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THE EARLY YEARS OF LOGIC 
PROGRAMMING 

This firsthand recollection of those early days of logic programming traces 
the shared influences and inspirations that connected Edinburgh, Scotland, 
and Marseilles, France. 

ROBERT A. KOWALSKI 

The name Prolog is ambiguous. It was originally in- 
tended as the name for the programming language de- 
veloped by Alain Colmerauer and Phillipe Roussel 
in the summer of 1972. The name was suggested by 
Roussel’s wife, Jacqueline, as an abbreviation for pro- 
grammation en logique. In time, however, this abbrevia- 
tion has been used to refer to the concept of logic pro- 
gramming in general. It is a confusing notion, as claims 
made for the general concept of logic programming do 
not always hold for the programming language, Prolog, 
and vice versa. In an attempt to minimize such confu- 
sion, I shall reserve the term Prolog to refer to the 
programming language alone. 

This is not the place for an extensive discussion of 
what should or should not be regarded as logic program- 
ming, a term that is equally ambiguous. However, with- 
out wanting to stir further controversy, let me hazard 
the following rough characterization: Logic program- 
ming shares with mechanical theorem proving the use 
of logic to represent knowledge and the use of deduc- 
tion to solve problems by deriving logical conse- 
quences. However, it differs from mechanical theorem 
proving in two distinct but complementary ways: (1) It 
exploits the fact that logic can be used to express defi- 
nitions of computable functions and procedures; and 
(2) it exploits the use of proof procedures that perform 
deductions in a goal-directed manner, to run such defi- 
nitions as programs. 

A consequence of using logic to represent knowledge 
is that such knowledge can be understood declaratively. 
A consequence of using deduction to derive conse- 
quences in a computational manner is that the same 
knowledge can also be understood procedurally. Thus, 
logic programming allows us to view the same knowl- 
edge both declaratively and procedurally. 

The most straightforward case of logic programming 
is when information is expressed by means of Horn 
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clauses and deduction is performed by backwards rea- 
soning embedded in resolution [29]. But logic program- 
ming can also be understood more generally, for exam- 
ple, to include negation by failure [3], set construction 
[4, 321, or goal-directed reasoning with equations. The 
advantage of the more liberal notion of logic program- 
ming is that it points the way for further developments 
to encompass richer fragments of logic and give a com- 
putational interpretation to a greater variety of proof 
procedures. 

The liberal notion of logic programming do’es not in- 
clude a number of related uses of logic in programming. 
It excludes, for example, systems of constructive logic 
in which proofs are interpreted as programs, and it ex- 
cludes uses of logic in which computation is construed 
model-theoretically as evaluating a formula in an inter- 
pretation. 

This article is a personal account of some of the early 
history of logic programming, ending with my move 
from Edinburgh to London in December 1974. The 
chronicle is unavoidably biased toward my own recol- 
lection of events at the University of Edinburgh. I am 
especially conscious that it does not do justice to re- 
lated activities that took place during that time at the 
Universite d’Aix Marseilles. 

THE EDINBURGH-MARSEILLES CONNEC’I’ION 
My first contact with the Marseilles group was a three 
or four day visit in the summer of 1971 at the invitation 
of Colmerauer, who was then head of the artificial in- 
telligence (AI) team at the university. The group, which 
consisted of Bob Pasero, Roussel, and Colmerauer, was 
developing a natural language question-answlering sys- 
tem. Roussel and Jean Trudel, a colleague visiting from 
the University of Montreal, had read [21], which de- 
scribes the SL-resolution theorem prover, and Roussel 
was interested in using it for the deductive component 
of the question-answering system. 

Most of my visit consisted of intensive discussions 
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with Colmerauer about using logic to represent gram- 
mar and using resolution to parse sentences. Earlier, I 
had devised an inefficient representation of grammars, 
with explicit axioms of associativity for string conca- 
tenation. Colmerauer saw how to improve the repre- 
sentation significantly, avoiding associativity by formal- 
izing the graph representation of strings used in his 
Q-Grammars [5]. We observed that the bottom-up be- 
havior of his Q-system parser could be obtained by 
using hyperresolution. SL-resolution behaved as a top- 
down parser. It is because of this work that 1971 is 
sometimes given as the year Prolog was born. 

My short visit was very productive, and we planned 
to continue our collaboration. Our plans were realized 
in the spring of 1972 during my second visit to Marseilles. 
My trip was again at Colmerauer’s invitation. This time 
I was accompanied by doctoral student, Ed Wilson. 

During this period the idea of programming in predi- 
cate logic was born. I had been asked to serve as exter- 
nal examiner for Roussel’s T/z&e de Troisikrw Cycle [30]. 
I was impressed by his use of “formal equality” (charac- 
terized by the single axiom x = x) to avoid the ineffi- 
ciencies of the normal equality axioms in certain 
applications. This lead me to look for other cases where 
a change of representation could lead to improved effi- 
ciency. It was not long before I could see how to write 
computationally efficient axioms for such recursive 
predicates as addition and factorial. With Ed Wilson 
and Roussel, I looked at both Horn clause and non- 
Horn clause definitions “executed” by SL-resolution. 
Roussel, in turn, spoke with Colmerauer and reported 
back ideas that arose during their conversations. I did 
not realize until much later how closely Colmerauer’s 
work paralleled my own. 
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which still exists today, may reflect the difference be- 
tween our early contributions to the subject. 

From Marseilles I wrote to Bernard Meltzer at the 
University of Edinburgh to explain the new ideas. In 
his reply, Meltzer wrote that my letter “generated a lot 
of discussions.” Pat Hayes, in particular, argued that I 
seemed to be taking credit for the thesis that “computa- 
tion is controlled deduction,” which he had been advo- 
cating in Edinburgh before me. 

Indeed, Hayes had argued that computation and de- 
duction were similar some time before my second visit 
to Marselles. In particular, he argued that inference 
with equations imitated computation in Lisp and that 
Robert Boyer and J Moore’s new structure-sharing 
method of implementing resolution [l] gave similar 
run-time structures to the Bobrow and Wegbreit spa- 
ghetti stack mechanism. Hayes received little credit for 
his ideas, and to a large extent, I failed to appreciate his 
ideas both because I had never programmed in Lisp and 
because I did not take much interest in implementa- 
tion. 

Hayes had been my closest friend at the University of 
Edinburgh since my arrival as a Ph.D. student in Octo- 
ber 1967. The first research either one of us did was a 
combined effort that resulted in a paper on semantic 
trees in Machine Intelligence, vol. 4. We were collaborat- 
ing on a book on automated theorem proving and had 
finished a substantial part of it before Hayes left Edin- 
burgh for a second visit to Stanford University. At Stan- 
ford he learned about Planner [12], and when he re- 
turned to Edinburgh, he wanted to rewrite our book 
significantly to take Planner into account. We spent 
many hours discussing and arguing the relationship be- 
tween Planner and resolution theorem proving. These 

Let me hazard the following rough characterization: Logic programming shares with 
mechanical theorem proving the use of logic to represent knowledge and the use of 
deduction to solve problems by deriving logical consequences. 

Colmerauer and I had quite different backgrounds discussions were part of the background to my second 
and placed different values on different things. Colmer- visit to Marseilles. A few months after I returned, 
suer was a computer scientist who combined practical Hayes left Edinburgh for a lectureship at the University 
achievements with sound contributions to their theory. of Essex. 
I was a logician at heart, who suffered a faint revulsion When I returned from Marseilles, Boyer and Moore 
for programming and everything else to do with com- were very enthusiastic. Programming in resolution 
puters. As a student, I loved logic and hated recursion logic seemed to be just what they were looking for to 
theory. exploit their earlier discovery of the structure sharing 

Looking back on our early discoveries, I value most method of implementing resolution. They were already 
the discovery that computation could be subsumed by aware that structure sharing was analogous to the use 
deduction. Colmerauer was not so readily satisfied with of association lists in the implementation of Lisp. By the 
purely theoretical results. For him, the Horn clause def- summer of 1972, however, they were so enthusiastic 
inition of appending lists was much more characteristic that they developed their own logic programming lan- 
of the importance of logic programming: It provides a guage called Baroque [27]. 
basis for more powerful programming methods and is Baroque was an assembly-like programming language 
ideally suited to nonnumerical applications such as nat- that provided list processing and arithmetic primitives 
ural language processing. This difference of emphasis, defined by Horn clauses and interpreted by a structure- 
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sharing SL-resolution theorem prover with a depth-first eree, the grant was finally approved. It supported sev- 
search strategy. “Demons” were attached to primitive era1 visits during the period of October 1973 through 
functions such as addition and multiplication, to ex- September 1974 by Warren, Steve Isard, Bob Welham, 
ploit the machine’s built-in arithmetic. Boyer and van Emden, and myself to Marseilles. It also, allowed 
h4oore then coded an interpreter in Baroque for a pro- Colmerauer, Roussel, and Henri Kanoui to visit Edin- 
gramming language akin to pure Lisp, with pattern- burgh. By March 1974, I had completed a 100-page draft 
matched invocation and nondeterminism inherited of “Logic for Problem Solving” [18]. This was widely 

- 

In the eyes of most North American researchers in AI, resolution had long been discredited. 
The fashion had turned. . . toward the procedural representation of knowledge and ,domain- 
specific problem solvers. 

from its implementation language. Programs written in 
the Lisp-like language were about 10 times slower than 
similar programs written directly in Baroque. However, 
what intrigued Boyer and Moore about the language 
was that it permitted (indeed, encouraged) the symbolic 
execution of programs and hence the interpreter could 
prove simple theorems about programs, such as “There 
exists an X such that (Length X) is 3.” As they tried 
to prove more complicated theorems about programs, 
for example, that append is associative or that the 
length of (Append A B) is the sum of the lengths 
of A and B, they realized it was necessary to do math- 
ematical induction. Boyer and Moore then turned 
their attention toward mechanizing inductive 
proofs [Z]. 

The summer of 1972 was a busy time for the develop- 
ment of logic programming. Back in Marseilles, Roussel 
and Colmerauer designed and implemented the first 
Prolog system in Algol-W as an adaptation of Roussel’s 
existing SL-resolution theorem prover. Teaming with 
Pasero they implemented a large natural language pro- 
cessing system. This was the first major program writ- 
ten in Prolog [6], and it was written in 1972. I contin- 
ued my own investigations and reported my findings 
[15] at the first “Mathematical Foundations of Com- 
puter Science” conference in Jablonna, Poland, in Au- 
gust 1972. 

The situation in Edinburgh during the next year was 
stormy, to say the least. In the eyes of most North 
American researchers in AI, resolution had long been 
discredited. The fashion had turned against uniform, 
general-purpose theorem provers toward the procedural 
representation of knowledge and domain-specific prob- 
lem solvers. 

Those of us in Edinburgh who continued working in 
the resolution paradigm were increasingly isolated from 
the rest. I was fortunate, however, to be joined in my 
work by David Warren and Maarten van Emden. Dur- 
ing this time our contact with Marseilles was a great 
inspiration and comfort. I wrote an application for a 
NATO research grant to fund exchanges between our 
two groups to investigate further the application of logic 
programming to natural language processing. Despite 
some last-minute problems with a hostile potential ref- 

circulated for many years before the expanded version 
[20] was published in 1979. 

I was an avid supporter of coroutining for Horn 
clause logic programs during this period. I d’escribed 
this in [16] at the “IFIP 74” conference in Stockholm. 
I had many discussions about this with Roussel and 
encouraged Robert Hill, a Ph.D. student of Meltzer’s 
who was informally under my supervision, to investi- 
gate its properties. He invented the name Lush (linear 
resolution with unrestricted selection for ho.rn clauses) 
and proved its completeness in [13]. Krystof Apt and 
van Emden later used the now more familiar term 
SLD-resolution for the same system. 

Among Warren’s many interesting studies before vis- 
iting Marseilles was his investigation of programming 
with non-Horn clauses. He interpreted this as the ana- 
log of block structure in Algol-like language:;. Of more 
lasting significance, however, was his conversion to 
Prolog during his visit to Marseilles. I can recall his 
indignation when he returned over my lack of support 
for Prolog. Certainly, given my previous research in 
heuristic search [14], I found it hard to accept Prolog’s 
incomplete depth-first, backtracking search strategy. 
Moreover, with my theorem proving background, I also 
found it hard to be enthusiastic about Prolog’s sequen- 
tial execution of procedure calls. I hoped it might be 
possible to base a more powerful logic programming 
system on the use of coroutining in Lush or in the 
connection graph proof procedure [17]. But Prolog was 
a practical programming language, whereas (at that time 
Lush and connection graphs were not. It was not until 
around 1976 when I was at Imperial College in London 
that I finally appreciated the ingenious, delicate bal- 
ante that Prolog achieved between being a f#sirly primi- 
tive, but useful, theorem prover, and being a very high- 
level programming language. 

In 1973 I worked with van Emden investigating the 
relationship between Scott’s fixed point semantics of 
recursive programs and the Tarskian semantics and 
proof theory of first-order logic [31]. We also had 
broader aspirations of adapting existing techniques 
for proving properties of recursive functions, such as 
Scott’s fixed point induction, to logic programs. But we 
were unable to do so within the time constraint we set 
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for ourselves for the semantics paper. These broader 
problems were later solved by Keith Clark at Imperial 
College. 

Most of the early converts and contributors to logic 
programming became so as the result of personal con- 
tacts and discussions rather than through industry pub- 
lications. In addition to the many I have mentioned are 
Luis Moniz Pereira’s group in Lisbon, Portugal, the* 
Hungarian Prolog activities, and the work of Sten-Ake 
Tarnlund’s group in Sweden. All their efforts were sim- 
ilarly initiated as the result of contacts with the Edin- 
burgh team. 

Luis Moniz Pereira came to the University of Edin- 
burgh to work as a research fellow in 1974-1975. He 
was an active contributor to a working group we orga- 
nized to develop logic programs for geometry theorem 
proving. He also contributed to Warren’s Prolog compi- 
ler and later, when he returned to Lisbon, worked with 
Fernando Pereira until 1978. 

Istvan Nemeti arrived at Edinburgh the day I left for 
Imperial College in December 1974. He collaborated 
with van Emden on semantic issues of logic program- 
ming and took back to Hungary a copy of Warren’s 
notes on Prolog implementation. These notes were the 
beginning of Prolog in Hungary. 

I met Tarnlund at the IFIP conference in August 
1974. He had already implemented an SL-resolution 
theorem prover and was planning to implement a con- 
nection graph theorem prover. He was immediately at- 
tracted to logic programming. I visited him for two 
weeks in Stockholm in December 1974. 

I left Edinburgh for a readership at Imperial College 
in December 1974, leaving my work with Warren and 
van Emden. At Imperial College there was no previous 
interest in theorem proving or logic programming. I was 
very fortunate that Clark was able to take a two-year 
leave of absence from Queen Mary College to work 
with me on an SERC grant. Today, the Logic Program- 
ming Group at Imperial College includes 2 professors 
1 reader, 7 lecturers, 3 SERC advanced research fel- 
lows, 19 research assistants, 5 administrative and cleri- 
cal staffers, and 13 research students, for a total of 50. 

Most of the early converts and contributors 
to logic programming became so as the 
result of personal contacts and discussions 
rather than through industry publications. 

THE RELATIONSHIP BETWEEN LOGIC 
PROGRAMMING, SL-RESOLUTION, AND 
PLANNER 
Perhaps the first zenith of logic in AI occurred when 
Cordell Green illustrated how to represent question- 
answering, plan formation, program synthesis, and pro- 
gram simulation in first-order logic [lo]. His attempts to 
use resolution for problem solving in these domains, 

however, were less successful. The resolution systems 
that had been developed by that time and were at his 
disposal were intolerably redundant, combinatorially 
explosive, and unnatural in behavior. The early enthu- 
siasm that greeted Green’s work soon gave way to a 
massive backlash. Terry Winograd’s thesis probably 
offered the most eloquent and influential voice to 
the attack. The alternative, which he and others 
advocated, was a procedural rather than a declarative 
representation of knowledge and the employment of 
domain-dependent problem solvers rather than uni- 
form, general-purpose theorem provers. 

Carl Hewitt’s programming language Planner [12] 
was regarded as the embodiment of these ideas. How- 
ever, Planner was also based on logic. As Hewitt ex- 
plained, an implication “A if B” could be interpreted as 
four different Planner procedures: 

(1) To show A, show B; 
(2) to show not-B, show not-A; 
(3) given B, assert A; and 
(4) given not-A, assert not-B. 

Linear resolution could implement the first two of 
these; and hyperresolution with renaming, the second 
two. But the early versions of these methods were 
highly redundant. Linear resolution in particular, given 
an implication 

A ii B, and Bz and . . . and B,, 

would attempt to solve the subgoals B, , . . . , B, in all n 
factorial ways. It was ironic that Loveland [23], who 
with Luckham [24] independently invented linear reso- 
lution, did not at first see the connection with his own 
model elimination proof procedure [22]. Model elimina- 
tion, using a very different formalism, could be inter- 
preted as a form of linear resolution without the n 
factorial redundancy. Eventually, the connection 
between the two was independently noted both by 
Loveland and by Kuehner and myself. We called the 
resulting synthesis SL-resolution (linear resolution with 
selection function). At the same time, Reiter [28] dis- 
covered the same ordering restriction on linear resolu- 
tion. Virtually all obvious redundancies were removed 
from linear resolution by this stage, and most of Green’s 
examples could have been rerun with much greater 
success. 

I can recall trying to convince Hewitt that Planner 
was similar to SL-resolution. Planner gave a problem 
reduction interpretation to logic in an ad hoc but prag- 
matic fashion. It gave the programmer greater control 
than general, unrestricted resolution, but was also less 
uniform. Its pattern matcher, in particular, was both 
more complicated and more restricted than full unifica- 
tion. Moreover, because of the way it was embedded in 
Lisp, it was not easy to determine whether Planner 
without Lisp was itself a general-purpose programming 
language. As Colmerauer once said, no one would try 
to define the list append operation in pure Planner 
without resorting to Lisp. 

This last reservation about Planner as a programming 
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language also applied to SL-resolution. Although the 
problem-reduction behavior of SL-resolution was ap- 
preciated from the very beginning, it was not clear at 
first that this was sufficient to make clausal logic or the 
Horn clause subset a general-purpose programming lan- 
guage. It was this realization that we now associate 
with logic programming and Prolog. Moreover, it was 
this idea that was missed when the early critics of 
Prolog mistakenly regarded it simply as a reinvention of 
Planner. 

THE RELATIONSHIP BETWEEN LOGIC 
PROGRAMMING AND COMPUTATION = 
CONTROLLED DEDUCTION 
The relationship of logic programming with Hayes’s 
Golux idea [ll] that computation = controlled deduction is 
both subtle and complex. On the one hand, Golux is 
more general. Hayes first applied his notion to Lisp, 
before the discovery of logic programming, whereas in 
[ll] he applied it to programs expressed by means of 
equations. On the other hand, Golux is also more spe- 
cific. Given a description L of a problem formulated in 
logic, Hayes advocated varying the control C of the 
problem solver/theorem prover to obtain efficient, 
computational behavior. He argued against altering the 
declarative component L to make it easier to control. 

From a logic programming point of view, 
the Golux idea is more like running 
programming specificafions than if is like 
writing programs. 

From a logic programming point of view, the Golux 
idea is more like running program specifications than it 
is like writing programs. It is central to the idea of logic 
programming, and of Prolog in particular, that we be 
prepared to alter the declarative component L of a 
problem description to obtain desired problem-solving 
behavior A from a given control C. This has been 
expressed by the pseudoequation [19] 

A(Igorithm) = L(ogic) + C(ontrol). 

With Prolog we have a fixed C and can improve A only 
by improving I,. Hayes, however, emphasized the value 
of changing A by changing only C. Logic programming 
is concerned with the possibility of changing both L 
and C. 

Golux was influenced by Absys, a declarative pro- 
gramming language developed at the University of 
Aberdeen and reported in a number of papers in the 
Machine Intelligence series [7-91. Absys anticipated a 
number of Prolog features, such as “invertability,” 
“negation by failure,” “aggregation operators,” and the 
central role of backtracking. Like Golux it emphasized 
the separation of logic from control and the value of 
changing A by changing C. 

McCarthy’s interpretation of logic programming, ap- 
plied to the map coloring problem [z], fixes the logic 
of the problem and attempts to obtain a desired algo- 
rithmic behavior by changing only the control. This is 
in the Golux spirit. 

McDermott’s recent criticism of the “logicist” position 
on the role of logic in AI [26] seems to be addressed 
primarily to the Golux idea. He advocates a return to 
procedural representations of knowledge, while ac- 
knowledging that representations that have both deno- 
tational (logic) and procedural semantics wo-uld be 
ideal. 
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