a person is innocent unless proven guilty, and 
suppose that Bob is accused of robbing the bank. 
 
     a person is innocent of a crime 
     if the person is accused of the crime 
     and it cannot be shown that  
     the person committed the crime. 
 
     a person committed an act 
     if another person witnessed the person commit the act. 
 
     bob is accused of robbing the bank. 
 
Clearly, there are other conditions, besides there being a witness, that may 
lead an agent to believe that a person committed a crime, for example DNA 
evidence of the person’s involvement in the crime. But it is hard to identify 
and consider all of these other possibilities from the outset. In the next 
section, we will see how default reasoning makes it easier to deal with such 
additional possibilities incrementally by successive approximation. 
 However, given the simplified representation above, negation as failure 
can be used to determine whether Bob is innocent. Here we assume the 
taxonomic knowledge that robbing a bank is a crime and a crime is an act: 
 
Initial goal: bob is innocent of robbing the bank.  
Subgoals:  bob is accused of robbing the bank

 it cannot be shown that bob committed robbing the bank 
 and 

Subgoal:  it cannot be shown that
 

 bob committed robbing the bank 

  Naf:   bob committed robbing the bank 
  Subgoals:       
   Failure:  no! 

another person witnessed bob commit robbing the bank 

 
Success:  yes! 
 
The negation as failure inference rule shows that Bob cannot be shown to 
have robbed the bank, but without the closed world assumption, it does not 
follow that Bob actually did not rob the bank! He did not rob the bank, only 
so far as we know. 
 But suppose that we are given the additional information: 
 
      john witnessed bob commit robbing the bank.   
  
The application of the negation as failure rule now succeeds, and the 
previous conclusion that he is innocent no longer holds. 
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Missing conditions  
 
In everyday language, it is common to state only the most important 
conditions of a general statement (or rule) explicitly, and to leave it implicit 
that other unstated conditions may also apply. For example, we commonly 
say: 
 
    all birds fly. 
i.e.    an animal can fly if the animal is a bird. 
 
rather than:  an animal can fly if the animal is a bird 

and the animal is not a penguin 
and the animal is not unfledged 
and the animal is not injured. 

 
But instead of revising our statement when it becomes apparent that it was an 
over-simplification, we more commonly correct ourselves in seemingly 
contradictory, separate statements. We say for example: 
 
    an animal cannot fly if the animal is a penguin 

an animal cannot fly if the animal is unfledged 
an animal cannot fly if the animal is injured. 

 
We saw an even more confusing example of this in the suppression task, 
where the first statement is an over-generalisation, and the second statement 
attempts to draw attention to a missing condition of the first sentence: 
 

she will study late in the library if she has an essay to write. 
she will study late in the library if the library is open. 

 
The example is confusing because it doesn’t play the correction game in the 
standard way. The standard way is to seemingly contradict yourself, by 
stating missing conditions in separate sentences whose conclusion is contrary 
to the conclusion of the first sentence: 
 
Over-simplification: a conclusion holds if conditions hold. 
Correction:        the conclusion does not hold if other conditions hold. 
 
Intended meaning: a conclusion holds if conditions hold  
      and other conditions do not hold. 
 
There are logics that give semantics and provide proof procedures for 
reasoning directly with sentences in this seemingly contradictory form. These 
semantics and proof procedures are typically defined in terms of arguments, 
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what it means for arguments to attack and defend one another, and what it 
means for a set of arguments collectively to defeat an attack. In these 
semantics and associated proof procedures, there are ways to ensure that a 
correction defeats an original over-simplification. 
 However, in the version of Computational Logic in this book, it is simpler 
to reexpress the original over-simplification more precisely from the start, 
with an explicit condition stating that the contrary of the conclusion does not 
hold: 
 
Restated rule:   a conclusion holds if conditions hold 
      and it is not the case that the conclusion does not hold. 
 
It might seem that the two negations it is not the case that and does not hold 
would cancel one another out, but in fact they don’t. The first negation it is 
not the case that is negation as failure, and the second negation does not hold 
can be reformulated as a positive predicate. This second kind of negation is 
sometimes called strong negation.5

 Strong negation is commonly used to represent the opposite of one of the 
positive predicates in a pair of antonyms or contraries, like wet and dry, tall 
and short, big and small, and good and bad. Using strong negation, not wet is 
equivalent to dry and not good is equivalent to bad. We will see other 
examples of strong negation later in the book. 

 

 The advantage of restating rules with missing conditions in the more 
precise formulation is that additional conditions can be added to the rule in 
separate sentences without the appearance of seeming contradiction. For 
example, here is a restatement of the suppression task example in the more 
precise formulation, with separate corrections, to take into account different 
conditions that might prevent a student from studying late in the library: 
 

 she will study late in the library 
 if she has an essay to write 
 and it is not the case that  
 she is prevented from studying late in the library. 
      

     she is prevented from studying late in the library 
     if the library is not open. 
     she is prevented from studying late in the library  
     if she is unwell. 
     she is prevented from studying late in the library 
     if she has a more important meeting. 
     she is prevented from studying late in the library 

                                                        
5 Strong negation was introduced into logic programming in  (Gelfond and Lifschitz, 
1988). 
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     if she has been distracted. 
 
Here being prevented from studying late in the library is a positive predicate, 
which is the contrary of studying late in the library. Its meaning and 
associated rules of inference would be unchanged if it were replaced by the 
strongly negated predicate she will not study late in the library. 
 However, no matter how the corrections are expressed, they can be 
compiled into a statement of the rule in which all of the qualifying conditions 
are stated explicitly: 
 
Intended meaning:  she will study late in the library 

     if she has an essay to write 
      and the library is open 
     and she is not unwell 
     and she doesn’t have a more important meeting 
     and she hasn’t been distracted. 

 
The only problem with this compiled representation, as simple as it is, is that 
it has to be changed every time a new missing condition is identified. The 
formulation is lower-level than the higher-level rule and exceptions 
formulation. It requires less sophisticated problem-solving resources, and is 
therefore more efficient. But the formulation as a higher-level rule and 
exception is easier to develop and maintain.  
 The relationship between the two formulations is another example of the 
relationship between a higher-level and lower-level representation, which is a 
recurrent theme in this book. In this case, the higher-level rule acts as a 
simple first approximation to the more complicated rule.  
 In most cases, when a concept is under development, the complicated rule 
doesn’t even exist, and the higher-level representation as a rule and 
exceptions makes it easier to develop the more complex representation by 
successive approximation. In other cases, when a complicated rule already 
exists, for example in the case of existing legislation, the rule and exception 
form makes it easier to communicate the rule to other agents. By isolating the 
most important conditions of the rule, and highlighting them in the general 
rule, the less important conditions can be mentioned in separate 
corrections/exceptions when and if the need later arises. Public 
communications of regulations are a good example. The following example 
is from the UK citizen’s advice bureau website:  

 
Housing Benefit is a benefit for people on a low income to help them 
pay their rent. You may be able to get Housing Benefit if you are on 
other benefits, work part-time or work full-time on a low income.  
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The word “may” in the second sentence indicates that there are other 
conditions that also need to be satisfied to get Housing Benefit, but they are 
not significant enough to be mentioned in an introduction.6

 

 The sentence is a 
simplified rule that is subject to unstated exceptions. Here is a partial 
representation of the logic of the two sentences: 

 a person gets help to pay rent if the person receives housing benefit. 
 
 a person receives housing benefit 
  if  the person is on other benefits  
  or the person works part-time  
  or the person works full-time on a low income 
 and it is not the case that  
   the person is ineligible to receive housing benefit. 
 
The representation is partial because it does not represent the “constraint” 
that Housing Benefit is for people on a low income. This constraint can be 
treated as an exception: 
 
 a person is ineligible to receive housing benefit 
 if the person is not on a low income. 
 
We will see a number of other examples of rules and exceptions when we 
look at the British Nationality Act. But first we will look briefly at an 
example that illustrates the way rules and exceptions can be organised into 
hierarchies. 
    
Hierarchies of rules and exceptions 
 
Consider the following informal statement of the example: 
 
Rule 1:    All thieves should be punished. 
Rule 2:    Thieves who are minors should not punished. 
Rule 3:    Any thief who is violent should be punished. 
 
Here the intention is that rule 2 is an exception to rule 1, and rule 3 is an 
exception to rule 2. In argumentation terms, rule 2 attacks arguments 
constructed using rule 1, and rule 3 defends arguments constructed using rule 
1, by attacking arguments constructed using rule 2. These intentions and 
argument attack relations can be compiled into the lower-level rules: 
 
 a person should be punished 
                                                        
6 In more traditional logic, the word “may” is more commonly regarded as a modal 
operator in modal logic. 
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  if the person is a thief and the person is not a minor. 
 
 a person should be punished 
  if the person is a thief and the person is a minor  
 and the person is violent. 

 
In this compiled representation it is not necessary to write explicitly that: 
 

a person should not be punished if the person is a thief  
and the person is a minor and the person is not violent 

 
if we treat the predicate a person should be punished as a closed predicate. 
 The compiled rules can be decompiled into higher-level rules and 
exceptions in several ways. Here is one such representation: 
 
   a person should be punished  
   if the person is a thief  
   and it is not the case that 
   the person is an exception to the punishment rule. 

 
   a person is an exception to the punishment rule 
   if the person is a minor 
   and it is not the case that  
   the person is an exception to the exception to the punishment rule. 
  
   a person is an exception to the exception to the punishment rule 

 if the person is violent. 
 
Notice that the positive predicates a person is an exception to the punishment 
rule and a person is an exception to the exception to the punishment rule 
cannot be written as the more obvious predicates a person should not be 
punished and a person should be punished respectively. If they were, then the 
top-level rule would also be an exception to the exception, which is not what 
is intended. 
 Suppose, for example, that Bob is a thief: 
 
Initial goal: bob should be punished  
Subgoals:  bob is a thief
    it is not the case that  

  and  

    bob is an exception to the punishment rule 
Subgoals:  it is not the case that 
    bob is an exception to the punishment rule 
 
   Naf:    bob is an exception to the punishment rule 
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   Subgoals:   bob is a minor
         bob is an exception to the exception  

 and it is not the case that 

        to the punishment rule 
    Failure:    no! 
 
Success:  yes! 
 
It cannot be shown that bob is an exception to the punishment rule, because it 
cannot be shown that he is a minor. Suppose, instead that Mary is a thief, 
who is also a minor: 
 
Initial goal:  mary should be punished  
Subgoals:   mary is a thief
     it is not the case that  

  and  

     mary is an exception to the punishment rule 
Subgoals:   it is not the case that  
     mary is an exception to the punishment rule 
 
   `  Naf:    mary is an exception to the punishment rule 
    Subgoals:  mary is a minor
        mary is an exception to the exception 

 and it is not the case that 

        to the punishment rule 
    Subgoal: it is not the case that 
       mary is an exception to the exception 
       to the punishment rule 
 
        Naf:            mary is an exception to the exception  
             to the punishment rule 
        Subgoals:  mary is violent
         Failure:     no! 

  

 
     Success:  yes! 
 
Failure,   no! 
 
I’m sure you can figure out for yourself what happens to John, who is a thief, 
a minor, violent and prone to fits of jealousy. 
 
Conclusions 
 
In this chapter, I have argued the case for the primacy of positive predicates, 
starting with the claim that the state of the world at any given time is 
characterised by the atomic sentences that are true in the world at that time. 
Consequently, passive observations, over which an agent has no control, are 
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invariably represented by positive atomic sentences. However, active 
observations, which an agent can perform to determine the value of some 
predicate, can result in negative observations, as the result of the failure to 
obtain a positive result. 
 Active observations, whether they return a positive or negative result, can 
be used to solve the problem at hand and can be forgotten, or they can be 
recorded for future use. We will see in later chapters that negative 
observations can be recorded by means of constraints, or can be derived from 
positive observations by means of constraints. 
 The primacy of positive predicates extends to an agent’s beliefs, which 
typically have the form of conditionals with positive atomic conclusions. 
However, negations of atomic predicates can occur as conditions of 
conditionals and can be solved by means of negation as failure, justified by 
the closed world assumption – that the agent knows all there is to know about 
the predicate of the condition. The closed world assumption can be relaxed, 
by replacing negative conditions by weaker conditions that positive 
predicates cannot be shown. But whether or not the assumption is relaxed in 
this way, the resulting beliefs are defeasible, in the sense that new 
information can defeat previously derived conclusions and can cause them to 
be withdrawn. 
 A common application of defeasible reasoning, also called default 
reasoning, is to reason with rules and exceptions. In these applications, it is 
often natural to represent the conclusion of an exception as the negation of 
the conclusion of the general rule; and it is often common to neglect to 
qualify the general rule with an explicit condition expressing that the rule is 
subject to possible exceptions. Semantics and proof procedures, often of an 
argumentation-theoretic form, can be provided for beliefs in this form. 
However, it is simpler to define semantics and proof procedures for precise 
rules with explicit conditions stating that contrary conditions do not hold. 
 We have seen that rules and exceptions can be compiled into lower-level 
rules in which all of the qualifying conditions of the exceptions are 
incorporated into the rules. But just as importantly, lower-level rules can 
often be decompiled into higher-level rules and exceptions. These higher-
level rules are easier to develop, maintain and communicate to other agents. 
 Unfortunately, there is more to negation than we have been able to cover 
in this chapter. We need to deal with negation by means of constraints, and 
we have to investigate the kind of reasoning with contra-positives that is 
involved in problems like the selection task. We also need to see how 
negation can be understood in terms of biconditionals. These are topics for 
later chapters. The semantics of negation as failure is investigated in greater 
detail in the more advanced Chapter A4. 
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Chapter 6. How to Become a British Citizen 
 
In this chapter we return to the topic of Chapters 1 and 2: the relationship 
between Logic, natural language, and the language of thought. We will look 
at the law regulating British citizenship, which is the British Nationality Act 
1981 (BNA), and see that its English style resembles the conditional style of 
Computational Logic (CL) (Sergot et al, 1986).  
 The BNA is similar to the London underground emergency notice in its 
purpose of regulating human behaviour. But whereas the emergency notice 
relies on the common sense of its readers to achieve its desired effect, the 
BNA has the power of authority to enforce its provisions. The BNA differs 
from the underground notice also in its greater complexity and the more 
specialized nature of its content.   
 Nonetheless, like the emergency notice, the BNA has been written in an 
English style that has been chosen to be as easy as possible for its intended 
audience to understand. Arguably therefore, like the emergency notice, its 
linguistic form is likely to reflect the form of the private, mental language in 
which its readers represent their own thoughts. 
 We will see that the most obvious similarity between the BNA and CL is 
their shared use of conditional sentences (or rules) as the main vehicle for 
representing information. But we will also see that the BNA, like ordinary 
English, uses a variety of grammatical forms to express the conditions of 
conditionals, often inserting them into the conclusions. More importantly, we 
will see that the BNA highlights the need for logical features in CL that we 
have seen only in toy examples until now. The most important of these 
features are negation and meta-level reasoning.  We will also use the BNA as 
an excuse to delve into the more formal side of CL. 
 In addition to studying the BNA for clues to the logic of the language of 
human thought, we will also see examples where expressing the BNA in CL 
form can make its natural language expression easier to understand. In 
contrast with the BNA, we will look at the University of Michigan lease 
termination clause, which was studied by University of Michigan law 
professor Layman Allen and his colleague Charles Saxon (1984) as an 
example of ambiguous English, and will see how its language can be 
improved by expressing it in CL form. 
 
The British Nationality Act 1981 
 
The following examples from the BNA illustrate the representation of time, 
default reasoning and meta-level reasoning about belief. 
 
Acquisition by birth 
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The first subsection of the BNA deals with acquisition of citizenship by 
virtue of birth in the United Kingdom after commencement (1 January 1983, 
the date on which the Act took effect): 
 

1.-(1) A person born in the United Kingdom after commencement 
shall be a British citizen if at the time of the birth his father or 
mother is - 

 (a) a British citizen; or 
 (b) settled in the United Kingdom. 
 
The English of this clause can be considered an informal variant of CL form, 
even to the extent of expressing its conclusion before (most of) its conditions, 
which is the conventional syntax for logic programs used to reason 
backwards. The biggest difference from CL syntax is that it inserts the logical 
conditions born in the United Kingdom after commencement into the middle 
of its logical conclusion a person shall be a British citizen. Syntactically, 
these conditions are a shortened form of the restrictive relative clause who is 
born in the United Kingdom after commencement. 
 Restrictive relative clauses are similar in syntax to non-restrictive relative 
clauses, but their semantics is entirely different. Restrictive relative clauses 
add extra conditions to conditionals. Non-restrictive relative clauses add 
extra conclusions. Grammatically, non-restrictive clauses are supposed to be 
set apart from the rest of the sentence by commas, but restrictive clauses are 
supposed to be tied to the phrase they qualify without any commas. But most 
of the time, it seems that writers and readers ignore the rules of grammar, and 
rely instead upon their background knowledge to determine the intended 
meaning. 

For example, the following two sentences are punctuated correctly. The 
relative clause is restrictive in the first sentence, and non-restrictive in the 
second sentence: 
 
 A British citizen who obtains citizenship by providing false information 
 may be deprived of British citizenship. 
 
 A British citizen, who is an EU citizen,  
 is entitled to vote in EU elections. 
 
In CL, the logical form of the two clauses is dramatically different: 
 
 a person may be deprived of British citizenship  
 if the person obtains citizenship by providing false information. 
 
 a person is entitled to vote in EU elections  
 if the person is a British citizen. 
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 a person is an EU citizen if the person is a British citizen. 
 
Some grammarians also insist that the correct relative pronoun for restrictive 
relative clauses is that rather than which or who. According to them, the first 
sentence in the pair of sentences above should be written: 
 
 A British citizen that obtains citizenship by providing false information 
 may be deprived of British citizenship. 
 
But in British English, this rule is largely ignored these days. In any case, if it 
is important that your readers understand what you write, then it is better not 
to rely on such subtle grammatical devices as the presence or absence of 
commas, and the supposed differences of meaning between that and which, 
which few readers know or care about. It is better to express yourself in an 
English form that more closely resembles the logical form of the thought you 
wish to convey. For example, do not write: 
 
   A British citizen, who has the right of abode in the UK,  
   owes loyalty to the Crown. 
or   A British citizen that has the right of abode in the UK  
   owes loyalty to the Crown. 
 
But, depending on what you mean, write: 
 
   All British citizens have the right of abode in the UK  
   and owe loyalty to the Crown. 
or    A British citizen owes loyalty to the Crown  
   if the citizen has the right of abode in the UK. 
 
The use of relative clauses is one way in which the syntax of English differs 
from the syntax of conditionals in logical form. Another difference is the way 
in which they represent variables. Symbolic forms of CL use symbols, like X 
and Y for variables, which range over classes of individuals. Variables are 
distinct from constants, which represent unique individuals.  
 English uses the combination of an article, like a and the, and a common 
noun, like person, animal, object and thing, as a sorted or typed variable.  It 
uses the articles a and an, as in an animal and a person, for the first use of a 
variable; and it uses the article the, as in the animal and the person, for 
subsequent uses of the same variable. It uses proper nouns, like Mary, Felix 
and Venus, which are usually capitalized, as constants, to represent 
individuals. Individuals can also be represented by definite descriptions, as in 
the phrase the strongest man on earth. 
 Putting all these considerations about relative clauses and variables 
together, and taking the liberty to introduce one or two other refinements, we 
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obtain the following more precise, but still relatively informal CL 
representation of subsection 1.17

 
: 

  X acquires british citizenship by subsection 1.1 at time T 
  if   X is a person 

and  X is born in the uk at time T 
  and  T is after commencement 
  and  Y is a parent of X 
  and  Y is a british citizen at time T or 
    Y is settled in the uk at time T 
 
Notice that the condition X is a person prevents cats and dogs from claiming 
British citizenship. However, it is unnecessary to add the condition Y is a 
person, because if X is a person then any parent of X is also a person. Notice 
also that the condition Y is a parent of X is short for Y is a mother of X or Y is 
a father of X.  
 This representation uses the Prolog convention in which capitalised words 
or letters, such as X, Y and T, stand for variables, which is why british and uk 
have been written in lower case. This is the opposite of the English 
convention in which upper case is used for proper nouns and names, and 
lower case is used for common nouns. Just for the record, this is one of the 
ways a die-hard mathematical logician might write 1.1: 
 
∀X(∀T(∃Y(b(X, uk, T) ∧ c(T) ∧ d(Y, X) ∧ (e(Y, T) ∨ f(Y,T)))→ a(X, 1.1, T))). 
 
Representation of time and causality 
 
The English formulation of subsection 1.1 is precise about the temporal 
relationships among the conditions of 1.1, but does not state the temporal 
relationship between the conditions and the conclusion. In other words, it 
does not say when a person satisfying the conditions of 1.1 actually is a 
British citizen. I have used the term acquires british citizenship as a kind of 
place-holder, which can accommodate different relationships between these 
times. Anticipating Chapter 13, about the representation of time and change, 
this is as good a place as any to propose a likely intended relationship:  
 
  a person is a british citizen at a time  
  if  the person acquires british citizenship at an earlier time 
  and it is not the case that 
   the person ceases to be a british citizen between the two times. 

                                                        
7 Notice that this has the propositional form  A if (B and C and D and (E or F)), 
which is equivalent to two separate conditionals:   A if B and C and D and E  and  
A if B and C and D and F. 
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This should remind you of the relationship between picking up an object and 
having the object at a later time, which was mentioned briefly at the end of 
Chapter 4. In both cases, these relationships are instances of a more general, 
abstract relationship. Here is a statement of that relationship in the event 
calculus (Kowalski and Sergot, 1986): 
 
   a fact holds at a time,  
   if an event happened at an earlier time 
   and the event initiated the fact 
   and it is not the case that 
    an other event happened between the two times and 
          the other event terminated the fact. 
 
The different special cases can be obtained by adding information about 
specific types of events initiating and terminating specific types of facts. For 
example: 
 
  the event of a person acquiring british citizenship initiates  

the fact that the person is a british citizen. 
 

  the event of a person being deprived of british citizenship terminates  
the fact that the person is a british citizen. 

 
  the event of an animal picking up an object initiates  

the fact that the animal has the object. 
 

  the event of an animal dropping an object terminates  
the fact that the animal has the object. 

 
Notice that in the case of an animal picking up an object, our earlier 
representation in Chapter 4 of the relationship: 
 
   an animal has an object at a time  
   if the animal is near the object at an earlier time 
   and the animal picks up the object at the earlier time 
   and nothing terminates the animal having the object between the two times. 
 
contains an additional condition that the animal is near the object at an 
earlier time. In the event calculus, this additional condition can be expressed 
as a separate constraint: 
 
 if an animal picks up an object  
 and it is not the case that the animal is near the object at a time 
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 then false. 
 
In general, the event calculus constraint expresses that an event is possible if 
all its preconditions hold. We will discuss the representation of preconditions 
of events later in Chapter 13. 
 The use of the term fact in the event calculus axiom  can be stretched to 
cover, not only ordinary facts, which are atomic sentences, but also more 
general sentences, which are initiated by events like the commencement of an 
act of parliament. For example: 
 
   the commencement of an act of parliament initiates a provision 
   if the provision is contained in the act. 
 
   the repeal of an act of parliament terminates a provision 
   if the provision is contained in the act. 
 
The treatment of events and sentences as individuals is an example of 
reification. The corresponding phenomenon in English is nominalization, in 
which a verb, such as commence is turned into a noun, such as 
commencement. Reification is a powerful tool, which has proved to be 
indispensible for knowledge representation in Artificial Intelligence. But it 
worries some philosophers, who view it as populating the world with 
individuals of questionable existence. 
 
Acquisition by abandonment 
 
The second subsection of the BNA also employs reification, in this case to 
reify the purposes of subsection 1.1: 
 
 1.-(2) A new-born infant who, after commencement, is found 
  abandoned in the United Kingdom shall, unless the contrary is shown,  

be deemed for the purposes of subsection (1)- 
  (a)  to have been born in the United Kingdom after commencement; and 
  (b) to have been born to a parent who at the time of the birth   
   was a British citizen or settled in the United Kingdom. 
 
It might seem a little strange to devote the very second sentence of the BNA 
to such a hopefully uncommon case, when there are so many simpler and 
more common cases to consider. But what better, more coherent place is 
there for a provision referring to the purpose of subsection 1.1 than 
immediately after 1.1 itself? Somewhat more awkward, from our point of 
view, is that subsection 1.2 combines so many other complex logical features 
in a single rule that it’s hard to know where to begin in picking its logic apart. 



 98 

 Perhaps the easiest place to start is with the notion of purpose. It is clear 
that purpose is just another name for goal. But in logic programming, the 
conclusion of a conditional, used to reason backwards, is treated as a goal 
and its conditions are treated as subgoals. Accordingly, the conclusion of a 
conditional identifies its purpose.  Thus we can interpret the phrase the 
purposes of subsection (1) as a reference to the logical conclusion of 1.1, 
namely to acquire British citizenship.  The phrase could have equally well 
been expressed less dramatically as the conclusion of subsection (1). 
 Moreover the phrases 1.2.a and 1.2.b are exactly the logical conditions of 
1.1.  Therefore, translating unless as if not, we can paraphrase subsection 1.2 
in the form: 
 
The conclusion of 1.1 holds for a person  
if the person is found newborn abandoned in the uk after commencement 
and the contrary of the conditions of 1.1 are not shown to hold for the person. 
 
The paraphrased sentence combines in a single sentence the use of meta-
language to talk about the conclusions and conditions of sentences with the 
object-language to talk about states of affairs in the world. The use of meta-
language treats sentences as individuals, and is another example of 
reification. We shall return to the issue of meta-language both later in this 
chapter and in Chapter 17.  
 The other notable feature of 1.2 is its use of the phrase unless the 
contrary is shown. We have seen the use of the similar phrase cannot be 
shown for default reasoning before. The phrase cannot be shown has nice 
theoretical properties; but, as we have seen, it includes the need to expend a 
potentially infinite amount of resources trying to show that something is the 
case. The phrase is not shown is more practical, because it assumes that only 
a finite amount of effort has been spent, but it suffers from the imprecision of 
not specifying how much effort is needed. Moreover, it does not cater for the 
possibility that new information or additional effort might make it possible to 
show conditions that could not be shown before.  

Ignoring these concerns and exploiting the fact that the contrary of born 
in the uk is born outside the uk, and the contrary of born after 
commencement is born on or before commencement we can rewrite 1.2 as: 
 

A person found newborn abandoned in the uk after commencement 
shall be a british citizen by section 1.2 
if it is not shown  
that the person was born outside the uk  
and it is not shown that  
the person was born on or before commencement 
and it is not shown that  
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both parents were not british citizens at the time of birth 
and it is not shown that  
both parents were not settled in the uk at the time of birth 
 

This gives us two logical paraphrases of subsection 1.2. However, I suspect 
that the combined object-language meta-language representation is probably 
the easiest to understand.  
  
Rules and exceptions 
 
The phrases is not shown and cannot be shown are forms of negation that can 
be implemented by variants of negation as failure. The BNA also includes the 
use of negation to represent rules and exceptions. For example: 
 

40.-(2) The Secretary of State may by order deprive a person of a 
citizenship status if the Secretary of State is satisfied that deprivation is 
conducive to the public good. 
 
40.-(4) The Secretary of State may not make an order under subsection (2) 
if he is satisfied that the order would make a person stateless. 

 
As we saw in the chapter on negation as failure, the exception can be 
compiled into the conditions of the rule : 
 

40.-(2) The Secretary of State may by order deprive a person of a 
citizenship status if the Secretary of State is satisfied that deprivation is 
conducive to the public good, 
and he is not satisfied that the order would make the person stateless.8

 
 

English typically distinguishes between rules and exceptions by presenting 
the rule before its exceptions, and introducing the exception by such words or 
phrases as “but”, “however” or “on the other hand”. In the following 
provision 12.1 of the BNA, the signal that the rule is subject to exceptions is 
given by the vague qualification, subject to subsections (3) and (4): 

  

                                                        
8 The condition he is not satisfied that the order would make the person 
stateless is not equivalent to the arguably more natural condition he is satisfied that 
the order would not make the person stateless. The “more natural condition” is 
equivalent to a stronger version of 40.-(4): The Secretary of State may not make an 
order under subsection (2) unless he is satisfied that the order would not make a person 
stateless. 
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12— (1) If any British citizen of full age and capacity makes in the 
prescribed manner a declaration of renunciation of British citizenship, 
then, subject to subsections (3) and (4), the Secretary of State shall cause 
the declaration to be registered………………………………………………… 
(3) A declaration made by a person in pursuance of this section shall not 
be registered unless the Secretary of State is satisfied that the person who 
made it will after the registration have or acquire some citizenship or 
nationality other than British citizenship;…………………………………… 
4) The Secretary of State may withhold registration of any declaration 
made in pursuance of this section if it is made during any war in which 
Her Majesty may be engaged in right of Her Majesty’s government in the 
United Kingdom. 

 
12.3 is a straight-forward exception to 12.1, expressing in effect a condition 
under which the Secretary of State may not cause a declaration of 
renunciation to be registered. 12.4 is also an exception, but its effect depends 
on whether the Secretary of State actually decides to exercise permission to 
withhold registration. Taking the difference between these two exceptions 
into account, the intended combined meaning of 12.1, 12.3 and 12.4 can be 
compiled into a single rule: 
 

The Secretary of State shall cause a declaration of renunciation  
of British citizenship to be registered 

 if the declaration is made by a British citizen of full age and capacity  
and the declaration is made in the prescribed manner  
and the Secretary of State is satisfied that after the registration the person 
will have or acquire some citizenship or nationality other than British 
citizenship; 
and it is not the case that  
 the declaration is made during a war in which Her Majesty is engaged  
 in right of Her Majesty’s government in the United Kingdom  

and the Secretary of State decides to withhold the registration. 
 
Notice that the rule can be further simplified by replacing the condition the 
Secretary of State is satisfied that after the registration the person will have or 
acquire some citizenship or nationality other than British citizenship by the 
equivalent condition the Secretary of State is satisfied that after the 
registration the person will not be stateless. 
 Section 12 contains another rule and exception, which on the face of it is 
even more complicated: 
 

12— (2) On the registration of a declaration made in pursuance of this 
section the person who made it shall cease to be a British citizen. 
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(3) …; and if that person does not have any such citizenship or nationality 
on the date of registration and does not acquire some such citizenship or 
nationality within six months from that date, he shall be, and be deemed 
to have remained, a British citizen notwithstanding the registration. 
 

However, much of the complication disappears if the rule and exception are 
compiled into a single rule defining termination of citizenship: 

 
the event of registering a declaration of renunciation by a person 
terminates the fact that the person is a british citizen 
if the registration was made on date T1 
and the person has some citizenship or nationality  
other than british citizenship on date T2 
and T1 ≤ T2 ≤ T1 + six months. 

  
Understood in the context of the event calculus, the termination rule takes 
effect at the time of registration only if the person renouncing citizenship is a 
citizen or national of some other country within six months of the 
registration. The complexity is due, not to the logical form of the rule, but to 
its content, whereby a state of affairs in the past (termination of citizenship) 
is caused in part by a state of affairs in the future (possession of some other 
citizenship or nationality). 
  
How to satisfy the Secretary of State 
 
The provisions in the BNA for depriving a person of British citizenship and 
for registering a renunciation of British citizenship involve seemingly 
inscrutable references to satisfying the Secretary of State. However, under the 
assumption that the Secretary of State is a rational person, not all of these 
references are as impenetrable as they may seem. Consider, for example, the 
main provision for acquiring British citizenship by naturalisation: 
 

6.-(1)  If, on an application for naturalisation as a British citizen made by a 
person of full age and capacity, the Secretary of State is satisfied that the 
applicant fulfils the requirements of Schedule 1 for naturalisation as such a 
citizen under this sub-section, he may, if he thinks fit, grant to him a 
certificate of naturalisation as such a citizen. 

 
At the top-most level, this has the logical form:  
 
 the secretary of state may grant a certificate of naturalisation  

to a person by section 6.1 
  if   the person applies for naturalisation 
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  and  the person is of full age and capacity 
  and  the secretary of state is satisfied that 
    the person fulfils the requirements of schedule 1  

for naturalisation by 6.1 
  and  the secretary of state thinks fit 
    to grant the person a certificate of naturalisation. 
 
The first two conditions are simple object-level conditions concerning the 
state of the world. But the last two conditions are epistemic or meta-level 
conditions concern the Secretary of State’s state of mind.  In theory, the last 
condition is totally inscrutable and can only be given as part of the input for a 
given case. However, in practice, an expert lawyer might be able to predict 
with a high degree of certainty how the Secretary will decide new cases 
based on the lawyer’s knowledge of previous decisions in similar, old cases.  
 The third condition is more interesting, because the BNA includes a 
specification of the requirements for naturalization that an applicant must 
fulfil to the satisfaction of the Secretary of State. If the Secretary’s state of 
mind were entirely impenetrable, there would be no point in specifying these 
requirements. The schedule is quite long, and it is convenient therefore to 
summarise and paraphrase its contents: 
  
 a person fulfils the requirements of schedule 1 for naturalisation by 6.1 
  if either the person fulfils the residency requirements  
   of subparagraph 1.1.2 
   or the person fulfils the crown service requirements  
   of subparagraph 1.1.3 
  and   the person is of good character 
  and the person has sufficient knowledge   
    of  english, welsh, or scottish gaelic 
  and  the person has sufficient knowledge about life in the uk 
  and either the person intends to make his principal home in the uk  
    in the event of being granted naturalisation 

or  the person intends to enter or continue in crown service or 
other service in the interests of the crown  in the event of being 
granted naturalisation. 

 
On the assumption that the Secretary of State is a rational person and that all 
rational people understand the meaning of the words if, or and and as they 
occur in schedule 1 in the same way, it can be shown that: 
 
the secretary of state is satisfied that  
a person fulfils the requirements of schedule 1 for naturalisation by 6.1 
 if either the secretary of state is satisfied that 
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the person fulfils the residency  requirements of subparagraph 1.1.2 
  or the secretary of state is satisfied that 
  the person fulfils the crown service requirements of subparagraph 1.1.3 
 and   the secretary of state is satisfied that 

the person is of good character 
 and the secretary of state is satisfied that 
   the person has sufficient knowledge  
   of  english, welsh, or scottish gaelic 
 and  the secretary of state is satisfied that 

the person has sufficient knowledge about life in the uk 
 and either the secretary of state is satisfied that 

the person intends to make his principal home in the uk  
    in the event of being granted naturalisation 

or  the secretary of state is satisfied that 
the person intends to enter or continue in crown service or 
other service in the interests of the crown  in the event of being 
granted naturalisation. 

 
The result is an explicit, though tedious statement of what it takes to satisfy 
the Secretary of State concerning the requirements for naturalization. We will 
see how to derive this explicit form in Chapter 17. 

As we have seen, compared with ordinary English, the language of the 
BNA is extraordinarily, and at times even painfully precise. Its precision is 
due in large part to its use of conditional syntactic form, which helps to 
eliminate ambiguity.  

A syntactic expression is ambiguous when it has several distinct 
identifiable meanings. For example, the word he is ambiguous in the 
following pair of sentences: 

 
 The Secretary of State deprived Bob Smith of his British citizenship. 
 He was very upset about it. 

 
Ambiguity can be eliminated simply by replacing the ambiguous expression 
by a precise expression that represents its intended meaning; for example, by 
replacing the word he in the second sentence above either by the Secretary of 
State or by Bob Smith. 
 The conditional form of CL helps to reduce the ambiguity associated with 
such relative clauses as who was born in the UK.  As we have seen, 
restrictive relative clauses add extra conditions to conditionals, whereas non-
restrictive relative clauses add extra conclusions. 
 Ambiguity is distinct from, but often confused with vagueness. Ambiguity 
arises when a syntactic expression has several distinct interpretations, all of 
which can be expressed explicitly. Vagueness, on the other hand, arises when 
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a concept, like newborn infant has no crisp, hard and fast definition. Logic 
tolerates vagueness, but does not tolerate ambiguity. It accommodates vague 
concepts as conditions of conditionals, simply by not attempting to define 
them in the conclusions of other conditionals.  

Although, like ambiguity, vagueness causes problems of interpretation, it 
is often useful in practice, because it allows the law to evolve and adapt to 
changing circumstances. Arguably, however, except for its use in poetry, 
humour and deception, ambiguity serves no other useful purpose.   

Whereas the syntax of the BNA is expressed in explicit conditional form, 
the syntax of the University of Michigan lease termination clause below is 
both unstructured and highly ambiguous. The termination clause was 
originally investigated by Allen and Saxon to illustrate the use of 
propositional logic to formulate a precise interpretation of an ambiguous legal 
text.  Significantly, the intended interpretation identified by Allen and Saxon 
has the conditional form associated with Computational Logic. 
 
The University of Michigan lease termination clause 
 
The clause consists of a single sentence, which I advise you not to try to 
understand until I first explain why the sentence in this form is virtually 
impossible to understand: 
 

"The University may terminate this lease when the Lessee, having 
made application and executed this lease in advance of enrollment, is 
not eligible to enroll or fails to enroll in the University or leaves the 
University at any time  prior to the expiration of this lease, or for 
violation of any provisions of this  lease, or for violation of any 
University regulation relative to Resident Halls,  or for health reasons, 
by providing the student with written notice of this  termination 
30 days prior to the effective time of termination; unless life, limb, 
or property would be jeopardized, the Lessee engages in the sales or 
purchase  of controlled substances in violation of federal, state or 
local law, or the Lessee is no longer enrolled as a student, or the 
Lessee engages in the use or  possession of firearms, explosives, 
inflammable liquids, fireworks, or other  dangerous weapons within 
the building, or turns in a false alarm, in which cases a maximum of 
24 hours notice would be sufficient". 

 
In fact, I could not resist trying to make your task a little easier by 
highlighting the two conclusions, the first of which is split into two halves, 
separated by its various conditions. 

The sentence is hard to understand, because it has the ambiguous form: 
 

A if B and B’, C or D or E or F or G or H 
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unless I or J or K or L or M in which case A’. 
 
The sentence is ambiguous for the same reason that the arithmetic expression 
1+1×2 is ambiguous. In mathematics and mathematical logic, such 
ambiguities are resolved by the appropriate use of parentheses, either 
1+(1×2) or (1+1)×2 in the case of the arithmetic expression. 
 In the case of the termination clause, the sub-clauses A, A’, B, B’, C, D,  
E, F,  G, H, I, J, K, L and M can be grouped together by means of parentheses 
in many different ways. Some of these groupings are logically equivalent. 
After accounting for these equivalences, Allen and Saxon identified 
approximately 80 questions that would need to be asked to disambiguate 
between the different interpretations.  As a result of their analysis they 
identified the intended interpretation as having the unambiguous logical 
form: 
 
  (A  if  (not (I or J or K or L or M) and  ((B and B’ and (C or D)) or E 

or F or G or H)) and A’ if   (I or J or K or L or M)) 
 
This formal representation can be simplified if we rewrite it in the syntax of 
conditionals, and if we assume that the second conditional states the only 
conditions under which the conclusion A’ holds. Using this assumption, we 
can replace the condition not (I or J or K or L or M) by not A’, obtaining the 
conditionals: 
  
 A   if  not A’ and B and B’ and C.    A’ if   I  
 A   if  not A’ and B and B’ and D.    A’ if   J  
 A   if  not A’ and E.         A’ if   K  
 A   if  not A’ and  F.        A’ if   L  
 A   if  not A’ and  G.       A’ if   M. 
 
The repetition of the conclusions A and A’ is a little tedious, but at least it 
makes the meaning crystal clear. In English, we can obtain a similar effect 
without the tedious repetition by signalling the disjunction of the different 
conditions with the phrase “one of the following conditions holds”: 
 

The University may terminate this lease by providing the student with 
written notice of this termination 30 days prior to the effective time of 
termination 
if  the University may not terminate this lease  
 with a maximum of 24 hours notice  
and one of the following conditions holds: 

1) The Lessee, having made application and executed this lease in 
advance of enrollment, is not eligible to enroll  
or fails to enroll in the University. 
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2) The Lessee leaves the University at any time  
prior to the expiration of this lease.  

3) The Lessee violates any provisions of this lease. 
4) The Lessee violates any University regulation  

 relative to Resident Halls. 
5) There are health reasons for the termination. 

 
The University may terminate this lease  
with a maximum of 24 hours notice 
if one of the following conditions holds: 

1)   Life, limb, or property would be jeopardized.  
2)  The Lessee engages in the sales or purchase of controlled substances 

in violation of federal, state or local law.  
 3)  The Lessee is no longer enrolled as a student. 

4)  The Lessee engages in the use or possession of firearms, explosives, 
inflammable liquids, fireworks,  
or other dangerous weapons within the building.  

5)  The Lessee turns in a false alarm. 
 
There are two reasons why you may not be entirely satisfied with this 
rewriting of the sentence. First, why would the University want to restrict 
itself, in cases where it is allowed to give 24 hour notice, so that it does not 
have the discretion of giving 30 days notice instead? This is probably a 
mistake, due to the complex wording of the original sentence, which even its 
writers did not fully understand. 
 Second, what does it mean to say that the University may terminate this 
lease with a maximum of 24 hours notice? The word maximum here suggests 
that in such cases the University may terminate the lease with less than 24 
hours notice. Surely, in all fairness, the student deserves a minimum of 24 
hours to get her things together and to vacate her room.  

So how could the lawyers who drafted the lease make such a big mistake? 
Perhaps they meant that, upon receiving such notice, the student would have 
a maximum of 24 hours to vacate the halls of residence. If so, the intention 
could have been achieved more correctly and more simply by expressing the 
conclusion in a parallel form to the alternative conclusion that the University 
may terminate a lease with 30 days notice. The parallel form would mention 
neither the term maximum nor minimum: 
 

The University may terminate this lease by providing the student with 
notice of this termination 24 hours prior to the effective time of 
termination. 
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Part of the moral of the story is to do as every good book on English writing 
style advises: Express similar ideas in similar ways. 
 
Summary 
 
Both the BNA and the University of Michigan lease termination clause 
illustrate, in their very different ways, the usefulness of expressing 
information in conditional form. Arguably, this is because, not only are 
conditionals close to the language of human thought, but also because they 
are close to the laws that govern both our natural and social worlds. 
 The BNA shows that we still have some way to go to understand the 
subtleties and complexities of meta-level reasoning and of different kinds of 
negation. However, the University of Michigan lease termination clause 
shows that, even without those complexities, the syntactic form of 
conditionals can help to clarify, not only the intended meanings of English 
sentences, but also to uncover unintended meanings.  
 In the next chapter, we explore production systems, which are widely 
regarded in Cognitive Psychology as the most convincing computational 
model of the mind. In the following chapter, we will see how Computational 
Logic reconciles logic and production systems. 
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Chapter 7. The Louse and the Mars Explorer 
 
Logical Extremism, which views life as all thought and no action, has given 
Logic a bad name. It has overshadowed its near relation, Logical Moderation, 
which recognises that Logic is only one way of thinking, and that thinking 
isn’t everything. 

The antithesis of Logical Extremism is Extreme Behaviourism, which 
denies any Life of the Mind and views Life instead entirely in behavioural 
terms. Behaviourism, in turn, is easily confused with the condition-action 
rule model of thinking.  
 
Behaviourism 
 
If you were analysing the behaviour of a thermostat, which regulates the 
temperature of a room by turning on the heat when it is too cold and turning 
off the heat when it is too hot, you might describe the thermostat’s input-
output behaviour in condition-action rule terms: 
 
 If the current temperature is C degrees  
 and the target temperature is T degrees  
 and C < T -  2° 
 then the thermostat turns on the heat. 
 
 If the current temperature is C degrees  
 and the target temperature is T degrees  
 and C  > T + 2° 
 then the thermostat turns off the heat. 
 
But you wouldn’t attribute the thermostat’s behaviour to a mind that 
consciously manipulates such descriptions to generate its behaviour. 

In the same way that you could view the thermostat’s external behaviour 
without committing yourself to a view of its internal operation, the 
behaviourist views agents in general. Thus, in the story of the fox and the 
crow, a behaviourist, unable to examine the fox’s internal, mental state, 
would view the behaviour of the fox in the same way that we view the 
behaviour of the thermostat:  
 

If the fox sees that the crow has cheese, then the fox praises the crow. 
If the fox is near the cheese, then the fox picks up the cheese. 

 
The behaviourist’s description of the fox in the story begins and ends with 
the fox’s externally observable behaviour. The behaviourist justifies her 
refusal to attribute any internal, mental activity to the fox, by the fact that it is 
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impossible to verify such attributions by the scientific method of observation 
and experimentation. 

According to the behaviourist, the fox could be a purely reactive agent, 
simply responding to changes in the world around her. If, in the course of 
reacting to these changes, the fox gets the cheese, then this result might be 
merely an indirect, emergent effect, rather than one that the fox has 
deliberately aimed to bring about by proactive thinking.  

The behaviourist also sees no reason to distinguish between the behaviour 
of a thermostat and the behaviour of a human. The behaviourist might use a 
conditional: 

   If a passenger observes an emergency on the underground,  
   then the passenger presses the alarm signal button. 
 
to describe the behaviour of a passenger on the underground. But the use of 
such a description says nothing about how the passenger actually generates 
that behaviour. As far as the behavourist is concerned, pressing the alarm 
signal button whenever there is an emergency might be only an instinctive 
reaction, of whose purpose the passenger is entirely unaware.  

Behaviourism is indirectly supported by Darwinism, which holds that 
organisms evolve by adapting to their environment, rather than by a goal-
oriented process of self-improvement.  

Behaviourism also shares with condition-action rules a focus on 
modelling behaviour as reactions to changes in the environment. However, 
whereas behaviourism restricts its attention to descriptions of behaviour, 
condition-action rules in production systems are used to generate behaviour.  

The program for a thermostat implemented by means of a production 
system would look like this: 

 
If the current temperature is C degrees  
and the target temperature is T degrees  
and C < T -  2° 
then turn on the heat. 
 
If the current temperature is C degrees  
and the target temperature is T degrees  
and C  > T + 2° 
then turn off the heat. 

 
Production systems 
 
Few psychologists subscribe today even to moderate versions of 
behaviourism. Most adhere instead to the cognitive science view that 
intelligent agents engage in some form of thinking that can usefully be 
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understood as the application of computational procedures to mental 
representations of the world.  

Paul Thagard (2005) states in his book, Mind: Introduction to Cognitive 
Science, that, among the various models of thinking investigated in cognitive 
science, production systems have “the most psychological applications” 
(page 51). Steven Pinker (1997) in How the Mind Works also uses production 
systems as his main example of a computational model of the mind (page 
69). The most influential computational models of human thinking are 
probably the production system models Soar (Laird, et al, 1987) and ACT-R 
(Anderson and Lebiere, 1998). 

A production system is a collection of condition-action rules, of the form:  
 

If conditions then actions. 
 
which are incorporated in the thinking component of an agent’s observation-
thought-decision-action cycle. Condition-action rules (also called production 
rules, if-then rules or just plain rules) are similar to the behaviourist’s 
descriptions of behaviour. However, because they are used by an agent 
internally to generate the agent’s behaviour, their conclusions are often 
expressed in the imperative mood: 
 

If conditions then do actions. 
 
Production systems were invented as a mathematical model of computation 
by the logician, Emil Post (1943) in the 1920s, but first published in 1943. 
They were proposed as a computational model of human intelligence by the 
Artificial Intelligence researcher Alan Newell (1973). They have also been 
used for developing numerous expert systems, computer programs that 
simulate human expertise in such fields as medicine, finance, science and 
engineering. 
 
The production system cycle 
 
Production systems embed condition-action rules in an observation-thought-
decision-action cycle: 

Repeatedly, 
     observe the world,    
     think,   
     decide what actions to perform,   
     act.   
 
Thinking in production systems is similar to, but subtly different from, 
forward reasoning in logic. As in logic, if all of the conditions of a rule hold 
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in a given state, then the rule is said to be triggered or enabled, and the 
conclusion is derived. However, whereas, in logic, forward reasoning derives 
a conclusion that is a logical consequence of the conditions, in production 
systems, the conclusion is only a recommendation to perform actions. This 
kind of thinking is often called forward chaining, which helps to distinguish 
it from genuine forward reasoning, although not everyone uses these terms in 
this way. 

Although the conclusion of a production rule is only a recommendation to 
perform actions, it is common to express the actions as commands. If more 
than one rule is triggered in a given situation, and the actions of the rules are 
incompatible, then the agent needs to choose between them. This decision 
between conflicting recommendations is called conflict resolution. The rule 
or rules whose actions are chosen are said to be fired. 

 
Production systems with no representation of the world 
 
In the simplest case, an agent’s mental state might consist solely of 
production rules, without any mental representation of the world. All of the 
conditions of a rule are verified simply by matching them against the agent’s 
current observations. In such a case, it can be said that “the world is its own 
best model” (Brooks, 1991). If you want to find out about the world, don’t 
think, just look!  

Observing the current state of the world is a lot easier than trying to 
predict it from past observations and from assumptions about the persistence 
of past states of affairs. And it is a lot more reliable, because persistence 
assumptions can easily go wrong, especially when there are other agents 
around, changing the world to suit their own purposes.  
 
What it’s like to be a louse 
 
To see what a production system without any representation of the world 
might be like, imagine that you are a wood louse and that your entire life’s 
behaviour can be summed up in the following three rules: 
 

If it’s clear ahead, then move forward. 
    If there’s an obstacle ahead, then turn right. 
    If I am tired, then stop. 
 
Because you are such a low form of life, you can sense only the fragment of 
the world that is directly in front of you. You can also sense when you are 
tired. Thus, your body is a part of the world, external to your mind. Like 
other external objects, your body generates observations, such as being tired 
or being hungry, which are attended to by your mind. 
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  It doesn’t matter where the rules came from, whether they evolved 
through natural selection, or whether they were present at birth, thanks to 
some Grand Designer. The important thing is, now that you have them, they 
regulate and govern your life. 

Suppose, for the purpose of illustration, that you experience the following 
stream of observations: 
 
   clear ahead. 
   clear ahead. 
   obstacle ahead. 
   clear ahead and tired. 
 
Matching the observations, in sequence, against the conditions of your rules 
results in the following interleaved sequence of observations and actions: 
 
   Observe:    clear ahead. 
   Do:    move forward. 
 
   Observe:    clear ahead. 
   Do:    move forward. 
 
   Observe:    obstacle ahead. 
   Do:      turn right. 
 
   Observe:   clear ahead and tired. 
 
At this point, your current observations trigger two different rules, and their 
corresponding actions conflict. You can’t move forward and stop at the same 
time. Some method of conflict resolution is needed, to decide what to do. 

Many different conflict resolution strategies are possible. But, in this as in 
many other cases, the conflict can be resolved simply by assigning different 
priorities to the different rules, and selecting the action generated by the rule 
with the highest priority. It is obvious that the third rule should have higher 
priority than the second. So the appropriate action is: 
 
   Do:      stop. 
 
An even simpler approach is to avoid conflict resolution altogether, by 
changing the rules, adding an extra condition “and you are not tired” to the 
first and second rules. A more complicated approach is to use Decision 
Theory, to compare the different options and to select the option that has the 
highest expected benefit. But, no matter how it is done in this case, the result 
is likely to be the same – better to rest when you are tired than to forge ahead 
regardless. 
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 Once a louse has learned the rules, its internal state is fixed. Observations 
come and go and the louse performs the associated actions, as stimulus-
response associations, without needing to record or remember them. The 
price for this simplicity is that a louse lives only in the here and now and has 
no idea of the great wide world around it. For a normal louse, this may a 
small price to pay for enjoying the simple life.  
 
Production systems with internal state 
 
Although the simple life has its attractions, most people prefer a little more 
excitement. Some people even want to believe that their life has a purpose, 
whether or not they can know what that purpose may be.  
 We will investigate the meaning of life for our imaginary louse in Chapter 
9, but in the meantime we will have to be content with spicing up our 
production system model with an internal database that serves as an internal 
state. The database is a set of atomic sentences, which is like a relational 
database. Typically it is much smaller than a conventional database, and for 
this and for other, more psychological reasons it is often called a working 
memory. 

The database can be used to simulate the external world, or to represent 
and manipulate some imaginary world. It is also commonly used as a 
temporary memory to store calculations to solve a temporary goal. 

In a production system with an internal database, a rule is triggered when 
an atomic sentence that is an external or internal update of the database 
matches one of the conditions of the rule, and any additional conditions of the 
rule are verified as holding in the current state of the database9

 

. If the rule is 
triggered in this way, then the actions of the rule are derived as candidates for 
execution. When all of the candidate actions have been determined, then 
conflict resolution is used to choose one or more actions for execution. If a 
chosen action is an external action, then it is performed on the external world. 
If it is an internal action, then it is performed as an internal update of the 
database. 

What it’s like to be a Mars explorer 
 
To imagine what a production system with memory might be like, suppose 
that your life as a louse has expired; and, as a reward for your past efforts, 
you have been reincarnated as a robot sent on a mission to look for life on 
Mars. 

Fortunately, your former life as a louse gives you a good idea how to get 
started.  Moreover, because you are a robot, you never get tired and never 
                                                        
9More generally and to improve efficiency, partially triggered rules can be treated as 
new rules that can be further triggered by future updates. 
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have to rest. However, there are two new problems you have to deal with: 
How do you recognise life when you see it, and how do you avoid going 
around in circles? 

For the first problem, your designers have equipped you with a life 
recognition module, which allows you to recognise signs of life, and with a 
transmitter to inform mission control of any discoveries. For the second 
problem, you have an internal database to remember whether you have been 
to a place before, so that you can avoid going to the same place again. 

Of course, the problems facing a real-life robot are far more complex that 
that. They include very hard problems of constructing mental representations 
of observations and of converting mental representations of actions into 
physical motor controls. But to make the example tractible, we will ignore 
these interface problems and also simplify the associated knowledge 
representation issues. 

Given these simplifications, a production system with memory, which is a 
refinement of the production system of a louse, might look something like 
this: 
 

If the place ahead is clear  
and I haven’t gone to the place before, 
then go to the place. 
 
If the place ahead is clear 
and I have gone to the place before, 
then turn right. 

 
   If there’s an obstacle ahead  
   and it doesn’t show signs of life,  
   then turn right. 
 
   If there’s an obstacle ahead  
   and it shows signs of life,  
   then report it to mission control  
   and turn right. 
 
To recognise whether you have been to a place before, you need to make a 
map of the terrain. You can do this, for example, by dividing the terrain into 
little squares and naming each square by a co-ordinate, (E, N), where E is the 
distance of the centre of the square East of the origin, N is its distance North 
of the origin, and the origin (0, 0) is the square where you start.  

For this to work, each square should be the same size as the step you take 
when you move one step forward. Assuming that you have recorded the co-
ordinates of your current location in the database, then you can use simple 
arithmetic to compute the co-ordinates of the square ahead of you and the 
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square to the right of you, and therefore the co-ordinates of your next 
location. 

Every time you go to a square, you record your visit in the database. 
Then, to find out whether you have gone to a place before, you just consult 
the database. 

Suppose for example, that you are at the origin, pointed in an Easterly 
direction. Suppose also that the following atomic sentences describe a part of 
the external world around you: 
 
    life at (2, 1) 
    clear at (1, 0) 
    clear at (2, 0) 
    obstacle at (3, 0) 
    obstacle at (2, -1) 
    obstacle at (2, 1). 
 
Suppose also that you can see only one step ahead. So, when you start, the 
only thing you know about the world, in your internal database, is that your 
current location is (0, 0) and the only thing you can observe is that it is clear 
at (1, 0), which is the place immediately in front of you. 

Assume also that, although it is your mission to look for life, you are the 
only thing that moves. So this description of the initial state of the world will 
also apply to all future states of the world that you will encounter. 

With these assumptions, your behaviour is completely predetermined: 
 
   Initial database:   at (0, 0) 

 
   Observe:    clear at (1, 0) 
   Do:     move forward 
   Update database:  delete at(0, 0), add at(1, 0), add visited (0, 0) 
 
   Observe:    clear at (2, 0) 
   Do:     move forward 
   Update database:  delete at(1, 0), add at(2, 0), add visited(1, 0) 
 
   Observe:    obstacle at (3, 0) 
   Do:     turn right 
 
   Observe:    obstacle at (2, -1) 
   Do:     turn right 
 
   Observe:      clear at (1, 0) 
   Do:     turn right 
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   Observe:    obstacle ahead at (2, 1)  and  life at (2, 1) 
   Do:     report life at (2, 1) and turn right10

 
 

Notice that reporting your discovery of life to mission control is just another 
action, like moving forward or turning right. You have no idea that, for your 
designers, this is the ultimate goal of your existence.   

Your designers have endowed you with a production system that achieves 
the goal of discovering life as an emergent property of your behaviour. 
Perhaps, for them, this goal is but a subgoal of some higher-level goal, such 
as satisfying their scientific curiosity. But for you, none of these goals or 
subgoals is apparent. 
 
Condition-action rules with implicit goals 
 
Condition-action rules that implement reactive behaviour are an attractive 
model of evolutionary theory. As in the theory of evolution, the ultimate 
goal of such reactive rules is to enable an agent to survive and prosper, and 
is emergent rather than explicit. For example, the two rules:  

 
If there is an emergency then get help. 

  If there is an emergency then run away. 
 
have the implicit goal of dealing appropriately with the emergency, which is 
a euphemism for trying to save yourself, and maybe trying to save others if 
you can.  
 Reactive rules are also a natural way to generate simpler kinds of 
reactive behaviour, with more modest emergent goals. Herbert Simon (1999) 
gives the example of a production system for solving algebraic equations in 
one unknown, for example for solving the equation 7X + 6 = 4X + 12 with 
the unknown X. 
 

1. If the expression has the form X = N, where N is a number,  
  then halt and check by substituting N in the original equation. 
 

2. If there is a term in X on the right hand side,  
  then subtract it from both sides and collect terms. 
 

3. If there is a numerical term on the left hand side, 
     then subtract it from both sides, and collect terms. 
 

4. If the equation has the form NX = M, N ≠ 0, 
    then divide both sides by N. 

                                                        
10 I leave it to the reader to work out what happens next, and I apologise for any 
complications in advance.  
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To solve the equation, both the initial equation and an extra copy of the 
equation are put into the initial database. The actions of the rules change the 
copy of the equation until it is in the right form for the application of rule 1, 
when the solution needs to be substituted into the original equation. The 
production system cycle executes the following steps: 
 
  Initial equation:    7X + 6 = 4X + 12 
  Use 2 to obtain:    3X + 6 = 12 
  Use 3 to obtain:         3X = 6 
  Use 4 to obtain:           X = 2 
  Use 1 to halt and check:       7⋅2 + 6 = 4⋅2 + 12. 
 
Notice that there is no explicit representation of the top-level goal of solving 
the original equation. Nor is there any representation of the implicit 
intermediate subgoals of combining all occurrences of the variable into one 
occurrence and of isolating the variable. The first subgoal is the purpose of 
rule 2, and the second subgoal is the purpose of rules 3 and 4. 
 The top-level goal and its relationship with the intermediate subgoals 
could be made explicit by means of the conditional (Bundy et al, 1979): 
 
  An equation with a single variable X is solved 
  if all occurrences of X are combined into a single occurrence 
  and the single occurrence of X is isolated. 
 
We will investigate the relationship between logical conditionals with 
explicit goals and production rules with emergent goals when we explore the 
meaning of life and dual process theories of thinking in Chapter 9. In that 
chapter, I will suggest that an agent has a higher-level of consciousness 
when it has an explicit representation of its goals, and that it has a lower-
level of consciousness when its goals are only emergent.  
 But even emergent goals are better than none. The fact that an agent’s 
behaviour has any goals at all, whether they be conscious or emergent, can 
be said to give the agent’s life a meaning, in the sense that they give its life a 
purpose. 
 
The use of production systems for forward reasoning 
 
The natural correspondence between reactive condition-action rules and 
stimulus-response associations is probably production systems’ biggest 
selling point. It may even be the evolutionary ancestor of all later forms of 
higher-level intelligence. If so, the next step in evolution might have been 
the extension from forward chaining with reactive rules to forward reasoning 
with conditionals. 
 Consider, for example, the following fragment of the family tree of 
Adam and Eve from the Book of Genesis: 
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     Eve mother of Cain 
     Eve mother of Abel 
     Adam father of Cain 
     Adam father of Abel 
     Cain father of Enoch 
     Enoch father of Irad 
 
Consider also the production rules: 
 
     If X  mother of Y  
     then add X ancestor of Y. 
 
     If X  father of Y  
     then add X ancestor of Y.  
 
     If X ancestor of Y 
     and Y ancestor of Z 
     then add X ancestor of Z. 
 
Suppose that the only conflict resolution that is performed is to avoid firing 
the same rule matching it with the same facts in the database more than once 
(called refraction in the production system literature). Then the initial 
database is successively updated, until no new facts can be added: 
 
In the first iteration add:   Eve ancestor of Cain 
         Eve ancestor of Abel 
         Adam ancestor of Cain 
         Adam ancestor of Abel 
         Cain ancestor of Enoch 
         Enoch ancestor of Irad 
 
In the second iteration add:   Eve ancestor of Enoch 
         Adam ancestor of Enoch 
         Cain ancestor of Irad 
 
         
In the third iteration add:   Eve ancestor of Irad 
         Adam ancestor of Irad 
 
If the word add is omitted from the action part of the three production rules, 
then the rules are indistinguishable from logical conditionals, and forward 
chaining is indistinguishable from forward reasoning. 
 More generally, production systems can implement forward reasoning 
from an initial set of facts with any set of conditionals all of which satisfy 
the restriction that any variable in the conclusion of a conditional occurs 
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somewhere in the conditions of the conditional. This restriction, called the 
range-restriction, is relatively easy to satisfy and avoids such conditionals 
as: 
 
    If pigs can fly then X is amazing. 
i.e.    If pigs can fly then everything is amazing. 
 
To implement forward reasoning, it suffices to prefix the word add before 
every conclusion, to turn the conclusion into an action that updates the 
database. 

 
The use of production systems for goal reduction 
 
The step from reactive rules to forward reasoning with conditionals is an 
easy one. The next step, to goal-reduction is much harder. This is because, to 
represent goal-reduction in production rule form, the working memory needs 
to contain, in addition to “real” facts, which represent the current state of a 
database, also goal facts, which represent some desired future state. Goal 
manipulation actions need to add goal facts when goals are reduced to 
subgoals and to delete goal facts when they are solved. Goal-reduction is 
implemented, not by backward reasoning as in logic programming, but by 
forward chaining with rules of the form: 
 
 If goal G and conditions C then add H as a subgoal. 
 
Goal-reduction in production rule form is an important feature both of 
cognitive models, such as Soar and ACT-R, and of many commercial expert 
systems. 

In his Introduction to Cognitive Science, Thagard (2005) uses the ability 
of production systems to perform goal-reduction to support his claim that 
“unlike logic, rule-based systems can also easily represent strategic 
information about what to do”. He illustrates his claim with the following 
example (page 45): 
 
 If you want to go home and you have the bus fare, 
  then you can catch a bus. 
 
Forward chaining with the rule reduces a goal (going home) to a subgoal 
(catching a bus). 
 But earlier in the book, we saw that goal reduction can also be performed 
by backward reasoning with conditionals. In the case of Thagard’s example, 
with the conditional: 
 
 You go home if you have the bus fare and you catch a bus. 
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Thus Thagard’s argument against logic can be viewed instead as an argument 
for logic programming and Computational Logic, because they too can easily 
represent strategic information. 
 In fact, Thagard’s argument can be turned against itself. How do you 
represent the fox’s strategy for having an object by first getting near it and 
then picking it up? The production rule:  
 

If you want an object and you are near the object, 
   then you can pick the object up. 
 
assumes you are already near the object. It’s not obvious how to formulate 
the more general strategy: 
 

If you want an object  
then you can get near the object, 

   and you can pick the object up. 
 
The actions in this general strategy are a sequence of a subgoal followed by 
an action. But production systems normally accommodate only actions that 
can be performed in the same iteration of a cycle. 
 To deal with problems of this kind, the production systems Soar and 
ACT-R employ a different structure for goals and subgoals than they do for 
ordinary facts. They store goals in a stack. When a goal is reduced to a 
subgoal, the new subgoal is put (or pushed) on top of the stack. When a goal 
is solved, it is taken off (or popped) from the top of the stack. Only the goal 
at the top of the stack can contribute to the triggering of a production rule.  

The goal stack can be used to reduce the goal of having an object to the 
subgoals of getting yourself and the object near to one another and of picking 
the object up, for example in the following way: 
 

If your goal (at the top of the goal stack) is to have an object  
and you are not near the object, 

  then make your goal (pushing it on top of the stack) to be near the object  
 

If your goal (at the top of the goal stack) is to have an object  
and you are near the object, 

  then pick up the object. 
 

If your goal (at the top of the goal stack) is to have an object  
and you have the object 

  then delete the goal (by popping it from the top of the stack). 
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To represent the general strategy as a single rule, it is necessary either to 
represent it in logical form or to represent it in an agent programming 
language. 
 Many of the agent programming languages (see for example (Dennis et 
al, 2008)) that have been developed in Artificial Intelligence can be viewed 
as extensions of production systems in which rules have the more general 
form of reactive plans: 
 
  If triggering condition and other conditions hold,  
  then solve goals and perform actions. 
 
The conclusions of such reactive plans can be a collection of subgoals to be 
achieved and of actions to be performed over several agent cycles. The 
triggering condition can be either an observation or a goal. Thus, forward 
chaining with such rules can perform goal-reduction, without the restriction 
of production systems that all the actions in the conclusion of a rule have to 
be performed in a single cycle.  
 The alternative to performing goal-reduction by forward chaining, 
whether with simple production rules or with reactive plans, is to perform 
goal-reduction by backward reasoning with logical conditionals. The 
advantage of the logical alternative is that it simultaneously represents both 
the goal-reduction procedure and the belief that justifies the procedure. 
 
Logic versus production rules 
 
Thus there are three kinds of production rules: reactive rules, forward 
reasoning rules, and goal-reduction rules. It is only reactive rules that do not 
have an obvious logical counterpart. However, in the next chapter, we will 
see that reactive rules can be understood in logical terms as conditional goals. 
Forward reasoning rules can be understood as conditional beliefs used to 
reason forward, and goal-reduction rules as conditional beliefs used to reason 
backwards. 
 Thagard’s textbook (2005, page 47) includes the claim that, in contrast 
with logic, “rules can be used to reason backward or forward”. In fact, it 
would be more accurate to state that in contrast with production rules, logical 
conditionals can be used to reason backward or forward. Because conditions 
in production rules come first and actions come later, true production rules 
can only be used in the forward direction.  

To be fair to Thagard, in most of his arguments against logic and in 
favour of rules, he is only reporting common misconceptions, failing to 
recognise the properties of logical conditionals and attributing their 
properties to production rules instead. What is most unfortunate is that these 
confusions have permeated Cognitive Science and held back its progress 
since the early 1970s. 
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 However, production systems do have a critical feature that logic is 
missing - the production system cycle, which is the intellectual ancestor of 
the agent cycle. The agent cycle plays a critical role in the logic-based agent 
model of this book, linking an agent’s thoughts in logical form to changes in 
the agent’s surrounding environment.  
 
 
 
Conclusions 
 
The use of production systems to generate the behaviour of an intelligent 
agent, as seen in this chapter, can be pictured like this: 
 
 
 
 
 
 
                     
      Forward chaining   Conflict resolution 
 
               
 
 
 

 
 
In the next chapter we will see how logic and production systems can be 
reconciled in a more general framework, which uses logic for an agent’s 
thoughts, and uses an agent cycle to embed the agent in a semantic structure, 
which gives meaning to the agent’s thoughts. 
  

        working memory 

         the world 

? 

observe act 
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Chapter 8 Maintenance Goals as the Driving 
Force of Life 
 
What do the passenger on the London underground, the fox, the wood louse, 
the Mars explorer and even the heating thermostat have in common? It 
certainly isn’t the way they dress, the company they keep, or their table 
manners. It is the way that they are all embedded in a constantly changing 
world, which sometimes threatens their survival, but at other times provides 
them with opportunities to thrive and prosper. 
 To survive and prosper in such an environment, an agent needs to be 
aware of the changes taking place in the world around it, and to perform 
actions that change the world to suit its own purposes. No matter whether it is 
a human, wood louse, robot or heating thermostat, an agent’s life is an 
endless cycle, in which it must: 
 

repeatedly (or concurrently) 
     observe the world,    
     think,   
     decide what actions to perform, and 
     act. 
 
We can picture this relationship between the mind of an agent and the world 
like this: 

 

 

 

 
 

 
 

 
 

 
 
The observation-thought-decision-action cycle is common to all agents, no 
matter how primitive or how sophisticated. For some agents, thinking might 

observe act 

     The world 

think decide 
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involve little more than firing a collection of stimulus-response associations, 
without any representation of the world. For other agents thinking might be a 
form of symbol processing, in which symbols in the mind represent objects 
and relationships in the world. For such symbol manipulating agents, the 
world is a semantic structure, which gives meaning to the agent’s thoughts. 

Although production systems perform thinking by manipulating symbolic 
expressions, they do not interpret expressions in terms of semantic structures. 
Instead, the production system cycle provides production systems with a so-
called operational semantics, which is a mathematical characterization of the 
transitions from one state of the production system cycle to the next. From a 
logical point of view, operational semantics is not a semantics at all. 

In contrast with production systems, logic has a well-developed semantics 
understood in terms of the relationship between symbolic expressions and the 
objects those symbolic expressions represent. However, the semantics of 
traditional logic does not take adequate account of the dynamic interaction 
between symbolic representations and the environment in which those 
representations are embedded.  

We will investigate the semantics of logical representations of the 
changing world in greater detail in Chapter 13. In this chapter we sketch a 
preliminary framework that combines the dynamic interactions of the 
production system cycle with the semantics and inference mechanisms of 
Computational Logic. The first step in this direction is to interpret reactive 
condition-action rules as conditional goals in logical form, and to recognize 
that the role of such goals is to motivate an agent to change the world around 
it. 

 
The semantics of beliefs 
 
We discussed logical semantics briefly in Chapter 3 and discuss in greater 
detail in the more advanced chapters A2, A3, A4, and A6. Here we will deal 
with only the most important features that distinguish the semantics of goals 
from the semantics of beliefs. To understand the semantics of goals, we need 
to understand, first, the simpler semantics of beliefs. 

Traditional logic is mainly concerned with the logic of beliefs, which 
represent an agent’s view of the world, whether or not the beliefs are actually 
true. They include atomic sentences that record the agent’s observations, such 
as the fox’s seeing that the crow has cheese. They also include causal beliefs 
about the laws of nature, such as the belief that if an agent picks up an object 
then the agent will possess the object. 

In addition to its beliefs about the directly observable world, an intelligent 
agent needs theoretical beliefs to organise and connect its other beliefs 
together. These include beliefs that identify objects as belonging to different 
theoretical classes, such as the classes of foxes, humans, animals, animates, 
agents, artefacts, and things. They typically also include beliefs that organise 
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such classes into hierarchies, in which, for example, foxes and humans are 
animals, animals are agents, agents are animates, and animates and artefacts 
are things.  

If an agent expresses its beliefs in the right form, then beliefs about 
objects belonging to classes higher in the hierarchy will apply with little extra 
effort to objects belonging to classes lower in the hierarchy. Thus the belief 
that if an animal picks up an object then the animal will possess the object 
also applies to all foxes and in particular to the fox in the story of the fox and 
the crow. 

Theoretical beliefs can also include beliefs about unobservable entities, 
like ghosts, angels, or electrons, and about unobservable relationships, such 
as haunting, blessing, or sending out waves. Such beliefs complicate the 
semantics of logic, because their entities and relationships need not really 
exist in the agent’s independently existing world.  

But such complications arise even with classes of objects and with 
hierarchical relationships, which are also not directly observable. Indeed, 
even observable objects and relationships, as in the fox’s observation that the 
crow has the cheese, are arguably constructed in part by the eye of the 
beholder. Thus, the easiest way to deal with all of these complications in one 
go is simply to identify the agent’s external environment with the set of 
atomic sentences, which represents the world as the agent experiences it. 

  
The semantics of goals 
 
In contrast with an agent’s beliefs, which represent the way the agent sees the 
world as it is, whether the agent likes it or not, an agent’s goals represent the 
agent’s view of the world as the agent would like it to be. There isn’t much 
an agent can do about the past. So goals only affect actions that the agent can 
perform in the future. 

The most obvious kind of goal is an achievement goal, to attain some 
desired future state of the world. The simplest kind of achievement goal is 
just an atomic action, such as the fox picks up the cheese. However, a more 
typical achievement goal is an observation sentence, such as the fox has the 
cheese, that the agent would like to hold in the future. Achievement goals can 
include actions and conjunctions of atomic sentences, such as the fox has the 
cheese and the fox eats the cheese. They can also include existentially 
quantified goals, which contain “unknowns” such as there exists some 
instance of food, such that the fox has the food and the fox eats the food. 
Achievement goals motivate an agent to generate a plan of actions, such as 
the fox praises the crow, picks up the cheese and eats the cheese, to change 
the world into future states in which the goals are true. 
 A less obvious kind of goal, but arguably one that is more fundamental, is 
a maintenance goal, which maintains the agent in a harmonious relationship 
with the changing state of the world. Achievement goals are typically derived 
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from maintenance goals, as the result of the agent observing some change in 
the world around it. 

For example, in the story of the fox and crow, the fox’s goal of having the 
crow’s cheese appears out of the blue. A more realistic version of the story 
would include the circumstance that triggered the goal. Perhaps the fox is 
behaving like a spoiled child, wanting to have anything she observes in the 
possession of another animal. Or perhaps she is just looking for her next 
meal. In either case, the fox’s goal of having the cheese can be viewed as a 
goal of achieving some future state of the world, in response to observing a 
change in the world, which triggers a higher-level goal of maintaining some 
desired relationship with the world around her. 

Suppose that we give the fox the benefit of doubt and assume that she 
wants to have the cheese simply because she is hungry, and not because she 
has a personality defect. This can be represented by the maintenance goal: 
 
   if I become hungry, then I have some food and I eat the food. 
 
The goal can be paraphrased, in the imperative: 
 
   if I become hungry, then get some food and eat the food. 
 
The imperative formulation resembles a condition-action rule, except the 
conclusion get some food is not a simple action. More generally, reactive 
condition-action rules can be understood as the special case of maintenance 
goals in which the conclusion is an action or a conjunction of actions, all of 
which are to be performed in the same iteration of the agent cycle. 
 It is common in natural languages to express goals, whether they be 
achievement goals, maintenance goals or constraints, imperatively as 
commands, in such forms as do this, if this then do that, and don’t do that. 
But in logic, it is simpler to express goals declaratively, with such 
expressions as this will be the case, whenever this is the case then that will be 
the case, and that will never be the case.  

The advantage of the declarative, logical representation of goals, 
compared with the imperative formulation, is that the same semantic notion 
of truth that relates an agent’s beliefs to the world also applies to the 
relationship between the agent’s goals and the world. The main difference 
being that beliefs represent sentences about the world that is outside the 
agent’s control, whereas goals represent sentences about the world that the 
agent can try to control by performing actions to make them true. 

To see how the fox’s achievement goal I have the cheese is related to the 
maintenance goal, suppose that the fox’s body tells her that she has just 
become hungry. Since her body is a part of the world, she becomes aware of 
her hunger by means of an observation: 
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Observation:   I become hungry. 
 
The observation matches the condition of the maintenance goal and forward 
reasoning derives the conclusion of the maintenance goal as an achievement 
goal: 
 
    ` I have some food and I eat the food. 
 
Thus, the real achievement goal is not specifically to have the crow’s cheese, 
but more generally to have some instance of food. And having food is only 
half the story. The fox also needs to eat the food. As far as the top-level 
maintenance goal is concerned, having food without eating it is useless. 

To connect the achievement goal with the rest of the story, the fox needs 
to have the taxonomic knowledge that cheese is a kind of food and that food 
is a kind of object. This knowledge can be represented in a number of 
different ways, and there are even specialised logics for this purpose, the 
details of which are unimportant here. Suffice it to say that, one way or 
another, this taxonomic knowledge is needed to instantiate the achievement 
goal, substituting the crow’s cheese for the “unknown” existentially 
quantified variable some food.  

 
The time factor 
 
Our reconsideration of the story of the fox and crow is still an over-
simplification, because it does it does not deal with the issue of time. It does 
not indicate how much time can elapse between becoming hungry and eating. 
Nor does it distinguish between different occurrences of becoming hungry at 
different times.  

We have already seen briefly in earlier chapters that one way of dealing 
with time is by including time points in the mental language with such 
representations of the temporal relationship between cause and effect as: 

 
an animal has an object at a time  
if the animal is near the object at an earlier time 
and the animal picks up the object at the earlier time 
and nothing terminates the animal having the object between the two times. 
 
In a similar way, the fox’s maintenance goal with explicit temporal 
relationships can be represented like this: 
 
 if I become hungry at a time 

then I have some food at a later time 
and I eat the food at the later time. 
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Although the different times and temporal relationships are explicit, they can 
be made more precise with a little symbolic notation: 
 
 for every time T1  
 if I become hungry at time T1 

then there exists a time T2 and an object O such that O is food 
and I have O at time T2 
and I eat O at time T2 
and T1 ≤ T2. 

 
Here the variable T1 is universally quantified with scope the entire goal, and 
the variables T2 and O are existentially quantified with scope the conclusion 
of the goal.  
 Although this representation does not put any limit on the amount of time 
that can elapse between the time T1 of becoming hungry and the time T2 of 
having food and eating, it does at least indicate their temporal order. It would 
be easy to add an extra condition to the conclusion, for example T2 ≤ T1 + 24 
hours, but it would be hard to quantify the limit exactly.  
 The alternative to adding an extra condition is to leave the decision about 
when to do what to the decision-making component of the agent cycle. This 
way, the decision is made in the broader context of the totality of the agent’s 
current goals, balancing the urgency, utility and probability of achieving one 
goal against another. We shall investigate such decision-making in Chapter 
11. 

We will return to this revised story in the section after next. 
 

Maintenance goals as the driving force of life 
 
The notion of maintenance goal arises, in one guise or another, in many 
different disciplines, often in opposition to the notion that the purpose of life, 
whether of an individual or of an organisation, consists of achievement goals.  
 At the lowest level, even below the level of condition-action rules, 
maintenance goals appear in the biological mechanism of homeostasis, which 
plants and animals use to maintain a stable relationship with their 
environment. For example, homeostasis controls our body’s temperature by 
causing us to sweat when it’s too hot, and to shiver when it’s too cold. The 
body’s homeostatic temperature control mechanism is like a maintenance 
goal, implemented in hardware rather than in software, responding to 
observations of the current temperature by generating actions to keep the 
body in balance with the changing environment. 
 More importantly for the topic of this book, an analogous notion appears 
also in Management Science, where it is associated with the so-called soft 
systems methodology, developed by Peter Checkland (2000) and inspired by 
Sir Geoffrey Vickers’ notion of appreciative system. Vickers (1965) 
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developed the notion of appreciative system as the result of his practical 
experience in management and administration in the British civil service, as a 
member of the National Coal Board and other public bodies. 
 In his work, Vickers acknowledged the influence of Simon’s (1957, 1960) 
model of Management, in which individuals and organisations set goals, 
consider alternative solutions and evaluate alternatives to make decisions. 
However, Vickers sought to transcend this goal-oriented view of 
Management by supplementing it with a view that is more “appreciative” of 
the tight coupling between agents and their environment. As Churchland 
(2000) puts it, in an appreciative system: 

 
“we all do the following: 
selectively perceive our world;  
make judgements about it,  
judgements of both fact (what is the case?) and  
value (is this good or bad, acceptable or unacceptable?);  
envisage acceptable forms of the many relationships  
we have to maintain over time; and  
act to balance those relationships in line with our judgements.” 

 
Here there is an obvious similarity both with the agent cycle in general and 
with the focus on maintaining relationships between perceptions and actions. 
Judgements of value are a matter for the decision-making component of the 
agent cycle, which we investigate in Chapter 11. 
 
Embedding goals and beliefs in the agent cycle 
 
We return to the story of the fox and the crow. For simplicity, to focus on the 
way in which the fox’s reasoning with maintenance goals and beliefs is 
integrated in the agent cycle, we ignore the factor of time, and we ignore the 
alternative ways in which the fox can attempt to achieve the goal of having 
food. Suppose, therefore, that the fox has the following maintenance goal and 
beliefs: 

 
Goal:    if I become hungry, then I have food and I eat the food. 

 
Beliefs:   an animal has an object 

if the animal is near the object 
and the animal picks up the object. 

 
     I am near the cheese 

if the crow has the cheese  
and the crow sings. 
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     the crow sings if I praise the crow. 
 
    cheese is a kind of food. 
    food is a kind of object. 
 

For simplicity, we assume that the different components of the cycle -  
observing, thinking, deciding and acting – occur in sequence. In a real agent 
these individual components of the cycle might take place concurrently or 
even in parallel. To simulate concurrency, we will assume that the fox is such 
a rapid cycler that she has only enough time to perform one step of thinking 
in a single cycle.  
 We will also assume that the fox’s attempts to perform an action can fail, 
and that in the next step of the cycle she gets feedback by observing whether 
her actions succeed or fail. We retell the story from the point where the fox 
becomes hungry: 
 
The first iteration of the cycle. This is the classic case of an observation 
triggering a maintenance goal and deriving an achievement goal. 
 
Observation:          I become hungry. 
Forward reasoning, achievement goal:  I have food and I eat the food. 
No candidate action. 
 
The second iteration. The only thinking that the fox can do in this cycle is to 
reason backwards, to reduce the subgoal of having food to the subgoal of 
being near the food and picking it up.  This reasoning involves the taxonomic 
reasoning of matching “food” with “object”.  
 
No observation.   
Backward reasoning, new subgoals: I am near food and I pick up the food
           and I eat the food. 
No candidate action. 
 
The third iteration. In this iteration of the cycle, we suppose that the fox 
observes the crow has cheese. The fox has the choice of continuing to reason 
backwards from its current subgoals or of reasoning forwards from its new 
observation. Generally, it is a good idea to give priority to reasoning with 
new observations, just in case there is an emergency that needs to be dealt 
with immediately or an opportunity that shouldn’t be missed.  
 The observation matches one of the conditions of her belief I am near the 
cheese if the crow has the cheese and the crow sings. Because the belief is 
expressed in logical form, it can be used to reason forward or backward. 
Using it to reason forward, as in this case, it gives rise to a new belief. 
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Observation:         The crow has cheese. 
Forward reasoning, new belief:   I am near the cheese if the crow sings. 
No candidate action. 
 
The fourth iteration. The fox matches the conclusion of the new belief with the 
subgoal I am near food, by instantiating the universally quantified variable food 
with cheese. This could be viewed as either forward or backward reasoning, or 
just marrying up the two, which is another case of the resolution rule presented 
in Chapter A5. No matter how you look at it, the effect is to reduce the goal of 
being near food to the subgoal of making the crow sing. This has the side effect 
of finding out what the food is going to be if the new subgoals succeed. 
 
No observation. 
New subgoals:      the crow sings and I pick up the cheese  
          and I eat the cheese. 
No candidate action. 
 
The fifth iteration. The fox reduces the subgoal of making the crow sing to 
the subgoal of praising the crow. She now has a plan of actions, which she 
can start to execute. In this representation of actions without time, there is 
nothing to indicate the order in which the actions should be performed. So 
she cheats, knowing that in a representation with explicit time, it would be 
obvious that the new action I praise the crow should be performed first.  
 
No observation.   
Backward reasoning, new subgoals: I praise the crow and I pick up the cheese  
           and I eat the cheese. 
Action:         I praise the crow. 
 
The sixth iteration. The fox observes the result of the action she performed in 
the previous cycle. Assuming that the fox has not lost her voice, the 
observation confirms the success of her action, and solves the first of the 
three action subgoals, leaving the remaining two subgoals. The next of these 
two subgoals is also an action; and, given the intended order of the actions, 
there are no other candidate actions that she can perform at this time. 
 
Observation:           I praise the crow. 
Forward reasoning, remaining subgoals:   I pick up the cheese  
             and I eat the cheese. 
Action:           I pick up the cheese. 
 
 The seventh iteration The fox observes the result of her action. However, 
this time, to make the story more interesting, assume that the action fails, 
either because the crow has not yet started singing, because the cheese has 
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not yet reached the ground, or because the fox is physically inept. We also 
assume that the fox can try the same action again, provided that if there is a 
time limit on when the action needs to be performed, then that limit has not 
yet been reached.  
 
Negative observation:       I do not pick up the cheese. 
No thinking that can be shown without an explicit representation of time. 
Action:          I pick up the cheese. 
 
The negative observation I do not pick up the cheese can be regarded as a 
negative response to the action I pick up the cheese, viewed as a query do I 
pick up the cheese? from the fox to the world.  
 In general, an agent’s attempted actions can be regarded as queries posed 
to the world. In the simplest and ideal case, the world just responds in the 
affirmative, confirming that the action has succeeded. In the worst case, the 
world responds that the action has failed. But in the general case, the action 
may contain an existentially quantified variable representing an unknown, for 
example to indicate how far an action of moving forward one step actually 
succeeds. In such a case the world responds by instantiating the variable, 
giving feedback about the result of the action. 
 In our semantics, in which the world is described only by means of 
positive facts, a negative observation can be understood as a negative reply 
from the world to an attempted action or to an active observation by the 
agent. 
 
The eighth iteration. The fox observes that the action was successful this 
time. The observation solves the associated action subgoal, leaving only the 
last action in the plan, which the fox decides to perform in this cycle. 
 
Observation:            I pick up the cheese. 
Forward reasoning, remaining subgoal:   I eat the cheese. 
Action:            I eat the cheese. 
 
The ninth iteration. The observation of the successful performance of the 
action solves the last of the action subgoals. However, the maintenance goal 
remains, to be triggered on other, future occasions. 
 
Observation:           I eat the cheese.  
 
The general pattern of reasoning in this example, spread out over several 
cycles and interleaved with other observations and actions, is this: 
 
Observation:    An event happens. 
Forward reasoning: The event matches a condition of  
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  a maintenance goal or belief. 
Achievement goal: Eventually, after a combination of forward and 

backward reasoning, an instance of the conclusion 
of a maintenance goal is derived  

  as an achievement goal. 
Backward reasoning: Beliefs are used to reduce the achievement goal 
  to actions. 
Actions:     Action subgoals are selected for execution. 
Observation: The agent observes whether the actions  
  succeed or fail. Actions that fail are retried 
   if their time limit has not expired. 
 
The simple pattern of reasoning needs to be made more elaborate, by 
monitoring not only whether the agent’s actions succeed, but also whether its 
goals succeed. If its actions succeed, but its goals do not, then some of its 
beliefs, linking its actions to its goals, must be false. The agent can attempt 
both to diagnose the failure by identifying the false beliefs and to avoid 
future failures by correcting the faulty beliefs.  
 The general process of using confirming and refuting instances of beliefs 
to learn more correct beliefs is the basic technique of inductive logic 
programming (Muggleton and De Raedt, 1994). The integration of inductive 
logic progeramming into the agent cycle has been investigated by Dávila and 
Uzcátegui (2005), but is beyond the scope of this book. 
 
The general pattern of reasoning that is exemplified by the story of the fox 
and crow is not exceptional. A similar pattern arises in the London 
underground example. 
 
The London underground revisited 
 
Consider the following formulation of the London underground example, 
ignoring other ways of dealing with emergencies and other ways of getting 
help: 
 
Maintenance goal:    if there is an emergency then I get help. 
 
Beliefs:  a person gets help if the person alerts the driver. 

 a person alerts the driver if the person presses the alarm signal button. 
   there is an emergency if there is a fire. 
   there is an emergency if one person attacks another. 
   there is an emergency if someone becomes suddenly ill. 
   there is an emergency if there is an accident. 
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Here the last four beliefs can be viewed as part of the definition of a 
hierarchy of classes of events. These definitions could be extended upwards, 
for example by classifying an emergency as a kind of threat that needs to be 
dealt with immediately. They could be extended sideways by adding other 
kinds of emergencies. 

The hierarchy could also be extended downwards, for example by 
classifying different kinds of accidents. However, for the purpose of the 
present example, assume that we have additional beliefs, which do not 
classify fires, but help to recognize their manifestations. For simplicity, we 
represent these beliefs in the form cause if effect. We use this form, rather 
than the more fundamental causal formulation effect if cause, because it 
simplifies the kind of reasoning needed. We will discuss the reasoning, called 
abduction, needed for the causal formulation in Chapter 10. Moreover, we 
will also discuss the relationship between the two formulations when discuss 
the treatment of conditionals as biconditionals in Chapter 15. 
 
Additional beliefs:  there is a fire if there are flames. 
       there is a fire if there is smoke. 
 
This decomposition of the problem of recognising fire could be carried on 
indefinitely. But we would soon find it impossible to describe all the 
necessary lower-level concepts in recognisable, linguistic terms. Eventually, 
there must come a point at which there is a lowest level, which is irreducible 
to lower level concepts. This is the level at which the agent’s sensory system 
transforms the sensations it receives from the world into observations that 
can be represented as concepts in symbolic terms. 

Suppose, for the sake of the example, that the concepts of flames and 
smoke are the lowest level concepts directly observable in the environment. 
Suppose, moreover, that you are traveling on the underground and you 
observe smoke. Without going into all of the detail we went into for the fox 
and crow example, the agent cycle, possibly spread across several iterations 
of the agent cycle, looks like this: 
 
Observation:         there is smoke. 
Forward reasoning, new belief:    there is a fire. 
Forward reasoning, new belief:    there is an emergency. 
Forward reasoning, achievement goal:  I get help! 
Backward reasoning, subgoal:    I alert the driver! 
Backward reasoning, action:    I press the alarm signal button! 
 
We can picture this combination of forward and backward reasoning like 
this: 
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The action of pressing the alarm signal button, like the observation of an 
emergency, can be reduced to lower-level terms; for example, by first 
moving your finger to the button and then pushing the button with your 
finger. Moving your finger to the button can also be reduced, in turn, to still 
lower-level subgoals, like first moving your arm to the vicinity of the button 
and then fine-tuning the movement of your finger to the button. But 
eventually, there has to be a point where your body takes over from your 
mind and performs the actions directly on its own. 

All of this thinking takes time, during which you may have to deal with 
other observations and perform other actions. Scheduling actions so that 
everything is dealt with in a timely manner is a task for the decision making 
component of the agent cycle. We have kept the examples in this chapter 
deliberately simple, so that no such decisions need to be made. However, we 
will address the problem of making decisions in Chapter 11. 

 
The semantics of maintenance goals reconsidered 

 
The same definition of truth applies to both conditional goals and conditional 
beliefs. In general a conditional, whether a goal or a belief, is true if and only 
if either its conditions are false or its conclusion is true. In the first case, 
when its conditions are false, the conditional is true because then it doesn’t 
matter whether its conclusion is true or false. In the second case, when its 
conclusion is true, the conditional is true because then it doesn’t matter 
whether its conditions are true or false. The only case that matters is the case 

  

      If there is an emergency then get help 
 
 
 
  Forward 

reasoning 
Backward  
reasoning 

 get help 

press the alarm 
signal button  
 

There is a fire alert the driver 

There is smoke 

       The world 

There is an emergency
  
 

Observe Act 
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in which a conditional can fail to be true, and that is when the conditions are 
true and the conclusion is false. 
 The difference between an agent’s goals and its beliefs is that the world 
determines the truth of its beliefs, but maintaining the truth of its goals partly 
determines the world. 
 An agent’s actions serve no other purpose than to make its goals true in 
the world. To make a maintenance goal true, it is enough for the agent to 
make the conclusion true whenever the world makes the conditions true. 
Either the world makes the conditions true independently of the agent, 
whether the agent likes it or not; or the world makes them true, because the 
agent has made them true for some other purpose of its own. 
 The agent need not make the conclusion of a maintenance goal true when 
the conditions are false; and it need not make extra work for itself, by first 
making the conditions true, and then being forced to make the conclusion 
true.  
 However, there is another case in which an agent can make a maintenance 
goal true, which although it is not strictly necessary can nonetheless be very 
useful. It is the case in which an agent makes the conditions false, to prevent 
them from becoming true, to avoid the need to make the conclusion true in 
the future. For example, although an agent can make true the goal if there is 
an emergency then I get help simply by waiting for an emergency and then 
getting help, it can also make the goal true by preventing the emergency 
instead.  
 We will see how Computational Logic deals with preventative 
maintenance in Chapter A6. In the meanwhile, we note that, if production 
systems are viewed in logical terms, then they make condition-action rules 
true only by making their conclusions true when the world makes their 
conditions true. They cannot make condition-action rules true by preventing 
their conditions from becoming true. 
 
Prohibitions 
 
Prevention can be viewed as a voluntary form of prohibition. Given the 
obligation of making a maintenance goal true, an agent has a choice: Either 
make the conclusion true when the conditions become true, or make the 
conditions false, preventing the conditions from becoming true. With genuine 
prohibitions there is no choice: Make the conditions false. 
 A prohibition can be regarded as a special kind of maintenance goal 
whose conclusion is literally false. For example: 
 
    if you steal then false. 
i.e.    Do not steal. 
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if you are drinking alcohol in a bar and are under eighteen 
then false. 

i.e.    Do not drink alcohol in a bar if you are under eighteen. 
 
    if you a liable to a penalty for performing an action 
    and you cannot afford the penalty 
    and you perform the action  
    then false. 
i.e.    Do not perform an action  
    if you are liable to a penalty for performing the action 
    and you cannot afford the penalty. 
 
The advantage of regarding prohibitions as a special kind of maintenance 
goal is that the same semantics and the same inference rules that apply to 
maintenance goals in general also apply to prohibitions in particular. 
 The semantics of maintenance goals applies to prohibitions, because the 
only way to make a conditional true if its conclusion is false is to make the 
conditions false.  
 We will see later that reasoning forwards with a maintenance goal can be 
triggered not only by an observation, but also by a hypothetical candidate 
action. Similarly, the consideration of a candidate action can trigger forward 
reasoning with a prohibition. Backward reasoning can then attempt to 
determine whether the other conditions of the prohibition are true. If they are, 
then one step of forward reasoning derives the conclusion false. The only 
way to make the prohibition true, therefore, is to make the conditions of the 
prohibition false, by making the candidate action false and thereby 
eliminating it from further consideration. For example: 
 
   if you are considering stealing, then banish it from your thoughts. 
 
   if you are tempted to drink alcohol in a bar  
   and are under eighteen, then don’t. 

 
   if you are thinking of performing an action  
   and you are liable to a penalty for performing the action 
   and you cannot afford the penalty, then do not perform the action. 
 
Constraints 
 
Prohibitions are constraints on the actions you can perform. But there can 
also be constraints on what you are willing to believe. Constraints of this 
second kind are familiar in the context of computer databases, where they 
maintain the integrity of the database, and for this reason are called integrity 
constraints. 
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 For example, a family database might contain such integrity constraints 
as: 
 
    if X is the mother of Y and X is the father of Z then false. 
i.e.    No one is both a mother and a father. 
 
    if X is an ancestor of X then false. 
i.e.    No one is their own ancestor. 
 
Integrity constraints are used to reject an update of the database that makes 
an integrity constraint false. For example, the second of the two integrity 
constraints above, would reject the following update to the database given by: 

 
Update:   Enoch father of Adam 
Database:   Eve mother of Cain 
     Eve mother of Abel 
     Adam father of Cain 
     Adam father of Abel 
     Cain father of Enoch 
     Enoch father of Irad 
 
     X ancestor of Y if X mother of Y.  
     X ancestor of Y if X father of Y. 
     X ancestor of Z if X ancestor of Y and Y ancestor of Z. 
 
The pattern of reasoning to check the integrity of the update is the same as 
the pattern for assimilating observations: 
 
Update:      Enoch father of Adam 
Forward reasoning:   Enoch ancestor of Adam 
Forward reasoning:   X ancestor of Adam if
Backward reasoning:   X ancestor of Adam  

 X ancestor of Enoch 

       if X ancestor of Y and 
Backward reasoning:   X ancestor of Adam  

Y ancestor of Enoch 

       if X ancestor of Y and 
Backward reasoning:   X ancestor of Adam if 

Y father of Enoch 

Backward reasoning:   X ancestor of Adam if 
X ancestor of Cain 

Backward reasoning:   Adam ancestor of Adam  
X father of Cain 

Forward reasoning:   false 
 
In a conventional database, the update would be rejected, because it implies 
the impossible conclusion false. But in Quine’s web of belief, any of the 
goals or beliefs involved in the derivation of false could be deemed the 
culprit, and could be rejected or revised instead.  
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 But belief and goal revision are complicated processes, not to be 
undertaken lightly. Fortunately, in many cases, full scale revision is 
unnecessary because it is obvious from the start which goals and beliefs are 
regarded with suspicion and which are deemed to be beyond any doubt. In 
the case of database updates, the integrity constraints are treated as given, and 
old data has higher priority than new data. So if new data violates an integrity 
constraint, it is the new data that takes the blame. In other applications, such 
as in learning new beliefs, in which the beliefs are under suspicion, the 
observations have higher priority than other beliefs, and belief revision is 
used to refine the beliefs. 
 In subsequent chapters we will see that constraints play an important role 
in eliminating candidate explanations of observations (abduction), and in 
eliminating candidate actions (prohibition). In these applications, it is even 
more obvious than in the case of database updates that it is the candidate 
explanation or action that is on trial, and which is the sole potential culprit to 
be rejected if falsity is derived. 
  
Summary 
 
The examples in this chapter illustrate how logic can be used in the context of 
an agent’s observation-thought-decision-action cycle. Placed in this context, 
logic is used for the higher levels of thought - both to reason forwards from 
observations, triggering maintenance goals and deriving achievement goals, 
and to reason backwards to reduce achievement goals to actions.  

Below the logical level, perceptual processes transform raw sensations 
into observations, and motor processes transform conceptual representations 
of actions into raw physical activity. The entire process can be pictured like 
this: 

 
 

Forward  
reasoning 

Backward  
reasoning 

Maintenance goal Achievement goal 

Observe Act 

        The world 

Sensory  
processes 

Motor 
 processes 
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We have seen that forward reasoning with maintenance goals generalises 
condition-action rules, achievement goals generalize the actions of condition-
action rules, and backward reasoning with beliefs generates plans of action. 
In later chapters, we will see how backward reasoning can also be used to 
explain observations (abduction) and how forward reasoning can also be used 
to infer consequences of both candidate explanations and candidate actions. 
We will also see how this use of forward reasoning from candidate 
explanations and actions helps to inform the next, decision-making stage in 
the cycle, so that different candidates can be compared, and better informed 
decisions can be made. 
 But first, in the next chapter, we will see that much of this sophisticated 
reasoning can often be compiled into more efficient, lower-level stimulus-
response associations. 
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Chapter 9. The Meaning of Life 
 
It’s bad enough to be a Mars explorer and not to know that your purpose in 
life is to find life on Mars. But it’s a lot worse to be a wood louse and have 
nothing more important to do with your life than to just follow the 
meaningless rules: 
 
Goals:    if it’s clear ahead, then I move forward. 
     if there’s an obstacle ahead, then I turn right. 
     if I am tired, then I stop. 
 
In fact, it’s even worse than meaningless. Without food the louse will die, 
and without children the louse’s genes will disappear. What is the point of 
just wandering around if the louse doesn’t bother to eat and make babies? 

Part of the problem is that the louse’s body isn’t giving it the right signals 
- not making it hungry when it is running out of energy, and not making it 
desire a mate when it should be having children. It also needs to be able to 
recognise food and eat, and to recognise potential mates and propagate. 

So where does the louse go from here? If it got here by natural evolution, 
then it has nowhere to go and is on the road to extinction.  

But if it owes its life to some Grand Designer, then it can plead with her 
to start all over again, this time working from the top-down. The Grand 
Designer would need to rethink the louse’s top-level goals, decide how to 
reduce them to subgoals, and derive a new, more effective specification of 
the louse’s input-output behaviour. 

Suppose the Grand Designer identifies these as the louse’s top-level 
goals: 
 
Top-level goals:  the louse stays alive for as long as possible and  
       the louse has as many children as possible. 
 
Of course, a critic might well ask: What purpose do these goals serve, and 
why these goals and not others? Perhaps staying alive is just a subgoal of 
having children. And perhaps having children is just one way of promoting 
the survival of one’s genes. But eventually the critic would have to stop. 
Otherwise he could continue asking such questions forever. 

To reduce the louse’s top-level goals to subgoals, the designer needs to 
use her beliefs about the world, including her beliefs about the louse’s bodily 
capabilities. Moreover, she can build upon her earlier design, in which the 
louse moved around aimlessly, and give its movements a purpose. She could 
use such beliefs as: 
 
Beliefs: the louse stays alive for as long as possible, 
   if whenever it is hungry then it looks for food  
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   and when there is food ahead it eats it,  
   and whenever it is tired then it rests,  
   and whenever it is threatened with attack then it defends itself. 
 
  the louse has as many children as possible, 
  if whenever it desires a mate then it looks for a mate and  
  when there is a mate ahead it tries to make babies. 
 
  the louse looks for an object, 
  if whenever it is clear ahead then it moves forward,  
  and whenever there is an obstacle ahead and it isn’t the object  
   then it turns right 
  and when the object is ahead then it stops. 
 
  the louse defends itself if it runs away. 
 
  Food is an object. 
  a mate is an object. 
 
If the louse were as intelligent as the designer, then the designer could just 
hand these beliefs and the top-level goal directly over to the louse itself. The 
louse could then reason forwards and backwards, as the need arises, and would 
be confident of achieving its goals, provided the designer’s beliefs are actually 
true. 

But the louse possesses neither the designer’s obvious physical attractions, 
nor her superior intellect and higher education. The designer, therefore, not 
only has to identify the louse’s requirements, but she has to derive an input-
output representation, which can be implemented in the louse, using its limited 
physical and mental capabilities. 

One way for the designer to do her job is to do the necessary reasoning for 
the louse in advance. She can begin by reasoning backwards from the louse’s 
top-level goals, to generate the next, lower level of subgoals:  
 
Subgoals:  whenever the louse is hungry then it looks for food  
    and when there is food ahead it eats it, and 
    whenever the louse is tired then it rests, and 
    whenever the louse is threatened with attack then it defends itself and 
    whenever the louse desires a mate then it looks for a mate  
    and when there is a mate ahead it tries to make babies. 
 
The English words “whenever” and “when” are different ways of saying “if”, 
but they carry an additional, temporal dimension11

                                                        
11 It is interesting that both the temporal and logical interpretations of the ambiguous 
English word “then” are meaningful here.   

. It would be a distraction 
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to deal with such temporal issues here. For that reason, it is useful to 
reformulate the subgoals in more conventional logical terms. At the same 
time, we can take advantage of the reformulation to eliminate an ambiguity 
associated with the scope of the words “and when”: 
 
Subgoals:  if the louse is hungry then it looks for food, and  
    if the louse is hungry and there is food ahead then it eats it, and 
    if the louse is tired then it rests, and 
    if the louse is threatened with attack then it defends itself, and 
    if the louse desires a mate then it looks for a mate, and  
   if the louse desires a mate and there is a mate ahead  
   then it tries to make babies. 
 
Unfortunately, the designer’s work is not yet done. Some of the conclusions of 
the subgoals include other goals (like looking for food, defending itself, and 
looking for a mate) that need to be reduced to still lower-level subgoals12. 
Fortunately, for the designer, this is easy work. It takes just a little further 
backward reasoning and some logical simplification13

 

, to derive a specification 
that a behaviourist would be proud of: 

New Goals: 
 
if the louse is hungry and it is clear ahead  
then the louse moves forward. 
 
if the louse is hungry and there is an obstacle ahead and it isn’t food  
then the louse turns right. 
 
if the louse is hungry and there is food ahead  
then the louse stops and it eats the food. 
 
if the louse is tired then the louse rests. 
 
if the louse is threatened with attack then the louse runs away. 
 
if the louse desires a mate and it is clear ahead  
then the louse moves forward. 
 
if the louse desires a mate and there is an obstacle ahead and it isn’t a mate  
                                                        
12 For simplicity, we can assume that running away, resting and trying to make babies 
are all actions that the louse can execute directly without reducing them to lower-level 
subgoals. 
13 The necessary simplification is to replace sentences of the form if A, then if B then 
C by logically equivalent sentences of the form if A and B then C. 
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then the louse turns right. 
 
if the louse desires a mate and there is an obstacle ahead and it is a mate  
then the louse stops and it tries to make babies. 
 
The new goals specify the louse’s input-output behaviour and can be 
implemented directly as a production system without memory. However, the 
new goals are potentially inconsistent. If the louse desires a mate and is hungry 
at the same time, then it may find itself in a situation, for example, where it 
has to both stop and eat and also turn right and look for a mate simultaneously. 
To avoid such inconsistencies, the louse would need to perform conflict 
resolution. 

But if it’s too much to expect the louse to reason logically, it’s probably 
also too much to expect the louse to perform conflict resolution. And it’s 
certainly far too much to expect it to apply Decision Theory to weigh the 
relative advantages of satisfying its hunger compared with those of satisfying 
its longing for a mate. The simplest solution is for the designer to make these 
decisions for the louse, and to build them into the specification: 
 
if the louse is hungry and is not threatened with attack and 
it is clear ahead then the louse moves forward. 
 
if the louse is hungry and is not threatened with attack and 
there is an obstacle ahead and it isn’t food and it doesn’t desire a mate 
then the louse turns right. 
 
if the louse is hungry and is not threatened with attack and 
there is food ahead then the louse stops and eats the food. 
 
if the louse is tired and is not threatened with attack and  
is not hungry and does not desire a mate then the louse rests. 
 
if the louse is threatened with attack then the louse runs away. 
 
if the louse desires a mate and is not threatened with attack and  
it is clear ahead then the louse moves forward. 
 
if the louse desires a mate and is not threatened with attack and  
is not hungry and there is an obstacle ahead and it isn’t a mate  
then the louse turns right. 
 
if the louse desires a mate and is not threatened with attack and  
there is a mate ahead then the louse stops and tries to make babies. 
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if the louse desires a mate and is hungry and 
is not threatened with attack and  
there is an obstacle ahead and it isn’t a mate and it isn’t food 
then the louse turns right. 
 
The new specification is a collection of input-output associations that give 
highest priority to reacting to an attack, lowest priority to resting when tired, 
and equal priority to mating and eating. Now the only situation in which a 
conflict can arise is if there is a mate and food ahead at the same time. Well, 
you can’t always worry about everything. Even a wood louse deserves a 
modicum of free will, even if it means nothing more than making a random 
choice. 
 
The mind body problem 
 
In general, a designer’s job ends when she has constructed a declarative 
description of her object’s input-output behaviour. How that behaviour is 
implemented inside the object is not her concern.  

In computer science, this decoupling of an object’s design from its 
implementation is called encapsulation. The implementation is encapsulated 
inside the object. Objects can interact with other objects, taking only their 
input-output behaviour into account. 

The notion of encapsulation partially vindicates the behaviourist’s point of 
view. Not only is it impossible in many cases to determine what goes on inside 
another object, but for many purposes it is also unnecessary and even 
undesirable. 

Our louse is no exception. It would be easy, given the input-output 
specification, to implement the louse’s behaviour using a primitive production 
system without memory and without conflict resolution. But does the louse 
need to have a mind at all - to represent concepts such as hunger and food and 
to derive symbolic representations of its actions? Does the louse really need to 
carry around all this mental baggage, when the necessary, instinctive 
behaviour can be hardwired, as a collection of input-output associations, 
directly into the louse’s body instead14

Similarly, as we saw in Chapter 7, a designer might specify a thermostat in 
symbolic terms. But it doesn’t follow that the thermostat needs to manipulate 
symbolic expressions to generate its behaviour. Most people would be 
perfectly happy if the design were implemented with a simple mechanical or 
electronic device. 

? 

                                                        
14 This argument has been made, among others, by Rodney Brooks at MIT, who has 
implemented several generations of mindless, louse-like robots, which display 
impressively intelligent behaviour. 
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In the same way that a thermostat’s behaviour can be viewed externally in 
logical, symbolic terms, without implying that the thermostat itself 
manipulates symbolic expressions, our louse’s behaviour can also be 
implemented as a collection of instinctive input-output associations in a body 
without a mind.  

 
Dual process theories of intuitive and deliberative 
thinking 
 
In our imaginary example, the Grand Designer has a high-level awareness of 
the louse’s goals and has beliefs that explain how the louse’s behaviour helps 
the louse to achieve its goals. But the louse has only low-level, instinctive 
input-output associations, without being aware of their purpose.  
 But people are different. Although much of our human behaviour is 
intuitive, instinctive and sometimes even mindless, we can often step back 
from our intuitive judgements, consciously deliberate about their implicit 
goals, and control our behaviour to better achieve those goals. It is as though 
we could be both a louse and a louse designer at the same time. 
 This combination of intuitive and deliberative thinking is the focus of 
dual process theories of human thinking. As Kahneman and Frederick (2002) 
put it, the intuitive, subconscious level “quickly proposes intuitive answers to 
judgement problems as they arise”, while the deliberative, conscious level 
“monitors the quality of these proposals, which it may endorse, correct, or 
override”. 
 In Computational Logic, dual process theories have both a computational 
and logical interpretation. The computational interpretation is that, when an 
agent is deliberative, its behaviour is controlled by a high level program, 
which manipulates symbols that have meaningful interpretations in the 
environment. But when the agent is intuitive, its behaviour is generated by a 
low level program or physical device, whose structure is largely determined 
by the physical characteristics of the agent’s body. 

The logical interpretation of dual process theories is that, when an agent is 
deliberative, its behaviour is generated by reasoning with high-level goals 
and beliefs. When the agent is intuitive, its behaviour is determined by low-
level input-output associations, even if these associations can also be 
represented in logical form. 

 
Two kinds of thinking on the underground 
 
The London underground example illustrates the two kinds of the thinking 
and the relationship between them. The high-level representation contains an 
explicit representation of the goal, and the supporting beliefs: 
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Goal:    if there is an emergency then I get help. 
 
Beliefs:  a person gets help if the person alerts the driver. 

 a person alerts the driver if the person presses the alarm signal button. 
   there is an emergency if there is a fire. 
   there is an emergency if one person attacks another. 
   there is an emergency if someone becomes seriously ill. 
   there is an emergency if there is an accident. 
   there is a fire if there are flames. 
   there is a fire if there is smoke. 
 
A passenger can use the high-level goal and the beliefs explicitly, reasoning 
forward from observations to recognise there is an emergency and to derive 
the goal of getting help, and then reasoning backward, to get help by pressing 
the alarm signal button.  

However, the same behaviour can be generated more efficiently, with less 
thought, by using a low-level representation in the form of input-output 
associations or condition-action rules. This representation can also be 
expressed in the logical form of maintenance goals, which need only one step 
of forward reasoning to generate output actions from input observations. 
 
Goals:  if there are flames then I press the alarm signal button. 
   if there is smoke then I press the alarm signal button. 
   if one person attacks another then I press the alarm signal button. 
   if someone becomes seriously ill then I press the alarm signal button. 
   if there is an accident then I press the alarm signal button. 
  
The low-level representation can be derived from the high-level 
representation by doing the necessary forward and backward reasoning in 
advance, before the need arises. 
 The low-level representation is nearly as low as a representation can go, 
while still remaining in logical form. However, it is possible to go lower, if 
the associations are implemented by direct physical connections between the 
relevant parts of the agent’s sensory and motor systems. This is like 
implementing software in hardware. 
  
A computational interpretation of intuitive and 
deliberative thinking 
 
In Computing, different levels of representation have different advantages 
and are complementary. Low-level representations are more efficient. But 
high-level representations are more flexible, easier to develop, and easier to 
change. 
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In the London underground example, the low-level representation lacks 
the awareness, which is explicit in the high-level representation, of the goal 
of getting help, which is the purpose of pressing the alarm signal button. If 
something goes wrong with the low-level representation, for example if the 
button doesn’t work or the driver doesn’t get help, then the passenger might 
not realise there is a problem. Moreover, if the environment changes, and 
there are new kinds of emergencies, or newer and better ways of dealing with 
emergencies, then it is harder to modify the low-level representation to adapt 
to the changes. 

In Computing, the high-level representation is typically developed first, 
sometimes not even as a program but as an analysis of the program 
requirements. This high-level representation is then transformed, either 
manually or by means of another program called a compiler, into a low-level, 
more efficiently executable representation.  

The reverse process is also possible. Low-level programs can sometimes 
be decompiled into equivalent high-level programs. This is useful if the low-
level program needs to be changed, perhaps because the environment has 
changed or because the program has developed a fault. The high-level 
representation can then be modified and recompiled into a new, improved, 
lower-level form. 

However, this reverse process is not always possible. Legacy systems, 
developed directly in low-level languages and modified over a period of 
many years, may not have enough structure to identify their goals precisely 
and to decompile them into higher-level form. But even then it may be 
possible to decompile them partially and to approximate them with higher-
level programs. This process of rational reconstruction can help to improve 
the maintenance of the legacy system, even when wholesale 
reimplementation is not possible. 
 
The relationship between intuitive and deliberative 
thinking 
 
This relationship between high-level and low-level programs in Computing 
has similarities with the relationship between intuitive and deliberative 
thinking in people. 
 Compiling a high-level program into a lower-level program in Computing 
is similar to the migration from deliberative to intuitive thinking that takes 
place, for example, when a person learns to use a keyboard, play a musical 
instrument or drive a car. In Computing, compiling a high-level program or 
specification is normally done by reasoning in advance, before the more 
efficient program is implemented. But in human thinking, it is more common 
to collapse an explicit high-level representation into a lower-level shortcut 
after an extended period of repeated use.  
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 Decompiling a low-level program into a higher-level program is similar 
to the process of reflecting on subconscious knowledge and representing it in 
conscious terms -  for example, when a linguist constructs a formal grammar 
for a natural language. Whereas a native speaker of the language might know 
the grammar only tacitly and subconsciously, the linguist formulates an 
explicit model of the grammar consciously and deliberatively. Non-native 
speakers can learn the explicit grammar, and with sufficient practice 
eventually compile the grammar into more efficient and spontaneous form. 
 
Conclusions 
 
Computational Logic is a wide-spectrum language of thought, which can 
represent both high-level goals and beliefs, as well as low-level stimulus-
response associations. An intelligent agent can use the high-level 
representation when time allows, and the low-level representation when time 
is limited. It can also use both representations simultaneously. 
 An agent may have inherited its stimulus-response associations at birth, 
and finely-tuned them to its own personal experiences. If so, then it can 
reasonably rely upon them when new situations are similar to situations that 
the agent and its designer or ancestors have successfully dealt with in the 
past. 
 An intelligent agent, on the other hand, might also be able to reflect upon 
its behaviour and formulate an understanding of the consequences of its 
actions. The agent can use this higher-level understanding, to help it better 
achieve its fundamental goals, especially in new situations that are unlike 
situations that have arisen in the past.  
 In the more advanced Chapter A5, I show how the resolution rule of 
inference can be used to perform not only forward and backward reasoning 
when they are needed in the current situation, but also to perform similar 
kinds of reasoning in advance. This kind of reasoning in advance can be 
viewed as compiling high-level representations of goals and beliefs into more 
efficient, lower-level form. 
 The ability to combine the two levels of representations combines their 
individual strengths and compensates for their individual weaknesses. 
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Chapter 10. Abduction  
 
Most changes in the world pass us by without notice. Our sensory organs and 
perceptual apparatus filter them out, so they do not clutter our thoughts with 
irrelevancies. Other changes enter our minds as observations. We reason 
forward from them to deduce their consequences, and we react to them if 
necessary. Most of these observations are routine, and our reactions are 
spontaneous. Many of them do not even make it into our conscious thoughts. 

But some observations are not routine: the loud bang in the middle of the 
night, the pool of blood on the kitchen floor, the blackbird feathers in the pie. 
They demand explanation. They could have been caused by unobserved 
events, which might have other, perhaps more serious consequences. The 
loud bang could be the firing of a gun. The pool of blood could have come 
from the victim of the shooting. The blackbird feathers in the pie could be an 
inept attempt to hide the evidence. 

Even routine observations can benefit from explanation: Why do the Sun, 
the Moon and the Stars rise in the East and set in the West? Why does the 
door stick? Why do the apples drop before they are ready to eat? Explaining 
routine observations helps us to discover new connections between otherwise 
unrelated phenomena, predict the future and reconstruct the past. 

An agent might explain its observations by using existing beliefs or new 
hypothetical beliefs. Both kinds of explanations deductively imply the 
observations, because if the explanations are true, then the observations are 
true. Forward reasoning is a natural way to justify explanations after they 
have been found, but backward reasoning is normally a much better way of 
actually finding them. As Sherlock Holmes explained to Dr. Watson, in A 
Study in Scarlet: 
 

“I have already explained to you that what is out of the common is 
usually a guide rather than a hindrance. In solving a problem of this 
sort, the grand thing is to be able to reason backward. That is a very 
useful accomplishment, and a very easy one, but people do not 
practise it much. In the everyday affairs of life it is more useful to 
reason forward, and so the other comes to be neglected. There are fifty 
who can reason synthetically for one who can reason analytically.” 
 “I confess,” said I, “that I do not quite follow you.” 
 “I hardly expected that you would. Let me see if I can make it 
clearer. Most people, if you describe a train of events to them, will tell 
you what the result would be. They can put those events together in 
their minds, and argue from them that something will come to pass. 
There are few people, however, who, if you told them a result, would 
be able to evolve from their own inner consciousness what the steps 
were which led up to that result. This power is what I mean when I 
talk of reasoning backward, or analytically.” 
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Backward reasoning can be used to find explanations, whether the resulting 
explanations use existing beliefs or generate new hypothetical beliefs. 
Forward reasoning, in contrast, makes sense only when deducing 
consequences from existing beliefs or hypotheses. To use forward reasoning 
to explain an observation, you have to make a guess in the dark, generate a 
hypothesis, and then check whether or not the hypothesis has any relevance 
to the observation. With backward reasoning, the hypothesis is generated 
automatically and guaranteed to be relevant. 
 But the main problem with explaining an observation is, not so much the 
problem of generating relevant explanations, but the problem of deciding 
which is the best explanation, given that there can be many alternative, 
candidate explanations for the same observation. We will see later that the 
problem of determining the best explanation is similar to the problem of 
determining the best plan for achieving a goal. 

Hypothetical beliefs come in two forms: in the form of general rules (or 
conditionals) and in the form of specific facts. Hypotheses in the form of 
general rules represent connections between several observations; and the 
process of generating hypotheses in the form of rules is known as induction.  
Generating hypotheses by induction is hard, and includes the case of 
generating a scientific theory, like the laws of celestial motion. We shall 
return to the problem of induction briefly in the concluding chapter of this 
book. 

Hypotheses in the form of facts, on the other hand, represent possible 
underlying causes of observations; and the process of generating them is 
known as abduction.  Typically, a hypothesis generated by abduction is 
triggered by the desire to explain one or more particular observations. The 
more observations the hypothesis explains, the better the explanation. 
Similarly, in deciding between different plans of action, the more goals a plan 
achieves, the better.  
 Abduction is possible only for an agent who has an open mind and is 
willing to entertain alternative hypotheses. It is not possible for a close-
minded agent, who thinks he knows it all.The simplest way to have an open 
mind, but to keep the candidate hypotheses within manageable bounds, is to 
restrict them to open predicates, to which selective closed world assumptions 
and negation as failure do not apply. 

 
The term abduction was introduced by the logician Charles Sanders Peirce 
(1931). He illustrated the difference between deduction, induction and 
abduction with the following example: 
 
Deduction:  All the beans from this bag are white. 

These beans are from this bag: 
     Therefore  These beans are white. 
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Induction: These beans are from this bag. 

These beans are white. 
  Therefore  All the beans from this bag are white. 
 
Abduction: All the beans from this bag are white. 

These beans are white. 
  Therefore  These beans are from this bag. 
 
Generating abductive hypotheses and deciding between them includes the 
classic case in which Sherlock Holmes solves a crime by first identifying all 
the hypothetical suspects and then eliminating them one by one, until only 
one suspect remains. To put it in his own words (from The Adventure of the 
Beryl Coronet): “It is an old maxim of mine that when you have excluded the 
impossible, whatever remains, however improbably, must be the truth.” 

Sherlock Holmes described his reasoning technique as deduction. But 
deduction in logic leads from known facts or observations to inescapable 
conclusions. If the beliefs used to deduce the conclusions are true, then the 
conclusions must also be true. Abduction, on the other hand, can lead from 
true observations and other beliefs to false hypotheses. For this reason, 
abductive inference is said to be fallible or defeasible. We will see in Chapter 
15 that the distinction between deduction and abduction is blurred when 
conditionals are interpreted as biconditionals in disguise. 
 
The grass is wet 
 
The time-worn example of abduction in Artificial Intelligence is to explain 
the observation that the grass is wet when you get up one morning. Of 
course, there are many possible explanations, but in this part of the world the 
most likely alternatives are either that it rained or that the sprinkler was on. 
The easiest way to find these explanations is by reasoning backwards from 
the observation, treated as a goal15

 

, with causal connections represented in 
the form effect if cause: 

Beliefs:      the grass is wet if it rained. 
        the grass is wet if the sprinkler was on. 

                                                        
15 Notice that treating observations as goals extends the notion of goal, beyond 
representing the world as the agent would like it to be in the future, to explaining the 
world as the agent actually sees it. This is because the two kinds of reasoning, finding 
actions to achieve a goal and finding hypotheses to explain an observation, can both 
be viewed as special cases of the more abstract problem of finding assumptions to 
deductively derive conclusions. See, for example, (Kakas et al, 1998). 
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Here the grass is wet is a closed predicate, and it rained and the sprinkler was 
on  are open predicates. 
 
 
 
 
 
 
 
Instead of failing to solve the goal, because there is no direct evidence that 
either of the two subgoals hold, abduction by backward reasoning identifies 
the two possible causes as alternative hypothetical explanations of the 
observation. 
 It would be possible just to leave it at that: Either it rained or the sprinkler 
was on. But to be on the safe side, it may pay to spend a little more mental 
energy and pursue the logical consequences of the alternatives. If it rained 
last night, then the clothes on the clothes line outside will be wet, and you 
won’t be able to do the ironing you planned for this morning. If the sprinkler 
was on, then your water bill is going to go through the roof, and you better 
disconnect the sprinkler in case it decides to turn itself on again tonight. 

Suppose you are too lazy or too clever to do the obvious thing and just go 
outside and check the clothes on the clothes line or check the state of the 
sprinkler. Instead, you might just sit in your living room armchair and reason 
as follows: If it rained last night, then there will be drops of water on the 
living room skylight. There are drops of water on the skylight. So it is likely 
that it rained last night, because the assumption that it rained explains two 
independent observations, compared with the assumption that the sprinkler 
was on, which explains only one. The combination of backward and forward 
reasoning involved in this example can be pictured like this: 

 
 
 
 
 
 
 
 
  

 
For the moment, leave aside the possibility that some prankster might have 
gotten a hose and aimed it at the skylight, just to throw you off the right 
explanation. 

Observation:         the grass is wet. 
 
Backward reasoning:            or 
 
Hypotheses:                  it rained.                                    the sprinkler was on. 
    
 
 
 

Forward reasoning:        Observation:  
the skylight is wet.        the grass is wet. 
 
  
             Backward 
              reasoning:       
 
Hypotheses:                  it rained.                      the sprinkler was on. 
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 Thus forward reasoning from alternative explanations can sometimes 
derive additional consequences that can be confirmed by past or future 
observations. The greater the number of such additional observations a 
hypothesis explains, the better the explanation. We will see in the next 
chapter that forward reasoning from alternative plans of actions can also help 
to decide between alternative plans. The greater the number of additional 
goals a plan achieves, the better the plan. 
 
The London underground revisited again 
 
In the previous chapters, we represented the relationships between fire, 
smoke and flames in the form cause if effect. This form made it easy to 
assimilate the observation of smoke and to conclude by forward reasoning 
that there is an emergency. It would have been more natural to express the 
relationship in the form effect if cause: 
 
   there are flames if there is a fire. 
   there is smoke if there is a fire. 
 
However, with this representation, given the observation there is smoke, it is 
impossible to derive there is an emergency by using deduction alone. It is 
necessary instead to first use abduction, to determine that there is a fire as the 
explanation of the observation, and then use forward reasoning as before. 
 This comparison between the two ways of representing the connection 
between cause and effect might remind you of the discussion in Chapter 2 
about the two ways of representing the connection between being red and 
looking red. In that example, we also argued that it is more natural to 
represent alternative causes of looking red in the effect if cause form with 
separate conditionals: 
 

an object looks red if it is red. 
an object looks red if it is illuminated by a red light. 
 

Similarly, it is more natural to represent the alternative causes of smoke by 
separate conditionals in effect if cause form: 
 
   there is smoke if there is a fire. 
   there is smoke if there is teargas. 
 
We will see later in the chapter on biconditionals, that it is possible to derive, 
from the assumption that these are the only conditions under which the 
conclusion holds, the two alternative cause if effect conditionals: 
 
      there is a fire if there is smoke and it is not the case that there is teargas. 
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      there is teargas if there is smoke and it is not the case that there is a fire. 
 
In classical logic, both of these conditionals are logically equivalent to a 
conditional with a disjunctive conclusion: 
 

there is a fire or there is teargas if there is smoke. 
 
In Computational Logic with negative conditions interpreted as negation as 
failure, we obtain an asymmetric approximation to the disjunction, with one 
of the two alternatives holding by default. In this example, because fire is a 
more common cause of smoke than teargas, the first of the two cause if effect 
conditionals can be used to derive fire as the cause of smoke by default. This 
avoids the computationally expensive effort of trying to determine the best 
explanation, and amounts to the use of a simple and quick heuristic instead. 
 The two alternative ways of representing the relationship between cause 
and effect have different advantages and disadvantages. The effect if cause 
representation is higher-level, in the sense that its syntax is closer to the 
causal structure that it represents. However, it requires more complex 
abductive reasoning. The cause if effect representation is lower-level and 
more efficient. It requires only deductive reasoning, and it makes it easy to 
build in a preference for one explanation over another. This relationship 
between the two levels of representation is similar to other such relationships 
that we have seen elsewhere in the book. However, in this chapter we focus 
on the higher-level abductive representation, bearing in mind that it can also 
be implemented purely deductively, as we will see again in greater detail in 
Chapter 15. 
  
What counts as a reasonable explanation? 
 
Not every set of abductive hypotheses that deductively implies an 
observation is a reasonable explanation of the observation. To be a 
reasonable explanation, the hypotheses: 
 

• should be relevant to the observation, and should not include 
arbitrary hypotheses that have no bearing on the observation and 

• should be consistent with the agent’s existing beliefs. 
 
We touched upon the relevance requirement earlier. It is automatically 
satisfied by reasoning backwards from the observation. Backward reasoning 
ensures that every hypothesis generated in an explanation is ultimately 
connected to the observation by a chain of links in the connection graph of 
beliefs. The relevance requirement is weaker than the requirement that 
explanations be minimal. The minimality requirement insists that no subset of 
the explanation is also an explanation. For example: 
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Beliefs:   the floor is wet if it rained and the window was open. 
     the floor is wet if it rained and there is a hole in the roof. 
     there is a hole in the roof. 
 
Observation:     the floor is wet. 
Relevant explanation:  it rained and the window was open. 
Minimal explanation:  it rained. 
Irrelevant explanation:  it rained and the dog was barking. 
 
Minimality is often cited as a desirable, or even necessary property of 
abductive explanations; but ensuring that an explanation is minimal can be 
computationally infeasible. Relevance, on the other hand, comes for free with 
backward reasoning, and in most cases is an acceptable approximation to 
minimality. Both relevance and minimality are a form of Ockham’s razor. 

The consistency requirement excludes impossible explanations, such as 
the explanation it rained, if there were clothes outside and they didn’t get 
wet. Ensuring consistency is complicated in the general case. However, in 
many cases it can be facilitated by representing negative concepts in positive 
form, and by using constraints to monitor that contrary predicates do not hold 
simultaneously. For example, the negative concept not wet can be represented 
by the positive concept dry, and the relationship between wet and dry can be 
expressed by means of the constraint: 
 
        if a thing is dry and the thing is wet then false. 
i.e.        nothing is both dry and wet. 

 
In such cases, consistency reduces to the requirement that a hypothesis does 
not deductively imply the conclusion false, and a natural way to enforce the 
requirement is to reason forward from a hypothesis and to eliminate it if it 
implies false. For example: 
 
Beliefs:      the clothes outside are dry. 
        the clothes outside are wet if it rained. 
 
Hypothesis:         it rained 
Forward reasoning:       the clothes outside are wet 
Forward reasoning with the constraint: if the clothes outside are dry then false 
Forward reasoning:       false 
 
The derivation of false eliminates the hypothesis that it rained as a candidate 
explanation of the observation that the grass is wet. 
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Contraries and strong negation 
 
As we saw in Chapter 5, many concepts occur as pairs of contrary positive 
concepts, like wet and dry, tall and short, big and small, and good and bad. 
Often these contraries are expressed as negations of one another, as in not wet 
instead of dry and not dry instead of wet. This use of negation is sometimes 
called strong negation. Viewed as a form of negation, it has the truth value 
gap property that there can be instances of a predicate that are neither true 
nor false. For example, if my clothes are merely damp, I might consider them 
as being neither wet nor dry.  
 The use of pairs of contrary predicates with truth gaps is a natural way to 
represent vague concepts. Positive instances of the concept can be 
represented by one predicate of the pair, and negative instances of the 
concept by the other predicate. Instances that are neither clearly positive nor 
clearly negative can simply be left undetermined. 
 Thus reasoning with strong negation in the form of positive contraries 
requires no extension of the inference rules of Computational Logic, if for 
every pair of contrary predicates, we have constraints of the form: 
 
  if predicate and contrary-predicate then false. 
 
What counts as a best explanation? 
 
Restricting explanations to hypotheses that are relevant and consistent is not 
good enough. In many situations, there will be several such relevant and 
consistent explanations. In some cases, where none of the alternatives has 
any important, foreseeable consequences, it may be unnecessary to choose 
between them. But in other cases, where an explanation does have such 
consequences, it can be a good idea to determine whether the explanation is 
actually true, so that preparations can be made to deal with those 
consequences. If the consequences are beneficial, then they can be exploited: 
and if they are harmful, then it might be possible to counteract them before 
they do too much damage. 
 For example, for most people most of the time, the observation that the 
grass is wet is hardly worth explaining. Whether it rained or the sprinkler 
was on is likely to be of little significance, especially if the sprinkler doesn’t 
belong to you and the grass needs watering anyway. In comparison, some of 
the alternative explanations of an observation that the floor is wet do have 
important consequences. If the wet floor is due to a hole in the roof, then the 
roof will have to be repaired before it gets much worse. If it is due to leaking 
plumbing, then you need to deal with the problem before you have a flood on 
your hands.  
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Global warming is a more topical example. If observed rises in world 
temperature are primarily due to carbon emissions, then at the rate we 
are going global warming will soon make much of our planet 
uninhabitable, and we had better dramatically reduce our emissions 
before it is too late. But if they are primarily due to natural climatic 
processes, then we might as well just adjust to climate change and its 
consequences and enjoy them while we can. 
 Nothing in life is certain, and that goes as much for explaining 
observations as it does for everything else. One way to judge the 
likelihood of an explanation is to consult expert opinion. For example, 
according to the IPCC Fourth Assessment Report: Climate Change 
2007, most of the observed increase in global temperatures since the 
mid-20th century is more than 90% likely to be due to the increase in 
man-made greenhouse gas concentrations. Therefore, weighing the 
importance of the consequences by the probabilities of their causes and 
choosing the most likely explanation with the most significant 
consequences, we should assume that the causes of climate change are 
human greenhouse gas emissions, and act accordingly. 
 
Another way to judge the likelihood of an explanation is to use 
statistical information about the relative past frequency of different 
causes. For example, you don’t need to be a car mechanic to realize that, 
if your car doesn’t start, it must be due to a fuel problem, an electrical 
problem, or a mechanical problem. But you need at least a little 
experience to realize that electrical problems are more common than 
fuel and mechanical problems. So everything else being equal, it is a 
good strategy to check whether there is an electrical problem first. You 
can do this by reasoning forward from the hypothesis that there is an 
electrical problem caused by the battery, and conclude that if the battery 
is at fault then the lights will not work. So if you try the lights and they 
don’t work, then the problem is most likely due to a faulty battery, 
because the more observations a hypothesis explains the more likely it 
is to be true. 

 
These two criteria for helping to decide between competing explanations, 
their relative likelihood and their utility as judged by the number and 
importance of their consequences, are virtually identical to the criteria that 
are most helpful in deciding between different courses of action to achieve a 
higher-level goal. We will explore these criteria in greater detail in the next 
chapter. 

 
 Conclusions 
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Abduction builds upon traditional logic and, is a defining feature of 
Computational Logic. Like default reasoning, it addresses a problem that has 
been one of the greatest obstacles to the use of logic in everyday life, the 
problem that we need to make judgements and to act upon those judgements 
in situations where our knowledge about the world is incomplete.  
 Abduction and default reasoning are related by their common use of 
assumptions to augment beliefs. In abduction, we augment our beliefs with 
assumptions concerning instances of open predicates. In default reasoning, 
we augment them with assumptions that an instance of the contrary of a 
predicate cannot be shown. In both cases, these assumptions are defeasible, 
and can be withdrawn if later observations provide information to the 
contrary. This relationship between abduction and default reasoning was first 
investigated by Poole, Goebel and Aleliunas (1987). 
 The problem of identifying the best explanation has many important 
features in common with the problem of deciding between different courses 
of action. Similar criteria involving judgements of probability and utility 
apply to both problems. We will look at these criteria in the next chapter and 
at the technical underpinnings of abductive logic programming in Chapter 
A6.  
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Chapter 11. The Prisoner’s Dilemma  
 
Suppose, in your desperation to get rich as quickly as possible, you consider 
the various alternatives, infer their likely consequences and decide that the 
best alternative is to rob the local bank. You recruit your best friend, John, 
well known for his meticulous attention to detail, to help you plan and carry 
out the crime. Thanks to your joint efforts, you succeed in breaking into the 
bank in the middle of the night, opening the safe, and making your get-away 
with a cool million pounds (approximately 1.65 million dollars - and falling - 
at the time of writing) in the boot (trunk) of your car. 

Unfortunately, years of poverty and neglect have left your car in a state of 
general disrepair, and you are stopped by the police for driving at night with 
only one headlight. In the course of a routine investigation, they discover the 
suitcase with the cool million pounds in the boot. You plead ignorance of any 
wrong doing, but they arrest you both anyway on the suspicion of robbery. 

Without witnesses and without a confession, the police can convict you 
and your friend only of the lesser offence of possessing stolen property, 
which carries a penalty of one year in jail. However, if one of you turns 
witness against the other, and the other does not, then the first will be 
released free of charge, and the second will take all of the blame and be 
sentenced to six years in jail. If you both turn witness, then you will share the 
blame and will be sentenced to three years in jail each. 

This is an example of the classical Prisoner’s Dilemma, studied in 
decision theory and game theory. In decision theory, the general problem of 
deciding between alternative actions is often represented as a decision table, 
in which the rows represent actions, the columns represent the state of the 
world, and the entries represent the resulting outcome. In this case, your 
decision table looks like this: 

 
Action State of the world 

 
John turns witness         John refuses                                 
      

I turn witness 
 
I refuse  

I get 3 years in jail         I get 0 years in jail 
 
I get 6 years in jail         I get 1 year in jail 
 

 
If you and John are offered the same deal and have a chance to consult before 
you decide, then you will soon realise that the best option is for you both to 
refuse to turn witness against the other. To prevent this, the police interrogate 
you in separate cells. Thus you have to decide what to do without knowing 
what John will do. 
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 According to classical decision theory, you should choose the action that 
has highest expected utility, in this case the action that minimises the number 
of years you expect to spend in jail. We will see how to do this later in the 
chapter. 
 
The logic of the prisoner’s dilemma 
 
The Prisoner’s Dilemma has a natural representation in terms of goals and 
beliefs: 
 
Goal:  if an agent requests me to perform an action,  
   then I respond to the request to perform the action. 
 
Beliefs: 
 
 I respond to a request to perform an action if I perform the action. 
 I respond to a request to perform an action  
 if I refuse to perform the action. 
 
 I get 3 years in jail if I turn witness and john turns witness.  
 I get 0 years in jail if I turn witness and john refuses to turn witness. 
 I get 6 years in jail if I refuse to turn witness and john turns witness. 
 I get 1 year in jail if I refuse to turn witness  
 and john refuses to turn witness. 
 
According to our agent model, the maintenance goal is triggered by the 
observation: 
 
Observation:    the police request me to turn witness 
Forward reasoning16

       I respond to the request to turn witness 
, achievement goal:  

 
Backward reasoning, one candidate action:   
       I turn witness 
Forward reasoning, consequences: 
       I get 3 years in jail if john turns witness 
       I get 0 years in jail if john refuses to turn witness 

                                                        
16 To make the connection between the observation and the condition of the goal, it is 
necessary to unify the police with an agent and turn witness with perform an action. 
In a computer implementation, this unification would have to be done mechanically. 
For this purpose, it would be necessary to recognise turn witness as shorthand for 
perform turn witness.  
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Backward reasoning, another candidate action:       
       I refuse to turn witness 
Forward reasoning, consequences:  
       I get 6 years in jail if john turns witness 
       I get 1 years in jail if john refuses to turn witness 
 
Here the consequences (or outcome) of your candidate actions depend upon 
whether or not John turns witness against you. Unfortunately, you need to 
decide what to do without knowing what John will do. 
 In classical logic, it would be possible to reason as follows: 
 
Candidate action:    I turn witness 
Disjunctive constraint:  john turns witness or  
        john refuses to turn witness 
Disjunctive consequence:  I get 3 years in jail or I get 0 years in jail. 
 
Candidate action:    I refuse to turn witness 
Disjunctive constraint:  john turns witness or  
        john refuses to turn witness 
Disjunctive consequence:  I get 6 years in jail or I get 1 years in jail. 
 
Intuitively, the disjunctive consequence of the first candidate action seems 
better than the disjunctive consequence of the second alternative, and in 
theory it might be possible to evaluate the disjunctive consequences, compare 
them and use the result of the comparison to help choose between the 
alternative candidates. 
 However, the disjunctive constraint is a crude way to express uncertainty. 
It cannot represent degrees of uncertainty. For example, because John is your 
friend, you might believe: 
 
     john turns witness with probability 10%. 
     john refuses to turn witness with probability 90%. 
 
These probabilities can be propagated from the conditions to the conclusions 
of beliefs. For example:  
 
     if I turn witness  
     and john turns witness with probability 10% 
     then I get 3 years in jail with probability 10%. 
 
Decision theory provides a principled way of propagating uncertainty and of 
combining judgements of probability with judgements of utility to determine 
the expected utility of an action. According to the norms of decision theory, 
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given a collection of alternative candidate actions, an agent should choose an 
action that has the best expected utility. 
 Before seeing how to compute the expected utilitity of an action, and 
investigating its application to the prisoner’s dilemma, we will take a short 
break and look at the more mundane problem of deciding whether or not to 
take an umbrella when you leave home. 
 
Should you carry an umbrella? 
 
The problem can be represented in a decision table:  
 

Action State of the world 
It rains                        It doesn’t rain  

I take an umbrella 
 
 
I leave without an umbrella 

I stay dry                     I stay dry 
I carry an umbrella      I carry an umbrella 
 
I get wet                       I stay dry 

 
We can represent the problem by the (simplified) goals and beliefs: 
 
Goal:   if I go outside, then I take an umbrella  
    or I leave without an umbrella. 
 
Beliefs:  I go outside. 

   I carry an umbrella if I take the umbrella. 
   I stay dry if I take the umbrella. 
   I stay dry if it doesn’t rain. 
   I get wet if I leave without an umbrella and it rains. 
 

Notice that the representation in terms of beliefs is more informative than the 
decision table representation, because it indicates more precisely the 
conditions on which the outcome of an action depends. For example, it 
indicates that staying dry depends only on taking an umbrella and not on 
whether or not it rains. 
 You can control whether or not you take an umbrella, but you cannot 
control the weather. To decide between the alternative actions that you can 
control, you should infer their possible consequences, and choose the action 
with highest overall expected utility.  

Suppose you judge that the value of staying dry is greater than the 
inconvenience of taking an umbrella. Then intuitively you should decide to 
take the umbrella, if you estimate that the probability of rain is high. But, you 
should decide to leave without the umbrella, if you estimate that the 
probability of rain is low. These intuitions are justified and made more 
precise by the mathematics of decision theory. 
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Applying decision theory to taking an umbrella 
 
According to decision theory, you can compute the overall expected utility of 
an action by weighing the utility of each possible outcome of the action by its 
probability, and then sum all of the weighted utilities. In mathematical terms: 
   
  the expected utility of an action is p1u1 + p2u2 + ... + pnun 
  if the action has n alternative outcomes with associated 
  utilities u1, u2, ..., un and respective probabilities p1, p2, ..., pn. 
 
You should then choose the action with greatest expected utility.  
 In the case of deciding whether to take an umbrella, suppose you judge: 
 
 the benefit of staying dry is worth 2 candy bars,  
 the cost of carrying an umbrella is worth -1 candy bar,  
 the cost of getting wet is worth -9 candy bars,  
 the probability that it will rain is P, and therefore 
 the probability that it will not rain is (1 – P). 
 
These judgements of utilities and probabilities can be added to the decision 
table: 
 

Action State of the world 
 
It rains with                   It doesn’t rain with 
probability P                 probability (1-P) 
 

Expected 
utility 
P× utility1 + 
(1-P)× utility2 
 

I take an 
umbrella 
 

I stay dry                    I stay dry                             
I carry an umbrella     I carry an umbrella 
with utility1 =             with utility2 = 
2-1 = 1                      2-1 = 1 

P + (1-P) = 1 

I leave without 
an umbrella 

I get wet                          I stay dry 
with utility1  =  -8            with utility2 = 2 

-8P+ 2(1-P) = 
-10 P + 2  

 
If the expected utilities of the alternative actions are the same, then it makes 
no difference, measured in candy bars, whether you take an umbrella or not. 
This is the case when: 
 
      -10 P + 2 = 1 
i.e.      P = .1 
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Therefore, if the probability of rain is greater than 10%, then you should take 
an umbrella; and if it is less than 10%, then you should leave your umbrellas 
at home. 

The use of decision theory is a normative ideal. In Real Life, we tend to 
approximate this ideal, by compiling routine decisions directly into goals and 
beliefs. For example: 

 
Goals:   if I go outside and it looks likely to rain,  

  then I take an umbrella. 
   
  if I go outside and it looks unlikely to rain,  
  then I leave without an umbrella. 
 

Beliefs:  It looks likely to rain if there are dark clouds in the sky. 
  It looks likely to rain if it is forecast to rain. 
 
  It looks unlikely to rain if there are no clouds in the sky. 
  It looks unlikely to rain if it is forecast not to rain. 

 
More generally: 
 

if I am leaving a place and I have a thing at the place  
and the thing would be useful while I am away from the place  
and the value of the thing outweighs the trouble of taking the thing, 
then I take the thing with me. 
 
if I am leaving a place and I have a thing at the place  
and the thing would be useful while I am away from the place  
and the trouble of taking the thing outweighs the value of the thing,  
then I leave the thing at the place. 
 
the value of an umbrella outweighs the trouble of taking the umrella 
if it looks likely to rain. 
 
the trouble of taking an umbrella outweighs the value of the umrella 
if it looks unlikely to rain. 
etc. 

 
A psychologist might prefer to view such goals and beliefs as pragmatic 
reasoning schemes or Darwinian algorithms. But, as we have been arguing 
throughout this book, both of these views are compatible with the view that 
thinking is the application of general-purpose logical rules of inference to 
domain-specific knowledge (goals and beliefs) expressed in logical form. 
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Solving the prisoner’s dilemma 
 
The prisoner’s dilemma and the problem of deciding whether to take an 
umbrella are both instances of the same general pattern of cause and effect: 
 

 a particular outcome happens if I do a certain action  
 and the world is in a particular state. 

 
Similarly: 
 
  I will be rich if I buy a lottery ticket and my number is chosen. 
  I will be famous if I write a book and it receives critical acclaim. 
  It will rain tomorrow if I do a rain dance and the gods are pleased. 
   
In all of these cases, you can control your own actions, but you cannot 
completely control the actions of others or the state of the world. At best, you 
might be able to judge the exact probability that the world will be in a 
particular state. At worst, you might just assume that the odds of its being or 
not being in the state are simply equal.  
 However, suppose that in the case of the prisoner’s dilemma, you decide 
to do a little high school algebra.  Let: 
 
 the utility of your getting N years in jail be –N.  
 the probability that John turns witness be P.  
 Therefore the probability that John refuses to turn witness is (1 – P). 
 
These utilities and probabilities can be added to the decision table: 
 

Action State of the world 
 
John turns witness       John refuses with 
with probability P         probability (1-P) 

Expected 
utility 
P× utility1 + 
(1-P)× utility2 

I turn witness 
 
 

I get 3 years                I get 0 years  
with utility1 = -3          with utility2 = 0 

-3P  
 

I refuse  I get 6 years                 I get 1 year 
with utility1 = -6          with utility2 = -1 

-6P -(1-P) = 
-5P -1 

 
But the expected utility -3P of turning witness is greater than the expected 
utility -5P -1 of refusing to turn witness, for all values of P. So no matter 
what the probability P that John turns witness against you, you are always 
better off turning witness against him.  

Unfortunately, if John has the same beliefs, goals and utilities as you, then 
he will similarly decide to turn witness against you, in which case both of 
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you will get a certain 3 years in jail. You would have been better off if the 
both of you ignored decision theory, took a chance, and refused to turn 
witness against the other, in which case you would have both gotten only 1 
year in jail. 

But there is a different moral you could draw from the story: that the fault 
lies, not with decision theory, but with your own selfish judgement of utility. 
You have placed no value at all on the consequences of your actions for the 
time that John will spend in jail. 

Suppose, for example, that you assign equal value to the time that both of 
you will spend in jail. The corresponding new judgements of utility can be 
incorporated into a revised decision table: 

 
Action State of the world 

 
John turns witness       John refuses with 
with probability P         probability (1-P) 

Expected 
utility 
P× utility1 + 
(1-P)× utility2 

I turn witness 
 
 

I get 3 years                  I get 0 years  
John gets 3 years          John gets 6 years 
with utility1 = -6            with utility2 = -6  

-6P -6(1-P) = 
-6 
 

I refuse  I get 6 years                 I get 1 year 
John gets 0 years          John gets 1 years 
with utility1 = -6          with utility2 = -2 

-6P -2(1-P) = 
-4P -2 

 
But -6 ≥ -4P -2, for all values of P. Therefore, no matter what the probability 
P that John turns witness against you, there is never any advantage in your 
turning witness against him. Moreover, if John has the same beliefs, goals 
and utilities as you, then he will similarly decide not to turn witness against 
you, in which case you will both get a certain 1 year in jail.  

But it is probably unrealistic to expect you to value equally both what 
happens to John and what happens to yourself. To be more realistic, suppose 
instead that you value what happens to John only half as much as you value 
what happens to yourself: 
 

Action State of the world 
 
John turns witness       John refuses with 
with probability P         probability (1-P) 

Expected 
utility 
P× utility1 + 
(1-P)× utility2 

I turn witness 
 
 

I get 3 years                  I get 0 years  
John gets 3 years          John gets 6 years 
with utility1 = -4.5        with utility2 = -3  

-4.5P -3(1-P) 
= -1.5P -3 
 

I refuse  I get 6 years                 I get 1 year 
John gets 0 years          John gets 1 years 
with utility1 = -6          with utility2 = -1.5 

-6P -1.5(1-P) 
= -4.5 P -1.5 
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The expected utilities of the two alternatives are the same when: 
 
      -1.5P -3 = -4.5 P -1.5 
i.e.      3P = 1.5 
i.e.      P   = .50 
 
Therefore, if you judge that the probability of John turning witness is less 
than 50%, then you should not turn witness. But if you judge that the 
probability is greater than 50%, then you should turn witness. Tit for tat. 

Just as in the case of deciding whether to take an umbrella when you 
leave home, these calculations are a normative ideal. But in Real Life, we 
more normally compile our decisions into rules (or heuristics), which 
approximate the decision theoretic ideal, but which can be applied more 
simply and more efficiently. For example: 

 
Goals:  if an agent requests me to perform an action,  

and the action does not harm another person 
then I perform the action. 
 
if an agent requests me to perform an action,  

   and the action harms another person  
then I refuse to perform the action. 
 

These rules are not very subtle, but clearly they can be refined, both by 
adding extra rules to deal with other cases, and by adding extra conditions to 
accommodate extra qualifications. 
 
Smart choices 
 
But decision theory and heuristics are not the only possibilities. In fact, in 
their different ways, they both miss seeing the bigger picture. Decision theory 
deals only with independently given alternative candidate actions, evaluating 
their likely consequences, but ignoring where the alternatives came from and 
the purposes that they serve. Heuristics sidestep the fundamental issues by 
employing little more than higher-level stimulus-response associations. 
 The smarter way to make decisions is to step back, and pay due attention 
to your higher-level goals and to any outside circumstances that may have 
triggered the need to make a decision: 
 

• Identify the higher-level goal (purpose, motivation, problem or 
objective) of the decision you need to make. Is this goal an implicit 
property of heuristics triggered by events in the environment? Or is 
it an explicit, higher-level achievement goal; or a subgoal (or means) 
towards a yet higher–level goal (or fundamental objective). 
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• Assuming that you can identify the top-level goal and any subgoals 
along the way, consider the alternative ways of solving these goals. 
Have you adequately considered all of the relevant alternatives? Or 
have you constrained yourself unnecessarily by considering only the 
first alternatives that entered your mind? Do you have enough 
knowledge (or beliefs) of the problem domain to generate the “best” 
alternatives? 

• Explore the consequences (or outcomes) of the alternatives, and 
their impacts. Evaluate these consequences for the extent to which 
they achieve, not only the goals that may have motivated the 
alternatives, but also any other goals that might be achieved 
opportunistically along the way. Check whether the alternatives 
violate any constraints, or whether they have any other negative 
consequences that you should avoid. 

• Assess the uncertainties associated with the consequences. Are you 
indulging in wishful thinking, or taking any unnecessary risks? 

• Compare the alternatives, by combining your evaluation of their 
consequences with your assessment of their uncertainty. Use this 
comparison, not only to identify your final decision, but also to 
guide you efficiently in your search. 

• Identify the other linked subgoals that need to be solved to achieve 
your top-level goals. Make sure that the decision is compatible with 
the smart solution of these other subgoals. Give preference to 
decisions that facilitate achieving future subgoals and that keep 
future options open for as long as possible. 

 
If these guidelines look familiar, it is because they are based on the issues 
that recur throughout this book. But if they sound a little unfamiliar, it is 
because I have paraphrased them in the manner of Hammond, Keeney and 
Raiffa’s (1999) Smart Choices - A practical guide to making better decisions. 
 The guidelines in the Smart Choices book are based on solid research in 
decision science and on extensive practical experience. They appeal to logic 
and common sense, but of the familiar, informal variety. In this book, we 
deal with similar issues, but we place them within a Computational Logic and 
Artificial Intelligence setting.  
 
Conclusions 
 
The use of decision theory, heuristics and Smart Choices are three different 
ways of making decisions. 
 Decision theory is a powerful, normative tool. But it needs knowledge 
about utility and probability, and time to calculate and compare expected 
utilities, which is typically not available in most commonly occurring 
situations. Moreover, it neglects the motivations of actions, and the structure 
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of those motivations in a hierarchy of goals and subgoals, and of alternative 
ways of reducing goals to subgoals. 
 Instead of decision theory, most people probably use heuristics to guide 
their decision-making. Heuristics deal efficiently with the most commonly 
occurring cases, and often they approximate the decisions that would be 
taken using a decision-theoretic analysis. But heuristics are subject to biases 
of all kinds, and often lead to bad choices, sometimes when we are making 
the most important decisions in our lives. 

In situations where it is important to make as good a decision as possible, 
we need to monitor our heuristic responses, and to analyse their role within  
the full hierarchy of our goals and subgoals. We need to question the implicit 
goals of our intuitive reactions, determine the alternative ways of achieving 
those goals, explore their possible consequences and make a smart choice. 

But no matter how we make our decisions, we cannot avoid the 
uncertainty of their outcomes. As we have seen in this chapter and elsewhere 
throughout this book, the outcomes of our actions typically depend upon the 
uncertain state of the world: 
 

 a particular outcome happens if I do a certain action  
 and the world is in a particular state. 
 

Because the world is such an uncertain place, and because our knowledge of 
the world is so incomplete, it is impossible to judge these outcomes without 
uncertainty.  
 The approach to uncertainty taken in this book is based upon the approach 
developed by David Poole (1997), in which probability is associated with 
conditions of conditionals rather than with conditionals as a whole. This 
approach fits well with other applications of probability, for example in 
helping to choose between different abductive explanations of an 
observation. Integrating probability and logic is one of the most active areas 
of research in Artificial Intelligence today. The collection of papers in (De 
Raedt et al., 2008) contains an overview of recent work in this field. 
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Chapter 12. Motivations matter 
  
In the prisoner’s dilemma, the need to choose between different actions is 
generated by the need to solve an achievement goal, obtained as the result of 
a request from the police to turn witness against your friend. The 
achievement goal, triggered by the external event, is the motivation of the 
action you eventually choose.  
 But in classical decision theory, the motivation of actions is unspecified. 
Moreover, you are expected to evaluate the alternatives by considering only 
their likely consequences. 
 Conflict resolution in production systems shares with decision theory a 
similar need to decide between mutually exclusive actions. However, 
whereas in decision theory the deciding factor is the likely consequences of 
the actions, in production systems the decision is normally compiled into 
much simpler considerations. In production systems, actions are derived 
explicitly by means of condition-action rules, whose motivations (or goals) 
are typically implicit (or emergent). 
 In contrast with both decision theory and production systems, in which 
motivations are missing or implicit, in classical planning systems in AI 
motivation is the main concern. In classical planning, plans of action are 
motivated (or intended) by higher-level achievement goals; but, in contrast 
with decision theory, the unintended consequences of actions are commonly 
ignored. The different ways in which actions are evaluated in different 
paradigms are summarised in the following table: 
 
Evaluation of actions 
 

production    decision    classical      Computational 
systems       theory       planning       Logic 

Motivations  
 
Consequences 

No                   No           Yes         Yes 
 
No                   Yes          No           Yes 

 
In Computational Logic, actions are motivated by achievement goals, which 
are generated by maintenance goals, which are triggered by observations of 
changes in the world. Deciding which alternative actions to execute is 
informed by evaluating the likely consequences of the actions, including the 
achievement goals, which motivated the actions to begin with. This decision 
can be assisted by employing the techniques of decision theory, or it can be 
compiled into more pragmatically useful goals and beliefs, in which the 
evaluation of motivations and consequences is emergent rather than explicit. 
 
Moral considerations 
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Decision theory guides an agent’s actions towards the optimal achievement 
of the agent’s personal goals. These personal goals might be concerned solely 
with the agent’s own selfish interests, or they might include the interests of 
other agents. As we saw in the Prisoner’s Dilemma, the interests of an 
individual agent can sometimes be better served if the agent also values the 
interests of other agents. Arguably, the encouragement of personal goals that 
include the interests of other agents is the basis of human intuitions about 
morality. 
 Although morality is one of the main concerns of religion, psychological 
studies have shown that people of widely diverse cultural and religious 
backgrounds share similar moral intuitions (Hauser et al., 2007). Moreover, 
these studies show that many of these intuitions depend upon distinguishing 
between the motivations and the consequences of actions. In particular, they 
support the principle of double effect. 

The principle of double effect holds that an action with bad consequences 
may be morally acceptable if the action was motivated by a good end, 
provided the bad consequences were not intended as a means to achieve the 
good end. But an action is not morally acceptable if it was motivated by a bad 
end or if it involved the use of a bad means to a good end, even if its good 
consequences might outweigh its bad consequences. 

The principle of double effect has been used, for example, to justify 
bombing a military facility in wartime even if there is a potential danger to 
innocent civilians. But it condemns bombing a civilian target to terrorise the 
enemy.  
 The principle of double effect is opposed to consequentialism, which, like 
decision theory, is concerned only with the consequences of actions. 
According to consequentialism, there is no moral distinction between killing 
innocent civilians as a side effect of destroying a military facility and killing 
them as a deliberate act of terrorism. 
 The principle of double effect also plays a normative role in law. For 
example, it accounts for the distinction between murder, in which the death 
of a person is directly intended, and manslaughter, in which it is foreseeable 
as a possible side effect of a less bad, but still blameworthy intention.  
 Thus the principle of double effect plays a descriptive role in 
understanding moral intuitions and a normative role in law. Mikhail (2007) 
explains this dual role with the suggestion that, although individuals seem to 
be unaware of the principles that guide their moral intuitions, “the judgments 
can be explained by assuming that these individuals are intuitive lawyers who 
implicitly recognize the relevance of ends, means, side effects and prima 
facie wrongs, such as battery, to the analysis of legal and moral problems”.  
 The challenge is to explain these intuitions, which cannot be explained by 
decision theory alone. 
 
The runaway trolley 
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The most famous psychological experiment concerning intuitions about 
double effect is the trolley problem. There are two main variants: 
 

Passenger: A runaway trolley is about to run over and kill five 
people. The driver has fainted. You are a passenger on the train and 
you can press a button that will turn the train onto a sidetrack, saving 
the five people, but killing one man who is standing on the sidetrack. 
Is it morally permissible to press the button? 
 
Footbridge: A runaway trolley is about to run over and kill five 
people. You are a bystander standing on a footbridge over the track. 
The only way to stop the train and save the five people is to throw a 
heavy object in front of the train. The only heavy object available is 
a large man standing next to you. Is it morally permissible to throw 
the man onto the track? 

 
In an experiment (Hauser et al, 2007) on the internet with approximately 
5,000 voluntary subjects, 85% judged that it is permissible for the passenger 
to push the button, but only 12% judged that it is permissible for the 
bystander to throw the man. The difference between the two cases is 
explained by the principle of double effect. In the case of the passenger 
pressing the button, the person on the sidetrack is killed as a consequence of 
the action of pushing the button, which is a subgoal of saving five people. 
The action of pushing the button is not bad in and of itself. So most people 
regard the action as morally permissible. 
 However in the case of the bystander throwing the heavy man onto the 
track, the action of throwing the man onto the track is morally bad itself, even 
though it helps to achieve the morally good goal of saving five people.  
 According to consequentialism, both cases have the same moral standing; 
and according to utilitarianism, which holds that it is best to do what most 
benefits the greatest number of people, both cases are morally justifiable and 
preferable to doing nothing. 
 Assuming that people subconciously apply the principle of double effect 
in judging the morality of actions may explain intuitive judgements in trolley 
problems and the like. But that doesn’t explain why people use the principle 
of double effect rather than straight-forward decision theory. I will propose 
such an explanation - namely that motivations matter - after we first 
investigate a logical representation of the runaway trolley problem. 
   
The logic of the runaway trolley 
 
The following representation is specialised for the trolley problem. As with 
other examples in this book, the representation could also be expressed more 
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generally to separate out general-purpose beliefs from the special beliefs 
needed for the problem at hand. However, the specialised representation has 
the advantage that it allows us to ignore distracting details. 
 
Beliefs:     

a person is killed if the person is in danger of being killed by a train 
  and no one saves the person from being killed by the train. 
 
  an agent kills a person  

if the agent throws the person in front of a train. 
 

  a person is in danger of being killed by a train 
  if the person is on a railtrack  
  and a train is speeding along the railtrack  
  and the person is unable to escape from the railtrack. 
     
  an agent saves a person from being killed by a train 
  if the agent stops the train or the agent diverts the train. 
 
  an agent stops a train 
  if the agent places a heavy object in front of the train. 
 
  an agent places a heavy object in front of the train 
  if the heavy object is next to the agent 
  and the train is on a railtrack 
  and the agent is within throwing distance of the object to the railtrack 
  and the agent throws the object in front of the train. 
 
  an agent diverts a train 
   if there is a sidetrack ahead of the train 
  and an agent is on the train 
  and the agent pushes the sidetrack button. 
 
  a train is speeding along a sidetrack  
  if the train is speeding along a track  
  and there is a sidetrack ahead of the train 
  and an agent pushes the sidetrack button. 

 
In a more precise formulation, using the event calculus for example, it would 
be stated that the act of pushing the sidetrack button terminates the state of 
the train speeding along its current track and initiates a state in which the 
train is speeding along the sidetrack.  
 
The current situation: five people are on the maintrack. 
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one person is on the sidetrack. 
a train is speeding along the maintrack. 
the sidetrack is ahead of the train. 
the five people are unable to escape from the maintrack.  
the one person is unable to escape from the sidetrack. 
 
mary is on the train. 
john is next to bob. 
john is a heavy object. 
bob is within throwing distance of john to the maintrack. 

 
There is nothing in these beliefs to motivate anyone to do anything. To 
motivate Bob, John or Mary, they need a motivating goal. As with other 
examples in this book, the motivating goal is an achievement goal derived 
from a maintenance goal, triggered by an observation of the environment. In 
this case, the maintenance goal and associated supporting beliefs might be: 
 
Goal: if a person is in danger of being killed by a train 
  then you respond to the danger of the person being killed by the train. 
 
Beliefs: you respond to the danger of a person being killed by the train 
   if you ignore the danger. 
 
   you respond to the danger of a person being killed by the train 
   if you save the person from being killed by the train. 
      
Given that all three agents have knowledge of the current situation, and 
assuming for simplicity that they treat the five people on the maintrack as a 
single person, then the three agents would similarly conclude: 
 
Forward reasoning:  five people are in danger of being killed by the train 
 
Achievement goal:  you respond to the danger of  
       the five people being killed by the train 
 
Alternative subgoal:    you ignore the danger  
Alternative subgoal:    you save the five people from being killed by the train. 
 
Mary can save the five people by diverting the train, by pushing the sidetrack 
button. Bob can save the five people by stopping the train, by placing a heavy 
object in front of the train, by throwing John in front of the train. Fortunately 
for Bob, John cannot similarly save the five people by throwing Bob in front 
of the train, because he has no reason to believe that Bob is a heavy object. 
Also, conveniently for John, we have ignored the possibility that he can save 
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the five people simply by throwing himself in front of the train of his own 
volition. Thefore only Mary and Bob have to choose between the two 
alternative subgoals.  

Mary has to decide whether to save the five people by pushing the 
sidetrack button. Given the urgency of the situation, she may or may not have 
the time to contemplate all the possible consequences of the action. If she 
does have enough time and enough composure, then she will conclude that 
the one person on the sidetrack will be killed by the train if no one saves the 
person. But saving five people for sure compared with the near certtainty of 
one person being killed is better than doing nothing.  
 If Mary does not have the time to think through the consequences, then 
she may simply judge that saving five people is better than doing nothing, in 
which case she will simply push the button, whatever the consequences. In 
either case, her behaviour is morally justified, because her intentions are 
good, and any possible bad side effects are both unintended and outweighed 
by the benefits. 
 Bob, on the other hand, has to decide whether to save the five people by 
throwing John in front of the train. Assuming that Bob has enough time to 
generate this plan, he may well have enough time to realise that if he throws 
John in front of the train, then not only will John be killed as a consequence, 
but that he will kill John as a means to the end. 

Of course, Bob could use decision theory, to decide whether it is worth it: 
Five people saved compared with one person killed. The calculation argues in 
favour of killing John. But if Bob concludes that as a consequence of killing 
John he might be committing a crime, then the calculation isn’t so easy. 

In cases like these, decision-making is a lot easier if there are clear and 
simple rules (or constraints) that can be followed, like: 

 
    if an agent kills a person  
    and the person is not threatening another person’s life  
    then false. 
 
If Bob has no such rule, then he may decide to throw John onto the track, 
with the good higher-level intention of saving five people. Nonetheless, we 
may judge that his action is morally unacceptable. Our judgement would be 
justified by concern about Bob’s lack of moral constraint. Although his lack 
of constraint might lead to an over-all good consequence on this occasion, it 
could lead to very bad consequences on other occasions. 
 If Bob does have such a constraint, but still decides to throw John onto 
the track, it must be because he has enough time to generate the plan, but not 
enough time to trigger and exercise the constraint. Or so a lawyer might 
argue, if the case ever came to a court of law. 
 
The computational case for moral constraints  
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You could argue for moral constraints on religious grounds. But you can also 
argue for them on the computational grounds that there are many situations in 
which people don’t have the time or knowledge to make optimal decisions in 
accordance with the norms of decision theory. Even if they did, it would be 
unreasonable to expect everyone to adhere to the purely utilitarian principle 
that their own personal interests, or the interests of their family and friends 
are worth no more than the interests of their worse enemy or greatest rival. 
 If everyone used decision theory without any constraints, there would be 
chaos. Some people would use the freedom to employ arbitrary utility 
measures to suit their own interests and to trample over the interests of 
others.  To protect against the antisocial consequences of the exercise of such 
unbridled self-interests, societies impose constraints on the behaviour of 
individuals. But to be effective, these constraints need to be simple and easy 
to apply, even when time and knowledge are in short supply. 
 In our representation of the trolley problem, the constraint was a qualified 
version of the sixth commandment, thou shalt not kill, and the only way to 
kill a person was to throw the person in front of a train. This was an 
oversimplification. It employs a very specific definition of killing a person, 
which conveniently applies to Bob, but not to Mary. It could be argued that 
an alternative, more realistic definition, like: 
 

an agent kills a person  
if the agent performs an action and the action causes the person’s death. 

 
would apply to both Bob and Mary, depending on how causality is defined. 
Certainly throwing a person in front of a train causes the death of the person. 
But does pushing the sidetrack button also cause the death of the person on 
the sidetrack? 
 Philosophers and legal scholars have struggled with dilemmas of this kind 
for centuries. There has to be an easier solution. Otherwise the exercise of 
constraints would require solving difficult problems of causality, and it 
would be impossible to apply constraints in practice. 
 There is an easier solution. Replace the condition that the action causes 
the person’s death by the computationally much simpler condition that the 
action causes the person’s death directly by initiating it in one step: 
 

an agent kills a person  
if the agent performs an action  
and the action initiates the person’s death. 

 
In most cases, determining whether an action initiates a person’s death takes 
only one step of deductive inference, which every agent of full age and 
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capacity should be able to perform. The inference can be made even simpler 
by compiling the definition of killing into the constraint: 
 

if an agent performs an action  
and the action initiates a person’s death 

    and the person is not threatening another person’s life  
    then false. 
 
In contrast, determining whether an action causes a person’s death may 
require an unbounded number of inferences through an arbitrarily long chain 
of actions. The greater the number of inferences, the less reasonable it is to 
expect an agent to be able to perform them.  
 The use of simple constraints on actions that initiate bad consequences 
makes the exercise of constraints much easier, but does not solve all of the 
problems that can arise. There will always be hard cases where the direct 
effect of an agent’s actions also depends on the state of the world – for 
example if a person’s death is initiated by an agent’s driving too fast and the 
car’s going out of control.  

Hard cases like these are the livelihood of the legal profession, and are 
beyond the scope of this book. But, before we leave this topic, there is an 
even bigger problem with constraints. 
 
What to do about violations?  
 
The problem with constraints is that people violate them. They violate them, 
and either they get away with it or they pay the penalty: Don’t press the 
alarm signal button improperly. But if you do, then be prepared to pay a £50 
fine. 
 Logically it doesn’t make sense. Formulating a constraint as a conditional 
with conclusion false, is supposed to prevent the conditions of the constraint 
from becoming true. It doesn’t make sense to have additional constraints that 
apply only when the conclusion false has been derived. 
 This problem has been studied in philosophical logic in the form of 
Chisholm’s paradox (Chisholm, 1963). The paradox is usually formulated in 
some form of deontic logic, but it can be also formulated in terms of 
constraints. Here is an informal statement of the paradox: 
 

It ought to be that Jones goes to assist his neighbors. 
It ought to be that if Jones goes, then he tells them he is coming. 
If Jones doesn't go, then he ought not tell them he is coming. 
Jones doesn't go. 

 
In standard deontic logic, these statements imply the paradoxical conclusions: 
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  Jones ought to tell them he is coming. 
  Jones ought not tell them he is coming. 
 
Almost all deontic logics are modal logics, in which ought is a logical 
connective with the same logical status as and, or, if and not. But in 
abductive logic programming (ALP), which is the basis of the Computational 
Logic that we use in this book, obligations and prohibitions are represented 
by means of integrity constraints, which include maintenance goals and 
constraints. Here is a representation of the paradox in ALP terms: 
 
Goals:  jones goes. 
   if jones goes then jones tells. 
   if jones stays and jones tells then false. 
   if jones stays and jones goes then false. 
Belief:  jones stays. 
 
The first sentence is an achievement goal. In a more complete version of the 
story it might have been derived by means of a maintenance goal, such as if a 
person needs help and jones can help then jones goes. 
 The second sentence is neither a maintenance goal nor a conventional 
constraint, but is nontheless a typical integrity constraint. Viewed in database 
terms, it imposes the restriction that whenever the database contains a record 
that jones goes then it also contains a record that jones tells. Viewed in 
ALP/planning terms, it imposes the restriction that any plan that includes the 
action jones goes also includes the action jones tells. 
 The third and fourth sentences are contraints. The fourth sentence 
expresses that staying is the contrary of going, and the third sentence 
constrains Jones from both staying (not going) and telling. 
 The fifth sentence expresses that Jones doesn’t go as a positive atomic 
fact. Not only does the collection of five sentences together imply the 
conclusion false, but the first, fourth and fifth sentences alone imply false. In 
other words, Jones ought to go, but doesn’t. In the ALP representation the 
second and third sentences serve no function at all. 
 
Constraints and violations of constraints are similar to rules and exceptions. 
The primary constraint is like a general rule, and remedial constraints that 
deal with violations are like exceptions. We have seen that, in the case of 
ordinary rules and exceptions, inconsistency can be avoided by adding an 
explicit condition to the general rule stating that no exception applies. We 
can try to solve the paradox of constraints and their violation similarly. In 
Jones’ case for example, we can add to the primary constraint an extra 
condition, for example that jones is not irresponsible: 
 

if a person needs help and jones can help  
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and jones is not irresponsible then jones goes. 
if jones stays and jones is irresponsible then false. 
etc. 

 
Several solutions of this kind have been developed and explored, both in the 
context of defeasible deontic logic (Nute, 1997) and in repairing violations of 
integrity constraints in databases (Bertossi and Chomicki, 2003). They also 
arise more generally in Computing, for example when a program 
malfunctions and corrective measures need to be applied. The existence of 
practical solutions to these problems in Computing suggests that similar 
solutions exist in a more logical setting. However, the investigation of these 
solutions is yet another problem that is beyond the scope of this book.  
 
Conclusions  
 
The Prisoner’s Dilemma shows that it pays for an agent to value the interests 
of other agents, and to include those interests in its judgements of the utility 
of its actions. More generally, the Prisoner’s Dilemma and similar examples 
show that an agent’s decisions can be judged not only for their consequences 
for the agent alone, but for the good of society as a whole. Such concern for 
the general good of society seems to be the basis of human intuitions about 
morality.  

In the Prisoner’s Dilemma, moral values can be catered for relatively 
simply by including the interests of other agents in judgements of utility. And 
according to consequentialism and utilitarianism, these judgements are 
sufficient to determine the moral status of an agent’s decisions in general. 
However, according to the proponents of the principle of double effect, they 
do not fully account for human moral intuitions, nor for the normative role of 
distinctions between ends, means and side effects in the field of law. 

Psychological studies of moral intuitions about trolley problems show that 
people instinctively judge an agent’s actions both for their motivations and 
for their consequences. We have seen that Computational Logic provides a 
model of agency in which such moral intuitions can be explained. The model 
shows that, in situations where knowledge and time are limited, an agent may 
not be able to judge and compare the expected utilities of all the relevant 
consequences of its alternative candidate actions. In cases such as these, the 
agent can use constraints to avoid actions that are deemed to be morally 
unacceptable.  

The application of Computational Logic to Computational Morality in 
general and to the trolley problem in particular has been investigated by Luis 
Pereira (Pereira and Saptawijaya, 2007, 2009, 2010). Although in this chapter 
we have used Computational Logic to justify moral intuitions concerning the 
principle of double effect, it does not follow that Computational Logic is 
restricted to modelling or justifying only one moral theory, or to modelling 

http://centria.fct.unl.pt/~lmp�
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only one analysis of trolley problems. Its conceptual framework of goals, 
subgoals, constraints and consequences is morally neutral and can be used for 
many purposes, for better or for worse. 
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Chapter 13. The Changing World 
 
In Mathematics, semantic structures are static, and truth is eternal. But for an 
intelligent agent embedded in the Real World, semantic structures are 
dynamic, and the only constant is change. 
  Perhaps the simplest way to understand change is to view actions and 
other events as causing a change of state from one static world structure to 
the next. For example:  
 
         
 
 
 

         The fox praises                 
              the crow. 
 
 
 
 
 
 
 
   
 
 
 
 
 
                           The fox picks 
                    up the cheese. 
 
 
 
 
 
This view of change is formalised in the possible world semantics of modal 
logic. In modal logic, sentences are given a truth value relative to a static 
possible world embedded in a collection of possible worlds linked with one 
another by an accessibility relation.  
 In modal logics of time, one possible world is accessible from another if 
it can be reached from the other by one state-transforming event. Syntactic 
expressions such as “in the past”, “in the future”, “after”, “since” and “until” 
are treated as modal operators, which are logical connectives, like “and”, 
“or”, “if”, “not” and “all”.   

The crow has the cheese. 
 
The crow is in the tree. 
 
The fox is on the ground. 
 
It is raining. 
 
 

The fox has the cheese. 
 
The crow is in the tree. 
 
The fox is on the ground. 
 
The fox is next  
to the cheese. 
 
It is raining. 
 
 

The cheese is  
on the ground.  
 
The crow is in the tree. 
 
The fox is on the ground. 
 
The fox is next 
to the cheese. 
 
It is raining. 
 
 

The crow has the cheese. 
 
The crow is in the tree. 
 
The fox is on the ground. 
 
It is raining. 
 
 

The crow sings. 
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 The truth value of sentences containing modal operators is defined, as for 
ordinary classical logic, in terms of the truth values of simpler sentences. 
However, whereas in classical logic truth is relative to one interpretation (or 
possible world), truth in modal logic is relative to one possible world in a 
collection of possible worlds. For example: 
 

A sentence of the form in the future P is true  
in a possible world W in a collection of worlds C 

 if there is possible world W’ in C 
 that can be reached from W by a sequence of state-transforming events  
 and the sentence P is true in W’. 
 
For example, in modal logic, it is possible to express the sentence  
 
  In the future the crow has the cheese.  
 
This sentence is true in the possible world at the beginning of the story and 
false in the possible world at the end of the story (assuming there are no 
possible worlds after the story ends). 

One objection to the modal logic approach is that its ontology (the things 
that exist) is too conservative, which makes knowledge representation 
unacceptably difficult. The alternative is to increase the expressive power of 
the language by treating events and states of the world as individuals. To treat 
something as an individual, as though it exists, is to reify it; and the process 
itself is called reification.  

The advantage of reification is that it makes talking about things a lot 
easier. The disadvantage is that it makes some people very upset. It’s alright 
to talk about material objects, like the fox, the crow and the cheese, as 
individuals. But it’s something else to talk about states of the world and other 
similarly abstract objects as though they too were ordinary individuals. 
 
The situation calculus 

 
The situation calculus shares with modal logic the same view of change as 
transforming one state of the world into another, but it reifies actions and 
states (or situations) as individuals. In effect, it treats the accessibility 
relation of modal logic as a first-class relation, along with other relations, 
like the fox has the cheese, among ordinary material objects. 

For example, in the situation calculus, in the story of the fox and the 
crow, there is only one relevant semantic structure and it contains, in addition 
to ordinary individuals, individuals that are actions and individuals that are 
global states. It is possible to express such sentences as:  
 

  the crow has the cheese in the state at the beginning of the story.  
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the crow has the cheese in the state  
after the fox picks up the cheese,      

  after the crow sings,  
  after the fox praises the crow,  
  after the state at the beginning of the story.  
 

The first of these two sentences is true. But the second sentence is false. 
Reifying actions and states as individuals makes it possible to represent 

and reason about the effect of actions on states of the world. If we also reify 
“facts”, then this representation can be formulated as two situation calculus 
axioms: 
 

a fact holds in the state after an action,  
if the action initiates the fact  
and the action is possible in the state just before the action. 
 
a fact holds in a state after an action,   
if the fact held in the state just before the action 
and the action is possible in the state just before the action 
and the action does not terminate the fact. 
 

Our original version of the story of the fox and the crow can be reformulated 
in situation calculus terms, by defining the appropriate initiates, terminates 
and is possible predicates. For this purpose, it is convenient to treat the 
action of the crow singing also as a fact: 
 
  an action in which an animal picks up an object 
   initiates a fact that the animal has the object. 
  an action in which an animal picks up an object 
   is possible in a state in which the animal is near the object. 
 
  an action in which I praise the crow  
   initiates a fact that the crow sings.  
  an action in which I praise the crow 
   is possible in any state. 
 
  an action in which the crow sings  
   initiates a fact that I am near the cheese. 
  an action in which the crow sings  
   terminates a fact that the crow has the cheese. 
  an action in which the crow sings  
   is possible in any state. 
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In theory, an agent, such as the fox, could include such axioms among its 
beliefs, to plan its actions, infer their consequences, and infer the 
consequences of other agents’ actions. In practice, however, the use of the 
second situation calculus axiom (called the frame axiom) is computationally 
explosive. This problem, called the frame problem, is often taken to be an 
inherent problem with the use of logic to reason about change.  
 The frame problem is not very noticeable with the goal of determining 
whether or not the crow has the cheese at the end of the story. Two 
applications of backward reasoning with the frame axiom reduce the goal to a 
conjunction of subgoals, one of which is to show that the action of singing 
does not terminate the “fact” that the crow has the cheese. But because the 
action of singing does terminate the fact, the subgoal is false, and therefore 
the initial goal is also false. 
 However, the frame problem is more obvious with the goal of 
determining whether or not it is raining at the end of the story, on the 
assumption that it was raining at the beginning of the story. Whether used 
forward or backward, the frame axiom needs to be used as many times as 
there are actions in the story, to show that it was raining in every state 
between the beginning and end of story. This kind of thinking is not so 
difficult in the imaginary world of the fox and the crow, but it is clearly 
impossible for a real agent living in the real world. 

Arguably, it is not logic that is the source of the problem, but the situation 
calculus view of change, which the situation calculus shares with the possible 
world semantics of modal logic. In both cases, an action is treated as 
changing the entire global state of the world. As a result, to show that a fact 
that holds in a given state of the world continues to hold until it is terminated, 
it is necessary to know and reason about all the other actions that take place 
throughout the entire world in the meantime. 
 
An event-oriented approach to change 
 
The alternative is to abandon the global view of actions as transforming one 
state of the world into another, and replace it with a more local view that 
actions and other events can occur simultaneously and independently in 
different parts of the world. 
 In the event calculus, events include both ordinary actions, which are 
performed by agents, and other events, like the cheese landing on the ground, 
which can be understood metaphorically as actions that are performed by 
inanimate objects.  

For simplicity, we can assume that events occur instantaneously. For this 
purpose, an event that has duration can be decomposed into an instantaneous 
event that starts it, followed by a state of continuous change, followed by an 
instantaneous event that ends it.  Thus the cheese falling to the ground can be 
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decomposed into an instantaneous event in which the cheese starts to fall, 
which initiates the state of the cheese actually falling, followed by an 
instantaneous event in which the cheese lands, which terminates the state of 
falling. 

Events initiate and terminate relationships among individuals. These 
relationships, together with the time periods for which they hold, can be 
regarded as atomic states of affairs. We can picture such an atomic state and 
the events that initiate and terminate it like this: 

 
 
In the story of the fox and the crow, this picture looks like this: 
 

 
Here the crow’s singing is treated as an action/event that is caused by the 
action/event of praising the crow. This causal relationship can be viewed as 
yet another instance of the general pattern: 
 
   a particular outcome happens if I do a certain action  

 and the world is in a particular state. 
 

In this case, the actions/events in the relationship are associated with the 
times of their occurrence:  
 
  the crow sings at time T’ if I praise the crow at time T  
  and the crow reacts to the praise between times T and T’. 
 

The fox is near 
the cheese. 

The crow has 
the cheese. 

The fox has 
the cheese. 

The fox praises 
the crow. 

The crow 
sings. 

The fox picks 
up the cheese. 

event  
happens 

the event  
initiates a fact 

another event  
happens 

the fact holds 

the other event 
 terminates the fact 

Time 
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The condition the crow reacts to the praise between times T and T’ is an open 
predicate, which can be assumed, either to explain an observation of the crow 
breaking out in song at some time T’ or as part of a plan for the fox to have 
the cheese. 
 
A simplified calculus of events 
 
The event calculus represents the relationship between events and the 
properties they initiate and terminate by means of the following 
axiom and constraint:  
 
Axiom:    a fact holds at a time,  

 if an event happens at an earlier time 
 and the event initiates the fact 
 and there is no other event  
        that happens between the two times and 
        that terminates the fact. 

 
Constraint:   if an event happens at a time 
      and the event is not possible at the time then false. 
Equivalently:   if an event happens at a time 
      then the event is possible at the time. 
 
The event calculus constraint is analogous to the situation calculus condition 
that an action is possible in a state. The constraint is necessary for planning. 
Without it, an agent could generate unexecutable plans containing actions 
whose preconditions do not hold at the time of execution.  
 In many cases, the execution of an action terminates a precondition. For 
example, to give an object away, the agent must have the object. For this 
reason, to make the constraint work correctly, the event calculus employs the 
convention that a fact holds after the event that initiates it, but at the time of 
the event that terminates it. So, for example, if Mary gives an apple to John, 
then Mary must have the apple at the time that she gives it (constraint), but 
John has the apple afterwards (axiom). 
 To apply the event calculus in practice, it needs to be augmented, like the 
situation calculus, with additional axioms defining initiation, termination, 
possibility and temporal order. Thus, the event calculus treats the predicates 
a fact holds at a time, an event initiates a fact, an event terminates a fact, an 
event is possible at a time and the predicates for temporal ordering as closed 
predicates. But it treats the predicate an event happens at a time as an open 
predicate.  
 



 188 

The event calculus for predicting 
consequences of events 
 
The open predicate an event happens at a time can be given directly as an 
observation, generated by abduction to explain observed facts, or generated 
as a candidate action in a plan to solve an achievement goal. Here is an 
example of the first of these three cases, given similar definitions of 
initiation, termination and possibility as in the situation calculus example, 
but using the event calculus representation of events: 
 
   the fox praises the crow at time 3. 
   the crow sings at time 5. 
   the fox picks up the cheese at time 8. 
 
We also need to represent the fact that the crow has the cheese at the 
beginning of the story. This can be done in several different ways, but the 
simplest is just to assume an additional event, such as: 
 
   the crow picks up the cheese at time 0. 
 
Reasoning backwards to determine whether or not the crow has the cheese at 
the end of the story, say at time 9, the event calculus axiom generates the 
following sequence of goals and subgoals: 
 
Initial goal: the crow has the cheese at time 9  
 
Subgoals:    an event happens at time T and T < 9 and 
     the event initiates the fact that the crow has the cheese
    there is no other event that happens between T and 9 and 

 and 

           the other event terminates the fact that the crow has the cheese. 
 
Subgoals:    the crow picks up the cheese at time T and T < 9 
     there is no other event that happens between T and 9 and 

and 

           the other event terminates the fact that the crow has the cheese. 
 
Subgoals:    there is no 
           the other event terminates the fact that the crow has the cheese. 

other event that happens between 0 and 9 and 

 
   Naf: an event happens at time T’ and T’ is between 0 and 9 and 
             the event terminates the fact that the crow has the cheese
   Subgoals:   

. 
the crow sings at time T

   Subgoals:   
’ and T’ is between 0 and 9 

   Success:   yes! 
5 is between 0 and 9 
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Failure: no!  
 
The conclusion that the crow does not have the cheese follows from negation 
as failure and the fact that, given the order in which the subgoals are selected, 
there are no other possible proofs. Of course, this conclusion depends upon 
the closed world assumption, that there are no other events that take place 
before time 9 that initiate the crow having the cheese. On the other hand, 
there is nothing to rule out the possibility that the crow could regain 
possession of the cheese at some time after 9, for example by praising the 
fox.  
 Notice that the efficiency of the search for a solution is highly sensitive to 
the order in which subgoals are selected. Given the order of selection in the 
proof presented above, there are no other branches in the search space; and 
the search is very efficient. However other selection strategies, for example 
selecting the subgoal an event happens at time T first, would be very 
inefficient. The efficiency of the search can be further improved by storing 
events in order of occurrence, so that only the most relevant events are 
considered.  
 
The event calculus and the frame problem 
 
Taken together, the subgoal selection and event storage strategies help the 
event calculus to overcome many, but not necessarily all of the inefficiencies 
of the frame problem. Other inefficiencies are avoided as a result of the event 
calculus localised view of change.  
 Suppose, for example, that we add that it was raining at the beginning of 
the story, by assuming an additional event, such as it starts raining at time -1, 
where: 
 
  an event in which it starts raining initates a fact that it is raining. 
  an event in which it stops raining terminates a fact that it is raining. 
 
We can simplify the problem of determining whether or not it is raining at 
time 9 by solving the subgoals an event initiates a fact and an event 
terminates a fact of the event calculus axiom in advance, generating the 
specialised axiom: 
 
    it is raining at a time,  
    if it starts raining at an earlier time 
    and it does not stop raining between the two times. 
 
Reasoning backwards with the specialised axiom generates the following 
sequence of goals and subgoals: 
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Initial goal: it is raining at time 9.  
 
Subgoals:    it starts raining at time T and T < 9
           and it does not stop raining between T and 9. 

 and 

 
Subgoals:    it does not
 

 stop raining between -1 and 9. 

    Naf:   it stops raining at time T’
          Failure: no!  

 and T’ is between -1 and 9. 

 
Success:   yes! 
 
Notice that, unlike the solution of the same problem in the situation calculus, 
the length of the solution does not depend on the number of states, actions, or 
events between the time -1 at which it starts raining and the time 9 under 
consideration. In the event calculus, the length depends only on the number 
of relevant rain initiating and terminating events, and their time of 
occurrence.  
 
The event calculus for plan generation 
 
The event calculus constraint is not needed when the event calculus axiom is 
used to predict the consequences of observed events. But it can be used to 
monitor observed events. If an observation violates the constraint, then the 
agent needs to choose between rejecting the observation as an illusion, and 
rejecting a belief that is incompatible with the observation.  
 However, the constraint is needed when the event calculus axiom is used 
to generate candidate events to explain observations or to generate candidate 
actions to solve achievement goals. 
 Here is the beginning of a solution of the fox’s achievement goal of 
having the crow’s cheese. In this solution only the initial event the crow picks 
up the cheese at time 0 is given: 
 
Initial goal: the fox has the cheese at time T  
 
Subgoals:    an event happens at time T’ and T’ < T and 
     the event initiates the fact that the fox has the cheese
     there is no other event that happens between T’ and T and 

 and 

           the other event terminates the fact that the fox has the cheese. 
 
Subgoals:    the fox picks up the cheese at time T’
      there is no other event that happens between T’ and T and 

 and T’ < T and 

            the other event terminates the fact that the fox has the cheese. 
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Without the event calculus constraint, this is as far as the fox needs to go to 
solve the goal. The fox can simply pick up the cheese at any time, provided 
she doesn’t do anything to terminate having the cheese in between times. 
Although this solution may seem incomplete, it actually satisfies all of the 
formal conditions for a solution in the proof procedure of the additional 
Chapter A6. 
 However, the solution is genuinely incomplete when the constraint is 
taken into account. When the constraint is considered, the candidate action 
the fox picks up the cheese at time T’ triggers the constraint and generates the 
further achievement goal: 
 
Further goal:  the fox picks up the cheese is possible at time T’. 
 
Using the relevant definition of possibility: 
 
    an animal picks up an object is possible at a time 
    if the animal is near the object at the time  
 
backward reasoning reduces this further goal to the subgoal: 
 
Subgoal:   the fox is near the cheese at time T’. 
 
This subgoal is the same kind of achievement goal that we started with, but it 
is one step closer to a complete plan.  
 Reasoning in this way, alternating between the use of the event calculus 
axiom and the event calculus constraint, the fox can soon generate a complete 
plan to achieve her initial goal. In addition to the relevant actions, the plan 
includes subgoals that prevent the fox from performing any other actions that 
might interfere with the plan. It also contains an explicit assumption that the 
crow will react to the fox’s praise by singing. 
 The solution looks more complicated than it is. Some of the apparent 
complexity can be eliminated by compiling the constraint into the event 
calculus axiom itself: 
 
Complied axiom:  a fact holds at a time,  

 if an event happens at an earlier time 
 and the event initiates the fact 
  and the event is possible at the earlier time 
 and there is no other event  
        that happens between the two times and 
        that terminates the fact.  
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Even more of the complexity can be eliminated by solving the subgoals an 
event initiates a fact and an event is possible at a time in advance, generating 
specialised axioms for the special case under consideration. For example: 
 
  an animal has an object at a time,  
  if the animal picks up the object at an earlier time 
  and the animal is near the object at the earlier time 
  and there is no other event  
   that happens between the two times and 
   the event terminates the fact that the animal has the object. 

 
This compiled form of the event calculus is closer to the representation of the 
story of the fox and the crow in Chapters 3 and 4. But it is less flexible for 
predicting the consequences of observed events, where the use of the 
constraint is unnecessary. 
 Notice that explaining an observation that the fox has the cheese is similar 
to generating a plan for the fox to have the cheese. This is because planning 
and explaining observations are formally identical. 
 
Partially ordered time 
 
Whereas the possible world semantics and the situation calculus both 
associate global states with facts, actions and other events, the event calculus 
associates time points. In the examples we have seen so far, these time points 
are numbers, with the property that all facts and events are ordered linearly 
on the same time line. However, the times of unrelated events do not need to 
be linearly ordered, as pictured in the example: 

 
To represent such partially ordered events, we need a different way of 
naming time points, and of determining when one time point comes before 
another. For example: 
 
   the crow picks up the cheese at timecrow-pickup. 

The cheese falls to 
the ground. 

The crow has 
the cheese. 

The fox has 
the cheese. 

The fox praises 
the crow. 

The crow 
sings. 

The fox picks 
up the cheese. 

The wolf enters the 
scene. 

The wolf eats 
the fox 
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   the fox praises the crow at timepraise. 
   the crow sings at timesing. 
   the fox picks up the cheese at timefox-pickup. 
   the wolf enters the scene at timeenter. 
   the wolf eats the fox at timeeat. 
    
   timecrow-pickup < timepraise < timesing < timefox-pickup < timeeat 
   timeenter < timeeat 
    
   T1 < T3  if  T1 < T2  and  T2 < T3 
    
The event calculus works equally well with such different representations of 
time. 
 
Keeping track of time 
 
The representation of time by numbers, dates and/or clock time serves two 
functions. It not only linearly orders time points, but it also measures the 
duration between time points. This ability to judge duration is necessary for 
the proper functioning of the agent cycle. For example, if you are hungry, 
then you need to get food and eat it before you collapse from lack of strength. 
If a car is rushing towards you, then you need to run out of the way before 
you get run over. If you have a 9:00 appointment at work, then you need to 
get out of bed, wash, eat, dress, journey to work, and arrive before 9:00.  
 To get everything done in time, you need an internal clock, both to 
timestamp observations and to compare the current time with the deadlines of 
any internally derived future actions. This creates yet more work for the 
agent cycle:  

repeatedly (or concurrently): 
 observe the world, record any observations,  

     together with the time of their observation,   
     think,   

 decide what actions to perform, choosing only actions  
 that have not exceeded their deadline, and 

     act. 
 
Consider, for example, the fox’s response to an observation that she is 
hungry. She needs to estimate how long she can go without eating before it is 
too late: 
 
  if I am hungry at time Thungry  
  and I will collapse at a later time Tcollapse  if I don’t eat 
  then I have food at a time Tfood 
  and I eat the food at the time Tfood  
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  and Tfood is between Thungry  and Tcollapse. 
 
She also needs to be able to deal with any attack from the local hunters:  
 
  if the hunters attack me at time Tattack  
  and they will catch me at a later time Tcatch  if I don’t run away 
  then I run away from the hunters at a time Trun  
  and Trun is between Tattack  and Tcatch. 
 
Suppose, the fox is both hungry and under attack at the same time. Then the 
fox needs to do a quick mental calculation, to estimate both how much time 
she has to find food and how much time she has to run away. She needs to 
judge the probability and utilities of the two different actions, and schedule 
them to maximise their overall expected utility. If the fox has done her 
calculations well and is lucky with the way subsequent events unfold, then 
she will have enough time both to satisfy her hunger and to escape from 
attack. If not, then either she will die of starvation or she will die from the 
hunt. 

But this kind of reasoning is a normative ideal, which is perhaps better 
suited to a robot than an intelligent biological being. It would be easier 
simply to give higher priority to escaping from attack than to satisfying 
hunger, using heuristic “rules of thumb” that might look more like this: 
 
  if I am hungry at time Thungry  
  then I have food at a time Tfood 
  and I eat the food at the time Tfood  
  and Tfood is as soon as possible after Thungry. 
 
  if someone attacks me at time Tattack  
  then I run away from the attackers at a time Trun 
  and Trun is immediately after Tattack . 
 
Then if you are both hungry and attacked at the same time, say time 0 
arbitrarily, your goals would look like this: 
 
  I have food at a time Tfood 
  I eat the food at the time Tfood  
  I run away from the hunters at a time Trun 
  and Trun is immediately after time 0. 
  and Tfood is as soon as possible after 0. 
 
It would then be an easy matter for you to determine not only that Trun should 
be before Tfood but that Trun should be the next moment in time.  
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It would be the same if you were attacked after you became hungry, but 
before you succeeded in obtaining food. You would run away immediately, 
and resume looking for food only after (and if) you have escaped from attack.  

Rules of thumb give a quick and easy decision, which is not always 
optimal. If you were running away from attack and you noticed a piece of 
cheese on the ground, a normative calculation might determine that you have 
enough time both to pick up the cheese and to resume running and escape 
from attack. Rules of thumb, which are designed to deal with the most 
commonly occurring cases, are less likely to recognise this possibility. 

Our agent model is neutral with respect to the way decisions are made. It 
is compatible, in particular, with the use of decision theory, the use of 
heuristic rules of thumb and any combination of the two. 
 
Historical background and additional reading 
 
The event calculus (Kowalski and Sergot, 1986) was inspired in large part by 
the situation calculus developed by McCarthy and Hayes (1969). The use of 
temporal storage of events to alleviate the frame problem in the event 
calculus is discussed in (Kowalski, 1992). A more radical approach to the 
frame problem, which manipulates a destructively updated working memory, 
is described in (Kowalski and Sadri, 2010). The frame problem is the subject 
of Murray Shanahan’s (1997) Solving the Frame Problem.  
 The use of the event calculus for knowledge representation and reasoning 
in Artificial Intelligence is one of the main topics in Erik Mueller’s (2006) 
Commonsense Reasoning. The application of the event calculus to the 
analysis of tense and aspect in natural language from the vantage point of 
Cognitive Science is the topic of van Lambalgen and Hamm’s (2005) The 
Proper Treatment of Events. 
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Chapter 14. Logic and Objects 
 
What is the difference between the fox and the crow, on the one hand, and 
the cheese, on the other? Of course, the fox and crow are animate, and the 
cheese is inanimate. Animate things include agents, which observe changes 
in the world and perform their own changes on the world. Inanimate things 
are entirely passive.  

But if you were an Extreme Behaviourist, you might think differently.  
You might think that the fox, the crow, and the cheese are all simply objects, 
distinguishable from one another only by their different input-output 
behaviours: 
 

if the fox sees the crow and the crow has food in its mouth,  
then the fox praises the crow. 
 
if the fox praises the crow,  
then the crow sings. 
 
if the crow has food in its mouth and the crow sings,  
then the food falls to the ground. 
 
if food is next to the fox,  
then the fox picks up the food. 

 
Extreme Behaviourism was all the rage in Psychology in the mid-20th 
century. A more moderate form of behaviourism has been the rage in 
Computing for approximately the past thirty years, in the form of Object-
Orientation.  

It’s easy to make fun of yesterday’s Extreme Behaviourists. But it’s not 
so easy to dismiss today’s Object-Orientated Computer Scientists and 
Software Engineers. Object-Orientation (OO) today dominates every aspect 
of Computing: from modelling the system environment, through specifying 
the system requirements, to designing and implementing the software and 
hardware.  

Advocates of OO argue that it provides a natural way of looking at the 
world, helping to decompose large systems into maneagable components, 
making them easier to develop and maintain. These claims of naturalness 
place it in direct competition with Logic in general and Computational 
Logic (CL) in particular. 

For a while in the 1980s, it looked as though some form of 
Computational Logic might come to occupy the central role in Computing 
that OO occupies today. If we can understand why OO won the competition 
between them, then we might gain a better understanding of the prospects of 
CL, not only for Computing, but for Human Reasoning as well. 
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Objects as individuals 
 
In the object-oriented way of looking at things, the world consists of 
objects, which interact with one another through their externally manifest 
input-output behaviour. Object-Orientation turns the relationship between 
an agent and the world, as viewed in conventional logic: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
outside in: 
 
 
 
 
 
 
 
An agent’s observations turn into messages received from other objects, and 
its actions turn into messages sent to other objects. The world becomes 
absorbed into the network of interacting objects, or becomes a separate object 
like any other object. 
 
Encapsulation 
 
An object consists of a local state, which is a collection of current values of 
the object’s attributes, and a collection of methods, which the object uses to 
respond to messages or to compute values of its attributes. Both of these are 
encapsulated within the object, hidden from other objects.   

          agent 

observe act 

 
The world 

 
    
The world 
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Encapsulation of an object’s methods is an inherent property of the 
natural world, because no object can tell for sure what goes on inside another 
object. In theory, if you could get inside another object, you might discover 
that it is just like you. Every object - bear, tree, river, mountain or stone - 
might have a spirit, which is its internal mental state. Contrariwise, you might 
discover that no object, other than yourself, has any internal state at all. 

Encapsulation of methods is a useful property for constructing artificial 
worlds. It reduces the complexity of combining individual objects into 
complex systems of objects, because the engineer only needs to take into 
account the external behaviour of the components. Furthermore, should one 
of the components of a functioning system become defective or obsolete, it 
can be replaced by a new component that has the same external behaviour, 
without affecting the behaviour of the system overall. 

OO is more moderate than behaviourism. In addition to combining 
existing encapsulated objects, the engineer can create new objects by 
initialising the values of their attributes and implementing their methods. 

 
Methods 
 
The common OO languages used for implementing methods are typically 
procedural languages with a syntax inherited from pre-OO programming 
languages and without the declarative semantics of logic-based knowledge 
representation languages. 

However, even when OO methods are implemented in procedural 
programming languages, it is natural to express their specifications in logical 
form. These specifications often have the form of condition-action rules in 
declarative mood: 
 
  if an object receives a message of the form S from object O 
  then the object sends a message of the form R to object P. 
 
For example: 
 

if the fox receives a message that the crow has food in its mouth,  
then the fox sends a message of praise to the crow. 
 
if the crow receives a message of praise from the fox,  
then the crow sends a message of song. 

   
  if the crow has food in its mouth 

and the food receives a message of song from the crow 
then the food sends a message of falling to the ground. 
 
if the food sends a message that it is next to the fox,  
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then the fox sends a message that she picks up the cheese. 
 
The encapsulated methods by means of which these specifications are 
implemented can be programmed in different ways. They can be 
implemented, in particular, as we will discuss later and as should already be 
apparent, by programs expressed in logical form. 
 
Classes 
 
OO makes it easy for the engineer to create new objects by instantiating more 
general classes of objects. 

For example, an engineer might create a new fox by creating a new 
instance of the general class of all foxes. The class of foxes as a whole might 
have general methods for dealing with such messages as the sight of another 
animal having food and the appearance of food within its grasp. It might also 
have typical values for such attributes as the colour of its fur and the shape of 
its tail. The new fox would inherit these methods and values of attributes with 
little or no modification, possibly with the addition of certain special methods 
and attributes unique to itself. 

Classes are organised in taxonomic hierarchies. So for example, the class 
of all foxes might inherit most of its methods and attributes from the class of 
all animals. The class of all animals might inherit them, in turn, from the 
class of all animate beings; the class of all animate beings might inherit them 
from the class of all material objects; and the class of all material objects 
might inherit them from the class of all things. 
 
Reconciling logic and objects 
 
There is an obvious way to reconcile logic and objects: simply by using 
Computational Logic to implement the methods associated with objects and 
classes. An implementation of this logical kind might combine maintenance 
goals, which respond to observations of incoming messages, with beliefs, 
which reduce goals to subgoals, including actions of sending outgoing 
messages. For example: 
 
Goal:  if I receive message of form S from object O 
   then G. 
 
Beliefs: G if conditions and I send message of form R to object P 
 
Using CL to implement OO methods can benefit OO by providing it with 
higher-level knowledge representation and problem solving capabilities.  
 Conversely, using OO encapsulation and inheritance techniques can benefit 
CL by providing a framework for combining individual logic-based agents 
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into multi-agent communities. Individual agents can share their knowledge 
and problem solving resources with other agents in the same community. 
 In such a community of agents, complex problems can be decomposed into 
simpler subproblems, and their solution can be distributed to different agents, 
specialising in different problem domains. No single agent needs to know it 
all, or to solve every problem on its own.  
 Similarly, a complex connection graph of goals and beliefs might be 
distributed among several agents. Relatively self-contained subgraphs with 
sparse links to other subgraphs can be associated with individual agents. The 
links between the subgraphs can serve as communication channels between the 
agents, sending requests for help in solving subgoals and receiving solutions 
and other information in return. 
 
Message-passing or shared environment? 
 
In Computing, there are two main alternative approaches to combining 
agents into multi-agent systems: the communicating agents approach, in 
which agents interact directly by communicating messages, and the shared 
environment approach, in which agents interact indirectly through the 
medium of a global database. Computational Logic is compatible with both 
approaches, and suggests a natural way of combining them. 
 CL supports the communicating message approach, when agents are 
interpreted as subgraphs of a connection graph, and messages are interpreted 
as links between subgraphs. But it supports the shared environment 
approach, when the environment is viewed as a semantic structure that gives 
meaning to an agent’s thoughts. In CL, these two views are compatible and 
combined. 
 The simplest way to combine and reconcile the two approaches in CL is 
to use message passing as an internal mechanism to link subgraphs of the 
connection graph of a single agent’s mind, and to use the environment as an 
external medium to coordinate the agent’s interactions with other agents. 
Viewed in this way, the main contribution of OO is the way in which it 
structures knowledge and goals into manageable, semi-independent, 
encapsulated, modular, and hierarchically organised components. 
 
Semantic networks as a variant of object-orientation  
 
There are a number of other Computing paradigms that structure knowledge in 
similar object-oriented terms. Among the most notable of these are semantic 
networks, which represent the world as a web of relationships among 
individuals. For example, a semantic network representing the initial state of 
the story of the fox and the crow might look like this: 
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agent 

 
 
 
 
 
 
 
 
 
 
 
 
 
Here circles (or nodes) represent individuals (or objects), and arcs represent 
binary relationships between pairs of individuals. The representation can be 
extended to non-binary relationships. 

Semantic network representations are object-oriented, in the sense that they 
store all the facts about an individual in a single place, namely surrounding the 
node that represents the individual. These facts are represented by the arcs 
connected to that node and by the other nodes to which those arcs are also 
connected.  

However, in contrast with orthodox OO, relationships are represented only 
once, but are connected to all the individuals that participate in the 
relationship. Moreover, they are visible to the outside world, and not merely 
encapsulated inside objects.  

Semantic networks have also been used to represent dynamic information, 
by reifying events. For example: 
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In this network, the terms object and agent are only loosely associated with 
our notions of object and agent.  

Semantic networks have also been used to represent hierarchies of classes. 
For example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Semantic networks are like the semantic structures of Chapter A2, which are 
just sets of atomic sentences. In fact, semantic network connections of the 
form: 
 

 
are simply graphical representations of atomic sentences of the form one 
thing is related to another thing. 
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Object-oriented structuring of natural language 
 
Semantic networks are a graphical way of picturing object-oriented 
structuring of information. OO structuring can also be applied to natural 
language. 

We noted earlier in Chapter 1 that sentences expressed in logical form are 
context-independent and can be written in any order, but some sequences of 
sentences are much easier to understand than others. Grouping sentences into 
collections of sentences about objects is another way to make sentences 
easier to understand. 

For example, we can group the atomic sentences describing the beginning 
of the story of the fox and the crow into collections of sentences about the 
objects in the story: 
 
 The crow:   The crow has the cheese. 
      The crow is in the tree. 
 
 The tree:   The tree is above the ground. 
 
 The fox:   The fox is on the ground. 
 
Of course, we can also group the same sentences by means of other objects: 
 
 The cheese:  The crow has the cheese. 
 
 The tree:   The crow is in the tree. 
 
 The ground:  The tree is above the ground. 
      The fox is on the ground. 
 
To find a good organisation, it is necessary to decide which objects are the 
most important. Generally, active objects, including agents, are generally 
more important than passive objects. 

Natural languages, like English, take object-orientation a step further, by 
employing grammatical forms in which the beginning of a sentence indicates 
its topic and the following part of the sentence expresses a comment about the 
topic. This form often coincides with, but is not limited to, the grammatical 
structuring of sentences into subjects and predicates.  

The two forms of object-orientation – grouping sets of sentences by 
object and structuring individual sentences by object – are often combined in 
practice. Consider, for example, the pair of English sentences from (Brown 
and Yule, 1983 page 130): 
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    The prime minister stepped off the plane. 
    Journalists immediately surrounded her. 
 
Both sentences are formulated in the active voice, which conforms to the 
guidelines for good practice advocated in all manuals of English style. 

The two sentences refer to three objects, the prime minister (referred to as 
“her” in the second sentence), journalists and the plane. The prime minister is 
the only object in common between the two sentences. So, the prime minister 
is the object that groups the two sentences together. However, the topic 
changes from the prime minister in the first sentence to the journalists in the 
second.  

Now consider the following logically equivalent pair of sentences:  
 
    The prime minister stepped off the plane. 
    She was immediately surrounded by journalists. 
 
Here, the two sentences have the same topic. However, the second sentence 
is now expressed in the passive voice. Despite this fact and despite its going 
against a naïve interpretation of the guidelines of good writing style, most 
people find this second pair sentences easier to understand. This seems to 
suggest that people have a strong preference for organising their thoughts in 
object-oriented form, which is stronger than their preference for the active 
over the passive voice. 

Object-orientation is not the only way of structuring and ordering 
sentences. In both of the two pairs of sentences above, the sentences are 
ordered by the temporal sequence of events. 

Now consider the following sequence of sentences: 
 

 The fox praised the crow. 
 The crow sang a song. 
 The cheese fell to the ground.  
 The fox picked up the cheese. 

 
Here the sentences are ordered by temporal sequence. Individual sentences 
are structured, not by object, but by agent, as reflected in the use of the active 
voice.  
 

Conclusions 
 
In the same way that there are many systems of logic, there are many forms 
of object-orientation. In extreme forms of OO, there is no distinction between 
active and passive objects, and all interaction between objects is reduced to 
sending and receiving messages. 
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 Extreme OO takes equality of objects too far. Instead of treating all 
objects as equal, it would be more natural to distinguish between active and 
passive objects. Active objects, which have encapsulated methods, are like 
agents, which have internal goals and beliefs. Passive objects, which have no 
internal structure, simply participate in external relationships with other 
objects. 
 Extreme OO also takes the message passing metaphor too far. Instead of 
forcing all interactions between objects to be messages, it would be more 
natural to distinguish between messages sent from one active object to 
another and messages that are really observations or actions. 

The real value of object-orientation lies in moderate forms of OO in 
which objects are encapsulated, modular collections of relatively self-
contained knowledge, most of which is inherited from more general classes. 

The example of natural languages like English shows that logic and OO 
have different areas of concern. Logic is concerned with representing 
knowledge, whereas OO is concerned with structuring knowledge 
representations. It would be interesting to see how OO notions of stucturing 
might apply to the collection of sentences that make up this book. 
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Chapter 15. Biconditionals 
 
As we saw in Chapter 5, negation as failure has a natural meta-logical (or 
autoepistemic) semantics, which interprets the phrase cannot be shown 
literally, as an expression in the metalanguage or in autoepistemic logic. But 
historically the first and arguably the simplest semantics is the completion-
semantics (Clark, 1978), which treats conditionals as biconditionals in 
disguise. 
 Both the meta-logical and the completion semantics treat an agent’s 
beliefs as specifying the only conditions under which a conclusion holds. But 
whereas the meta-logical semantics interprets the term only in the meta-
language, biconditionals in the completion semantics interpret the same term, 
only, in the object language.  
 Suppose for example, that we have complete information about whether 
or not Mary will go to the party, and the only belief we have is: 
 
   mary will go if john will go. 
  
Then it follows that:  mary will go only if john will go. 
 
The meta-logical interpretation of negation as failure interprets this use of 
only if in the meta-language: 
 
   “mary will go if john will go”  
     is the only way of showing “mary will go”. 
 
However, the orthodox interpretation of only if in traditional logic interprets 
only if in the object-language, understanding sentences of the form: 
 
   conclusion only if conditions  
 
as object-language conditionals of the form: 
 
   conditions if conclusion. 
 
Thus given a single conditional: 
 
   conclusion if conditions 
 
together with an assumption that the conditional describes the only conditions 
under which the conclusion holds, traditional logic interprets the conditional 
as the object language biconditional: 
 
   conclusion if and only if conditions. 
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More generally, in the propositional case (where there are no variables), 
traditional logic interprets the assumption that the conditionals: 
 

 conclusion if conditions1   
 ………    
 conclusion if conditionsn   

   
are the only ways of establishing the given conclusion as the biconditional: 
 
   conclusion if and only if conditions1  or ………  or conditionsn . 
 
Written in this form, the conditions of the biconditional can be regarded as 
giving a definition of the conclusion.  
 If the conditional is a simple fact, then the biconditional is equivalent to a 
definition of the form: 
 
      conclusion if and only if true. 
 
If an atomic predicate is the conclusion of no conditional, then it is 
equivalent to a definition of the form: 
 
      atomic predicate if and only if false. 
Or equivalently:  it is not the case that atomic predicate. 
 
This is also equivalent to the constraint: 
 
Constraint:   if atomic predicate then false. 
 
The biconditional form is more complicated in the non-propositional case. 
For example, suppose that we have complete information about who will go 
to the party, and that the only beliefs we have are: 
 
   mary will go if john will go. 
   john will go if bob will not go. 
 
Then the biconditional form of the beliefs is: 
 
   a person will go  
   if and only if the person is identical to mary and john will go 
   or the person is identical to john and bob will not go. 
 
For simplicity, we ignore the non-propositional case in the rest of the book. 
 



 208 

Reasoning with biconditionals used as equivalences 
 
The object-level interpretation of only-if was originally used by Clark (1979) 
as a semantics for negation as finite failure. But it can also be used in its own 
right as a basis for an object-level proof procedure, in which biconditionals 
are used as equivalences, to replace atomic formulas that match their 
conclusions by their defining conditions (Fung and Kowalski, 1997). Using 
biconditionals in this way is a form of backward reasoning, which behaves 
almost exactly like backward reasoning with normal conditionals. Moreover, 
when applied to an atomic formula inside negation, it behaves almost exactly 
like negation as failure. In fact, in every-day informal reasoning, it can be 
hard to distinguish between ordinary backward reasoning and reasoning with 
equivalences.  

Suppose, for example, that we want to determine whether or not mary will 
go to the party, but this time using biconditionals to represent the assumption 
that the conditionals are the only ways of showing their conclusions: 
 
    mary will go if and only if john will go. 
    john will go if and only if it is not the case that bob will go. 
    bob will go if and only if false. 
 
Initial goal:      mary will go.  
Equivalent subgoal:    john will go.  
Equivalent subgoal:    it is not the case that bob will go
Equivalent subgoal:    it is not the case that false. 

. 

Equivalent subgoal:    true. 
 
Suppose Bob changes his mind: 
 
    mary will go if and only if john will go. 
    john will go if and only if it is not the case that bob will go. 
    bob will go if and only if true. 
 
Initial goal:      mary will go.  
Equivalent subgoal:    john will go.  
Equivalent subgoal:    it is not the case that bob will go
Equivalent subgoal:    it is not the case that true. 

. 

Equivalent subgoal:    false. 
 
Now suppose Bob is out of the picture, and we try to show mary will not go 
with the beliefs: 
 
    mary will go if and only john will go. 
    john will go if and only if mary will go. 
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Initial goal:      it is not the case that mary will go
Equivalent subgoal:    it is not the case that 

.  
john will go

Equivalent subgoal:    it is not the case that 
.  

mary will go
Equivalent subgoal:    it is not the case that 

.  
john will go

Ad infinitum:      …………… 
. 

 
It is impossible to show that mary will not go and impossible to show that 
mary will go. Similarly for John.  
 This last result is different from the one we obtained with the same 
example when we understood it is not the case that as it cannot be shown, 
using negation as failure in Chapter 5. There the result was that mary will not 
go, because it cannot be shown that mary will go. This shows that default 
reasoning with biconditionals is a form of negation as finite failure. 
 
Using biconditionals to simulate auto-epistemic failure 
 
Reconsider the belief that a person is innocent unless proven guilty. Let’s 
see what happens if we replace the meta-level negation it cannot be shown 
by the object-level negation it is not the case that and we replace 
conditionals by biconditionals17

 
: 

   a person is innocent of a crime 
   if and only if the person is accused of the crime 
   and it is not the case that the person committed the crime. 
 
   a person committed an act  
   if and only if another person witnessed the person commit the act. 
 
    bob is accused of robbing the bank if and only if true. 
 
In addition, we need to represent a form of the closed world assumption for 
predicates that do not occur either as facts or as the conclusions of 
conditionals, for example to represent the initial situation in which no one 
has seen bob commit the crime. This can be expressed as a negative fact in 
biconditional form or as a constraint18

                                                        
17 This discussion glosses over a number of details. For example, if bob is the only 
person accused of committing a crime, then this could be represented by a person is 
accused of committing a crime if and only if the person is identical to bob and the 
crime is robbing the bank, where is identical to is a kind of equality (defined by X is 
identical to X). 

: 

18 There are arguments for both representations. However, in practice, the two 
representations behave similarly. The biconditional representation uses backward 
reasoning to replace an atom by its definition false. The constraint representation 
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  a person witnessed bob commit robbing the bank if and only if false. 
or   if a person witnessed bob commit robbing the bank then false. 
 
To solve a goal, such as showing that bob is innocent of robbing the bank, it 
suffices to repeatedly replace atomic formulas by their definitions, 
performing obvious simplifications associated with true and false. In the 
case of showing that bob is innocent of robbing the bank, this form of 
backward reasoning generates the following transformation of the initial 
goal into a sequence of equivalent expressions, representing subgoals. 
Atomic formulae that are replaced by their definitions are underlined: 
       
Initial goal:    bob is innocent of robbing the bank
Equivalent subgoal:   

. 
bob is accused of robbing the bank

       it is not the case that  
 and 

       bob committed robbing the bank. 
Equivalent subgoal:  it is not the case that  
       bob committed robbing the bank
Equivalent subgoal:  it is not the case that 

. 

       
another person  

Equivalent subgoal:  it is not the case that false. 
witnessed bob commit robbing the bank 

Equivalent subgoal:  true. 
 
This solves the initial goal, because it is equivalent to true. Although 
reasoning explicitly with true and false may seem a little awkward, it mirrors 
the kind of reasoning that takes place implicitly when reasoning with meta-
level conditions of the form it cannot be shown.  
 Reasoning with biconditionals in this way is defeasible, because if we 
now replace the assumption that no one witnessed bob commmit robbing the 
bank by: 
 
   john witnessed bob commit robbing the bank if and only if true. 
 
then the previous conclusion is withdrawn: 
 
Initial goal:    bob is innocent of robbing the bank
Equivalent subgoal:   

. 
bob is accused of robbing the bank

       it is not the case that  
 and 

       bob committed robbing the bank. 
Equivalent subgoal:  it is not the case that 
       bob committed robbing the bank
                                                                                                                        
uses forward reasoning from the atom to derive false and to conjoin false to the atom. 
In both cases, logical simplification (of the kind described in Chapter A6) transforms 
the atom and its conjuncts to false.  

. 
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Equivalent subgoal:  it is not the case that 
       

another person  

Equivalent subgoal:  it is not the case that true. 
witnessed bob commit robbing the bank 

Equivalent subgoal:  false. 
 
Remarkably, not only do both proofs mirror the search for proofs using 
negation as failure, but they simulate the autoepistemic character of negation 
as failure. This is because any conclusion derived using the biconditional 
representation has an implicit global autoepistemic assumption that the 
conclusion holds as far as I know. 
 
Abduction or deduction? 
 
Similarly to the way in which reasoning with biconditionals provides an 
alternative way of performing default reasoning, it also provides an 
alternative way of explaining observations by deduction rather than by 
abduction. For example, to explain the observation that the grass is wet, it 
uses biconditionals as equivalences to replace closed predicates by their 
definitions, leaving open predicates as potential hypotheses: 
 
Belief:   the grass is wet if and only if it rained or the sprinkler was on. 
 
Observation and initial goal: the grass is wet
Equivalent subgoal:    it rained or the sprinkler was on. 

. 

 
Here the predicate the grass is wet is closed, whereas the predicates it rained 
and the sprinkler was on are both open and serve as hypotheses to explain the 
observation.  
 Note that, using deduction with biconditionals, the disjunction or is 
expressed in the object language. In contrast, using abduction with 
conditionals, the same disjunction would be expressed in the meta-language 
by saying that the grass is wet because it rained or the grass is wet because 
the sprinkler was on.  
 In the same way that forward reasoning can be used to deduce 
consequences of hypotheses derived by abduction, forward reasoning can 
also be used to deduce consequences of hypotheses derived by means of 
biconditionals. For example, if it rained last night, then the clothes outside 
will be wet. If you check the clothes, and observe they are dry, then you can 
eliminate the possibility that it rained (using the fact that wet and dry are 
contraries). This reasoning can be expressed more precisely in the following 
way: 
 
Beliefs:  the grass is wet if and only if it rained or the sprinkler was on. 
    the clothes outside are wet if and only if it rained. 
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    the clothes outside are dry if and only if true. 
 
Constraint:   if the clothes outside are dry and the clothes outside are wet 

then false. 
 
Here we represent the fact that wet and dry are contraries as a constraint, 
which we write (and use) in the same way as maintenance goals, but with 
conclusion false. 
 
Observation and initial goal:    the grass is wet
Equivalently (by backward reasoning):  

. 
it rained

Equivalently (by forward reasoning): 
 or the sprinkler was on. 

  (it rained and the clothes outside are wet
Equivalently (by forward reasoning):  

)  or the sprinkler was on. 

  (it rained and the clothes outside are wet 
  and (if the clothes outside are dry
Equivalently (by backward reasoning):   

 then false)) or the sprinkler was on. 

  (it rained and the clothes outside are wet and false)  
  or the sprinkler was on. 
Equivalently:         false or the sprinkler was on. 
Equivalently:         the sprinkler was on. 
 
Here the atom is underlined if it is replaced by its definition using backward 
reasoning, or if it is used for forward reasoning. 
 
Deriving cause if effect from effect if cause  
 
Interpreting a conditional conclusion if conditions as a biconditional 
conclusion if and only if conditions in diguise explains why it is so easy to 
confuse the conditional with its converse conditions if conclusion. It also 
explains the relationship between the more natural effect if cause 
representation of causality and the more efficient cause if effect 
representation. 
 For example, given an assumed complete effect if cause representation of 
the alternative causes of smoke: 
 
   there is smoke if there is a fire. 
   there is smoke if there is teargas. 
 
the completion semantics interprets the representation as a biconditional: 
 
   there is smoke if and only if there is a fire or there is teargas. 
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One half of the biconditional is the original pair of conditionals. The other 
half of the biconditional is the converse of the original pair of conditionals, 
and is a conditional with a disjunctive conclusion: 
 
   there is a fire or there is teargas if there is smoke. 
 
Conditionals with disjunctive conclusions are not very informative. If we had 
statistical information about the relative frequency of different causes of 
smoke, we could be more informative. For example: 
 
   there is a fire with 99.9% probability if there is smoke. 
   there is teargas with .1% probability if there is smoke. 
 
This would be analogous to associating probabilities with the alternative 
hypotheses in the more natural effect if cause representation.  
 But we can obtain a similar effect if we rewrite the conditional having a 
disjunctive conclusion as a logically equivalent conditional with an atomic 
conclusion and a negative condition: 
 
   there is a fire if there is smoke  
   and it is not the case that there is teargas. 
 
This conditional derives fire as the cause of smoke by default, avoiding both 
the completely uninformative disjunctive conclusion and the overly 
informative probabilistic conclusion. 
 Again, we have a case of different levels of representation. The effect if 
cause representation is higher-level. But it needs abduction to explain 
observations, and such criteria as relative likelihood and explanatory power 
to help decide between alternative hypotheses. The cause if effect 
representation is lower-level. It gives similar results, but it does so more 
efficiently, using deduction instead of abduction. 
 
Truth versus proof in arithmetic 
 
The two interpretations of negation as failure, the two ways of understanding 
explanations, and the two ways of representing the relationship between 
cause and effect are related to the difference between truth and proof in 
arithmetic. 
 Arguably, the meta-logical interpretation of negation as failure, the 
abductive understanding of explanations, and the representation of cause and 
effect in the form effect if cause are all more fundamental than their object-
level, deductive, and cause if effect alternatives. Similarly, truth in arithmetic 
is more fundamental than proof. 



 214 

 For simplicity in mathematical logic, the natural numbers are represented 
by repeatedly adding 1 to the number 0, so that X+1 is the number 
immediately after X. For example, the numbers 0, 1, 2, 3,…come out looking 
like: 
  
  0, 0+1, (0+1)+1, ((0+1)+1)+1, ….    
 
With this representation, arithmetic is just the set of all the properties of 
addition and multiplication, defined by the conditionals: 
 
   0 + Y = Y.   (X+1) + Y = (Z+1)  if  X + Y = Z. 
   0 × X = 0.   (X+1) × Y = V  if  X × Y = U and U + Y = V 
 
A more precise and more formal representation is given in the additional 
Chapter A2, where X+1 is represented by the successor function s(X). 
 Forward reasoning with these conditionals generates the addition and 
multiplication tables for all of the natural numbers. Backward reasoning 
reduces addition and multiplication problems to similar problems for smaller 
numbers. For example, here is a computation by backward reasoning, 
reducing the multiplication problem 1× 3  to the simpler subproblems of 
multiplying 0 × 3 and adding 3  to the result: 
 
Initial goal:    (0+1) × (((0+1)+1)+1) = V 
Subgoals:     0 × (((0+1)+1)+1) = U
Subgoal:     0  + (((0+1)+1)+1)  = V 

 and U + (((0+1)+1)+1) = V 

which succeeds with: V = (((0+1)+1)+1), i.e. V = 3. 
 
The addition and multiplication tables generated by forward reasoning have a 
number of intuitive properties. For example, the order in which two numbers 
are multiplied doesn’t matter: 
 
       X × Y = Y × X 
 
The intuition that such (universally quantified) properties are true is due to 
the fact that they are true of the set of all the atomic facts that can be derived 
from the definitions of addition and multiplication. This notion of truth is 
more fundamental than any notion of proof in arithmetic.  
 However, the notion of truth in arithmetic is non-constructive, in the same 
way that negation as potentially infinite failure is non-constructive. In the 
case of negation as failure, showing that the negation of a sentence is true 
requires recognising infinite failure. In the case of arithmetic, showing that a 
universally quantified sentence is true requires showing that potentially 
infinitely many instances of the sentence are true. 
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 In many, but not all cases, truth can be captured by proof. In the case of 
negation as failure, the completion semantics, replacing conditionals by 
biconditionals, captures finite failure. Moreover, with the addition of axioms 
of induction, the completion semantics can also capture cases where infinite 
failure is due to a regular loop. 
 Similarly, many properties of arithmetic can be proved by finite means, 
using the biconditional representations of addition and multiplication 
augmented with axioms of induction. In fact, this representation is equivalent 
to the standard set of axioms of arithmetic, called Peano arithmetic. The 
analogy between the Peano axioms and the completion and induction axioms 
used to prove properties of logic programs was investigated by Clark and 
Tarnlund (1977).  
 But in arithmetic, as we know from Gödel’s incompleteness theorem, 
there exist true sentences (or properties of arithmetic) that cannot be proved 
by any finite means. Similarly for logic programs and other conditionals, 
there exist true negative sentences that hold by infinite failure that cannot be 
proved using the completion, even augmented with axioms of induction or 
sophisticated forms of loop detection.  
 The incompleteness theorem for arithmetic is arguably the most important 
result of mathematical logic in the 20th century. The analogy with negation as 
failure shows that the theorem has similar importance for the relationship 
between truth and proof in human reasoning more generally. 
 
Conclusions 
 
There are two ways to understand conditional beliefs. One way is to 
understand them as representing the semantic structure of all the atomic facts 
that can be derived from them by means of forward reasoning. This semantic 
structure is the minimal model of the conditionals, which determines the truth 
(or falsity) of all other sentences expressed in the same language. The other 
way to understand conditional beliefs is as biconditionals in disguise. 
 The first way, which is explored in the additional chapters A2, A3, A4 
and A6, is arguably more fundamental. It specifies the notion of truth against 
which all methods of proof need to be judged for soundness and 
completeness. The second way is the standard way of trying to prove such 
true sentences. It is sound, but incomplete, even augmented with axioms of 
induction. 
 Thus both ways of understanding conditionals have their place. The first 
way identifies the goal, which is to determine the truth. The second way 
seeks to achieve the goal constructively by finite means. 
 However, it is not always easy to tell the two approaches apart. For 
example, the ALP procedure of the additional Chapter A6, which is designed 
to generate and determine truth in minimal models, is a modification of the 
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IFF proof procedure for showing logical consequence by reasoning with 
biconditionals.   
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Chapter 16 Computational Logic and the Selection 
Task 

 
In Chapter 2, we saw that psychological studies of the selection task have 
been used to attack the view that human thinking involves logical reasoning, 
and to support the claim that thinking uses specialized algorithms instead. I 
argued that these attacks fail to appreciate the relationship between logic and 
algorithms, as expressed by the equation: 
   
   specialised algorithm =  
   specialised knowledge + general-purpose reasoning. 
 
Specialised knowledge can be expressed in logical form, and general-purpose 
reasoning can be understood largely in terms of forward and backward 
reasoning embedded in an observe-think-decide-act agent cycle. 
 I also argued that many of the studies that are critical of the value of logic 
in human thinking fail to distinguish between the problem of understanding 
natural language sentences and the problem of reasoning with logical forms. 
This distinction and the relationship between them can also be expressed by 
an equation: 
 
   natural language understanding =  
   translation into logical form + logical reasoning. 
 
We saw that even natural language sentences already in seemingly logical 
form need to be interpreted, in order to determine, for example, whether they 
are missing any conditions, or whether they might be the converse of their 
intended meaning. Because of the need to perform this interpretation, readers 
typically use their own background goals and beliefs, to help them identify the 
intended logical form of the natural language problem statement. 
 However, even after taking these problems of representation and 
interpretation into account, there remains the problem of reasoning with the 
resulting logical forms. This problem is the topic of this chapter. 
 
An abstract form of the selection task 
 
Assume that an agent has been told that a sentence having the logical form: 
 
    if P then Q. 
 
ought to be true, but might be false. Assume, moreover, that P and Q are open 
predicates that are directly observable. The abstract form of the selection task 
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is to determine how the agent should respond to various observations of the 
truth values of these predicates.  
 I will argue that this is a natural way of presenting the selection task to an 
agent in the context of the agent cycle. Because the agent believes that the 
conditional ought to be true, it is natural for the agent to use the conditional to 
assimilate observations by deriving their consequences. But because the agent 
believes that the conditional might be false, it is also natural for the agent to 
actively observe whether consequences that ought to be true if the conditional 
is true are actually true.  
 In our agent model, the agent’s response depends upon whether the agent 
interprets the conditional as a goal or as a belief. If the agent interprets it as a 
goal, then the possibility that the goal might be false means that the state of 
the world may not conform to the goal. But if the agent interprets it as a 
belief, then the possibility that the belief might be false means that the belief 
may not conform to the state of the world.  
 But classical logic does not distinguish between goals and beliefs. 
According to classical logic, the correct responses are: 
 
  From an observation of P deduce Q.    (modus ponens) 
  From an observation of not Q deduce not P. (modus tollens) 
  
However, in psychological studies of some variants of the selection task, 
including the original card version, most people: 
 
  From an observation of P deduce Q. (modus ponens) 
  From an observation of Q deduce P.  (affirmation of the consequent) 
 
They correctly perform modus ponens, but they commit the fallacy of 
affirmation of the consequent, and they fail to perform modus tollens. In 
theory, there is one additional response they could make: 
 
    From an observation of not P to deduce not Q.  (denial of the antecedent) 
 
However, most people make this inference only rarely.  
 The challenge is to explain why most people reason correctly in some 
cases, and seemingly incorrectly in other cases. Part of the problem, of course, 
is that the psychological tests assume that subjects have a clear concept of 
deductive inference. But we have seen that even Sherlock Holmes had trouble 
distinguishing deduction from abduction. And we have also seen that there is 
good reason for this trouble, because abduction can be performed by 
deduction if conditionals are understood as biconditionals. This explains why 
most subjects commit the deductive fallacy of affirmation of the consequent, 
which is not a fallacy at all, when these considerations are taken into account. 
 I will argue that, given the above abstract form of the selection task:  
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• Modus ponens is easy, no matter whether the conditional is 

interpreted as a goal or as a belief, because in both cases, forward 
reasoning derives Q from an observation of P.   

• Affirmation of the consequent is a correct inference if the conditional 
is interpreted as the only belief that implies its conclusion. It is 
justified either by abduction if only is interpreted in the meta-
language, and by the biconditional formulation of the conditional if 
only is interpreted in the object language. However, it is not justified 
if the conditional is interpreted as a goal. 

• Modus tollens is hard if the conditional is interpreted as a belief, 
mostly because it is necessary to connect a positive observation Q’ 
with the negation not Q of the conclusion of the conditional if P then 
Q.  In many cases, this connection needs to be made through an 
unstated background constraint if Q and Q’ then false. 
 In such cases, modus tollens is easier if the conditional is 
interpreted as a goal, because then it is natural to reason in advance 
of obervations and to compile the conditional and the constraint into 
the form if P and Q’ then false. Represented in this form, the 
conditional can easily derive if P then false, i.e. not P from the 
observation Q’. 

• Denial of the antecedent is a theoretical possibility if the conditional 
is interpreted as the only conditional implying its conclusion, but is 
made harder by the need to derive the negative conclusion not P 
from a postive observation P’. Arguably, the need both to interpret 
the conditional as the only conditional and to derive a negative 
conclusion makes denial of the antecedent harder and therefore less 
likely. 

 
A more accurate representation of the selection task 
 
The abstract form of the conditional if P then Q is only an approximation to 
the conditionals in the psychological experiments. It would be more accurate 
to represent them in the form: 
 

  if X has value u for property p then X has value v for property q. 
 

For example: 
  

  if a card X has letter d on the letter side  
  then the card X has number 3 on the number side. 
 
  if a person X is drinking alcohol in a bar  
  then the person X has age at least eighteen years old. 
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In many cases, the properties p and q have only a single value for a given 
value of X19

 

. For example, a card has only one letter on the letter side of a 
card, and only one number on the number side of the card. In the case of the 
property q, this can be expressed as an integrity constraint: 

  if X has value V for property q and X has value W for property q  
  then W is identical to V. 

 
where the predicate is identical to is defined by the clause: 
 
    X is identical to X.  
 
For example: 
 

  if a card X has number N on the number side 
  and the card X has number M on the number side 
  then N is identical to M. 

 
We will see that we need such integrity constraints - or something like them -
to derive negative conclusions from positive observations. A similar 
constraint holds for the age of a person: 
 
   if a person  X has age at least eighteen years old 
   and the person X has age under eighteen years old 
   then false. 
 
These integrity constraints are similar to the constraints: 
 
   if predicate and contrary-predicate then false. 
  
that we used to reason with negation when performing abduction, and which 
we treated as a species of goal. 
 We now consider in greater detail the case in which the conditional is 
interpreted as a belief, and afterwards the case in which the conditional is 
interpreted as a goal. 
  
The conditional interpreted as a belief.  
 

                                                        
19 In mathematics this means that the relationship X has value V for property q is a 
functional relationship, which in normally written q(X) = V, where q is now a function 
symbol. 
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If an agent understands the conditional as a belief, and has reasons to doubt 
the belief, then the agent can test the belief by checking its consequences. If 
these consequences are not already derivable from other beliefs, and if they 
are observable, then the agent can attempt to observe the consequences to 
confirm or refute the belief. For example, in the card version of the selection 
task, if the agent observes what is on one side of a card and concludes what 
should or should not be on the other side of the card, then the agent can turn 
the card over to actively observe whether the conclusion is actually true.  
 The situation is similar to the one in which an observation can be 
explained by a hypotheses. The agent can test the hypothesis by checking its 
consequences. Observing that a consequence is true adds to the weight of 
evidence in favour of the hypothesis. But observing that a consequence is 
false refutes the hypothesis once and for all, and excludes it from further 
consideration. 
 Thus, if the validity of a conditional belief is in doubt, then forward 
reasoning from a true observation to consequences of the belief and observing 
that a consequence is true increases confidence in the belief. But in the case of 
a conditional belief with universally quantified variables, a true consequence 
does not validate the belief, because other instances of the belief may be false. 
On the other hand, the observation of a single false consequence refutes the 
belief forever. In concrete versions of the selection task, it is usual to 
formulate the instructions to encourage observations of consequences that can 
falsify the conditional, and to discourage observations that can only confirm 
that an instance of the conditional is true.  
 
Modus Ponens. In Computational Logic, conditional beliefs are used to reason 
both backwards and forwards. In particular, given a (passive) observation of a 
positive predicate P, forward reasoning with the conditional if P then Q 
derives the positive conclusion Q. This is a classically correct application of 
modus ponens (together with any instantiations of the variables in the 
conditional needed to match the observation with the condition P). 
 If the conclusion Q is observable, and there is a reason to check Q, 
because there is some doubt whether the conditional is actually true, then the 
agent can actively observe whether Q is true. If Q fails to be true, then the 
conditional is false. If Q is true, then the instance of the conditional matching 
the observation P is true (although other instances may be false). 
 
Affirmation of the Consequent. In Computational Logic, conditionals are also 
used to explain observations. Given an observation of Q, backward reasoning 
derives P as a candidate explanation of Q. This derivation can be viewed both 
as abduction with the conditional if P then Q and as deduction with the 
biconditional Q if and only if P. In classical logic, this form of reasoning is 
called the fallacy of affirmation of the consequent.  
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 As in the case of modus ponens, if P is observable, then the agent can 
actively observe whether P is true. If P fails to be true, then the belief in its 
conditional form fails to explain the observation, even though the belief itself 
may be true; but the belief in its biconditional form is definitely false. 
 
Modus Tollens.  The main problem with modus tollens is that real 
observations are positive and not negative. Negative conclusions have to be 
derived from positive observations20

 The positive observation in the card version of the selection task is the 
fact: 

. The longer the derivation and the larger 
the number of distracting, irrelevant derivations, the more difficult it is for the 
agent to make the necessary, relevant derivation.  

 
 the fourth card has number 7 on the number side. 
 

To perform modus tollens with the belief: 
 
 if a card X has letter d on the letter side  
 then the card X has number 3 on the number side. 

 
it is necessary first to derive the negative conclusion:  

 
 it is not the case that the fourth card has number 3 on the number side. 
 
But this derivation is hard to motivate. Why not also derive the irrelevant 
conclusions: 
 
 it is not the case that the fourth card has number 1 on the number side. 
 it is not the case that the fourth card has number 2 on the number side. 
 it is not the case that the fourth card has number 4 on the number side. 
 ….etc. 
 
However, the effect of modus tollens can be obtained more directly, without 
the distraction of these additional conclusions, by using the integrity 
constraint: 
 

  if 
  and the card X has number M on the number side 

a card X has number N on the number side 

  then N is identical to M. 
 
                                                        
20 A negative observation can also be obtained from the failure to make a positive 
observation. However, the standard selection task examples involve only positive 
observations from which “negative observations” need to be derived before modus 
tollens can be applied. 
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Forward reasoning with the observation:  
 
   the fourth card has number 7 on the number side
 

. 

using the constraint derives:    
 
   if 
   then 7 is identical to M. 

the fourth card has number M on the number side  

  
Backward reasoning using the conditional derives:  
 
 if the fourth card has letter d on the letter side 

then 7 is identical to 3. 
 

At this point, the standard pattern of forward and backward reasoning 
suggests that the condition the fourth card has letter d on the letter side 
should be checked before deriving the conclusion 7 is identical to 3. 
However, this condition can be checked only by performing an active 
observation. But the active observation is unnecessary if the conclusion is 
true, because a conditional with a true conclusion is always true, no matter 
whether its conditions are true or false. 
 In fact, if the constraint had been in the form: 
 

  if a card X has number N on the number side 
  and the card X has number M on the number side 
  and N is not identical to M then false. 

 
then we could check instead, the condition 7 is not identical to 3, using 
negation as failure and the definition X is identical to X. We would then 
obtain the desired result: 
 
        if the fourth card has letter d on the letter side then false. 
i.e.        it is not the case that the fourth card has letter d on the letter side. 
 
The single condition can then be checked by performing an active 
observation. 
 This reasoning is a minor variation of the standard pattern: 
 

• Reason forwards to match an observation with a condition of a goal. 
• Reason backwards to verify the other conditions. 
• Reason forwards to derive the conclusion. 
• Reason backwards to solve the conclusion. 
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The derivation can also be viewed as activating links in a connection graph of 
constraint and beliefs: 
 

 
 
Arguably, viewed in these terms, the derivation is hard because the 
connection between the positive observation and the conditional belief needs 
to be made through a constraint/goal that is only loosely related with the 
problem statement. I will argue in the next section that when the conditional is 
interpreted as a goal, the connection is typically stronger and the derivation 
easier.  
 We considered the problem of modus tollens in the concrete case of the 
original card version of the task. However, similar considerations apply in 
other cases in which the conditional is interpreted as a belief. In general, the 
harder an agent needs to work to derive a conclusion, the less likely it is that 
the agent will be able to do so.  
 It is a lot easier to recognise a solution than it is to generate it, because 
generating a solution requires seach, but recognising the solution does not. 
This would explain why many people fail to apply modus tollens in the 
selection task, but still recognize its correct application when they see it. 
 
Denial of the Antecedent. A less common mistake in the selection task is to 
conclude not Q from an observation of not P. On the one hand, the inference 
can be justified for the same reasons that affirmation of the consequent can be 
justified. On the other hand, the inference is hard for the same reasons that 
modus tollens is hard. However, since it is not a major issue in the selection 
task, we ignore it here. 
 

the fourth card has number 
7 on the number side 

a card X has number 3 on the number side 
if the card X has letter d on the letter side  
 

X is identical to X 

Step 0: 
Observation 

Step 3 or 4: 
Active observation 

Step 2: 
M = 3 

Step 3 or 4: 
N = M 

Step 1: 
N = 7 
card = fourth card 

Constraint: if a card X has number N on the number side 
     and the card X has number M on the number side 
            then N is identical to M. 
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Conclusions. Thus if the conditional is interpreted as a belief, then reasoning 
with Computational Logic in the agent cycle is compatible with psychological 
studies of human performance on the selection task. In both Computational 
Logic and human reasoning, modus ponens and affirmation of the consequent 
are straight-forward. Modus tollens is possible but hard, mostly because 
deriving negative conclusions from positive observations is hard. Denial of 
the antecedent, is also possible but hard. 
 I will argue in the next section that modus tollens is normally easier if the 
conditional is interpreted as a goal. 
 
The conditional interpreted as a goal.  
 
In this book, we have seen a variety of uses for an agent’s conditional goals. 
Their primary use is to help the agent maintain a harmonious personal 
relationship with the changing state of the world. However, conditional goals 
can also serve a secondary function of helping to maintain harmony in the 
society of agents as a whole. In both cases, conditional goals regulate the 
behaviour of agents, both generating and preventing actions that change the 
state of the world. 
 In the examples of both the bar version of the selection task and the 
security measures on the London underground: 
 
 if a person is drinking alcohol in a bar, 
 then the person is at least eighteen years old. 
 
 if a passenger is carrying a rucksack on his or her back, 
 then the passenger is wearing a label with the letter A on his or her front. 
 
it is natural to understand the conditional as a social constraint. An agent can 
use the constraint to monitor states of the world by observing whether 
instances of the constraint are true or false. Observations of false instances 
violate the goal/constraint. Observations of true instances comply with the 
goal/constraint. 
 In well-regulated societies, agents normally conform to the rules, and 
violations are exceptional. Therefore, in concrete formulations of the selection 
task, in situations where the context makes it clear that the conditional is to be 
interpreted as a goal, it is unnecessary to stress that the task is to detect 
violations, because preventing violations is the normal purpose of such goals. 
In Computing, integrity constraints perform a similar function in monitoring 
database updates. 
 I will argue that, when an agent interpets the selection task as one of 
monitoring compliance with a conditional goal, then the inferences that are 
easy in Computational Logic are the ones that are also correct according to the 
standards of classical logic. The two main problems are to explain why 
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affirmation of the consequent does not apply and why modus tollens is easy. 
But first we need to confirm that modus ponens is easy. 
 
Modus Ponens. The general pattern of reasoning with conditional goals is to 
reason forwards from a fact or assumption that matches a condition of the 
goal, backwards to verify the other conditions of the goal, and then forwards 
one step to derive the conclusion. This pattern of reasoning includes the 
classically correct application of modus ponens as the special case in which 
the goal has no other conditions to be verified. 
 If the conditional goal is a personal maintenance goal, then the conclusion 
is an achievement goal, which the agent can attempt to solve by backward 
reasoning and eventually by performing actions. If the conditional goal is a 
social constraint, then the agent can actively attempt to observe whether the 
conclusion is true. If the agent observes that the conclusion is true, then the 
instance of the social constraint triggered by the initial observation or 
assumption is satisfied, but if the agent observes that the conclusion is false, 
then the social constraint is violated.  
  
Affirmation of the Consequent. If the conditional if P then Q is interpreted as a 
belief, then backward reasoning, either directly with the conditional or with 
the biconditional can be used to derive P as an explanation of an observation 
of Q.  
 However, if the task is interpreted as monitoring the truth of the 
conditional understood as a goal, then an observation that Q is true 
immediately confirms that the conditional if P then Q is true. There is no 
point in actively observing whether or not P is true, because the truth value of 
P has no influence on the truth value of the conditional. In other words, no 
observation of the truth value of P can uncover a violation of the conditional. 
 
Modus Tollens. I argued before that modus tollens is hard when the 
conditional is interpreted as a belief, mostly because it is hard to derive 
negative conclusions. I will now argue that the derivation of negative 
conclusions is normally easier when the conditional is interpreted as a goal. 
The argument is supported by experience with the problem of checking 
integrity constraints in Computing. 
 In Computing, integrity checking is an expensive operation, which needs 
to be performed whenever the database is updated. Because many different 
integrity constraints can be affected by a single update, it is common to 
optimise the constraints by doing as much of the reasoning in advance. For 
this purpose, a common optimisation is to convert condition-action rules into 
event-condition-action rules. The optimisation is so common, in fact, that 
many systems, including active databases (Widom and Ceri, 1996), allow 
rules only in event-condition-action form.  
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 However, the more general conversion of conditional goals into event-
condition-conclusion form can be performed mechanically by reasoning in 
advance. For example, the maintenance goal: 
 
  if there is an emergency then get help 
 
can be converted into: 
 
   if there are flames then get help. 
   if there is smoke then get help 
   if one person attacks another then get help. 
   if someone becomes seriously ill then get help. 
   if there is an accident then get help. 
 
The reasoning involved in this example was illustrated in Chapter 9 and is 
formalised in Chapter A5. But notice that the reduction in Chapter 9 of the 
conclusion get help to atomic actions does not affect efficiency to the same 
extent as the reduction of the condition there is an emergency. 
 The efficiency advantage of the converted rules is that they can be 
triggered directly by external observations without the need to reason 
forwards with intermediate beliefs. The disadvantage is that in some cases the 
number of converted rules can become prohibitively large.  
 In the case of the conditional goal in the selection task, if the derivation of 
negative conclusions from positive observations is by means of a constraint of 
the form if Q and Q’ then false, then this optimisation can be performed by 
activating the link between the conditional and the constraint in advance of 
any input observations. This compiles the initial conditional goal into a 
denial: 
 
Conditional goal:      if P then Q. 
 
Constraint:        if Q and Q’ then false. 
 
Compiled goal:       if P and Q’ then false. 
Or equivalently:    it is not the case that P and Q’. 
 
In this form, an observation that Q’ is true triggers the compiled goal, which 
initiates an active observation of the value of P. If P is true then Q’ violates 
the conditional goal. If P is false then Q’ satisfies the conditional goal. This is 
not quite simple modus tollens, but it is the behaviour associated with modus 
tollens, namely actively observing the truth value of P, given an observation 
of the contrary of Q. 
 For example, in the bar version of the selection task: 
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Conditional goal:    if a person X is drinking alcohol in a bar  
     then the person X has age at least eighteen years old. 

 
Constraint:      if a person X has age at least eighteen years old 
      and the person X has age under eighteen years old 
      then false. 
 
Compiled goal:     if a person X is drinking alcohol in a bar  

     and the person X has age under eighteen years old 
      then false. 
Or equivalently:  it is not the case that  
      a person X is drinking alcohol in a bar  

     and the person X has age under eighteen years old 
 
Denial of the Antecedent. Since only beliefs, and not goals, are used to 
explain observations, it is not possible to conclude not Q from an observation 
of not P. In particular, there is no link between: 
 
Conditional goal:      if P then Q. 
 
Constraint:        if P and P’ then false. 
 
where P’ is the contrary of P. 
   
Conclusions. Thus if the conditional is interpreted as a goal, then neither 
affirmation of the consequent nor denial of the antecedent is applicable, and 
modus ponens is straight-forward. Modus tollens is easy under the 
assumption that the focus on checking for violations encourages reasoning in 
advance, compiling the goal into a form that makes violations easier to 
detect. 
 This assumption about compiling the goal is similar to the argument of 
(Sperber et al, 1995), that subjects are likely to reason in accordance with 
classical logic and to perform modus tollens, if they interpret the conditional if 
P then Q as a denial:  
 
i.e.      it is not the case that P and not Q. 
or equivalently  if P and not Q then false. 
 
This analysis of the selection task is also compatible with the evolutionary 
psychology view that people have an inbuilt cheater detection algorithm. 
However, in Computational Logic, cheater detection is just a special case of 
detecting violations of social integrity constraints.  
 Applied to the bar version of the selection task compiled into the form: 
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   if a person X is drinking alcohol in a bar  
  and the person X has age under eighteen years old 

   then false. 
 
general-purpose integrity checking monitors observations that match one of 
the conditions of the constraint. Given an observation of a person drinking 
alcohol, the agent can attempt to actively observe the age of the person, and if 
the person’s age is under eighteen years old, then the agent can infer that there 
has been violation of the goal. Similarly, given an observation of a person 
who is under eighteen years old, the agent can actively check whether the 
person is drinking alcohol, and if he is, then the agent can similarly infer a 
violation. 
 
Security measures reconsidered  
 
I started Chapter 2 with the imaginary example of improving security on the 
London underground:  
 
 if a passenger is carrying a rucksack on his or her back, 
 then the passenger is wearing a label with the letter A on his or her front. 
 
To solve the selection task in this example, the simple analysis of this chapter 
needs to be refined. 
 I don’t think there is any doubt that the conditional in this example is a 
social constraint. There are no problems with modus ponens, affirmation of 
the consequent or denial of the antecedent. But what about modus tollens? 
 As in all the other examples, the main problem is to derive a negative 
conclusion from a positive observation. You might notice, for example, that a 
person on the underground has a rucksack on his back, is accompanied by a 
dog or smoking a cigarette. But you do not spontaneously observe that the 
person does not have the letter A pinned on his front, is not accompanied by a 
scottish terrier or is not smoking a malboro. 
 I have argued in this chapter that to obtain the effect of modus tollens, it is 
necessary to connect a passive positive observation Q’ with a negative 
conclusion not Q. I suggested that in many cases the necessary connection is 
through an unstated background constraint if Q and Q’ then false. But is there 
such a constraint in this example? For example, the constraint: 
 

  if a person X has a letter L on the front 
  and the person X has a letter M on the front 
  then L is identical to M. 

 
is obviously not good enough. What if the person is wearing a peace symbol 
on his front? Or is topless? Or is obscuring his front with a replica Roman  
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shield? There are just too many such possibilities to count as the contrary Q’ 
of the conclusion Q.  
 To obtain the effect of modus tollens we need to compile the conditional 
into a form that can be triggered by a relevant, passive positive observation. 
The simplest such representation is probably:  
 
 if a person is a passenger on the underground 
 and the person is carrying a rucksack on his or her back, 
 and the person is not wearing a label with the letter A on his or her front 
 then false. 
 
The is a minor variation of the form if P and not Q then false identified by 
(Sperber et al, 1995) as facilitating the application of modus tollens. 
 Given this compiled form of the conditional and a positive observation of 
a passenger on the underground, you can actively observe either whether the 
person is carrying a rucksack on his back or whether he is wearing the letter A 
on his front. If it is easier to check the latter of these two conditions, and you 
fail to observe the letter A on his front, then you should check the other 
condition, to see whether he has a rucksack on his back. If not, then the 
conditional has been violated. This is the behaviour associated with classical 
modus tollens. 
 The reader who studies Chapter A6 and pays close attention to the 
analysis of modus tollens for the card version of the selection task in this 
chapter will appreciate that what is involved in both of these examples is an 
inference rule of the form: 
 
Given an integrity constraint of the form  if P then Q or R 
derive the integrity constraint     if P and not Q then R. 
 
for the special case where R is just false. This inference rule is the converse of 
the negation rewriting rule of Chapter A6.  
 What the security measure example shows is that the inference rules of 
Computational Logic need to be refined for dealing with certain cases of 
negation, but as they currently stand they are pretty close to what is needed in 
problems like the selection task. 
  
Conclusions  
 
The selection task is a worthy challenge for any theory of human reasoning. 
In this chapter, I argued that with certain qualifications Computational Logic 
embedded as the thinking component of the agent cycle is capable of meeting 
that challenge. Computational Logic explains both cases where people reason 
seemingly incorrectly according to the norms of classical logic and cases 
where they reason correctly. It also explains why people might be able to 
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recognize a correct solution even when they are unable to produce it 
themselves. 
 I have argued that this analysis of the selection task is compatible with 
other analyses, most notably with that of (Sperber et al, 1995), but even with 
that of (Cosmides, 1985, 1989) if generously understood.  
 But as the example of the imaginary security measures on the London 
underground shows, the inference rules of Computational Logic need further 
elaboration. It is possible that the selection task and other psychological 
studies of human reasoning may help to suggest some of the ways of filling in 
the details. 
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Chapter 17. Meta-logic  
 
Do you want to get ahead in the world, improve yourself, and be more 
intelligent than you already are? If so, then meta-logic is what you need. 
 Meta-logic is a special case of meta-language. A meta-language is a 
language used to represent and reason about another language, called the 
object language. If the object language is a form of logic, then the meta-
language is also called meta-logic. Therefore, this book is an example of the 
use of meta-logic to study the object language of Computational Logic.  
 However, in this book we use meta-logic, not only to study 
Computational Logic, but to do so in Computational Logic itself. In other 
words, the language of meta-logic, as understood in this book, is also 
Computational Logic. So, to paraphrase the first paragraph of this chapter, if 
you want to be more intelligent, you should use Computational Logic as a 
meta-logic to think about thinking. 
 In fact, even if you are satisfied with your own level of intelligence, you 
can use meta-logic to simulate the thinking of other agents, whether you 
believe they are more or less intelligent than you are. For example, an 
intelligent fox could use meta-logic to simulate the thinking of a stupid crow. 
 We have already touched upon some of the applications of meta-logic as 
early as Chapter 3, where we used it to represent the definition of truth. We 
also used it in Chapter 6, to represent the purposes of subsection 1.1 and the 
subgoal of satisfying the Secretary of State, and in Chapter 13, to represent 
the situation calculus and event calculus. In this chapter, we will focus on its 
use to represent and reason about reasoning. Here is a simple example, in 
which the meta-language terms P, (P if Q), Q and (P and Q) name object-
language sentences. The parentheses are used to avoid ambiguities: 
 
meta1:    an agent believes P 
    if the agent believes (P if Q) and the agent believes Q. 
 
meta2:    an agent believes (P and Q)  
    if the agent believes P  and the agent believes Q. 
 
The example may seem fairly pointless, but it is a solid foundation on which 
other, more elaborate examples can be built. But even in this simple case, the 
example illustrates how an agent can be aware of its own thinking, even if 
that thinking may not be very exciting.  
 More elaborate variants of this example have wide-spread, practical use in 
Computing, to implement meta-interpreters, which are computer programs 
written in a meta-language to implement an object-language. Typically, the 
object-language implemented in this way provides some desirable features 
missing from the meta-language itself.  
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 In English, it is common to use quotation marks to distinguish sentences 
and other syntactic entities from their names. So for example, “Mary” is the 
name of Mary, and “Mary is an intelligent agent” is the name of the sentence 
inside the quotes.  However, in many practical applications in Computing, it 
turns out that quotation marks and other naming devices are unnecessary, 
because the context makes it clear whether an expression belongs to the 
object-language or the meta-language. 
 Here is an example of the use of meta-logic to implement object-level 
reasoning with disjunction (P or Q), without using disjunction in the meta-
language. 
 
meta3:   an agent believes P 
    if the agent believes (P or Q)   and the agent believes (not Q). 
 
The terms or and not in this meta-sentence are not logical connectives in the 
meta-language, but are names of logical connectives in the object-language.  
 We will use meta3 to solve the wise man puzzle later in this chapter. We 
will also need to reason that if an agent observes whether or not a fact is true, 
then the agent believes the result of the observation. In the solution of the 
wise man puzzle, this reasoning is needed only for the case of a negative 
observation, which is an instance of negation as failure:  
  
meta4:   an agent believes (not Q) 
    if the agent observes whether Q 
     and not (Q holds). 
 
Here the expression not occurs at both the object-level and the meta-level. 
The first occurrence of not names the logical connective not of the object-
language, but the second occurrence of not is a logical connective in the 
meta-language. This use of the same syntax for the object-language and meta-
language is called ambivalent sytax. It is not ambiguous, provided the 
different usages can be distinguished by their context. 
 
The semantics of belief 
 
Without the use of quotation marks or some other device for naming 
sentences, meta-logic looks like a modal logic. In modal logic, believes is a 
logical connective like the connectives if and and. Even more remarkable, the 
axioms of belief meta1 and meta2 in meta-logic are virtually indistinguishable 
from the axioms of belief in modal logic. But meta-logic and modal logic 
have different semantics.  
 The modal logic semantics of belief is similar to the possible world 
semantics of time, which we discussed briefly in Chapter 13. In modal logic, 
sentences are given a truth value relative to a possible world W embedded in 
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a collection of worlds. In such a collection of possible worlds, an agent 
believes a proposition P in a possible world W, if P is true in every possible 
world accessible to the agent from W.  
 In meta-logic, an agent believes P if P is a belief in the agent’s language 
of thought. With this meta-logical semantics of belief, the meta-beliefs meta1 
and meta2 are literally false, because they fail to take into account the 
limitations of real agents in practice. For this reason, the believes meta-
predicate might be better called the can-be-shown-in-theory predicate. In this 
respect, it is similar to negation as failure, which might similarly be called 
cannot-be-shown-in-theory. 
 The relationship between modal logics and meta-logics of belief is a 
complex issue, about which there is still no general agreement. However in 
Computing, the combination of ambivalent syntax with meta-logical 
semantics has proved to be very useful in practice. For this and other reasons, 
it is this representation of belief that we use in this chapter. 
 
How to make a good impression 
 
Suppose you believe: 
 
 mary is impressed with a person  
 if mary believes the person is well-bred. 
 

mary believes everyone who speaks the queen’s english  
and has a noble character is well-bred. 

 
Or, to put the second sentence more precisely: 
 
mary believes ((a person is well-bred if the person speaks the queen’s english 
and the person has a noble character) holds for all persons). 
 
Intuitively, it follows that Mary will be impressed with you if she believes 
you speak the Queen’s English and have a noble character. It doesn’t matter 
whether you really do speak the Queen’s English or not, or whether you do 
have a noble character or are a complete scoundrel. What matters is only 
what Mary thinks about you. On the other hand, whether or not Mary believes 
she is impressed is not the issue. It’s whether she actually is impressed that 
counts. 
 Making these intuitions water-tight is not be as simple as you might think. 
Among other things, you need to reason that, because Mary believes in 
general that a property holds for all people, then for every person she believes 
in particular that the same property holds for that person. For this, you need 
an extra meta-level belief, such as: 
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meta5:   an agent believes (S holds for a person) 
   if the agent believes (S holds for all persons) 
 
This belief is similar to the if-half of the definition of truth for universally 
quantifed sentences mentioned in passing at the end of Chapter 3 and 
presented more formally in Chapter A2. As in chapters 3 and A2, the meta-
belief can be expressed more generally for arbitrary types, and not only for 
the type of persons. However, meta5 is simpler and sufficient for our 
purposes.  
 To understand better the consequences of your beliefs, it helps to put all 
the relevant beliefs together in the same connection graph. The meta-beliefs 
meta3 and meta4 are not relevant in this example, and so their connections are 
not displayed. 
 

 
 

mary believes ((a person is well-bred if the person speaks the queen’s 
english and the person has a noble character) holds for all persons). 
 

meta2:   an agent believes (P’ and Q’)  
   if the agent believes P’   
   and the agent believes Q’. 
 

   mary is impressed with a person  
  if mary believes the person is well-bred. 
 
 

meta1:   an agent believes P 
   if the agent believes (P if Q) and the agent believes Q. 
     
 

meta5:   an agent believes (S holds for a person) 
   if the agent believes (S holds for all persons) 
 

agent = mary 
S = (a person is well-bred if the person speaks the queen’s 
english and the person has a noble character) 
 

agent = mary 
P holds for a person = a person is well-bred 
 

(P if Q) = (S holds for a person) Q = (P’ and Q’) 
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The connection graph can be simplified by reasoning in advance, selecting 
any link and deriving the resolvent, as described in detail in Chapter A5. In 
fact, several links can even be activated in parallel. Suppose, in particular, 
that we activate the two links among the three meta-beliefs meta1, meta2  and 
meta5. We can replace the three general meta-beliefs by the resulting more 
specialised meta-belief: 
 
 

 
 
The resulting connection graph can be further simplified, by activating the 
remaining two links and deriving: 
 
  mary is impressed with a person  
  if mary believes the person speaks the queen’s english 
  and mary believes the person has a noble character. 
 
Now, provided you are indeed a person, then this conclusion is the one you 
were after. 
 
How to satisfy the Secretary of State 
 

mary believes ((a person is well-bred if the person speaks the queen’s 
english and the person has a noble character) holds for all persons). 
 

   mary is impressed with a person  
  if mary y believes the person is well-bred. 
 
 

 an agent believes P holds for a person 
 if the agent believes ((P if P’ and Q’) holds for all persons)  
      and the agent believes P’ holds for the person  
      and the agent believes Q’ holds for the person. 
    
 
        
 
     
 

agent = mary 
P = a person is well-bred 
P’ =  the person speaks the queen’s english  
Q’ = the person has a noble character 
 

agent = mary 
P holds for a person = a person is well-bred 
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Here is another application of the three meta-beliefs meta1, meta2  and meta5, 
but with a different purpose. Suppose, this time, that you want to think like 
the Secretary of State, either because you aspire to take his place one day, or 
because you have applied to naturalise as a British citizen and you want to 
understand what he will think about your application. Suppose, in particular, 
that you want to undertand whether the secretary of state is satisfied that you 
fulfil the requirements of schedule 1 for naturalisation by 6.1, which is a 
problem left over from the chapter on how to be a British citizen.  
 To simplify matters, suppose that your application for naturalisation is 
based on having been resident in the UK and not on any past or future service 
to the crown. So the two most relevant provisions suitably simplified are: 
 
sec1: the secretary of state may grant a certificate of naturalisation  

 to a person by section 6.1 
  if   the person applies for naturalisation 
  and  the person is of full age and capacity 
  and  the secretary of state is satisfied that 
    the person fulfils the requirements of schedule 1  

for naturalisation by 6.1 
  and  the secretary of state thinks fit 
    to grant the person a certificate of naturalisation. 
 
sec2:  a person fulfils the requirements of schedule 1 for naturalisation by 6.1 
  if the person fulfils the residency requirements of subparagraph 1.1.2 
  and   the person is of good character 
  and the person has sufficient knowledge of  english, 
     welsh, or scottish gaelic 
  and  the person has sufficient knowledge about life in the uk 
  and the person intends to make his principal home in the uk  
    in the event of being granted naturalisation. 
 
The problem is how to link the third condition of the first provision sec1 with 
the conclusion of the second provision sec2. The problem is similar to the 
previous one of trying to determine whether Mary will be impressed. 
 Obviously, to say that the Secretary of State is satisfied that something 
holds is another way of saying that he believes that something holds. 
Therefore, to simulate what the Secretary of State thinks about your 
application for naturalisation, you can replace the phrase is satisfied that by 
believes and use any relevant meta-beliefs about beliefs. 
 You also need to reflect one level up, and assume that the Secretary 
believes all the provisions of the British Nationality Act, and the second 
provision sec2 in particular. We can put all the relevant provisions and 
assumptions together with the relevant meta-beliefs in the same connection 
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graph. To avoid unnecessary clutter, the matching instantiations of variables 
are not displayed. 
 Perhaps not surprisingly, this connection graph has a similar structure to 
the connection graph for impressing Mary: 
 

 
  
 

the secretary of state believes 
((a person fulfils the requirements of schedule 1 for naturalisation by 6.1 
  if the person fulfils the residency requirements of subparagraph 1.1.2 
  and   the person is of good character 
  and the person has sufficient knowledge of  english, 
     welsh, or scottish gaelic 
  and  the person has sufficient knowledge about life in the uk 
  and the person intends to make his principal home in the uk  
    in the event of being granted naturalisation) 
 holds for all persons). 
 

meta2:   An agent believes (P’ and Q’)  
   if the agent believes P’   
   and the agent believes Q’. 
 

the secretary of state may grant a certificate of naturalisation  
to a person by section 6.1 
if   the person applies for naturalisation 
and  the person is of full age and capacity 
and  the secretary of state believes the person fulfils 
  the requirements of schedule 1 for naturalisation by 6.1 
and  the secretary of state thinks fit 
  to grant the person a certificate of naturalisation. 
    

meta1:   An agent believes P 
   if the agent believes (P if Q) and the agent believes Q. 
     
 

meta5:   An agent believes (S holds for a person) 
   if the agent believes (S holds for all persons) 
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Here the clauses meta1 and meta2 contain additional implicit, internal links 
between their conditions and conclusions. The internal link in meta1 is not 
needed in this example, but the internal link in meta2 needs to be activated 
three times, to deal with the four conditions of the requirements of schedule 
1. Activating all but the top-most link gives us the simplified connection 
graph, which now contains the previously missing link between the two 
original provisions that we started with: 
 

 
 
To solve the problem left over from the chapter on how to be a British 
citizen, it suffices to replace the term believes by the phrase is satisfied that. 
 
A more flexible way to satisfy the Secretary of State 
 
I would not blame you if you did not find these arguments entirely 
convincing. You might think, for example, that the Secretary of State should 
be more flexible, allowing for example a strong belief that a person has good 
character to compensate for a weak belief that the person has sufficient 
knowledge of English, Welsh or Scottish Gaelic. Fortunately, meta-logic 

the secretary of state believes a person fulfils 
   the requirements of schedule 1 for naturalisation by 6.1 
if  the secretary of state believes that  
 the person fulfils the residency requirements of subparagraph 1.1.2 
and the secretary of state believes that the person is of good character 
and the secretary of state believes that  
  the person has sufficient knowledge of english, welsh, or scottish gaelic 
 and the secretary of state believes that  
 the person has sufficient knowledge about life in the uk 
and the secretary of state believes that 
 the person intends to make his principal home in the uk 
     in the event of being granted naturalisation. 
 

the secretary of state may grant a certificate of naturalisation  
to a person by section 6.1 
if   the person applies for naturalisation 
and  the person is of full age and capacity 
and  the secretary of state believes the person fulfils 
  the requirements of schedule 1 for naturalisation by 6.1 
and  the secretary of state thinks fit 
  to grant the person a certificate of naturalisation. 
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makes it possible to represent such more flexible ways of judging whether a 
conjunction of conditions implies a conclusion. For example, we could 
replace the two meta-beliefs meta1 and meta2 by: 
 
meta1’: an agent believes P 
   if the agent believes (P if Q) 
   and the agent believes Q with strength S 
   and S  > t. 
 
meta2’: an agent believes (P and Q) with strength S 
   if the agent believes P with strength SP 
   and the agent believes Q with strength SQ  
    and SP + SQ = S.  
 
If you are familiar with neural networks of the brain, you will see a 
resemblance between such networks and meta1’ and meta2’. The condition S  
> t is similar to the requirement that, for a neuron to fire, the strength of the 
inputs to the neuron must exceed a certain threshold t. The sum SP + SQ = S 
corresponds to summing the strengths of all the inputs of a neuron. The 
neural network analogy could be pursued further, by associating weights with 
the conditions P and Q. So for example, having good character might have 
greater weight than the ability to speak one of the native British languages. 
 At first sight, meta1’ and meta2’ may seem a long way from a represention 
of Computational Logic as the language of an agent’s thoughts. But bear in 
mind that an implementation of the connection graph proof procedure needs a 
strategy for activating links. Meta1’ and meta2’ can be thought of as an 
approximate representation of the best-first strategy sketched in chapters 4 
and A5. But in any case, they show the power of a meta-logic without an 
explicit notion of strength of belief to represent an object-level logic in which 
strength of belief is explicit. 
 
The two wise men 
 
In this example, we will investigate a more impressive use of meta-logic to 
simulate the thinking of another agent, to solve a problem that cannot be 
solved by object-level thinking alone. 
 The problem is usually formulated with a king and three wise men. To 
simplify the problem and to bring it up-to-date, we will consider a queen and 
two wise men version of the story. To avoid any embarassment to Mary, John 
and Bob, we will refer to the participants in the story simply as “the Queen”, 
“wise man one” and “wise man two”: 
 

There are two wise men. Both of them have mud on their face. Each can 
see the mud on the other wise man’s face, but not the mud on his own. 
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The Queen tells them both that at least one of them has mud on his face. 
After a short while, the first wise man announces that he does not know 
whether he has mud on his face. The second wise man, who knows how 
to do meta-level reasoning, after a short pause, declares that he knows 
that he has mud on his face. 
 

Wise man two can solve the problem by reasoning in two steps as follows:  
 
Step 1:  Wise man one knows that he has mud on his face  
   or I have mud on my face. 

  So if wise man one can see that I do not have mud on my face, 
  then he would know that he has mud on his own face. 
 

Step 2:  Since wise man one does not know that he has mud on his face, 
he does not see that I do not have mud on my face, and 
therefore he must see that I do have mud on my face. 

 
This kind of reasoning is a little more complicated than it may seem, partly 
because it involves reasoning about knowing and seeing. But “seeing is 
believing”, and “knowing” is a special case of “believing” too. So the 
solution can be reformulated in terms of belief. Here is a connection graph 
representation of the reasoning involved in step 1 formulated in terms of 
belief: 
 

 
 
Step 1 can be broken down into two substeps. The first substep performs 
forward reasoning with wise1 and wise2, which in effect replaces meta3 by 
meta3’ and meta4 by meta4’. 

meta3: an agent believes P 
  if the agent believes (P or Q)  and  the agent believes (not Q). 
 

meta4: an agent believes (not Q)  
  if the agent observes whether Q and  not(Q holds). 
 

wise1: wise man one believes  
  (wise man one has mud on his face  
  or wise man two has mud on his face).  
 

wise2: wise man one observes whether 
  (wise man two has mud on his face).  
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The second substep, which activates the link between meta3’ and meta4’, is a 
kind of forward reasoning with an assumption: 
 

 
 
Step 2 connects the result of reasoning in step 1 with wise man one’s 
assertion that he does not know whether he has mud on his face. Expressed in 
terms of belief, this assertion has two subparts: He doesn’t believe that he has 
mud on his face, and he doesn’t believe that he does not have mud on his 
face. Only the first subpart is relevant to the solution: 
 

 
 

 
 
The result of step 2 is equivalent to: 
 

 
 
The equivalence can be justified either as reasoning with the totality 
constraint not wise man two has mud on his face or wise man two has mud on 
his face of chapters A4 and A6 or as using the negation rewriting rule 
(replace if not P then false by P) of Chapter A6. 
 

conclusion:  wise man two has mud on his face. 
 

result of step 2: if not wise man two has mud on his face then false. 
 

result of step 1:  wise man one believes wise man one has mud on his face 
        if not wise man two has mud on his face. 
 

wise0:  if wise man one believes wise man one has mud on his face  
   then false. 
 

result of step 1:  wise man one believes wise man one has mud on his face 
        if not wise man two has mud on his face. 
 
 

meta3’:  wise man one believes wise man one has mud on his face 
    if wise man one believes (not wise man two has mud on his face). 
 

meta4’:  wise man one believes (not wise man two has mud on his face)
    if not wise man two has mud on his face. 
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The connection graph solution is presented in the style of a typical 
mathematical proof, rather than in the style of the general pattern of 
reasoning within the agent cycle. 
 To present the solution as an instance of the general pattern, we need an 
observation to trigger the pattern. Actually, in this example, there are two 
observations, the Queen’s assertion that one of the wise men has mud on his 
face, and wise man one’s assertion that he does not know whether he has 
mud on his face. For simplicity, let’s ignore the first observation, since it 
doesn’t really lead anywhere (for the same reason that wise man one says that 
he doesn’t know whether he has mud on his face). 
 Let’s focus instead on wise man two’s response to the second 
observation, expressed as the positive atomic sentence: 
 
wise-1:  wise man one asserts I do not know whether 
   (wise man one has mud on his face)  
 
Whereas in the connection graph solution we took the negative conclusion: 
 
wise0: if wise man one believes wise man one has mud on his face then false. 
 
as our starting point, now we need to derive the negative conclusion wise0 
from the positive observation wise-1 using an appropriate constraint (similar 
to the derivation in the selection task in Chapter 16). 
 Intuitively, wise man two is justified in deriving the negative conclusion 
from the positive observation, if wise man two believes that wise man one’s 
asssertion can be trusted. This belief can be represented at different levels of 
abstraction. Here is a fairly concrete representation of the belief that wise 
man one is trustworthy: 
 
 wise-2: if wise man one asserts I do not know whether P   
   and wise man one believes P then false. 
 
Obviously, this belief could be derived from more general beliefs, for 
example from a more general belief that all wise men are trustworthy. 
 We can now present wise man two’s solution of the problem as a special 
case of the general pattern: 
 
Observation, wise-1: wise man one asserts I do not know whether 
      (wise man one has mud on his face). 
  
Forward reasoning with wise-2: 
wise0: if wise man one believes wise man one has mud on his face
 

 then false. 

Backward reasoning with meta3 to verify the other condition of  wise-2: 
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  if ((wise man one believes wise man one has mud on his face) or Q) 
  and  wise man one believes (not Q) then false. 

  

 
Backward reasoning with wise1:  
  if wise man one believes (not wise man two has mud on his face
  then false. 

)  

 
Backward reasoning with meta4:  
  if wise man one observes whether wise man two has mud on his face
  and not wise man two has mud on his face then false. 

)  

 
Backward reasoning with wise2:  
  if not wise man two has mud on his face then false. 
Or equivalently:  
  wise man two has mud on his face. 
 
This solution is an instance of the general pattern, used not to derive a plan of 
actions to solve an achievement goal, generated by the triggering of a 
maintenance goal, but to generate an explanation of an observation. In this 
instance, the general pattern generates wise man two has mud on his face as 
an explanation of the observation wise man one asserts I do not know 
whether (wise man one has mud on his face). 
 
Combining object-language and meta-language 
 
You may not have noticed that I cheated you. The three examples in this 
chapter are not represented strictly in meta-logic alone, but rather in a 
combination of object-language and meta-language. For example, the 
sentence: 
 
   mary is impressed with a person  
   if mary believes the person is well-bred. 
 
combines an object-level conclusion with a meta-level condition. This 
combination makes for a much more expressive language than an object or 
meta-language alone. It is made much simpler by using an ambivalent syntax. 
 But not all applications of meta-logic can benefit from the simplifications 
of ambivalent syntax. Some applications of meta-logic only make sense if the 
distinction between using sentences and mentioning them is made explicit in 
the syntax. The usual way of doing this in English is to use quotation marks.  
But it is also possible to name sentences and other syntactic entities by 
constant symbols and other expressions, like meta1 – meta5, as is common in 
Mathematics. 
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 The use of constants to name sentences makes it possible for sentences to 
refer to themselves. The most famous self-referential sentence is the liar 
paradox: 
 
This sentence:   This sentence is false. 
 
The sentence is a paradox, because if it is true, then it is false, and if it is 
false, then it is true.  
 In formal logic, a common solution to such paradoxes is to ban self-
referential sentences completely. But most self-referential sentences are 
completely innocuous. For example: 
 
This sentence:   This sentence contains 37 characters. 
 
is true if you count spaces, and is false if you do not. 
 In fact, banning self-referential sentences would outlaw one of the most 
important theorems of mathematics and logic of all time, Gödel’s 
Incompleteness Theorem. The proof of the Theorem constructs a true, but 
unprovable, self-referential sentence of the form: 
 
       this sentence cannot be proved. 
 
In Gödel’s construction, sentences and other syntactic expressions, including 
proofs, are named by a numerical code. It is because names are represented 
by numbers that sentences about numbers can refer to themselves. 
 A number of commentators, including most notably J. R. Lucas (1959) 
and Roger Penrose (1989), in his prize-winning book, have argued that the 
Incompleteness Theorem implies that people are not machines, because they 
can recognise true sentences that a machine cannot prove. According to Hao 
Wang (1974), Gödel himself also held similar views.  
 However, it seems that most logicians and philosophers disagree with this 
interpretation of the Incompleteness Theorem. Stewart Shapiro (1989), for 
example, points out that, given any constructible set of axioms of arithmetic 
to which Gödel’s theorem applies, the construction of the true, but 
unprovable sentence is entirely mechanical. This sentence could be added to 
the axioms, but then there would be a new, true, but unprovable sentence, 
which could also be added to the axioms. This process of constructing and 
adding true, but previously unprovable sentences can be continued ad 
infinitum, and beyond (Feferman, 1962). 
 
Conclusions and further reading 
 
The combination of object-logic and meta-logic is a powerful knowledge 
representation and problem-solving tool, which can be used by computers 
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and humans alike. In Computing, it is used routinely to implement more 
powerful object-languages in simpler meta-languages. In human thinking, it 
allows people to reflect upon their own thoughts and to simulate the thinking 
of other people. 
 The combination of object-logic and meta-logic is also the key to the 
proof of the Incompleteness Theorem. The Theorem shows that by looking at 
an object language, arithmetic in this case, from the perspective of the meta-
language, it is possible to solve problems that cannot be solved in the object 
language alone. 
 The formal underpinnings of meta-logic and its combination with object-
logic in a logic programming setting are surveyed in (Perlis and 
Subrahmanian, 1994), (Hill and Gallagher, 1998) and (Costantini, 2002).  
Gillies (1996) discusses the significance of Gödel’s theorem for the question 
of whether humans can solve problems that are not solvable by machines. 
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Conclusions  
 
I have made a case for a comprehensive, logic-based theory of human 
intelligence, drawing upon and reconciling a number of otherwise competing 
paradigms in Artificial Intelligence and other fields. The most important of 
these paradigms are production systems, logic programming, classical logic 
and decision theory. 
 
Unification of competing paradigms 
 
The production system cycle, suitably extended, provides the bare bones of 
the theory: the observe-think-decide-act agent cycle. It also provides some of 
the motivation for identifying an agent’s maintenance goals as the driving 
force of the agent’s life. 
 Logic programming opens the door to abductive logic programming, in 
which beliefs are expressed as conditionals in logic programming form, and 
goals are expressed in a variant of the clausal form of classical logic. Open 
predicates represent the interface between thoughts in the agent’s mind and 
things in the external world. 
 The agent interacts with the external world through its observations, 
which it assimilates into its web of goals and beliefs, and through the actions 
it attempts to execute. Decision theory provides the agent with a normative 
theory for deciding between alternative actions, taking into account the 
uncertainty and the utility of their expected outcomes. It also provides a 
bridge to more practical decision-making methods. 
 In addition to these main paradigms explicitly contributing to the logic-
based agent model, other paradigms support the model implicitly. 
 
Relationships with other paradigms 
 
In Computing, the agent model receives support, not only from logic 
programming, deductive databases and default reasoning, but also from 
moderate forms of object-orientation. Whereas in extreme object-orientation 
objects interact only by sending and receiving messages, in moderate forms, 
objects are like agents that interact with one another through the medium of a 
shared environment.  
 However, the agent model receives its greatest support from paradigms 
outside Computing. Most of these paradigms, like William’s (1990, 1995) 
guidelines for good writing style, Checkland’s (2000) soft systems 
methodology, Hammond, Keeney and Raiffa’s (1999) Smart Choices, and 
Baron’s (2008) characterisation of thinking as search plus inference, are 
informal theories, which are compatible with the more formal logic-based 
agent model.  
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 The agent model has also been influenced both by formal and informal 
theories of legal reasoning. This is most obvious in relation to rule-based 
theories, which hold that rule-based law promotes consistency, transparency 
and replicability. Legal rules share with logical conditionals the properties 
that rules need not be fully specified, may be subject to exceptions, and may 
hold only by default.  
 In legal reasoning and many other fields, rule-based reasoning operates in 
tandem with case-based reasoning. Although the two kinds of reasoning may 
seem to be conflicting paradigms, it can be argued that they are 
complementary. For one thing, rules are often generated by induction from 
cases. For another thing, rules are refined by evaluating their application in 
particular cases, and modifying them if their consequences are judged to be 
inappropriate. The conditional form of rules facilitates their modification, 
because unacceptable conclusions can be withdrawn by adding extra 
conditions, and missing conclusions can be added by adding extra rules. 
 This process of using cases to generate and modify rules is the basic 
technique of inductive logic programming (Muggleton and De Raedt, 1994), 
which is a branch of machine learning in Artificial Intelligence. Donald 
Gillies (1996) argues that the achievements of inductive logic programming 
in such applications as generating expert systems and discovering laws of 
protein structure have significant implications for the problem of induction in 
the philosophy of science. 
 Unfortunately, I have neglected this aspect of Computational Logic, as 
well as other important areas. In particular, although I have touched upon the 
need to integrate judgements of uncertainty into the decision-making 
component of the agent cycle, I have not explored the broader relationships 
between Computational Logic and Probability Theory. Much of the work in 
this area combines probabilistic reasoning with inductive logic programming. 
(De Raedt et al., 2008) contains a survey of representative work in this active 
research area. 
 The other major area that I have neglected is the relationship between 
Computational Logic, neural networks and other connectionist models of the 
brain. Although I have suggested a connectionist interpretation of connection 
graphs, most of the work in this area has concerned the relationship between 
logic programming and neural networks, starting with (Hölldobler and 
Kalinke, 1994) and including (d'Avila Garcez, Broda  and Gabbay, 2001) and 
(Stenning and van Lambalgen, 2008). A good overview of the challenges in 
this area can be found in (Bader, Hitzler and Hölldobler, 2006).  
 The list of such topics goes on for longer than I can continue, and it has to 
stop somewhere. But before finishing, I would like to mention briefly one 
more area, which is too important to leave out, and where Computational 
Logic may be able to contribute. 
 
 

http://portal.acm.org/author_page.cfm?id=81100035610&coll=GUIDE&dl=&trk=0&CFID=98543464&CFTOKEN=53564855�
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Conflict resolution 
 
We have seen that conflicts can arise when a single agent needs to make a 
choice between two or more actions or goals: The crow wants to eat the 
cheese and sing at the same time. The louse wants to eat and look for a mate. 
Bob wants to stay friends with John, but stay out of jail. This kind of conflict 
within a single agent is the source of conflict resolution in production 
systems and the bread and butter of decision theory. 
 Confict resolution is important enough when there is only one individual 
involved, but it can be much more important when it involves two or more 
agents: The man with the rucksack wants to blow up the train, but the 
passengers want to stay alive. The fox wants to have the crow’s cheese, but 
the crow wants to eat it himself. Bob wants to stay out of jail by turning 
witness against John, and John wants to stay out of jail by turning witness 
against Bob. 
 We have seen in the example of the prisoner’s dilemma that conflicts 
among several agents can be treated as a conflict for a single agent who cares 
as much about other agents as she cares about herself. The application of 
decision theory to this case is a form of utilitarianism: The greatest good for 
the greatest number of people. 
 But unbridled utilitarianism does nothing to protect an individual agent or 
a minority of agents whose interests are dominated by the majority. The 
protection of individual and minority rights requires constraints, which 
prevent the maximisation of utility from getting out of hand. We saw how 
such constraints might operate in the example of the runaway trolley in 
Chapter 12. 
 The Computational Logic agent model combines both constraints on 
individual actions and conflict resolution for deciding between alternative 
actions. But it also provides opportunities for conflict resolution at the 
higher-levels of an agent’s hierarchy of goals. If a conflict cannot be resolved 
at the action level, it may be possible to resolve the conflict by finding an 
alternative way of solving goals at a higher level, and of reducing those goals 
to new alternative actions that no longer create a conflict. The greater the 
number of levels in the hierarchy and the greater the number of alternative 
ways of reducing goals to subgoals, the more opportunities there are to avoid 
and resolve potential conflicts.  
 This hierarchy of goals and subgoals is determined by the agent’s beliefs. 
Whether or not these beliefs actually help the agent to achieve its goals 
depends on whether or not they are really true. The greater the number of true 
beliefs, the greater the number of alternative ways the agent can try to 
achieve its goals and avoid conflict with other agents. 
 An agent obtains its beliefs from different sources. Some of these beliefs 
may be hardwired into the agent from birth; but others, perhaps most, are 
obtained through personal experience and from communications with other 
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agents. But different agents have different experiences, which lead to 
different beliefs, which can lead to conflicts between agents even when the 
agents have the same top-level goals. Therefore, conflicts can often be 
reconciled by reconciling different beliefs, acknowledging that they may 
explain different experiences. 
 This book has been an attempt to reconcile different paradigms for 
explaining and guiding human behaviour, most notably to reconcile 
production systems, logic programming, classical logic and decision theory. 
To the extent that it has succeeded, it may exemplify the broader potential of 
Computational Logic to help reconcile conflicts in other areas. 
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Chapter A1. The Syntax of Logical Form  
 
The Computational Logic language used in this book is an informal and 
simplified form of Symbolic Logic. Until now, it has also been somewhat 
vague and imprecise. This additional chapter is intended to specify the 
language more precisely. It does not affect the mainstream of the book, and 
the reader can either leave it out altogether, or come back to it later.  
 
Atoms 
 
In all varieties of logic, the basic building block is the atomic formula or 
atom for short. In the same way that an atom in physics can be viewed as a 
collection of electrons held together by a nucleus, atoms in logic are 
collections of terms, like “train”, “ driver” and “station”, held together by 
predicate symbols, like “in” or “stop”. Predicate symbols are like verbs in 
English, and terms are like nouns or noun phrases. 
 Where we have been writing informally: 
 
  the driver stops the train 
 
in Symbolic Logic, this would normally be written in the form: 
 
  stop(driver, train) 
 
Here the predicate symbol is written first, followed by the atom’s terms, 
which are called its arguments, surrounded by parentheses and separated by 
commas. Each predicate symbol has a standard number of arguments, written 
in some fixed but arbitrary order. Here the predicate symbol stop has two 
arguments, with its subject driver first and its object train second. 

The advantage of the symbolic form of logic for writing atoms is that it 
unambiguously distinguishes between the atom’s predicate symbol and its 
arguments, and moreover it identifies the different roles (such as subject or 
object) of its arguments by their positions inside the parentheses. It is this 
precision that makes Symbolic Logic suitable for processing by computer. 

However, this advantage is bought at the cost of having to over-specify an 
atom’s components. For example, an equally legitimate representation of the 
sentence the driver stops the train is the atomic formula:  

 
  happens(stop, driver, train) 

 
This alternative representation treats stop as a term rather than as a predicate 
symbol. It is also possible, although not very useful, to represent the same 
sentence with a predicate symbol having zero arguments, say as happens-
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stop-driver-train() written more simply as happens-stop-driver-train. In 
fact, the representation that is closest to the intended, underlying meaning of 
the English sentence is a collection of atomic sentences: 
 
   happens(event-0014) 
   type(event-0014, stop) 
   agent(event-0014, 007) 
   object(event-0014, the-flying-scotsman) 
   isa(007, train-driver) 
   isa(the-flying-scotsman, train) 
 
This representation makes explicit that the driver 007 is a unique individual, 
and that the train is a specific train with its own unique identification the-
flying-scotsman. Even the event itself is a unique event, with an identifier 
event-0014 that distinguishes it from other events in which the same driver 
stops the same train on other occasions. 
 Although such representations are rather cumbersome by comparison 
with English sentences, they are often necessary in computer 
implementations of logic, where the distinctions they make are unavoidable. 
Arguably, the same distinctions are unavoidable also in a human agent’s 
language of thought.  
 The informal representation we use in most of the book has the advantage 
that it hides the underlying complexity involved in such precise 
representations. However, the reader should be aware that, to represent the 
intended meaning of seemingly simple English sentences, they would 
normally need to be translated into the more precise kind of representation 
illustrated here. 
 
Predicate symbols 
 
Predicate symbols can have zero, one or more arguments. Atomic formulas 
whose predicate symbol has zero arguments are sometimes called 
propositional formulas. This includes the two special atoms true and false. 
The special case of Symbolic Logic, in which all atoms are propositional 
formulas is called propositional logic. The more general case, in which 
predicate symbols can have any number of arguments, is called predicate 
logic. 
 Propositional formulas are sentences that denote propositions. Predicate 
symbols with one argument denote properties of individuals, and predicate 
symbols with more than one argument denote relations between individuals. 
This distinction between propositions, properties and relations is significant 
in ordinary natural language, but is an unnecessary and unwelcome 
complication in mathematics. It is simpler and more convenient to refer to all 
three notions as relations, which may hold between zero, one or more 
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individuals. Thus, with this terminology, we can say simply that predicate 
symbols denote (or represent) relations.  
 However, not all relations need to be represented by predicate symbols. 
Relations can also be represented by predicates that are compound syntactic 
expressions constructed from simpler expressions by joining them with 
logical connectives like “and”, “or”, “not” and “if”. For example, the 
property of being tall and handsome can be denoted by a predicate, say 
tall(X) and handsome(X), which need not be expressed by a separate 
predicate symbol. We will often find it convenient to speak of such 
predicates, without implying that they are expressed by predicate symbols. 

Denotation is a semantic relationship between symbols and the objects 
those symbols represent. It is one of the great achievements of Symbolic 
Logic, envied even by many of its critics, that it has a proper semantics. But 
before discussing semantics, we need to complete our discussion of syntax. 

 
Terms 
 
The simplest kind of term is a constant, like 007, which denotes an 
individual, say the person born on 1 April, 2000 to parents Mary Smith and 
John Smith in Petworth, England. But terms also include variables, which 
stand for whole classes of individuals. It is common in Symbolic Logic to use 
letters, like X and Y for variables, as in the algebraic formula: 

 
    X + Y = Y + X 
 

which holds for all numbers X and Y. In this book, we use the convention, 
borrowed from the logic programming language Prolog, that variables start 
with an upper case letter, like X or Y, and constants and predicate symbols 
start with a lower case letter. 
 More complex terms can be constructed from simpler terms, like mother 
of X, written mother(X), or 2 + 3, written +(2, 3), where mother and + are 
function symbols. However, functions are a special case of relations, and 
therefore function symbols are, strictly speaking, unnecessary. Instead of 
writing, for example: 
 
     mother(cain) = eve 
     +(2, 3) = 5 
 
we can write:  mother(cain, eve) 
     +(2, 3, 5) 
 
Representing functions as relations has the advantage that function symbols 
can be reserved for constructing names of individuals. Function symbols used 
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in this way are sometimes called Skolem functions, in honour of the logician 
Thoralf Skolem. 
 Used for naming, function symbols make it possible to name an infinite 
number of individuals with a finite vocabulary. For example, in mathematical 
logic, it is common to name the natural numbers 0, 1, 2, … by the terms 0, 
s(0), s(s(0)),…. where the function symbol s is called the successor function. 
The term s(X) is equivalent to X + 1. Using the successor function and 
representing the addition function as a relation, we can represent  2 + 3 = 5 
by: 
 
  +(s(s(0)), s(s(s(0))), s(s(s(s(s(0))))) ) 
 
Not very pretty, but better suited for theoretical studies than the use of such 
alternative numbers systems as decimal, binary or Roman numerals.  
 Terms that contain no variables are called ground terms. They play a 
special role in the semantics, because they are the pool from which the names 
of individuals are drawn. 
 
Conditionals 
 
Strictly speaking, a conditional is a sentence of the form A → B, where A and 
B are sentences. However, we use the term conditional more loosely to refer 
to sentences that may contain variables. Moreover, for the most part, we 
restrict attention to conditionals that can be written in either one of the two 
equivalent forms: 
 

C1 ∧ … ∧  Cn ∧  ¬D1 ∧  … ∧ ¬ Dm → E  
i.e.   if C1 and … and  Cn  and not D1 and … and not Dm then E 
 
   E ← C1 ∧ … ∧  Cn ∧  ¬D1 ∧  … ∧ ¬ Dm  
i.e.   E if C1 and … and  Cn  and not D1 and … and not Dm 
 
where the conclusion E is an atomic formula, the conditions Ci are atomic 
formulas, and the conditions ¬ Dj are the negations of atomic formulas. Such 
conditionals are also sometimes called clauses, and sets of conditionals are 
also called logic programs.  
 As is common with mathematical definitions, the number of positive 
conditions n and the number of negative conditions m can be 0. If m is 0, then 
the conditional is called a definite clause. 
 Definite clauses are important for two reasons. First, they are adequate for 
representing any computable predicate. Second, as we will see in Chapter A2, 
they have a very simple semantics in terms of minimal models. 
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 If the number of conditions n+m is 0, then the degenerate conditional E← 
(or →E) is in effect just an atomic sentence, which is normally written 
without the arrow, simply as E.  
 The backward arrow ← is read if, and the forward arrow → is read with 
the same meaning, but in the opposite direction. The symbol ∧ is used for the 
logical connective and. Expressions connected by ∧  are called conjunctions. 
 Predicate symbols and constant symbols appearing in different clauses are 
the external glue that links different clauses together. Variables are another 
kind of glue internal to clauses. For example, the variable X in the clause: 
 
  amazing(X) ←  can-fly(X) 
 
has the effect of expressing that anything that can fly is amazing. In contrast, 
the two variables in the clause: 
 
  amazing(X) ←  can-fly(Y) 
 
have the effect of expressing that if something can fly then everything is 
amazing! 
 Variables in clauses are consequently said to be universally quantified 
within the scope of the clause in which they appear. In Symbolic Logic the 
quantification of variables is normally written explicitly with symbols ∀ 
standing for all and ∃ standing for there exists, and the scope of the 
quantifiers is indicated by parentheses. Thus the two conditionals above 
would be written: 
 
  ∀X (amazing(X) ←  can-fly(X)) 
  ∀X ∀Y ((amazing(X) ←  can-fly(Y))) 
  
Because all variables appearing in clauses are universally quantified and their 
scope is the entire clause, there is no ambiguity if the quantifiers are omitted.  
 Because conditionals can have no conditions, atomic sentences can also 
contain universally quantified variables. Here is a fanciful example: 

 
   likes(bob, X). 
 

Atomic sentences that do not contain such variables are also called facts. 
 
In the simplest versions of Symbolic Logic, variables like X and Y can refer 
to any kind of individual. So, for example, the clause amazing(X) ←  can-
fly(X) implies that if a rock can fly then the rock is amazing. Similarly the 
mathematical equation X + Y = Y + X, if it were written in logical notation, 
would imply that you could add two rocks together in either order and the 
result would be the same. 
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 To overcome the unnatural use of unrestricted variables, sorted or typed 
logics have been developed, in which variables are restricted, so that they 
refer only to individuals in designated classes, which are called sorts or types. 
A similar effect can be obtained more tediously in unsorted logic by 
including for every variable in a clause an extra condition whose predicate 
expresses the sort of that variable. 
 For example, to state that any animal that can fly is amazing, we would 
need to write in unsorted logic, say: 
 
  amazing(X) ← can-fly(X) ∧ animal(X)  
 
To conclude that any person who can fly is amazing, we would need a clause 
expressing that all people are animals: 
 
  animal(X) ←  person(X)  
 
Or as adherents of object-orientation in Computing (see Chapter 14) would 
prefer us to say, the class of all people inherits the property of flying from the 
more abstract class of all animals. 
 In the informal version of Computational Logic that we use in this book, 
not only do we omit universal quantifiers, but we also sometimes express 
unsorted variables by words like anything and everything and sorted variables 
by common nouns, like an animal, a station, or a bird. The virtue of this 
informal usage is that it is neutral with respect to whether it is formalised in 
some version of sorted logic or formalised in unsorted logic with explicit 
predicates for sorts. So, for example, instead of writing: 
 
   ∀X (amazing(X) ← can-fly(X) ∧ animal(X)). 
 
we simply write: 
 
   if an animal can fly then the animal is amazing. 
or   any animal that can fly is amazing.  
 
Moreover, the informal version is compatible with other formal 
representations, such as: 
 
   amazing(X) ← can-fly(X) ∧ isa(X, animal). 
   isa(X, animal) ← isa(X, person.  
 
Recursive definitions 
 
Conditionals are often used to define predicates. For example, here is a 
definition of the predicate natural-number: 
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  natural-number(0). 
  natural-number(s(X)) ← natural-number(X). 
 
The definition is said to be recursive, because the predicate natural-number 
defined in the conclusion of the second sentence recurs in the conditions (and 
vice versa). The ability to express recursive definitions gives conditionals the 
full power of a general-purpose programming language. 
 Here is a recursive definition of addition: 
 
  +(0, Y, Y). 
  +(s(X), Y, s(Z)) ← +(X, Y, Z).  
   
For simplicity, I have omitted the qualifying conditions that X, Y and Z are 
natural numbers. In functional notation, the definition is much simpler and 
looks like this: 
 
  0 + Y = Y. 
  s(X) + Y = s(X + Y).    
 
This can also be written in the even simpler form (X + 1) + Y = (X + Y) + 1. 
But this is misleading, because the plus sign + in the expression + 1 is 
different from the plus sign +  for example in (X + Y). I will have more to say 
about the relationship between functions and relations a little later in this 
chapter. 
 
Goal clauses 
 
In Computational Logic, we use conditionals (including facts and other 
atomic sentences) to represent beliefs, all of whose variables are universally 
quantified. In addition, we use conjunctions to represent goals whose 
variables are all existentially quantified.  
 In general, a goal clause is an existentially quantified conjunction of 
atoms and negations of atoms: 
 

∃ X1 …∃ Xm (C1 ∧ … ∧  Cn  ∧ ¬D1 ∧  … ∧ ¬ Dm) 
i.e.   there exists X1... and there exists Xm such that  
   C1 and … and Cn and not D1 and … and not Dm. 
 
If m is 0, then the goal clause is called a definite goal clause. 
 Because all variables in a goal clause are existentially quantified within 
the scope of the goal clause in which they occur, it is normal to omit the 
explicit use of existential quantifiers. For example, the goal clause: 
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      likes(bob, X)  
stands for     ∃ X likes(bob, X)  
 
Such existentially quantified goal clauses are sufficient for representing an 
agent’s achievement goals. However, as we will see in greater detail later, 
they are not sufficient for representing maintenance goals and constraints. 
 Both definite clauses (including atomic sentences) and definite goal 
clauses are also called Horn clauses after the logician Alfred Horn, who 
studied some of their mathematical properties. Horn clauses are equivalent in 
power to Turing Machines, which are the standard mathematical model of 
mechanical computation. 
 In logic programming, goal clauses represent the computation to be 
performed. For example, the goal clause: 
 
    +(s(s(0)), s(s(0)), X ) ∧ +(X, Y, s(s(s(s(s(0))))) )  
 
represents the problem of computing the sum X of 2 plus 2 and computing a 
number Y that added to X gives 5. 
 
Other kinds of sentences 
 
Conditionals, used to represent beliefs, and goal clauses, used to represent 
achievement goals, have a very simple syntax. However, conditionals are 
logically equivalent to more complex sentences in the syntax of classical 
logic. Here are some examples of such equivalences: 
 
      ∀X ∀Y (amazing(X) ←  can-fly(Y)). 
is equivalent to:  ∀X (amazing(X) ← ∃ Y can-fly(Y)). 
 
      amazing(X)  ← can-fly(X). 
      amazing(X)  ← movie-star(X). 
are equivalent to:  amazing(X)  ← (can-fly(X) ∨  movie-star(X)). 
 
      generous-to(X, Z) ←  likes(X, Y) ∧ gives(X, Y, Z) 
is equivalent to:  (generous-to(X, Z) ← likes(X, Y)) ← gives(X, Y, Z) 
 
The symbol ∨  is used for the logical connective or. Expressions connected 
by ∨  are called disjunctions. In general, a disjunction has the form: 
 

   C1 ∨ … ∨  Cn  
i.e.      C1 or … or  Cn  
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We will see later that, in addition to allowing the use of existential quantifiers 
and disjunctions, it is useful to extend the syntax of conditional logic to 
represent more complex goals and beliefs. In particular, it is useful to include 
existential quantifiers and disjunctions in the conclusions of maintenance 
goals. For example: 
 
Maintenance goals:    hungry(me) → ∃X eat(me, X). 
       attacks(X, me) → runaway(me) ∨ attacks(me, X). 
 
Existential quantifiers in the conclusions of conditional goals are so common, 
that it is convenient to omit them, with the convention that variables in the 
conclusion of a conditional goal that are not in the conditions of the goal are 
existentially quantified, with scope the conclusion of the goal. For example: 
 
Maintenance goal:  hungry(me) → eat(me, X). 
 
The inclusion of disjunctions in the conclusions of conditionals gives the 
logic of conditionals the power of classical logic. We shall have more to say 
about the relationship between the logic of conditionals and classical logic in 
Chapter A2. We focus on the conditional form of logic in this book, because 
it is easier for both computers and humans to understand.  
 Arguably, the relationship between classical logic and the logic of 
conditionals is like the relationship between the language of human 
communication and the language of human thought. One way to understand 
this relationship is to view reasoning as involving two kinds of inference 
rules, applied in two stages. The first kind of rule, applied in the first stage, 
translates complicated sentences into simpler sentences. The second kind, 
applied in the second stage, reasons with the resulting simpler sentences. 
 This two stage reasoning process is used in many of the proof procedures 
developed for classical logic in Computing. In systems based on the 
resolution principle (Robinson, 1965) in particular, the first stage translates 
sentences of classical logic into clausal form. The second stage processes 
clauses using refinements of the resolution rule of inference. We discuss the 
resolution principle in the additional Chapter A5. 
 Understanding human communications in natural language can be viewed 
as a similar two stage process. The first stage translates (or compiles) 
sentences of natural language into simpler sentences in the language of 
thought. The second stage processes these simpler sentences using rules of 
inference, like forward and backward reasoning, which are simple cases of 
resolution. The closer the natural language sentences are to the language of 
thought, the less effort is needed to translate those sentences into the 
language of thought, and the easier it is to understand them. 
 
Negation 
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In classical logic, negative and positive sentences have the same status. To be 
or not to be – there is no reason to prefer one to the other. But in 
Computational Logic, positive sentences are more basic than negative 
sentences, and negative sentences typically just fill in the gaps between 
positive sentences. This more basic status of positive sentences is reflected in 
the syntax of conditionals, which normally have only positive conclusions, 
but may have negative conditions ¬  C (also written not C), for example: 
 
     liable-to-penalty(X) ← press-alarm(X) ∧ not emergency. 
     can-fly(X) ← bird(X) ∧ not penguin(X). 
 
As we have seen in Chapter 5 and elsewhere, it is natural to conclude that a 
negative condition not C holds if the corresponding positive condition C fails 
to hold. This interpretation of negation is called negation as failure. So given 
a situation in which we are told bird(john), but have no reason to believe 
penguin(john), it follows by negation as failure that can-fly(john). 
 Here is a definition of the odd and even numbers, using only positive 
conclusions and a negative condition: 
 
      even(0). 
      even(s(s(X))) ← even(X). 
      odd(X) ← not even(X). 
 
Because it cannot be shown that even(s(0), it follows from these clauses and 
negation as failure that odd(s(0)). 
 In addition to negative conditions interpreted by negation as failure, 
negative sentences can have the form of constraints, which are conditional 
goals with conclusion false. For example, in the context of an agent 
monitoring its candidate actions, the constraint: 
 

liable-to-penalty(X) → false 
i.e.      Do not be liable to a penalty. 
 
functions as a prohibition, which prevents actions, like your pressing the 
alarm signal button improperly or your failing to pay your taxes, that are 
liable to a penalty. 
 Moreover, as we have seen in the chapter on abduction, a constraint, such 
as: 
 

even(X) ∧ odd(X) → false 
i.e.      Nothing is both odd and even. 
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which is a property of the definitions of the even and odd numbers, can be 
used to eliminate candidate explanations of observations. 
 We will see later that both kinds of negation (negation as failure and 
constraints) have the same semantics as negation in classical logic. However, 
they perform different functions in knowledge representation and reasoning. 
 
Functions, relations and equality 
 
In this book, we use function symbols sparingly, only to construct composite 
names of individuals. Other kinds of functions are treated as relations (or 
predicates), as in relational databases. Instead of writing f(X) = Y, where f is a 
function symbol, we write f(X, Y), where f is a predicate (or relation) symbol. 
In this relational representation, the fact that the relation is a function is 
represented by the constraint: 
 
      f(X, Y1) ∧ f(X, Y2) → Y1 = Y2 
 
We combine this relational representation of functions with a simple notion 
of equality, understood as identity, and defined by the simple axiom: 
 
      X = X. 
 
This representation, of functions as relations and of equality as identity, 
works well only if individuals have unique names. Thus, for example, it’s not 
good enough to say bob stops the train if same person is also called robert 
and if more than one person is also called bob. We have to give bob a unique 
name, 007 for example, and say something like: 
 
     stops(007, the train) 
     first-name(007, bob) 
     first-name (007, robert) 
     first-name (008, bob). 
 
Similar considerations apply to the name of the train, of course, and maybe to 
the name of the event, as we saw earlier in this section. 
 The definition of equality as identity, means that two individuals are 
identical if and only if they have the same unique name. This constrasts with 
the more conventional notion of equality, in which the same individual can 
have several names. For example: 
 
    the morning star = the evening star 
    doctor jekyll = mister hyde 
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To reason with equalities of this kind, it is normal to use additional axioms, 
such as the definite clauses: 
 
    X = X  
    f(X1 ,…, Xn) = f(Y1 ,…, Yn) ← X1 = Y1 ∧ … ∧ Xn = Yn 

    p(X1,…, Xn) ← p(Y1,…, Yn) ∧  X1 = Y1 ∧ … ∧ Xn = Yn 
 
for every function symbol f and every predicate symbol p. However, 
reasoning with such axioms is computationally expensive. Moreover, their 
use needs to be exercised with caution, if we want to make such distinctions 
as: 
 
    good(doctor jekyll) ∧ bad(mister hyde). 
 
Classical Logic 
 
The syntax of classical logic is an extension of the syntax of the conditional 
form of logic used in this book. Terms and atomic formulas in classical logic 
are the same as in the logic of conditionals. However, non-atomic sentences 
can be constructed using arbitrary combinations of the logical connectives →, 
∧, ∨ and ¬, and the quantifiers ∀ and ∃. 
 Classical logic is less well-structured than the conditional form of logic. 
For example, in conditional form, there is only way to express that all birds 
can fly and John is a bird, namely: 
 
    can-fly(X) ← bird(X). 
    bird(john). 
 
But in classical logic, the same beliefs can be expressed in many logically 
equivalent ways, including: 
 
   ¬(∃X((¬can-fly(X) ∧ bird(X)) ∨ ¬bird(john))) 
   ¬(∃X((¬can-fly(X) ∨ ¬bird(john)) ∧  (bird(X) ∨ ¬bird(john)))) 
 
To translate classical logic into the conditional form of logic, it is necessary 
to use such equivalence-preserving rules of inference as: 
 
   replace ¬∃X ¬A  by  ∀X A 

replace ¬A ∨ ¬B  by  ¬(A ∧ B) 
   replace A ∨ ¬B  by  A ← B 
 
Classical logic and conditional logic differ also in their use of quantifiers. In 
conditional logic, all variables in conditionals are universally quantified, and 
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all variables in goal clauses are existentially quantified, and therefore 
quantifiers can be ommitted. But in classical logic, all variables can be 
universally or existentially quantified, and therefore quantifiers need to be 
explicit. 
 In conditional logic, existential quantifiers are avoided by giving 
everything that exists a name, which is either a constant or a function symbol 
applied to other names. Instead of saying, for example, ∃X bird(X), we say 
bird(john) or bird(007). We do so because giving individuals explicit names 
conveys more information. If you know that john is a bird, why conceal 
John’s identity by saying only that someone is a bird, especially if you are 
talking to yourself in your own language of thought. 
 
The relationship among classical logic, clausal logic 
and Computational Logic 
 
Anything that can be said in classical logic can also be said in the conditional 
form of logic, but it has to be said using only universally quantified variables, 
and allowing disjunctions in the conclusions of conditionals. To be more 
precise, any sentence of classical logic can be translated into a set of clauses 
of the form: 
 

  C1 ∧ … ∧  Cn → D1 ∨ … ∨  Dm  
 

where each condition Ci and conclusion Dj is an atomic formula, and all 
variables in the clause are implicitly universally quantified with scope the 
entire clause. If n is 0, then C1 ∧ … ∧  Cn is equivalent to true. If m is 0, then 
D1 ∨ … ∨  Dm is equvalent to false. 

Traditionally, such clauses are written in the logically equivalent form of 
universally quantified disjunctions (also called clausal form): 
 
     ¬C1 ∨ … ∨  ¬Cn ∨ D1 ∨ … ∨  Dm  
 
Although sentences of classical logic can always be translated into clausal 
form, the original sentence and its translation are not always logically 
equivalent. For example, the sentence ∀X ∃Y (mother(X, Y) ←  person(X)) 
can be translated into the clause mother(X, mom(X)) ←  person(X). The 
clause uses a Skolem function to name names, and is in a sense more 
informative than the original sentence.  
 In theory, the use of Skolem functions to replace existential quantifiers 
entails the need to reason with equality. For example, mom(cain) = eve. 
However, such existential qualifiers typically occur in the conclusions of 
goals, rather than in beliefs. The proof procedure of Chapter A6 works with 
explicit existential quantifiers in the conclusions of goals. So the problems of 
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reasoning with equality created by the use of Skolem functions seems not to 
arise much in practice. 

In clausal logic, achievement goals are solved by reductio ad absurdum, 
assuming their negation and deriving false from the resulting set of clauses. 
For example, the negation of the achievement goal: 
 

  ∃ X1 …∃ Xm (C1 ∧ … ∧  Cn) 
 

is equivalent both to the (universally quantified) denial: 
 

C1 ∧ … ∧  Cn) → false 
 
and to the ordinary (universally quantified) clause: 
 

¬C1 ∨ … ∨  ¬Cn 
 

Maintenance goals in clausal logic are solved in the same way, by converting 
their negation into clausal form and deriving false. However, because 
maintenance goals are universally quantified, their negations are existentially 
quantified, and these existential quantifiers need to be replaced by Skolem 
constants. For example, to solve the maintenance goal: 
 
     attacks(X, me) → runaway(me) ∨ attacks(me, X) 
 
it is necessary to replace the variable X by a Skolem constant, say , and 
convert the negation of the Skolemised conditional into the clauses: 
 
        attacks(, me)  
    ¬ runaway(me)  
    ¬ attacks(me, ) 
 
If this way of solving maintenance goals succeeds (by deriving false), then it 
succeeds in solving them once and for all.  
 However, in this book, we solve maintenance goals differently, by showing 
that whenever their conditions are true, their conclusions are true. This 
alternative treatment of maintenance goals is discussed informally in Chapter 
8 and formalised in Chapter A6.  
 This different treatment of maintenance goals reflects that fact that, neither 
classical logic nor clausal logic makes a fundamental distinction between 
goals and beliefs. In contrast, we distinguish between goals and beliefs, by 
employing a minor variant of clausal form for goals, and the closely related 
logic programming form: 
 
      C1 ∧ … ∧  Cn ∧  ¬D1 ∧  … ∧ ¬ Dm → E 
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or     E ← C1 ∧ … ∧  Cn ∧  ¬D1 ∧  … ∧ ¬ Dm 
 
for beliefs. As mentioned before, the conclusions of goals (but not of beliefs) 
may contain both disjunctions and existentially quantified variables. 
  Somewhat confusingly, as is common in the literature, I use the term 
clause to refer either to clauses written as conditionals, to clauses written as 
disjunctions or to logic programming clauses. Perhaps even more 
confusingly, I use the term conditional both for clauses written as 
conditionals with disjunctive conclusions and for logic programming clauses. 
I also call the resulting combination of the two kinds of conditionals the 
conditional form of logic, as well as the form of Computational Logic used in 
this book. Hopefully, in most cases the context makes the intended meaning 
obvious. 
 
Conclusions and further references 
 
This whirlwind tour of the syntax of the conditional form of logic and its 
relationship with both the standard and clausal forms of classical logic has 
covered a lot of ground, but only touched the surface. 
 The conditional form of logic is as powerful as, but simpler than, the 
unstructured form of sentences in classical logic. The inference rules of the 
conditional form are also correspondingly simpler. The inference rules of 
classical logic are more complex, because in effect, in addition to the rules 
needed to reason with conditionals, they also include rules to translate 
sentences of classical logic into the equivalent of conditional form. 
 This distinction between the two kinds of inference rules in classical logic 
corresponds to the distinction between two kinds of reasoning in natural 
language. The inference rules needed to translate classical logic into 
conditionals corresponds to the reasoning needed to translate natural 
language into the LOT; and the inference rules needed to reason with 
conditionals corresponds to the reasoning needed in the LOT. 
 I have been supported in this view of the relationship between classical 
logic and conditional logic and between natural language and the LOT by the 
guidelines for good writing style given in such books as William’s (1990, 
1995). These guidelines, advocating clarity, simplicity and coherence, can be 
viewed as encouraging a writing style that minimises the difference between 
the syntax of natural language communications and the representation of their 
meanings in the LOT.  
 
The conditional form of logic evolved from the clausal form of logic, and the 
clausal form of logic evolved from standard classical logic. One of the 
earliest uses of clausal form was by Martin Davis and Hillary Putnam (1960) 
in one of the first mechanical proof procedures for classical logic. It was also 
used for the resolution rule developed by Alan Robinson (1965a). 
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 The application of clausal form to knowledge representation and of 
resolution to problem solving was pioneered by Cordell Green (1969). 
However, the resolution theorem provers available at that time did not behave 
sensibly, and were vulnerable to attacks against the resolution-based 
approach by advocates of procedural, as opposed to declarative, 
representations of knowledge (Hewitt, 1971; Winograd, 1971, 1972). 
 In defence of clausal logic, Kowalski and Kuehner (1971) argued that SL-
resolution, essentially a resolution interpretation of Loveland’s (1968) model 
elimination proof procedure, could be understood procedurally in goal-
reduction terms. In 1971 and 1972, I collaborated with Alain Colmerauer in 
Marseille, resulting in Colmerauer’s development of Prolog in 1972, and in 
the procedural interpretation (Kowalski, 1974) of SLD-resolution, a variant 
of SL-resolution, applied to Horn clauses.  
 In Logic for Problem Solving (Kowalski, 1974, 1979), I argued more 
generally for the use of clausal form for knowledge representation and 
reasoning. A detailed analysis of the relationship between clausal logic and 
classical logic can be found in chapters 2 and 10 of that book. The 
combination in Computational Logic of clausal logic for goals and logic 
programming for beliefs comes from abductive logic programming (ALP) 
(Kakas, Kowalski and Toni, 1998). The technical underpinnings of ALP are 
dealt with in Chapter A6. 
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Chapter A2. Truth  
This additional chapter explores the semantics of classical logic and 
conditional logic. In classical logic, the semantics of a set of sentences S is 
determined by the set of all the interpretations (or semantic structures), called 
models, that make all the sentences in S true. The main concern of classical 
logic is with the notion of a sentence C being a logical consequence of S, 
which holds when C is true in all models of S.  
 Semantic structures in classical logic are arbitrary sets of individuals and 
relationships, which constitute the denotations of the symbols of the language 
in which sentences are expressed. In this chapter, I argue the case for 
restricting the specification of semantic structures to sets of atomic sentences, 
called Herbrand interpretations.  
 The semantics of conditionals, which we use in this book, inherits the 
semantics of classical logic, but also has a related minimal model semantics. 
This minimal model semantics associates with every definite clause program 
a unique minimal model, which has the property that a definite goal clause is 
true in all models of the program if and only if it is true in the minimal 
model.  
 I argue that, for definite clauses, truth in minimal models is more 
fundamental than truth in all models. I support the argument by observing 
that the standard model of arithmetic is the minimal model of a simple 
definite clause program defining addition and multiplication. According to 
Gödel’s Incompleteness Theorem, truth in this minimal model can only be 
approximated by truth in all models of any computable set of axioms for 
arithmetic. 
 
Truth and consequences 
 
All variants of Symbolic Logic are formal systems, in which rules of 
inference are used to manipulate symbolic expressions and derive new 
symbolic expressions without paying attention to their intended meaning. 
However, without any meaning, these expressions and their manipulations 
are not only meaningless, but useless. 

In the case of an agent embedded in the Real World, symbolic 
expressions in the agent’s language of thought represent actual or potential 
situations in the World. Beliefs that are true in the World help the agent to 
anticipate the consequences of its actions and to achieve its goals. Goals that 
the agent can realistically make true in the World help the agent to maintain a 
harmonious relationship with the World and to change the World for its own 
benefit. Rules of inference, which manipulate thoughts and which derive new 
thoughts from existing thoughts, help the agent to derive logical 



 268 

consequences of its goals, beliefs and hypotheses, and guide its interactions 
with the World. 

In classical logic, the notion of logical consequence provides the criterion 
for judging whether or not a set of inference rules performs its intended 
function:  

 
 A sentence C is a logical consequence of a set of sentences S  
 (or S logically implies C) if (and only if) C is true whenever S is true. 
 
 A set of inference rules is sound (or truth-preserving) if (and only if)  
 whenever it derives a sentence C from a set of sentences S,  
 then C is a logical consequence of S. 
 

A set of inference rules is complete if (and only if) whenever a sentence C 
is a logical consequence of a set of sentences S, then there exists a 
derivation, by means of the inference rules, of C from S. 

 
These concepts of logical consequence, soundness and completeness depend 
upon the notion of truth, which applies only to well-formed formulas that are 
sentences. A well-formed formula is an expression constructed from atomic 
formulas using the logical connectives, →, ∧, ∨ and ¬, and the universal 
quantifiers ∀ and ∃. A sentence is a well-formed formula all of whose 
variables are explicitly or implicitly quantified using the quantifiers ∀ and ∃. 
 The notion of truth is relative to an interpretation of the symbols of the 
language in which the sentences are expressed. An interpretation is a 
collection of individuals (called the domain of discourse), which are the 
denotations (or meanings) of the constants and other ground terms of the 
language, together with a set of relations, which are the denotations of the 
predicate symbols. The relations belonging to an interpretation determine the 
truth of the atomic sentences of the language, and the truth of the atomic 
sentences, in turn, determines the truth values of all other sentences. 
 For example, if the conditional  
 
   amazing(john) ← can-fly(john) 
 
is interpreted in such a way that the constant john denotes my cat, the 
predicate symbols amazing and can-fly denote the properties of being lazy 
and sleeping all day respectively, then the conditional means: 
 
   My cat is lazy if my cat sleeps all day. 
 
And because my cat sleeps all day and my cat is lazy, the sentences can-
fly(john) and amazing(john) are both true. As a consequence, the conditional 
amazing(john) ← can-fly(john) is also true. 
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 For convenience, we include the atomic sentences true and false in the 
language. We sometimes use the atom true to represent an empty conjunction 
and the atom false to represent an empty disjunction. We also use the atom 
false in the conclusions of conditionals, to represent constraints. 
Unfortunately, these usages are easily confused with the truth values true and 
false. When it is necessary to distinguish between these atoms and the truth 
values, we refer to them as the atoms true or false and the truth values true or 
false, respectively.  
 The truth values true and false are asymmetric, because falsity is defined 
in terms of truth:  
 
  A sentence that is not true is also said to be false. 

 A negative sentence ¬ C is true if (and only if) the sentence C is false. 
 

 An atomic sentence of the form p(c1,…, cn), where c1,…, cn are ground 
terms, is true in an interpretation if (and only if) the individuals denoted 
by the terms c1,…, cn are in the relation denoted by the predicate symbol 
p. If the atomic sentence is a predicate symbol with no arguments (i.e. 
n=0), then the sentence is true if (and only if) the interpretation simply 
assigns it the truth value true. The atomic sentence true is always 
assigned the truth value true. The atomic sentence false is never assigned 
the truth value true (and therefore has the truth value false). 

A sentence that is a conjunction C1 ∧ … ∧  Cn is true in an 
interpretation if (and only if) all of Ci are true. (Therefore, if n = 0, then 
the conjunction is true.) 

A sentence that is a disjunction C1 ∨ … ∨  Cn is true in an 
interpretation if (and only if) at least one of Ci is true. (Therefore, if n = 0, 
then the disjunction is not true.) 

A sentence that is a conditional C → D is true in an interpretation if 
(and only if) C has the truth value false or D has the truth value true. 
(Therefore a conditional of the form C → false is true if and only if C  has 
the truth value false.) 

A universally quantified sentence ∀X C is true if (and only if) every 
ground instance of C (obtained by replacing the variable X by a ground 
term) is true.  

An existentially quantified sentence ∃X C is true if (and only if) some 
ground instance of C is true.  

Finally, an interpretation of a set of sentences is said to be a model of 
the set of sentences if (and only if) every sentence in the set is true in the 
interpretation.  

 
It is this sense of the term model that explains the use of the term model-
theoretic semantics. There is another sense of the term model, which is more 
common in English, and which we also use in this book. This is its sense as a 
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synonym for theory. It is this more common sense of the term that we intend 
when we speak, for example, of an agent model, a cognitive model or of a 
model of the mind. If necessary, we use the term semantic model, to 
distinguish it from model in the sense of a theory. 
 
The semantics of conditionals 
 
According to the semantics of classical logic, a conditional (also called 
material implication) of the form C → D is logically equivalent to a 
disjunction ¬ C ∨  D. This implies that the conditional is true whenever the 
conclusion D is true, no matter whether the condition C is true or false. The 
conditional is also true whenever the condition C is false, no matter whether 
the conclusion D is true or false. For example, the conditionals: 
 
    john can fly →  2 + 2 = 4 
    the moon is made from green cheese → john can fly 
    
are both true in any interpretation in which 2 + 2 = 4 is true and the moon is 
made from green cheese is false, no matter whether john can fly is true or 
false. 
 These properties of the semantics of conditionals are sufficiently 
unintuitive that they have come to be known as the paradoxes of material  
implication. The desire to avoid such paradoxes has given rise to various 
non-classical logics, the most influential of which is Relevance Logic 
(Anderson and Belnap, 1975). 
 However, there are some cases where these properties seem to make 
sense. For example: 
 
    john can fly →  I am a monkey’s uncle 
 
On the obviously intended assumptions that my assertion is true and that I am 
an monkey’s uncle is false, it must be that I mean to imply that john can fly is 
false. This implication relies upon the semantics of the material implication 
as understood in ordinary classical logic. 
 The semantics of conditionals in this book is the classical semantics. The 
paradoxes are avoided, partly by invoking pragmatic, rather than semantic, 
considerations, as argued for example by (Grice, 1989). The role of 
pragmatics is most obvious in the case of disjunctions. For example, why 
assert the weak disjunction, even if it is true: 
 
    I am going to the party ∨  I will stay at home 
 
if I have no intention of going to the party, but I am planning to stay at home 
instead?  
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 In Computational Logic, the paradoxes are avoided for the additional 
reason that practical proof procedures eliminate weak disjunctions and weak 
conditionals for the sake of computational efficiency. In the case of 
propositional logic, they eliminate any disjunction C ∨  D that is subsumed 
by a stronger disjunction, say D alone. They also eliminate any weak 
conditional B ∧ C → D  or C → D  ∨  E that is subsumed by a stronger 
conditional C → D.  
 In the more general case of sentences containing variables, subsumption 
also eliminates any sentence that is an instance of another sentence. For 
example, if I believe likes(bob, X) and you ask me what Bob likes, I will tell 
you that Bob likes everything, partly because it is more informative, and 
partly because if I had a more specific belief, say that likes(bob, mary), I 
would have eliminated it to avoid cluttering my mind with unnecessary 
details. We will discuss subsumption and related matters in greater detail in 
Chapter A5. 
 
Universal quantifiers and Herbrand interpretations 
 
According to the semantics of universal quantifiers, a sentence of the form 
∀X C is true if and only if every ground instance of C is true. This simple 
definition (called the substitution interpretation of quantifiers) works 
correctly only if there are enough ground terms in the language to name all 
the individuals in the interpretation. The set of ground terms needs to include 
not only the names of all the individuals in the set of sentences under 
consideration, but also a pool of names for talking about any individuals that 
might need talking about in the future.  

Assuming that there are enough names to talk about all the individuals 
that might need talking about makes it possible to do away with the mystery 
of what counts as an individual and what counts as a relation. It allows us 
simply to identify an interpretation with the set of all the atomic sentences 
that are assigned the truth value true in the interpretation.  

The fact that an interpretation directly identifies only those atomic 
sentences that are true, and that the definition of truth for a negative sentence 
¬ C reduces to the failure of C to be true reflects the asymmetry between 
truth and falsity. In the conditional form of logic, this asymmetry is further 
reflected in the fact that sentences with positive conclusions are more basic 
than sentences with negative conclusions. In the agent model, it is reflected in 
the fact that an agent’s basic observations are represented by positive atomic 
sentences. 

Sets of atomic sentences regarded as interpretations or as semantic 
models are called Herbrand interpretations or Herbrand models, in honour 
of the logician Jacques Herbrand. The mathematical attraction of Herbrand 
interpretations is the property that if there exists any other kind of model then 
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there exists a Herbrand model as well. Arguably, for our purpose, such 
Herbrand interpretations are more useful than arbitrary interpretations. 

Indeed, for our purpose, the only interpretation that really matters is the 
Real World, and the only semantic relationship that really matters is the 
relationship between an agent’s thoughts and the succession of states of the 
world.  

The interface between the Real World and the agent’s goals and beliefs is 
the set of observations that the agent encounters and the set of actions that the 
agent performs. This interface is as close as the agent needs to get to the Real 
World, to determine whether its beliefs are true and whether its goals can be 
made true. The use of Herbrand interpretations restricts the agent’s 
knowledge of the world to this interface, and avoids trying to identify the true 
nature of the World without describing it in some other language. 
 
Minimal models of definite clause programs  
 
In classical logic, a sentence C is a logical consequence of a set of sentences 
S if (and only if) C is true in every model of S. Typically, the set of sentences 
S has many, often infinitely many, models. However, in the case of definite 
clauses, there is a single model that stands out from all the others. It is the 
Herbrand model M that is generated by instantiating universally quantified 
variables with ground terms and by reasoning forwards.  
 Consider, for example, the recursive definite clauses E: 
 
     even(0). 
     even(s(s(X))) ← even(X). 
 
Forward reasoning generates the infinite sequence of atomic sentences:  
 

   even(0), even(s(s(0))), even(s(s(s(s(0))))),…..ad infinitum. 
 
This set is a Herbrand model of E. In fact, it is the smallest Herbrand model 
that makes the two sentences in E both true. 
 The smallest Herbrand model of a definite clause program H always 
exists, and it is called the minimal model of H. This model is minimal in the 
sense that it is contained in every other Herbrand model of H.21

                                                        
21 However, the minimal model depends upon the vocabulary of the underlying 
language of H. This vocabulary includes all the ground terms that can be constructed 
from the terms occurring in H, but it could also include other constants or function 
symbols. These other, unused symbols might be held in reserve to be used in future 
extensions of H. But in any case, these ground terms need to be sorted (or well-typed), 
to exclude such terms as s(bob). 

 In fact, every 
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larger set of atomic sentences is also a model. This includes the maximal 
model in which all the ground atoms are true. 
 The maximal model is one of those models that give the semantics of 
classical logic a bad name. The minimal model, on the other hand, has all the 
good properties that the critics desire. In particular, it has the remarkable 
property that, as far as goal clauses (or achievement goals) are concerned, 
truth in the minimal model is equivalent to truth in all models: 
 

For every definite clause program H, there exists a unique minimal 
model M such that for all definite goal clauses G: 

 
  G is a logical consequence of H (i.e. G is true in all models of H) 
  if and only if G is true in M.     
 
This property is a direct consequence of a theorem proved in (van Emden 
and Kowalski, 1976) for the case where G is an atomic fact.  It also holds for 
disjunctions of definite goal clauses, i.e. sentences of the form G1 ∨ … ∨  Gn 
where each Gi is an (existentially quantified) definite goal clause. However, 
it does not hold for sentences containing negation or universal 
quantification.  
 For example, the sentences: 
 
      not even(s(s(s(0)))) 
      ∀X (even(s(s(X))) →  even(X)) 
 
are both true in the minimal model M of E, but they are not logical 
consequences of E. The first sentence is true in M, because the atomic 
sentence even(s(s(s(0)))) is not true in M. However, it is not a logical 
consequence of E, because it is not true, for example, in the maximal model 
of E. 
 The second sentence ∀X (even(s(s(X))) →  even(X)) is true in M, because 
for all ground terms t that can be constructed from the constant 0 and the 
function symbol s: 
 

if even(s(s(t))) is true in M, then it must have been derived by forward 
reasoning using the ground instance even(s(s(t))) ← even(t) of the 
conditional in E. But then the condition even(t) of this ground instance 
must also be true in M.  
 

Notice that this second sentence is the converse of the second conditional in 
E. It is not true in all models of E, because there exist non-Herbrand models 
containing weird individuals, for example the individual named weird, such that 
even(s(s(wierd))) is true, but even(wierd) is not true. The simplest and smallest 
such model is just the minimal model augmented with the one additional 
atomic sentence even(s(s(wierd))). 
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Arguably, it is the minimal model of a definite clause program H  that is 
the intended model of H, and it is relative to this model that the truth or 
falsity of arbitrary sentences of classical logic should be judged.  

This way of looking at models separates sentences into two kinds: 
sentences like definite clauses that determine minimal models, and arbitrary 
sentences of classical logic that are true in such minimal models.  

 The difference between these two kinds of sentences is analogous to 
the difference between an agent’s beliefs and its goals. Beliefs, including the 
agent’s observations, have the form of logic programs, and represent a 
minimal model of the agent’s world. Goals have the form of arbitrary 
sentences of classical logic, and represent properties of the world that the 
agent would like to hold.  

This difference between beliefs and goals is most striking in the case of 
maintenance goals, which are universally quantified conditionals. We will see 
in Chapter A6 that the semantics of a maintenance goal G can be naturally 
understood as generating a set of atomic sentences Δ describing atomic 
actions, such that G is true in the minimal model of B ∪ Δ, where B is the set 
of the agent’s observations and beliefs. With this semantics, forward 
reasoning can be viewed as trying to make G true by making its conclusion 
true whenever its conditions are made true. This process of forward 
reasoning goes on forever, unless no new atomic sentences can be observed 
or derived. 
 Any model generated by forward reasoning in this way is minimal, not 
only in the sense that B ∪ Δ has a minimal model, but also in the sense that 
atomic sentences are made true  by adding them to Δ only when necessary. In 
particular, there is no need to make conditions of maintenance goals true for 
no reason.  
 
Truth in arithmetic  
 
The case for viewing minimal models as intended models is supported by the 
fact that the standard model of arithmetic is the minimal model of a definite 
clause program. Here is a definite clause representation of addition and 
multiplication in terms of relations, along with a more conventional 
representation in terms of functions on the right: 
 
 +(0, Y, Y).          i.e.  0 + Y =Y.  
 +(s(X), Y, s(Z)) ← +(X, Y, Z).     i.e.  s(X) + Y = s(X + Y). 
 
 ×(0, Y, 0).          i.e.  0 × Y =0. 
 ×(s(X), Y, V) ← ×(X, Y, U)  ∧ +(U, Y, V).  i.e.  s(X) × Y = (X × Y) + Y. 
 
The functional representation is undoubtedly easier to understand, but the 
relational representation more clearly distinguishes between the undefined 
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function symbol s, used to construct the natural numbers, and addition and 
multiplication, which are defined by the conditionals. Moreover, the 
relational representation avoids the need for a separate equality predicate.  
 Arguably, the relational representation also has a more obvious semantics 
in terms of the minimal model A defined by the four definite clauses. It is this 
model that we mean when we speak of the intended model of arithmetic and 
of truth in arithmetic (as remarked in effect by Martin Davis (1980)). 
 Consider, for example, the sentence: 
 
     ∀X (+(X, 0, X)) 
 
where X is a natural number. This sentence is not a goal clause, because X is 
universally quantified. However, it is easy to show that the sentence is true in 
the minimal model A. Here is a proof by mathematical induction: 
 
Base case:   X = 0. Then  +(X, 0, X)  is just  +(0, 0, 0), 
     which is true in A 
     because it is an instance of the clause +(0, Y, Y).  
 
Inductive case: X = s(n). By induction hypothesis, +(n, 0, n) is true in A. 
     We need to show  +( s(n), 0, s(n)) is true in A. 

But this follows by one step of forward reasoning,  
using the clause (s(X), Y, s(Z)) ← +(X, Y, Z).   

 
This semantic argument can be expressed purely syntactically, by 
augmenting the definite clauses with additional axioms, including axioms for 
induction. The induction axiom needed for this example is an instance of the 
axiom schema22

 
: 

     P(0) ∧  ∀N( P(N) → P(s(N)) ) → ∀X P(X). 
 
where P(X) is any predicate containing an unquantified variable X. The 
instance of P(X) needed in the example is +(X, 0, X).  
 In the example, the universally quantified sentence ∀X (+(X, 0, X)) is 
both true and provable using induction. However, Gödel’s incompleteness 
                                                        
22 An axiom scheme is a collection of axioms, one for each predicate P(X) (not 
restricted to predicate symbols).  However, induction can also be represented as a 
single sentence in either meta-logic or so-called second-order logic. In meta-logic, P 
ranges over names of formulas. In second-order logic, P ranges over subsets of the 
natural numbers. From a mathematical point of view, the big difference between the 
meta-logical and second-order representations, is that the set of formulas is infinite 
but countable, whereas the set of all subsets of the natural numbers is infinite but 
uncountable. 
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theorem shows that there are universally quantified sentences of arithmetic 
that are true but unprovable using any constructible set of axioms for 
arithmetic. Intuitively, this is because to show that a universally quantified 
sentence is true, it is necessary to show that every ground instance of the 
sentence is true, and there are infinitely many such ground instances, one for 
every natural number. 
 In many cases, the infinitely many instances display a recurrent pattern 
that can be captured finitely with proof by induction. But in the case of the 
sentence constructed in the proof of the incompleteness theorem, it cannot. 
The sentence is constructed by coding sentences of arithmetic by natural 
numbers, and by representing the provability predicate of arithmetic as an 
arithmetical predicate. In this way, arithmetic becomes its own meta-
language, and sentences about arithmetic become sentences of arithmetic. 
 The true, but unprovable sentence, is a sentence that says of itself that it is 
unprovable. If the sentence is false, then it is not true that the sentence is 
unprovable, and the sentence can actually be proved, in which case the 
axioms of arithmetic are inconsistent. If the sentence is true, then it cannot be 
proved, in which case the axioms of arithmetic are incomplete. Therefore any 
constructive axiomatisation of arithmetic that is consistent is incomplete. 
Moreover, any such axiomatisation is certain to have non-minimal, 
unintended models, in which sentences that are true in the standard model of 
arithmetic are false.  
 
Conclusions 
 
In this chapter, we investigated the notions of truth, logical consequence and 
minimal models. I sketched an argument for restricting attention to Herbrand 
interpretations, which are sets of atomic sentences. In the case of an agent 
embedded in the Real World, the advantage of Herbrand interpretations is 
that they avoid the philosophical problems of trying to identify the true nature 
of the World, and they focus instead on just specifying the interface between 
the agent’s thoughts and the World.  
 I also sketched a further argument for regarding minimal models as 
intended models, and pointed out that, in the case of definite clauses, a 
definite goal clause is true in all models if and only if it is true in the minimal 
model.  
 I argued that in the case of arithmetic, the truth or falsity of arbitrary 
sentences is best understood as truth or falsity in the minimal model of the 
definite clause program defining addition and multiplication. I also sketched 
an argument that the semantics of an agent’s maintenance goals can similarly 
be understood as generating a minimal model in which the maintenance goals 
are all true.  
 The fact that forward reasoning can be understood as generating minimal 
models also draws support from mental model theory, which argues that 
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people reason, by constructing model-like structures in the mind. In chapters, 
A3 and A6, we will see how the inference rules of forward reasoning, 
backward reasoning and negation as failure can be understood in semantic 
terms, as determining the truth of sentences in minimal models. 
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Chapter A3. Forward and Backward Reasoning 
 
We have already looked informally at forward and backward reasoning with 
conditionals without negation (definite clauses). This additional chapter 
defines the two inference rules more precisely and examines their semantics. 
 Arguably, forward reasoning is more fundamental than backward 
reasoning, because, as shown in Chapter A2, it is the way that minimal 
models are generated. However, the two inference rules can both be 
understood as determining whether definite goal clauses are true in all models 
of a definite clause program, or equivalently whether the definite goal clauses 
are true in the minimal model. 
 
Forward reasoning 
 
Of the two rules of inference, only forward reasoning is truth-preserving, in 
the sense that, if the sentences it starts with are true in an interpretation, then 
the derived sentence is also true in the same interpretation. It follows that any 
sentence obtained by repeatedly applying forward reasoning, starting from an 
initial set of premises is a logical consequence of the premises. Therefore, 
forward reasoning is a sound rule of inference. We will see later that forward 
reasoning with H definite clauses is also complete. 
 To see how forward reasoning preserves truth, consider the case of John 
who buys a lottery ticket in the hope of becoming rich: 
 
      buys-ticket(john, 150541) 
      buys-ticket(X, Y) ∧ chosen(Y) → rich(X) 
     
Forward reasoning can be applied if the variables can be instantiated in such 
a way that the fact and one of the conditions of the conditional become 
identical. If such an instantiation is possible, then forward reasoning 
instantiates the conditional: 
 
Step 1:   buys-ticket(john, 150541) ∧ chosen(150541) → rich(john) 
 
This is equivalent to the non-standard conditional: 
 
    buys-ticket(john, 150541) → (chosen(150541) → rich(john)) 
 
Forward reasoning with this equivalent conditional then derives the 
conclusion. This is just classical modus ponens: 
 
Step 2:   chosen(150541) → rich(john) 
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Both steps are truth-preserving. Step 1 is truth-preserving, because a 
conditional is true if and only if every instance is true. Step 2 is truth-
preserving because if a conditional is true and its conditions are true then its 
conclusion must also be true.  
 In the more general case, forward reasoning involves an atomic sentence 
and a conditional both of which may contain universally quantified variables. 
For example: 
 
     likes(bob, X) 
     likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z) 
 
If the atomic sentence and the conditional can be instantiated, so that the 
resulting atomic sentence and one of the conditions of the conditional are 
identical, then instantiation is performed: 
 
Step 1:    likes(bob, X) 
     likes(bob, X) ∧ gives(bob, X, Z) → generous-to(bob, Z) 
Equivalently:  likes(bob, X) → (gives(bob, X, Z) → generous-to(bob, Z)) 
 
Notice that the variable X in the original sentences is actually two different 
variables, because the “scope” of a variable is limited to the sentence in 
which it occurs. Outside of that scope, the name of the variable looses its 
significance, and inside that scope, all occurrences of the variable can be 
renamed, without affecting the semantics of the sentence. Notice also that the 
instantiation of the two sentences is the most general instantiation that does 
the job of making the two atoms identical.  
 In the next step, forward reasoning deletes from the instantiated 
conditional the condition that is identical to the instantiated atom: 
 
Step 2:   gives(bob, X, Z) → generous-to(bob, Z) 
 
In general, starting from an atomic sentence and a conditional 
 
      atomic sentence 
      conditions → conclusion 
 
forward reasoning first instantiates both sentences, so that the instantiated 
atomic sentence is identical to one of the conditions of the instantiated 
conditional: 
 
Step 1:     atomic sentence’ 
      atomic sentence’ ∧ other-conditions’ → conclusion’. 
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This instantiation of terms for variables is the most general instantiation that 
makes the two atoms identical, and is called the (most general) unifier of the 
two atoms. All other common instances of the two atoms are instances of this 
most general unifier. The operation of most general instantiation is called 
unification; and the resulting atoms are said to be unified. The unifier of two 
atoms, if there is one, is unique up to the renaming of variables. 
 Having performed unification, forward reasoning deletes from the 
instantiated conditional the condition that is now identical to the instantiated 
atomic sentence: 
 
Step 2:     other-conditions’ → conclusion’. 
 
Note that atomic sentence’ can occur anywhere in the conditions of the 
conditional. However, for simplicity, both here and elsewhere, it is written 
first, because the order in which formulas appear in a conjunction doesn’t 
matter, and because it makes the description of the inference rule simpler. 
 
Backward reasoning 
 
With backward reasoning, truth is preserved in the opposite direction: If the 
subgoals that are derived are true, and the conditional used to derive the 
subgoals is true, then the initial goals from which the subgoals are derived 
are true. To see this, consider first the simple case of a single atomic goal 
clause: 
 
Initial goal clause:  generous-to(X, mary) 
Conditional:    likes(X, Y) ∧ gives(X, Y, Z) → generous-to(X, Z) 
 
Here the variable X in the goal clause is existentially quantified and different 
from the universally quantified variable X in the conditional, despite having 
the same (local) name.  
 Backward reasoning attempts to unify the atomic goal and the conclusion 
of the conditional. If the attempt succeeds, then both sentences are 
instantiated by applying the unifier: 
 
Step 1:     generous-to(X, mary) 
      likes(X, Y) ∧ gives(X, Y, mary) → generous-to(X, mary) 
 
Instantiation of the conditional is truth-preserving, because all of its variables 
are universally quantified, and if the conditional is true then all of its 
instances are true. In this example, the instantiation of the goal clause is 
unnecessary. 
 However, in the general case, when the goal clause needs to be 
instantiated, this instantiation is not truth-preserving, because all of the 
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variables in the goal clause are existentially quantified. But if an instance of a 
goal clause is true, then the goal clause itself is true, because an existentially 
quantified sentence is true if an instance is true. 
 Having instantiated the goal clause and the conditional, backward 
reasoning continues by replacing the goal atom by the conditions of the 
conditional, as subgoals: 
 
Step 2, subgoals:    likes(X, Y) ∧ gives(X, Y, mary) 
 
Here the variables X and Y are existentially quantified. (To find someone who 
is generous to Mary, it suffices to find someone who gives something he/she 
likes to Mary. He/she does not need to give everything he/she likes to Mary.) 
If the subgoals and the conditional are true, then the original goal is also true 
in the same interpretation. 
 In general, starting from a selected atomic goal in an initial goal clause 
and a conditional: 
        selected-goal ∧ other-goals 
        conditions → conclusion 
 
backward reasoning attempts to unify the selected-goal with the conclusion 
of the conditional. If the unification is possible, then the unifier is applied to 
both sentences: 
         
Step 1, instantiation:   selected-goal’ ∧ other-goals’ 
        conditions’ → selected-goal’ 
 
Backward reasoning then replaces the instantiated selected goal by the 
conditions of the instantiated conditional: 
 
Step 2:       conditions’ ∧ other-goals’. 
         
In the special case where there are no other-goals, the second step is simply 
modus ponens in reverse. In the special case where there are no conditions, 
the conditions are equivalent to true, and the conditional  is in effect a fact. 
 Below is an example of the way in which backward reasoning is used for 
computation in logic programming. The example uses the theoretically 
elegant, though hopelessly inefficient representation of the natural numbers 
using only 0 and the successor function s. The inefficiency of the 
computation is not an inherent property of logic programming, but rather a 
property of this specific representation.  
 Consider the goal of adding 2 plus 2, using the definition of addition 
given in Chapter A1. Here the names of variables are chosen to make the 
matching instantiations more obvious: 
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Initial goal clause: +(s(s(0)), s(s(0)), X )    
New goal clause:   +(s(0), s(s(0)), X’ ) where  X = s( X’) 
New goal clause:   +(0, s(s(0)), X’’ )  where X’ = s( X’’) 
New goal clause:   true     where X’’ = s(s(0)) 
 
The cumulative instantiations of the existentially quantified variables 
compute the sum X = s(s(s(s(0)))). 
 
Soundness and completeness 
 
As we have seen, forward reasoning is sound. Backward reasoning, on the 
other hand, is backwards sound: Given an initial goal clause and a derived 
goal clause obtained by reasoning backwards with a conditional, the initial 
goal clause is true in any interpretation in which the derived goal clause and 
the conditional are true. Moreover, if the derived goal clause is the atom true 
(an empty conjunction of subgoals), then the initial goal clause is true, 
simply if the conditional is true. 
 Thus forward and backward reasoning are two different, but sound ways 
to solve a goal clause C1 ∧ … ∧ Cn. Forward reasoning can be understood as 
solving the goal clause by deriving atomic sentences C1’…  Cn’ such that the 
conjunction C1’ ∧ … ∧ Cn’ is an instance of the goal clause C1 ∧ … ∧ Cn. 
Backward reasoning can be understood as solving the goal clause by deriving 
the goal atom true from the original goal clause.  
 The soundness of forward reasoning and the backward soundness of 
backward reasoning ensure that if a goal clause is solved using either forward 
or backward reasoning, then the goal clause is true in every interpretation in 
which the conditionals used in the derivation are true. 
 
The backward soundness of backward reasoning can be turned into ordinary 
soundness if goal clauses G are turned into denials G → false, and if solving 
a goal clause is understood as deriving true → false, which is equivalent to 
false.23

 

 This way of looking at backward reasoning makes it easier to see that 
both backward and forward reasoning are special cases of the resolution rule, 
presented in Chapter A5. It also makes it easier to obtain completeness by 
means of refutation completeness: 

 Let C be any sentence of classical logic,  
 and S any set of sentences of classical logic. 
 Then C is a logical consequence of S  
 if (and only if) the sentences S and C → false  have no model; 
 if (and only if) S and C → false  logically imply false. 
                                                        
23 Note that the denial of a goal clause  ¬(∃ X1 …∃ Xm (C1 ∧ … ∧  Cn))  is equivalent 
to a conditional constraint∀ X1 …∀ Xm (C1 ∧ … ∧  Cn → false). 
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Therefore, A set of inference rules is refutation complete  
if (and only if) whenever C is a logical consequence of S, 

 then there exists a derivation (called a refutation) 
by means of the inference rules, of false from S and C → false. 

 
Both forward and backward reasoning are refutation complete for Horn 
clauses. If G is a definite goal clause without negation and S is a definite 
clause program, then the following are equivalent: 

 
• G is a logical consequence of S. 
• G is true in the minimal model of S. 
• There exists a derivation of false from the clauses S and G → false 

  both by forward reasoning and by backward reasoning.  
  

Conclusions 
 
In this chapter, we saw that forward and backward reasoning are both sound 
and refutation complete for Horn clauses. In Chapter A4, we will see how to 
extend reasoning with Horn clauses by means of negation as failure. In 
Chapter A5, we will see how to extend forward and backward reasoning to 
the resolution rule, which is sound and refutation complete for the clausal 
form of full classical logic.  
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Chapter A4.  Minimal Models and Negation 
 
To a first approximation, the negation as failure rule of inference is straight-
forward. Its name says it all:  
 
     to show that the negation of a sentence holds 
     try to show the sentence, and  
     if the attempt fails, then the negation holds. 
 
But what does it mean to fail? Does it include infinite or only finite failure? 
To answer these questions, we need a better understanding of the semantics. 

Consider, for example, the English sentence: 
    
     bob will go if no one goes. 
 
Ignore the fact that, if Bob were more normal, it would be more likely that 
bob will go if no one else goes. Focus instead on the problem of representing 
the sentence more formally as a logical conditional.  

The variable X in the obvious representation: 
 
     bob will go ← not(X will go). 
 
is universally quantified with scope the entire conditional: 
 
     ∀X (bob will go ← not(X will go)) 
i.e.     bob will go ← ∃ X not(X will go) 
i.e.     bob will go ← not∀X (X will go) 
i.e.     bob will go if not everyone will go. 
 
What we really want is: 
 
     bob will go ← not ∃ X (X will go) 
 
In fact, that is what we actually get if we apply the negation as failure 
inference rule in the obvious way ignoring quantification: 
 
Initial goal:  bob will go 
Subgoal:   not X will go  
      
     Naf:   X will go 
     Subgoal:  not X’ will go  (where X = bob) 
 
        Naf:    X’ will go 
        Subgoal:   not X’’ will go (where X’ = bob) 



 285 

ad infinitum     …………….. 
 
But then we have two problems: The problem we started with, that all 
variables in conditionals are implicitly universally quantified, when what we 
need is an existentially quantified variable inside negation; and the problem 
of the infinite loop. 
 But as we have just seen, the first problem is not a problem, but a solution 
to a problem that we may not have realised we had. In general, negation as 
failure interprets variables in negative conditions that do not occur elsewhere 
as existentially quantified inside the negation; and for most applications this 
is exactly what we want! We will see later that this is also what we want and 
what we get with variables in the conclusions of maintenance goals that do 
not occur in the conditions.  
 It is the infinite loop that is the real problem. But before we try to tackle 
the problem in this particular example, let’s sharpen our intuitions by 
considering some simpler cases first. The simplest case is the one without 
any negation at all. 
 
Negation in minimal models  
 
We have seen in Chapter A2 that every set H of conditionals without 
negation (i.e. Horn clause program) has a unique minimal model M, which is 
generated by instantiating universally quantified variables with ground terms 
and by forward reasoning. I have argued that it is this minimal model that is 
the intended model of H. Viewed this way, the semantics of negation as 
failure is simply the normal semantics of negation in classical logic: 
 
   a sentence not p holds by negation as (potentially infinite) failure  
   if and only if not p is true in M 
   if and only if p is not true in M. 
 
In fact, the negation as failure inference rule can be understood simply as 
reasoning backwards with the definition of truth, to show that not p is true in 
M, by showing that p is not true in M. 
 Remember the simple definite clause program E: 
 
      even(0). 
      even(s(s(X))) ← even(X). 
 
with its infinite Herbrand model M consisting of the atomic sentences:  
 
    even(0), even(s(s(0))), even(s(s(s(s(0))))),…..ad infinitum.  
 
Consider the problem of determining if not even(s(s(s(0)))) is true in M: 
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if and only if   even(s(s(s(0))))    is not true in M 
if and only if   even(s(s(s(0))))   does not belong to M,  
which is the case. 
 
The negation as failure inference rule gives the same result without the need 
to generate the model M explicitly: 
    
      even(s(s(s(0))))) can be shown  
if and only if    even(s(0)) can be shown 
but only if    s(0) can be unified either with 0 or with s(s(0)). 
But it cannot. So  not even(s(s(s(0)))) can be shown. 
 
Intended models of general logic programs  
 
The minimal model semantics of definite clauses can be extended to 
conditionals with negative conditions, which are also called general logic 
programs. The first step, given such a general logic program P, is literally to 
extend P with a set Δ of negations not a of atom sentences a, treating these 
negations as though they were positive atoms (as in strong negation).  
 The second step is then to treat the expanded set P∪ Δ as though it were a 
definite clause program, with its own unique minimal model MΔ. If the set Δ 
is appropriately restricted, so that, among other things, MΔ does not include 
both an atom a and its negation not a, then MΔ is an intended model of P. We 
will see later that a program P can have several such extensions Δ. 
 Before discussing in greater detail the conditions necessary to ensure that 
Δ is appropriately restricted, consider the even/odd program: 
 
     even(0). 
     even(s(s(X))) ← even(X). 
     odd(X) ← not even(X). 
 
Ignoring, to begin with, the definition of odd, let Δ be the set of all ground 
negations that are true in the minimal model of the Horn clause program E, 
i.e. let Δ be the set: 
 
     not even(s(0)), not even(s(s(s(0)))), 
     not even(s(s(s(s(s(0)))))), ….. ad infinitum. 
 
Let M be the minimal model of even/odd ∪ Δ, treating Δ as a set of positive 
atoms. This adds to the minimal model of E the additional positive atoms:  
 
     odd(s(0)), odd(s(s(s(0)))),  
     odd(s(s(s(s(s(0)))))), ….. ad infinitum.  
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Arguably, M is the unique intended model of the program even/odd. Notice 
that the constraint even(X) ∧ odd(X) → false is true in M. 
 There exists a large class of general logic programs having a unique 
minimal model that can be generated in this way. This is the class of so-
called locally stratified programs (Przymusinski, 1988). Intuitively, locally 
stratified programs can be layered into strata in such a way that negative 
conditions in higher strata are defined in lower strata, in the way that odd is 
defined in terms of even. 
 In the next section, we will investigate the unstratified program: 
 
     bob will go ← not john will go. 
     john will go ← not bob will go. 
 
But first, we need to identify the restrictions necessary to ensure that Δ is 
appropriate, in both the stratified and unstratified cases. The most important 
restriction is obviously that: 
 
   Δ is consistent with P. 
i.e.   If not a is in Δ then a is not true in the minimal model M of P∪ Δ. 
i.e.  For all atoms a, the constraint a ∧ not a → false is true in M. 
 
The only other restriction that Δ needs to satisfy is that Δ should be 
sufficiently large. This condition can be understood in different ways, the 
simplest of which is that: 
 
   Δ is total.  
i.e.   If a is not true in M, then not a is true in M ,  
   and therefore not a is in Δ. 
i.e.  For all atoms a, the “constraint” a ∨  not a is true in M. 
 
These two restrictions, consistency and totality, define the stable model 
semantics of general logic programs (Gelfond and Lifschitz, 1988): 
 
   The minimal Herbrand model M obtained by treating P∪ Δ 
   as a definite clause program is a stable model of P if and only if 
   not a is in M if and only if a is not in M. 
 
In the stable model semantics, not a can be understood both as not a is true 
and a cannot be shown. 
 
Examples of stable models  
 
Let us return now to the example we started with. Call it the program B: 
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     bob will go ← not ∃ X (X will go) 
 
The only ground atom that can be constructed from the vocabulary of B is the 
atom bob will go. However, the language in which the sentence is expressed 
might contain other constants for other individuals and objects not mentioned 
in the sentence. We can ignore this slight complication, because it has no 
impact on the following argument. 
 The problem is to determine whether there is a stable model and whether 
bob will go is true or false in this model. Suppose there is such a stable model 
MΔ, which is the minimal model of some extension B∪ Δ of B. Now consider 
whether the negative sentence not bob will go is in Δ: 
 
  If not bob will go is in Δ, then bob will go is in MΔ, 
  and then Δ is not consistent with the program B. 
 
  If not bob will go is not in Δ, then neither bob will go  
  nor not bob will go is in MΔ, and then Δ is not total. 
 
Therefore the program B has no such stable extension Δ and therefore no 
stable model. It is simply inconsistent. Moreover, any larger program 
containing the sentence is also inconsistent and has no stable model.  
 
In the stable model semantics, a logic program can have more than one 
minimal model, as in the case of the program BJ: 
 
     bob will go ← not john will go. 
     john will go ← not bob will go. 
    
The program has one stable model in which not john will go and bob will go, 
and another stable model in which not bob will go and john will go. 
 In cases where a program has more than one minimal model, an agent can 
be either credulous or sceptical. In the stable semantics, a credulous agent 
may choose to believe a sentence if and only if it is true in some minimal 
model. But a sceptical agent believes a sentence if and only if it is true in all 
minimal models. Of course, an agent may be credulous in some situations, 
but sceptical in others. 
 In the last example, according to a sceptical semantics, it is impossible to 
say whether or not bob will go or john will go. This is like the situation in 
classical logic, where the two conditionals above would be written as a 
disjunction: 
 
      bob will go ∨  john will go. 
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Conclusions 
 
In classical logic, a sentence C is a logical consequence of a set of sentences 
S if and only if C is true in every interpretation in which S is true. However, 
for the applications in this book, it is intended interpretations, rather than 
arbitrary interpretations, that matter.  

For beliefs in the form of definite clauses, these intended interpretations 
are minimal models, which can be generated by instantiation and forward 
reasoning. For more general beliefs that are general logic programs, the 
intended interpretations are minimal models obtained by extending the 
beliefs with the negations of atomic sentences. Viewing semantics in terms of 
such minimal models is in the spirit of virtually all of the logics that have 
been developed for default reasoning in Artificial Intelligence. These logics 
include circumscription (McCarthy, 1980), default logic (Reiter, 1980), 
modal non-monotonic logic (McDermott and Doyle, 1980), and 
autoepistemic logic (Moore, 1985). 

Thus, the argument for viewing thinking in terms of determining truth in 
minimal models, rather than in terms of logical consequence, is supported by 
the examples of default reasoning, arithmetic, and the Real World. Johan van 
Benthem discusses some of these and many other examples in (van Benthem, 
1989). 
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Chapter A5. The Resolution Rule 
 
This additional chapter shows that both forward and backward reasoning are 
special cases of the resolution rule of inference. Resolution also includes 
compiling two clauses, like: 
 
 
 
 
 
into one: 
 
In the propositional case, given two clauses of the form: 
 
         D →E ∨ a 
      
 
 
where B and D are conjunctions of atoms including the atom true, and C and 
E are disjunctions of atoms including the atom false, resolution derives the 
resolvent: 
 
    D ∧ B → E ∨ C. 
 
The two clauses from which the resolvent is derived are called the parents of 
the resolvent, and the atom A is called the atom resolved upon. 
 Resolution was originally defined by Robinson (1965a) for clauses that 
are disjunctions represented as sets of literals, where a literal is an atom or 
the negation of an atom. For example, the conditional D ∧ B → E ∨ C, where 
C and D are single atoms, is interpreted as the disjunction ¬D ∨ ¬B ∨ E ∨  C 
and is represented by the set of literals  {¬D, ¬B, E, C}. 
 The representation of clauses as sets of literals, interpreted as 
disjunctions, builds into the resolution rule several inference rules of classical 
logic, which would otherwise have to be stated separately and explicitly. For 
example, the following logical equivalences are implicit in the set 
representation of clauses: 
 
   A ∨ A is equivalent to A 
   A ∨ B is equivalent to B ∨ A 
   A ∨ (B ∨ C) is equivalent to (A ∨ B) ∨ C. 
     
In the propositional case, the resolvent of two clauses represented as sets: 
 

you deal with the emergency appropriately ← you get help. 

you get help ← you alert the driver. 

you deal with the emergency appropriately ← you alert the driver. 
 

A ∧ B → C 
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    {A} ∪ F and  {¬A} ∪ G  
 
is the clause  F ∪ G. 
 
In this book, we represent clauses as conditionals, but we treat the conditions 
and conclusions of clauses as sets of atoms. This simplifies the statement of 
the resolution rule, because it means that the atom A that is resolved upon can 
occur anywhere in the conclusion of one parent and anywhere in the 
conditions of the other parent. It also means that if an atom occurs in the 
conditions of both parents or in the conclusions of both parents, then the 
duplicate occurrences of the atom are automatically merged into one 
occurrence in the resolvent. Merging duplicate atoms is also called factoring. 
 Resolution is sound and refutation complete. If a set of clauses has no 
model, then there exists a derivation of false using only the resolution rule of 
inference (including factoring). 
 The refutation completeness of resolution suffices for showing logical 
consequence in classical first-order logic: To show that a set of sentences S 
logically implies a sentence C in classical logic, translate S and the negation 
of C into clausal form and use resolution to derive false.  
 The unrestricted resolution rule is very elegant, but also very inefficient. 
To improve efficiency, numerous refinements, have been developed. Most of 
these refinements are generalisations of forward and backward reasoning. For 
example, hyper-resolution (Robinson, 1965b) is a generalisation of forward 
reasoning and SL-resolution (Kowalski and Kuehner, 1971) is a 
generalisation of backward reasoning. The connection graph proof procedure 
(Kowalski, 1976 and Chapter 8 1979), on the other hand, performs 
unrestricted resolution, but deletes links when resolutions are performed to 
avoid redundacies. 
 In the case of propositional definite clauses, forward reasoning is the 
special case of resolution in which  B → C is derived from A and A ∧ B → C. 
Backward reasoning is, in effect, the special case in which D ∧ B → false is 
derived from D → A and  A ∧ B → false. 
 
Unification and factoring  
 
In the non-propositional case, in which clauses can contain (universally 
quantified) variables, the resolution rule needs to be extended with 
unification, to make the two atoms resolved upon identical. Given two 
clauses: 
 
         D →E ∨ A1 
 
       A2 ∧ B → C 
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such that A1 and A2 are unifiable, the resolvent is: 
 
      D’∧ B’ → E’ ∨ C’ 
 
where B’, C’, D’ and E’ are obtained by applying the most general unifier of 
A1  and  A2 to B, C, D and E respectively. 
 The original resolution rule is a little more complicated than this, because 
it includes additional unifications, to make two literals in the same clause 
identical, to factor them into one literal. Factoring is unnecessary in the case 
of Horn clauses, but is necessary in some other cases. 
 Consider the example of the barber paradox, in which a barber, John, 
shaves everyone who does not shave himself, but shaves no one who does 
shave himself. Ignoring the complication that the variable standing for the 
shaved person ought to be restricted to some appropriate sort (as mentioned 
in chapters A1 and 6), the example can be represented in the clausal form: 
 
      shaves(john, X) ∨ shaves(X, X) 
      shaves(john, X) ∧ shaves(X, X) → false 
 
These two clauses have four resolvents (two of which are duplicates): 
 
      shaves(X, X) → shaves(X, X) 
      shaves(john, john) → shaves(john, john) 
      shaves(john, john) → shaves(john, john) 
      shaves(john, X) → shaves(john,X) 
 
No matter how many further resolutions are performed, it is impossible to 
derive false, because every resolution step deletes two atoms, leaving two 
atoms behind in the resolvent.  
 In cases such as these, the simple resolution rule needs to be augmented 
with factoring: Given a clause of one of the two forms: 
 
      D → E ∨ A1 ∨ A2  

or      A1 ∧ A2 ∧ B → C 
 
such that A1 and A2 have a most general instance A, factoring derives the 
clause 
 
      D’ → E’ ∨ A 

or      A ∧ B’ → C’ 
 
where B’, C’, D’ and E’ are obtained by applying the most general unifier of 
A1  and  A2 to B, C, D and E respectively. 
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 Applied to the barber paradox, factoring generates two additional clauses 
from the two original clauses: 
 
      shaves(john, john) → false 
      shaves(john, john) 
 
Resolution derives false in one step, proving that no such barber exists. 
 
Connection graphs 
 
The efficiency of resolution can be greatly enhanced by storing clauses, their 
unifying links, and their unifiers in connection graphs. These links can then 
be activated later when needed, without having to search for the connections.  
 Reasoning is performed by activating a link - any link at all - adding the 
resolvent to the graph, deleting the activated link, and adding new links 
between the newly added resolvent and other clauses in the graph. 
 The deletion of a link may cause a parent clause to contain an unlinked 
atom. When this happens, the parent clause can be deleted along with all its 
other links. This deletion can sometimes have a rippling effect, leading to the 
deletion of other clauses and their links. Here is an example from (Kowalski, 
1979): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The connection graph proof procedure, like resolution, is a refutation 
procedure. So it succeeds, if the clause false is derived. Notice that the clause 
playing(bob) ∨  working(bob) is a non-Horn clause. So strict forward or 
backward reasoning is not possible.  
 Any link in the graph can be activated. Let’s see how close we can come 
to reasoning forward with breadth-first seach. The obvious place to start is 
with the link connected to the “fact” employs(john, bob). When the 
associated resolvent is generated and the link is deleted, both parent clauses 
have unlinked atoms, and therefore both parents can be deleted, along with 

happy(U) → false 

playing(X) → happy(X) working (Y) ∧ employs(X, Y)→ happy(X) 

playing(bob) ∨  working(bob) employs(john, bob)  

U = X U = X 

X = bob Y = bob X = john 
Y = bob 
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all their other links. Doing so, in effect, replaces the two parents by the 
resolvent, because the resolvent inherits its parents’ links. However, the 
unifiers associated with these inherited links are now the result of combining 
the unifier of the activated link with the unifiers of the inherited links. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Again we can activate any link. Reasoning forward with the disjunction this 
time, choosing the link with the unifier X = bob, the resolvent clause replaces 
both its parents again: 
 
 
 
 
 
 
 
 
 
 
 
Activating the link between the two occurrences of the atom working(bob), 
we obtain: 
 
 
 
 
 
 
 
 
 
  

happy(U) → false 

playing(X) → happy(X) working (bob)  → happy(john) 

playing(bob) ∨  working(bob) 

U = john U = X 

X = bob 

happy(U) → false 

happy(bob)∨  working(bob) working (bob)  → happy(john) 

U = john U = bob 

happy(U) → false 

happy(bob)∨  happy(john) 

U = john U = bob 
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The two remaining links can be activated in any order, and even in parallel. 
Either way, the clause false is derived in two steps, and the rest of the 
connection graph is empty. The happy person we are looking for is U = bob 
or U = john. 
 
A recursive clause, like +(s(X), Y, s(Z)) ← +(X, Y, Z) , can resolve with a 
copy of itself, giving in this case the resolvent +(s(s(X)), Y, s(s(Z))) ← +(X, 
Y, Z). Self-resolving clauses give rise to internal links within the same clause, 
standing for links between two different copies of the clause. In such cases, 
similar rules about deletion and inheritance of links apply. Here is a 
connection graph for computing the sum of 2 + 2: 
 

 
In theory, any link, including the internal link could be selected for 
activation. However, the standard program execution strategy activates links 
backwards from the goal. Applying this strategy systematically gives rise to 
the following sequence of connection graphs, renaming variables in the 
recursive clause, to avoid confusion: 
 

 
 
 

false ← +(s(0), s(s(0)), Z ) 

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’) 

X’ = 0, Y’ = V, Z’ = V 

X’ = 0,  Y’ = s(s(0)), Z = s(Z’) 

false ← +(s(s(0)), s(s(0)), U ) 

+(0, V, V) +(s(X), Y, s(Z)) ← +(X, Y, Z) 

X = 0, Y = V, Z = V 

X = s(0),  Y = s(s(0)), U = s(Z) 
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The cumulative instantiations U = s(Z), Z = s(Z’), Z’ = s(s(0)) compute the 
sum U = s(s(s(s(0)))). 
 In examples like this, if you ignore that fact that the connection graph is 
just facilitating resolution, it looks like the goal clause is being repeatedly 
overwritten, in the way that computers execute conventional computer 
programs. If you can stretch your imagination a little further, then you might 
even imagine that the unifying substitutions are like signals that are 
transmitted along a network of neural connections in a brain. 
 This imaginative view of connection graphs, as a kind of connectionist 
model of the mind, is supported by their similarity with Maes’ (1990) 
spreading activation networks. As in activation networks, different levels of 
strength can be associated with different initial goals, reflecting their relative 
importance. Different levels of strength can also be associated with different 
observations, reflecting perhaps some instinctive judgement of their 
significance. As in activation networks, these activation levels can be 
transmitted from clause to clause along links in the connection graph. 
 Such activation levels are similar to utility measures in decision theory; 
and, like utility measures, they can be weighted by measures of uncertainty. 
In the case of connection graphs, these weights might reflect the frequency 
with which the activation of a link has contributed to successful outcomes in 
the past. The resulting level of activation weighted by likelihood of leading to 
a useful result can be used to select a link expected to have the best outcome 
in the current situation based upon past experience. 
 

false  

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’) 

X’ = 0, Y’ = V, Z’ = V 

false ← +(0, s(s(0)), Z’ ) 

+(0, V, V) +(s(X’), Y’, s(Z’)) ← +(X’, Y’, Z’) 

X’ = 0, Y’ = V, Z’ = V 

V = s(s(0)), Z’ = s(s(0)) 
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Connection graphs as an agent’s language of thought 
 
The connection graph implementation of resolution shows how different the 
syntax of sentences in LOT can be from the linear syntax of traditional logic 
and of natural languages like English. 
 One of the most important characteristic of connection graphs, inherited 
from resolution, is that the ordering of sentences and of conditions within 
sentences doesn’t matter. Thus, for example, the two English sentences: 
 
   I get wet if I do not take an umbrella and it will rain. 
   I get wet if it will rain and I do not take an umbrella. 
 
have the same logical form, and therefore represent the same belief. 
 A less obvious, but even more important characteristic of connection 
graphs is that the names of predicates and their arguments do not matter. All 
that matters is the connections, both the connections within the graph and the 
connections to the Real World outside the agent’s mind. For example: 
 

 
 
Subsumption 
 
The connection graph proof procedure is only one among a great number of 
refinements of resolution that have been developed to improve the efficiency 
of automated reasoning. Another such enhancement, which is compatible 

 if ##!! 

##!! 

Goal:   if  then  

 if $$£££ 

$$££
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with connection graphs, is the deletion of subsumed clauses. This improves 
efficiency, because if there exists a refutation using a subsumed clause, then 
there exists an even shorter refutation using the subsuming clause. There is 
no need to keep both clauses, because the subsuming clause is both more 
informative and more efficient than the subsumed clause. Provided it is done 
carefully, deletion of subsumed clauses does not affect soundness or 
completeness. 
 Suppose, for example, that I believe: 
 
     mary is going to the party 
     mary is going to the party → X is going to the party 
     I am going to the party ∨  I will stay at home 
 
From the first two clauses, I can derive that everyone (or everything) is going 
to the party: 
 
     X is going to the party 
 
This subsumes the disjunction I am going to the party ∨  I will stay at home, 
which therefore can be deleted.  
 As noted in Chapter A2, deletion of subsumed clauses is a pragmatic way 
of dealing with the paradoxes of material implication, without abandoning 
classical logic. 
 
Paraconsistency 
 
The paradoxes of material implication are closely related to be property of 
classical logic that an inconsistent set of sentences logically implies every 
sentence. This unintuitive property of classical logic comes from interpreting 
whenever in the definition of logical consequence: 
 
  A sentence C is a logical consequence of a set of sentences S  
  (or S logically implies C) if (and only if) C is true whenever S is true. 
 
as material implication in the meta-language. Interpreting whenever in this 
way, if S is inconsistent, then it is false that S is true in any interpretation. 
Therefore C is a logical consequence of S, and it doesn’t matter whether or 
not C is true in any interpretation. However, it would be more informative to 
say: 
 
  Given that C is a logical consequence of S and that S is inconsistent,  
  it is impossible to say whether or not C is true in any interpretation. 
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Looked at like this, there is nothing wrong with interpreting whenever as 
material implication. What’s wrong is thinking that it is informative to tell 
someone that a sentence is a logical consequence of an inconsistent set of 
sentences. 
 In fact, resolution, whether or not it is augmented with subsumption, 
derives only informative consequences of a set of clauses. Consider the 
simplest possible case of two clauses, p and not p. Only one application of 
resolution is possible, and it derives false in one step. It doesn’t derive that 
the moon is made of green cheese, or that the world is coming to an end. 
 However, there is a perverse sense in which resolution can be used to 
show that any sentence q is a logical consequence of p and not p: 
 
   To show q is a logical consequence of p and not p, 
   represent not q as a set of clauses not-Q, 
   use resolution to refute the set of clauses {p, not p} ∪ not-Q, and 
   ignore the fact that none of the clauses in not-Q  
   participate in the refutation. 
 
But with backward reasoning (generalised to arbitrary clauses as in SL-
resolution), even this perverse approach will not work. Backwards reasoning 
from the conclusion reduces goals to subgoals using only relevant clauses. If 
the inconsistent clauses are not relevant to the solution, then they will not 
contribute to a proof. For example, if q is an atomic sentence, then q cannot 
be shown at all by backward reasoning using the inconsistent and irrelevant 
clauses p and not p. 
 In the same way that the paradoxes of material implication have led to 
relevance logic and other non-classical logics, the fact that inconsistent sets 
of sentences logically imply any sentence has led to the development of non-
classical, paraconsistent logics (Priest, 2002). As the discussion in this 
section shows, these problems can be solved in classical logic, by treating 
them as pragmatic problems in the spirit of (Grice, 1989). 
 
Conclusions 
 
The resolution rule in an elegant and powerful rule of inference, which 
includes forward and backward reasoning as special cases. When it was first 
invented (or discovered?) by its author, Alan Robinson (1965a), it was 
presented as a machine-oriented inference principle, suitable for computer 
implementation, but not for human use. In my 1979 book, I argued, on the 
contrary, that special cases of resolution have a natural interpretation in 
human-oriented terms.  
 These two contrary views of resolution are in fact complementary, and 
are supported by dual process theories of human reasoning. Moreover, the 
connection graph implementation of resolution is compatible with the view 



 300 

that the human mind is like a machine. Its software is the clausal form of 
logic, and its hardware is the resolution principle. Reasoning in connection 
graphs is sound, because resolution is sound. However, despite many 
attempts to prove completeness (Siekmann, and Wrightson, 2002), it is not 
known whether or not it is complete. 
 Although completeness is an important theoretical property, the difficulty 
of demonstrating its completeness is somewhat paradoxically an argument in 
its favour. Completeness is easy to show when a proof procedure allows 
many different, but essentially equivalent ways of generating the same proof. 
It is more difficult to show when there are fewer ways of generating a proof. 
As long as there are no proofs that cannot be generated, the difficulty of 
demonstrating completeness suggests that the connection graph proof 
procedure is efficient because it contains few redundancies. 
 In Chapter A2, I argued that subsumption solves the paradoxes of 
material implication, and in this chapter I argued that resolution solves the 
problem that an inconsistent set of sentences logically implies every 
sentence. In both cases, the solution treats these as pragmatic problems, 
which do not affect the semantics and proof procedures of classical logic.  
 Resolution and the connection graph proof procedure were developed as 
refutation procedures for showing logical consequence in classical first-order 
logic. However, I have argued in other chapters that it is truth in minimal 
models rather than logical consequence that we should be aiming for.  
 In fact, without acknowledging it, many of the connection graphs 
presented in other chapters do not conform to the official resolution rule, 
because they contain links between atoms in the conclusions of conditional 
goals and atoms in the conclusions of conditional beliefs. These non-
conformist connection graphs are needed for showing that conditional goals 
are true in minimal models, as shown implicitly in Chapter A6. 
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Chapter A6. The Logic of  
Abductive Logic Programming  
 
In this additional chapter, we provide the technical support for abductive 
logic programming (ALP), which is the basis of the Computational Logic 
used in this book. ALP uses abduction, not only to explain observations, but 
to generate plans of action.  
 ALP extends ordinary logic programming by combining the closed 
predicates of logic programming, which are defined by clauses, with open 
predicates, which are constrained directly or indirectly by integrity 
constraints in a variant of classical logic. Integrity constraints in ALP include 
as special cases the functionalities of condition-action rules, maintenance 
goals and constraints. 
 More formally, an abductive logic program <P, O, IC> consists of a 
logic program P, a set of open predicates O and a set of integrity constraints 
IC. The open predicates are restricted so they do not occur in the conclusions 
of clauses in P. This restriction is not essential, but it simplifies the 
technicalities. 
 There are many variants of ALP, with different syntax, semantics and 
proof procedures. In this book, we express integrity constraints in the form of 
generalised conditionals, which are like ordinary conditionals, but which may 
have existential quantifiers and disjunctions in their conclusions. The 
inclusion of disjunctions in the conclusions of integrity constraints means 
that, in the propositional case, they have the full power of classical logic.24

 In ALP, we are concerned with the problem of solving a goal clause G, 
which may simply be an atomic sentence in the case of explaining an 
observation, or may be a conjunction of conditions in the case of planning. In 
both cases, a solution of G is a set Δ of ground instances of the open 
predicates O such that: 

  
The inclusion of existential quantifiers in conclusions means that, in the non-
propositional case the use of Skolem functions to eliminate existential 
quantifiers, as discussed in Chapter A1, can be minimised.  

 
   G holds with respect to the program P∪ Δ and 
   Δ satisfies IC.  
 
The notions of holding and satisfying are deliberately vague (or abstract). 
This is because many different notions of holding and satisfying have been 
explored, and there is still no general agreement about which notions are 
most appropriate. 
                                                        
24 In the general case they have the power of range-restricted clauses, in which every 
variable occurring in the conclusion of an integrity constraint also occurs in the 
conditions of the constraint. 
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 Several competing views of the semantics of integrity constraints, 
associated with different proof procedures for checking database integrity, 
were investigated intensively in the field of deductive databases in the 1980s. 
To begin with, the two main views were the consistency view and the 
theoremhood view. In the consistency view, an integrity constraint is satisfied 
if it is consistent with the database. In the theoremhood view, it is satisfied if 
it is a theorem, true in all models of the database. Reiter (1988) proposed an 
epistemic view, according to which integrity constraints are true statements 
about what the database knows.  

Reiter (1988) also showed that in many cases these three views are 
equivalent for databases with the closed world assumption. For relational 
databases, the three views are also equivalent to the standard view that a 
database satisfies an integrity constraint if the integrity constraint is true in 
the database regarded as a Herbrand interpretation.  

However, there are also many cases in which these different views result 
in different judgements of integrity satisfaction. The simplest example is the 
program consisting of the single Horn clause C ← C and the integrity 
constraint C → false. According to the consistency and epistemic views, the 
integrity constraint is satisfied; but according to the standard theoremhood 
view, it is not.  

The different views can be understood as different ways of interpreting 
negation as failure. The consistency and epistemic views understand it as 
infinite failure, and the theoremhood view interprets it as finite failure. For 
Horn clause programs, the consistency and epistemic views are equivalent to 
the view that an integrity constraint is satisfied if and only if it is true in the 
unique minimal model.  
 Having been involved in the debates about the semantics of integrity 
constraints, developed proof procedures for both integrity checking (Sadri 
and Kowalski, 1988) and ALP (Fung, and Kowalski, 1997; Kowalski, Toni  
and Wetzel, 1998), and argued against conventional model-theoretic 
semantics (Kowalski, 1995), I am now convinced that semantics in general, 
and the semantics of ALP in particular, is best understood in terms of truth in 
minimal models: 
 
  A set Δ of ground instances of the open predicates O is a solution of G  
  if and only if {G}∪ IC is true in some minimal model of P∪ Δ. 
 
The notion of minimal model is clear-cut in the case in which P∪ Δ is a Horn 
clause program.  Although this case may seem very restricted, it is the basis 
for all other cases and extensions. The extension to the case where P and IC 
are not ground is quite straightforward, involving mainly just performing 
instantiation or unification. The extension to the case with negation is similar 
to the extension from minimal models of Horn clause programs to stable 
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models of logic programs with negation. We will discuss the treatment of 
negation and other extensions later in the chapter. 
 
A system of inference rules for ground Horn ALP 
 
A ground Horn abductive logic program <P, O, IC> consists of a program P, 
which is a ground (variable-free) Horn clause program, a set of open 
predicates O, and integrity constraints IC, which are ground conditionals of 
the form: 
 

   A ∧  B  → C.   
 
where A is an open atom (i.e. an atom with an open predicate in O), and B 
and C are conjunctions of atoms25

 The problem is to solve a ground Horn goal clause G0, which is a 
conjunction of variable-free atoms. 

. Integrity constraints of this form are like 
the event-condition-action rules of active databases (Widom and Ceri, 1996). 
The atom A is like an event that is not defined by the database. 

 The following definition of abductive derivation is adapted from the IFF 
proof procedure for ALP (Fung and Kowalski, 1997). Whereas the IFF proof 
procedure uses logic programs expressed in the biconditional, if and only if 
form, the abductive proof procedure of this chapter employs similar inference 
rules for logic programs in conditional form. The two proof procedures differ 
mainly in their semantics. The IFF proof procedure employs the theoremhood 
view, whereas the abductive proof procedure of this chapter employs the 
minimal model view. 
 The proof procedure uses forward and backward reasoning in the attempt 
to generate a solution Δ of G0 by generating an abductive derivation G0 , G1 ,  
…  GN such that GN  contains the set Δ but no other goals that need to be 
solved. Each Gi+1 is obtained from the previous Gi by one of the following 
inference rules: 
 
F1:  Forward reasoning with a selected open atom A in Gi and an integrity 

constraint in IC. Suppose the integrity constraint has the form A ∧ B 

→ C and Gi has the form A ∧ G. Then Gi+1 is (B → C) ∧ A ∧ G. 
(Notice that this introduces a conditional into the goal clause. For this 
reason, we call the resulting goal clauses generalised goal clauses.) 

 

                                                        
25 Note that the atom A can occur anywhere in the conditions of the constraint. Note 
also that if there is no B, then this is equivalent to B being true. If there is no C, then 
this is equivalent to C being false. 
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F2:  Forward reasoning can also be used with a selected open atom A and 
a conditional in Gi . Suppose Gi has the form (A ∧ B → C) ∧ A ∧ G. 

   Then Gi+1 is (B → C) ∧ A ∧ G. 
 

B1:  Backward reasoning with a selected atom C in Gi and a clause in P. 
Suppose the clause has the form C ← D   and Gi has the form C ∧ G.  

  Then Gi+1 is D ∧ G.  
 
B2:  Backward reasoning with a selected atom C in a conditional in Gi 

having the form (C ∧ B → H ) ∧ G. Suppose C ← D1  ……..C ← Dm  are 
all the clauses in P having conclusion C.  

  Then Gi+1 is  (D1 ∧ B → H ) ∧….∧ (Dm ∧ B → H) ∧ G. 
 
Fact: Factoring between two copies of an open atom A in Gi .  
  If Gi has the form A ∧ A ∧ G, then Gi+1 is A ∧ G.  
  (Any previous applications of F1 and F2 to any occurrence of A  
  are deemed to have been done to the resulting single copy of A.) 
 
S:  Logical simplification:  Replace true  → C by C. 
          Replace true  ∧ C by C. 
          Replace false  ∧  C  by false. 
           
An abductive derivation G0 , G1 ,  …  GN using these inference rules is a 
successfully terminating derivation of a set of open atoms Δ if and only if: 
 
   GN  is not false,    
   GN  has the form (B1 → C1) ∧… ∧ (Bm→ Cm) ∧ A1 ∧ … ∧  An , m ≥ 0, n ≥ 0, 
   where each Ai is an open atom, 
   no further applications of the inference rules can be performed on GN  
   no matter which atom is selected, and Δ = { A1 , … ,  An}. 
 
The residual conditionals Bi → Ci in a successfully terminating derivation are 
conditionals introduced by F1 but whose remaining conditions Bi are not true 
in the minimal model of P∪ Δ. The conditions Bi of these residuals may 
consist solely of open atoms not in Δ; or they may contain closed atoms C 
that are not the conclusions of any clauses in P. In the latter case, it is as 
though there were a clause of the form C ← false in P (as a result of which Bi 
is false, and the residual can be simplified to true and be ignored). 
 Note that if Gi has the form C ∧ G, where C is a closed atom that is the 
conclusion of no clause in P, then Gi cannot be part of a successfully 
terminating derivation. It is as though there were a clause of the form C ← 
false in P (as a result of which C is false, and Gi can be simplified to false). 
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 Together the inference rules F1, F2, and B2 check whether the conditions 
of an integrity constraint hold true in the minimal model of P∪ Δ; and if they 
do, logical simplification adds the conclusion of the integrity constraint to the 
goals. The inference rule B1 uses ordinary backward reasoning to solve both 
the initial goal and any new goals introduced from the conclusions of 
integrity constraints. In effect, the factoring rule Fact treats the open 
predicates added to Δ as though they were facts added to P. The inference 
rules F1, F2, B1, B2, Fact and S are sound: 
 
Theorem: Given a ground Horn abductive logic program <P, O, IC> and 
ground Horn goal clause G0: 
 

 If there exists a successfully terminating derivation of Δ,  
 then  {G0 }∪ IC is true in the minimal model of P∪ Δ. 
 

The inference rules are not complete, because they do not recognise infinite 
failure. 

 
Infinite success and incompleteness 
 
Consider the abductive logic program < {C ← C}, {A}, {A ∧  C → false}> 
and the goal A. The inference rules generate the non-terminating derivation: 
 
G0     A         given 
G1     (C → false) ∧ A     by F1 
G2     (C → false) ∧ A      by B2 
     ad infinitum  ……..   by B2 
 
This infinite derivation is the only derivation possible. However, Δ = {A} is a 
solution of G0  because both the integrity constraint and the initial goal are 
true in the minimal model of P∪ {A}. The integrity constraint A ∧  C → false 
is true, because C is false. 
 It is possible to capture this kind of non-terminating “successful” 
derivation by broadening the notion of successful derivation: 
 

An abductive derivation G0 , G1 ,  …  GN is a successful derivation of a set 
of open atoms Δ if and only if: 

 
   GN  is not false,    
   GN  has the form (B1 → C1) ∧… ∧ (Bm→ Cm) ∧ A1 ∧ … ∧  An , m ≥ 0, n ≥ 0, 
   where each Ai is an open atom, 
   no further applications of the inference rules can be performed on the Ai , 
   Δ = { A1 , … ,  An} and 



 306 

   the conditions Bi  of the residues are not true 
   in the minimal model of P∪ Δ. 
 
Implementing the requirement that the conditions of the residues are not true 
in P∪ Δ can be done by trying to show that the conditions are true and 
failing. However, as the example above shows, this necessitates recognising 
infinite failure. This is impossible in general, but can be solved effectively in 
many cases (including the ground case) by the use of tabling (Sagonas, Swift 
and Warren, 1994).  
 With the new definition, the inference rules are complete in the following 
sense: 
 
Theorem: Given a ground Horn abductive logic program <P, O, IC>, a 
ground Horn goal clause G0  and a set of ground open atoms Δ: 

 
 If {G0 }∪ IC is true in the minimal model of P∪ Δ,  
 then there exists a successful derivation of Δ’, such that Δ’ ⊆  Δ. 

 
Proof procedures for ground Horn ALP  
 
The inference rules F1, F2, B1, B2, Fact and S determine the form of abductive 
derivations. To obtain a proof procedure, it is necessary to specify how the 
search space of derivations is generated and explored. It is important to note 
that only B1 generates alternative derivations, corresponding to alternative 
ways of reasoning backwards from a selected atomic goal C in Gi using 
alternative clauses C ← D in P. All the other inference rules simply 
transform one (generalised) goal clause Gi into another. Moreover, the order 
in which the inference rules are applied doesn’t matter, because they all have 
to be applied (except for the alternative ways of applying B1) in order to 
generate a successful derivation. However, for efficiency, the simplification 
rules S and Fact should be applied as soon as they are applicable. 
 The search space of all possible derivations has the form of an or-tree (or 
search tree): 
 
R  The initial goal G0 is the root of the tree. 

 
S/Fact  Given any node Gi in the search tree,  
  if a rule in S or Fact can be applied,  
  then the node has a single successor Gi+1  

  obtained by applying one such rule. 
 

Select   Otherwise, some atom C either in the position C  ∧ G  
  or in the position  (C ∧ B → H ) ∧ G in Gi  
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  is selected for application of the inference rules: 
 
F If the selected atom C is an open atom in the position C  ∧ G, then 

F1 is used with an integrity constraint in IC or F2 is used with some 
conditional in Gi to generate Gi+1. In both cases, this application of 
F1 or F2 should not have been performed before. 

  B1 If the selected atom C is a closed atom in the position C  ∧ G, then 
there are as many successor nodes Gi+1 as there are ways of 
applying B1 with some clause in P with conclusion C. 

B2 If the selected atom C is in the position (C ∧ B → H) ∧ G, then B2 
is used to generate Gi+1.  

 
It is important to note that there are as many such search trees as there are 
ways of applying a simplification or factoring rule in step S/Fact and of 
selecting an atom in step Select. It is necessary to explore only one such 
search tree in the attempt to generate a successful derivation. This makes it 
worthwhile to put some effort into deciding which atoms to select, to make 
the resulting search space as easy and efficient to search as possible. Any 
search strategy, including depth-first, breadth-first, best-first, serial or 
parallel, can be used to explore the selected search space. In particular, the 
search tree could be embedded in a connection graph, and the best-first 
search strategy sketched in Chapter 4 could be used to guide the search. 
 
Integrity constraints with disjunctive conclusions 
 
Several of the examples in the book involve integrity constraints with 
disjunctive conclusions: 
 
     C → D1 ∨ … ∨  Dm 
 
To deal with such integrity constraints, it suffices to add the additional 
inference rule: 
 
Splitting: If Gi has the form (D1 ∨ … ∨  Dm) ∧ G, then there are as many 

successor nodes Gi+1 of the form Di  ∧ G  as there are disjuncts Di.  
 
Splitting needs to be performed when the conditions of an integrity constraint 
have been reduced to true, and the disjunctive conclusion has been conjoined 
to the subgoals in Gi. 
 In the propositional case, integrity constraints with disjunctive 
conclusions give them the power of the clausal form of classical logic. The 
splitting rule, together with the forward reasoning rules F1 and F2, turns the 
proof procedure into a model generator for clausal logic. In fact, the proof 
procedure for the case <P, O, IC> where P is empty and O is the set of all 
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predicates in the language, is equivalent to the SATCHMO (Manthey and 
Bry, 1988) model-generator (and proof procedure) for the clausal form of 
classical logic. 
 We will see how splitting can be used to implement the totality restriction 
of the stable model semantics of negation as failure, in the next section. 
 
Negation through abduction with  
contraries and constraints 
 
The minimal model semantics of ALP blends smoothly with the stable model 
semantics of logic programs with negation. In both cases, the semantics is 
defined in terms of the minimal model of a Horn clause program P extended 
with a set Δ. In the case of abduction, Δ consists of open ground atoms; and in 
the case of logic programs with negation, Δ consists of negations of ground 
atoms treated as positive atoms.  
 The stable model semantics can be interpreted as a special case of ALP, 
by treating all negations of atoms not a as positive, open atoms, say non-a, 
and by using integrity constraints to express that a and non-a are contraries26

 

. 
The most important integrity constraint needed for this is the consistency 
constraint: 

       non-a ∧  a  → false 
 
We also need to ensure that Δ is sufficiently large. To capture the stable 
model semantics, we need the totality constraint: 
 
       true → non-a ∨ a  
 
With this representation, for every logic program with negation P, there is a 
corresponding abductive logic program <P’, O, IC> where O is the set of 
positive contraries of the negations of atoms in P,  P’ is the Horn clause 
program obtained from P by replacing negations of atoms with their positive 
contraries in O, and IC is the set of consistency and totality constraints.  
 With this correspondence the stable models of P coincide with the 
minimal models of P’∪ Δ, where Δ is a solution of the initial goal true 
(Eshghi and Kowalski, 1989). In fact, the very definition of stable model 
coincides with the definition of abductive solution in this special case.  
 However, there is a problem with the correspondence: It requires the 
satisfaction of all the totality constraints whether they are relevant to the 
                                                        
26 Treating negations as positive contraries makes it easier to compare the treatment 
of negation in ALP with the treatment of negation in the stable model semantics. 
However, it is also possible to treat negations directly as open formulas, as in the IFF 
proof procedure.  
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initial goal G0 or not. We will investigate this problem and discuss its 
solution in the following sections. 
 
The case for ignoring the totality constraints  
 
Consider the program from Chapter A4: 
 
P:     bob will go ← not john will go. 
     john will go ← not bob will go. 
 
To reformulate the program in ALP terms, reexpress the negative conditions 
as positive open predicates, say in the form: 
 
P’:     bob will go ← john stays away. 
     john will go ← bob stays away. 
O:      {john stays away, bob stays away} 
IC:     bob will go ∧ bob stays away → false. 
     john will go ∧ john stays away → false. 
 
Ignore the totality constraints for now, and consider the initial goal G0 = bob 
will go. The proof procedure generates only one successfully terminating 
derivation with solution Δ1= {john stays away} as follows: 
 
G0     bob will go 
G1     john stays away 
G2     (john will go  → false) ∧  john stays away  
G3     (bob stays away  → false) ∧  john stays away  
 
Similarly, the proof procedure generates the solution Δ1= {bob stays away} 
for the initial goal G0 = john will go. The results are the same as those 
obtained with the stable model semantics, but without the totality constraints.  
 
The case for the totality constraints  
  
The following example shows that we need the totality constraints, or 
something like them. Consider the program consisting of the clauses: 
 
P:     john can fly ← john is a bird  ∧ not(john is abnormal) 
     john is a bird 
 
Under the closed world assumption and the stable model semantics, since it 
cannot be shown that john is abnormal, it follows that not(john is abnormal) 
and therefore that john can fly. But it cannot be shown that not(john can fly). 
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 But it is possible to show not(john can fly) reexpressed as a positive 
predicate john is flightless, using the corresponding abductive logic program 
<P’, O, IC> without the totality constraints, where: 
 
P’     john can fly ← john is a bird ∧  john is normal 
     john is a bird 
O     {john is flightless, john is normal} 
IC:     john is flightless ∧  john can fly → false. 
     john is normal ∧  john is abnormal → false. 
 
According to the semantics of ALP without the totality constraint, john is 
flightless has the undesirable solution Δ = {john is flightless}. This same 
solution is also generated by the abductive proof procedure: 
 
G0   john is flightless 
G1   (john can fly  →  false) ∧ john is flightless 
G2   (john is a bird  ∧  john is normal  → false) ∧ john is flightless 
G3   (john is normal  → false) ∧ john is flightless 
 
It seems that we need the totality constraint (or something like it), after all27

 

. 
With the totality constraint: 

   true → john is normal ∨  john is abnormal 
 
the undesired solution disappears, because neither john is normal nor john is 
abnormal is true in the minimal model of P’∪ Δ, where Δ = {john is 
flightless }.  
 Here is what the proof procedure (with one particular selection strategy) 
does with the same problem augmented with the totality constraint above 
(ignoring the other totality constraint, to avoid clutter). The first three steps of 
the derivation are the same. However, the initial goal can be regarded as 
containing the disjunctive conclusion of the totality constraint, because the 
condition of the constraint true is true: 
 
G0  (john is normal ∨  john is abnormal) ∧ john is flightless 
G1   (john is normal ∨  john is abnormal) ∧  
  (john can fly  →  false) ∧ john is flightless 
G2  (john is normal ∨  john is abnormal) ∧  

  (john is a bird  ∧  john is normal  → false) ∧ john is flightless 
G3  (john is normal ∨  john is abnormal) ∧  

                                                        
27 This is also a counter-example to replacing the totality requirement of the stable 
model semantics by the requirement that P∪ Δ  or P’∪ Δ be maximally consistent. 
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  (john is normal  → false) ∧ john is flightless 
G4  john is normal  ∧ (john is normal  → false) ∧ john is flightless 
G5  john is normal  ∧ john is flightless ∧ false 
G6  false 
 
G4’  john is abnormal ∧ (john is normal  → false) ∧ john is flightless 
 
The generalized goal clause G3 has two successor nodes G4 and G4’. The 
successor node G4 leads to a failing derivation of false. The successor node 
G4’ terminates unsuccessfully, because john is abnormal is not an open atom 
and no inference rules can be applied to G4’.  So with the totality constraint, 
the undesired solution disappears, both in the semantics and in the proof 
procedure. 
 
An alternative to the totality constraints 
 
Unfortunately, the totality constraints are computationally very expensive. 
They require the global consideration of a totality constraint for every ground 
atom in the language, whether the ground atom is relevant to the goal or not. 
This is bad enough in the ground case; but in the case with variables, it is 
prohibitively expensive. 
 An alternative to checking all the totality constraints is to check only 
those totality constraints that are locally relevant to the problem at hand. In 
addition to avoiding the computational problems of the global constraints, the 
local alternative has other merits. Among its other properties, the alternative 
is inconsistency tolerant, deals with the problem of preventative maintenance, 
and has a nice interpretation in terms of arguments for and against the initial 
goal. The effect of restricting the totality constraints to those that are locally 
relevant can be obtained by adding a minor variant of the negation rewriting 
rule of the IFF proof procedure, together with an additional simplification 
rule: 
 
Neg:    If Gi has the form  (non-C ∧ B → H) ∧ G,   
     then Gi+1 is    (B  → H ∨  C) ∧ G. 
 
     Replace non-C ∧  C  by false  
     Replace false  ∨  C  by C. 
 
We assume that the set of integrity constraints IC is a set of clauses possibly 
with disjunctive conclusions, but without negation. Therefore, negation 
rewriting deals only with negation introduced from the conditions of logic 
programs by backward reasoning using B2. But if a negation non-C is 
introduced by B2 into the conditions of a maintenance goal, then Neg makes it 
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possible to satisfy the maintenance goal by making C true, thereby preventing 
the need to achieve the conclusion of the maintenance goal. 
 To see how negation rewriting compares with the totality constraints, 
reconsider the example of the last section G0 = john is flightless using the 
same abductive logic program: 
 
P’     john can fly ← john is a bird ∧  john is normal 
     john is a bird 
O     {john is flightless, john is normal} 
IC:     john is flightless ∧  john can fly → false. 
     john is normal ∧  john is abnormal → false. 
 
The first three steps are the same as they were before without the totality 
constraint: 
 
G0    john is flightless 
G1    (john can fly  →  false) ∧ john is flightless 
G2    (john is a bird  ∧  john is normal  → false) ∧ john is flightless 
G3    (john is normal  → false) ∧ john is flightless 
 
Whereas before, without totality, the derivation terminated successfully with 
G3, now negation rewriting applies, and the derivation terminates 
unsuccessfully with G4: 
 
G4   john is abnormal  ∧ john is flightless 
 
The derivation terminates unsuccessfully, for the same reason that G4‘ failed 
when we used the totality constraint before, because the subgoal john is 
abnormal is not an open atom, and no further inference rules can be applied.  
 Thus negation rewriting eliminates the same undesired solution 
eliminated by the totality constraint before, but now by means of a local 
inference rule, which applies only when it is relevant. 
 Before we discuss the semantics of the proof procedure with negation 
rewriting, reconsider the goal G0 = bob will go using the abductive logic 
program: 
 
P’:     bob will go ← john stays away. 
     john will go ← bob stays away. 
O:      {john stays away, bob stays away} 
IC:     bob will go ∧ bob stays away → false. 
     john will go ∧ john stays away → false. 
 
The example is significant both because the proof procedure obtains the same 
results as the stable model semantics, and because these results are different 
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from those of the IFF proof procedure, on which the abductive proof 
procedure is based. 
 The first three steps are the same as they were without the totality 
constraint:  
 
G0     bob will go 
G1     john stays away 
G2     (john will go  → false) ∧ john stays away 
G3     (bob stays away  → false) ∧ john stays away 
 
Before the derivation terminated successfully with G3. Now negation 
rewriting applies, and the derivation terminates successfully with G6: 
 
G4   bob will go  ∧  john stays away 
G5   john stays away  ∧  john stays away 
G6   john stays away 
 
The derivation terminates, because the only inference rule, namely F1, that 
can be applied to john stays away has already been applied to the earlier copy 
of john stays away and is treated as having been applied to the new single 
copy in accordance with the definition of Fact. 
 
Preventative maintenance 
 
The combination of Neg and Splitting makes it possible to satisfy 
maintenance goals by preventing the need to achieve their conclusions. For 
example if you have an exam coming up and you fail the exam then you need 
to retake the exam later. If you don’t like the idea of retaking the exam, you 
can reason as follows: 
 
P:  you will fail the exam ← you do not study. 
O:   {you have an exam, you study, you do not study, you retake the exam} 
IC:  you have an exam ∧ you do not study → you retake the exam. 
  you study ∧   you do not study → false. 
 
G0    you have an exam 
G1    you have an exam ∧ (you do not study → you retake the exam) 
G2    you have an exam ∧ (you study ∨  you retake the exam) 
G3    you have an exam ∧ you study 
G3’    you have an exam ∧ you retake the exam 
 
So the choice is up to you. Either you study or you retake the exam. 
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An argumentation-theoretic interpretation 
 
An abductive derivation G0, G1 ,  …  GN using Neg for logic programs P with 
negation, but without other open predicates and other integrity constraints 
can be viewed as constructing an argument to support and defend the claim 
G0: 
 
  The inference rule B1 reduces the initial goal, and all other goals 

needed to support it, to subgoals, and ultimately to open subgoals of 
the form non-a. If the derivation is successful then the set of all these 
open subgoals is the set Δ.  

 
  When an open atom non-a is generated by B1, to be added to Δ, the 

inference rule F1 is used with the consistency constraint to derive a → 
false, in an attempt to attack the argument being constructed by B1 by 
undermining non-a.  However, no attempt is made to undermine non-a 
if non-a already belongs to Δ. Instead, Fact is used to merge the two 
copies of non-a into a single copy, and to avoid attacking and 
defending non-a redundantly. 

 
  The inference rule B2 reduces a in a → false to alternative arguments 

attacking non-a. Each such attacking argument is ultimately reduced 
to a conjunction of open subgoals of the form non-b.  

 
  For each such attacking argument, reduced to open atoms, the proof 

procedure attempts to undermine one such open atom non-b and 
defeat the attack. This is done by using the inference rules Neg and 
Splitting, to generate a counter-attack, by showing b. However, no 
attempt is made to counter-attack non-b if non-b belongs to Δ. Instead, 
F2 is used to eliminate non-b from the attack.This also ensures that Δ 
does not attack itself. 

 
In a successful derivation, this dialectic process of support, attack and 
counter-attack continues until every attack against the open atoms in Δ has 
been considered and counter-attacked, and all the goals and subgoals needed 
for this purpose have been reduced to open atoms in Δ. 
  

An argumentation-theoretic semantics 
 
This view of abductive derivations in terms of arguments and counter-
arguments can be given an argumentation-theoretic semantics. Moreover, it 
suggests that the stable model semantics itself can also be understood in 
argumentation terms: Given an abductive logic program <P’, O, IC> 
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corresponding to a normal logic program P, the stable model semantics can 
be understood as sanctioning a set Δ of open atoms as a solution of a goal G0 
if and only if: 
 
   P’∪ Δ supports an argument for G0. 
   No argument supported by P’∪ Δ attacks Δ. 
   For every non-b not in Δ,   
   P’∪ Δ supports an argument that attacks non-b. 
 
In the stable model semantics, argumentation is all-out warfare: For Δ to be 
stable, every non-b has to take a side, either with or against Δ. If non-b is not 
with Δ, then Δ attacks non-b. 
 With abductive derivations, Δ is an admissible solution of G0, if and only 
if: 
 
   P’∪ Δ supports an argument for G0. 
   No argument supported by P’∪ Δ attacks Δ. 
   For every argument supported by P’∪ Δ’ that attacks Δ, 
   P’∪ Δ supports an argument that attacks Δ’. 
 
In the admissibility semantics, argumentation is merely self-defence. 
 The inference rules F1, F2, B1, B2, Fact, S and Neg are sound: 
 
Theorem: Given an abductive logic program <P’, O, IC> corresponding to a 

ground logic program P with negation, but without other open 
predicates and other integrity constraints, and given a goal clause 
G0: 

 
  If there is a successfully terminating derivation of Δ,  
  then Δ is an admissible solution of G0. 

 
As in the case of ground Horn ALP, to obtain completeness, the definition of 
successful derivation needs to be extended to the possibly non-terminating 
case. A discussion of these and related issues can be found in (Dung, 
Kowalski and Toni, 2006) in the context of proof procedures for abstract 
argumentation. 
 
Extensions of the abductive proof procedure  
 
The most important extension is, of course, to the case of non-ground 
abductive logic programs. In the case of the IFF proof procedure, on which 
the abductive proof procedure is based, this extension, involves a number of 
additional inference rules, for dealing with substitutions represented by 
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means of equations. However, in the case of the abductive derivations of this 
chapter, the extension to the non-ground case requires mainly just adding 
unification for forward reasoning, backward reasoning and factoring. It also 
requires the range-restriction on variables, which is not too difficult to live 
with in practice.28

 Four other extensions are needed to deal with the topics in this book: 

 Unfortunately, there is not sufficient space to deal with this 
extension and the issues it raises in this book. 

 
We need to generalize forward reasoning, so that the atom A in Gi 
used for forward reasoning can be a closed atom. This allows the 
consequences of hypothetical actions and explanations to be 
considered without the need to reduce them to open atoms. 
 
We need to extend clauses/beliefs to include conditionals in the 
conditions of conditionals; for example, to represent the wood louse 
designer’s beliefs in the Chapter 9. 
 
We need to extend forward reasoning, to reason forwards using 
beliefs, and not only using integrity constraints. This involves relaxing 
the restriction that every integrity constraint contains an atom with an 
open predicate. 
 
We need to integrate the abductive and the connection graph proof 
procedures. 

 
The first extension is trivial. The restriction that A be an open atom was 
imposed for simplicity. The restriction can be removed without further ado.  
 
The second extension is also very easy. We already have conditionals in 
generalized goal clauses introduced by forward reasoning with integrity 
constraints. They could just as easily have been introduced by backward 
reasoning with clauses.  
 
The third extension requires a little more work. Integrity checking methods 
that reason forwards with clauses were developed for deductive databases in 
the 1980s (Sadri and Kowalski, 1988). These could be integrated with the 
abductive proof procedure presented in this chapter. However, it is interesting 
to note that many practical systems in Computing restrict rules to the form of 
event-condition-action rules, which are obtained in effect by reasoning in 
advance. 
                                                        
28 With a minor modification of this restriction, integrity constraints can contain 
existentially quantified variables in their conclusions, and these existential quantifiers 
may be left implicit. 
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The fourth extension is not very difficult in theory, because forward and 
backward reasoning are special cases of resolution, and the connection graph 
proof procedure is just a vehicle for implementing resolution more 
efficiently. However, as remarked at the end of Chapter A5, the connection 
graph proof procedure was developed as a refutation procedure to show 
logical consequence. To adapt it to the generation of minimal models in ALP, 
conclusions of conditional goals need to be linked to the conclusions of 
conditional beliefs. 
 
Note that the combination of abduction with open predicates and default 
reasoning with negative predicates requires no extension at all, but simply the 
inclusion of both kinds of predicates, their associated integrity constraints, 
and negation rewriting in the same abductive logic program. 
  
Conclusions 
 
This chapter has presented the technical support for the main reasoning 
techniques studied in this book. However, there remain a number of 
extensions needed for a comprehensive framework. Many of these extensions 
are straightforward, because all of them have been developed as individual 
components or in combination with other components in other frameworks. 
Their harmonious integration into a single encompassing framework is a 
topic for further research. 
 This chapter also introduced an argumentation semantics and proof 
procedure for abductive logic programming. The semantics and proof 
procedure build upon recent advances in logic-based argumentation in AI.  
One of the most important achievements of this argumentation-based 
approach is the demonstration that almost all of the original logic-based 
formalisms developed for default reasoning in AI can be understood 
uniformly in argumentation terms (Bondarenko et al., 1997).  This approach 
has been especially influential in the field of AI and Law (Prakken and 
Sartor, 1996). A recent survey can be found in (Rahwan and Simari, 2009). 
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