Threading DevOps Practices Through a University
Software Engineering Programme

Robert Chatley
Dept of Computing
Imperial College London
rbc@imperial.ac.uk

Abstract—In preparing students for a future career as software
engineers, in addition to learning the fundamentals of Computer
Science, we want them to develop a set of practical skills
and professional ways of working. Current industry trends
are towards the adoption of a DevOps culture, where software
engineers are responsible not only for the design and development
of software systems, but also for their deployment and operation
in production. In this paper, we describe how we have introduced
students to DevOps practices early in their degree programme,
and then woven their use through many different projects as an
underpinning thread. Rather than being taught in isolation, these
professional practical skills are practised repeatedly through the
degree, in different contexts, to the point where they almost
become second nature.

We describe concretely the structure of our introductory
DevOps Lab exercise and how it is assessed, explain how DevOps
skills are applied in later projects, and report on our experience
so far of teaching these techniques in this manner.

Index Terms—curriculum design; devops; software engineering
education

I. INTRODUCTION

Software Engineering curricula have to move with the times
to keep up with an ever-changing discipline and the demands
of industry. Over recent years it has become commonplace
for university Computer Science and Software Engineering
programmes to teach agile development methods [1]-[3].
These methods focus on iterative product development, with
particularly Scrum and eXtreme Programming focussing on
cyclical development in fixed length iterations. As a devel-
opment approach this works well, but industrial teams have
seen a limitation in these types of methods in recent years.
In focussing on the software development, the design and
construction of the system, we are missing out on the delivery
of the software into the hands of the customer or user — the
so-called “last mile” [4].

In industry, the traditional separation between software
developers who produce software and the operations teams that
deploy and run the software in production has been narrowed
as teams work towards a DevOps culture. These disciplines are
brought together to form a single team of engineers responsible
for the design, development and delivery of a software system
[5], [6]. Rather than being just a software development team,
we now have a product team, and this requires engineers
to have a wider range of skills. As well as being able to
refine requirements, write code and create test suites, they now

Ivan Procaccini
Dept of Computing
Imperial College London
ip914 @imperial.ac.uk

need to be familiar with (amongst other things) configuring
build pipelines, provisioning cloud resources, and deploying
software into production.

Rather than being a specialist activity undertaken by a
specialist team, disciplined operational practices are becoming
core to every successful development team. Recent studies
show that adoption of continuous delivery and DevOps prac-
tices is aligned with high performing technology organisations
and business success [7].

As the technical practices associated with DevOps became
commonplace, we wanted to integrate them into our university
curriculum. But, rather than introducing them in a dedicated
module, we have woven a thread through several different
modules and projects, emphasising the underpinning nature
of these practices. Wherever a software development project
is undertaken as part of the course, particularly where it is
tackled as a team, we want the students to be able to draw on
appropriate technical practices to support them in producing
high quality work. We want students to really feel the benefit
of putting these tools and practices into action, and to give
them a set of tools that they can and will use in future projects,
not because we told them to, but because they know they will
help them produce better results.

For many years we have introduced students to version
control on day one of their studies, after which they will use
it almost every day during their degree for every exercise or
project that involves working with code, in the same way that
they would in a professional environment. The goal is not that
we teach students about version control, but instead that they
develop a habit of using it, and that this in turn supports all of
their technical work. Similarly, we do not want the application
of DevOps practices to be a goal in of itself, but rather a means
to an end, supporting students in iteratively delivering complex
projects in a professional manner.

The overall philosophy of our curriculum for Software En-
gineering is inspired by lean learning [8], where we transmit
just enough knowledge for students to gain and apply skills
in a practical setting, and then let them develop those skills
through substantial projects. In this paper, we describe in
detail the format for teaching DevOps practices that we have
developed in line with this philosophy, including details of the
practical exercises, assessment techniques, and connections to
later projects.



II. BACKGROUND
A. DevOps

The term DevOps [9] represents the fusion of cultures,
practices and tools belonging to software development and
infrastructure operations teams.

Even with agile methods becoming the dominant way for
teams to develop software [10], there was still often a divide
between the “makers” of the code (Dev) and its “operators”
supporting applications in production (Ops). There was a
natural conflict between the two teams, as developers were
often seen as optimising for rate of change, whereas operations
were optimising for stability. Bringing the two teams together
to cooperate on reliable, rapid delivery of software has proved
effective and has led to the software engineer’s role evolving
into one that covers the complete software life-cycle, from
design, to development, to production support [11].

To operate effectively in a DevOps environment, a software
engineer must have an increased awareness of the tools and
techniques required to reliably put code into production on a
regular basis. They need to know how to:

1) break down their implementation work into thin slices

that can be integrated and deployed incrementally

2) design and implement a battery of automated tests for

code to pass, giving confidence that each increment is
of suitable quality to go into production

3) configure and maintain production environments for

their application to run in (for example making use of
cloud resources)

4) select and configure tooling to orchestrate this process.
In a nutshell, the objective of DevOps is to minimise, for any
change introduced in a piece of software, the time interval
between committing that change to a version control system
and that change being part of the software the end-user uses.

B. Continuous Delivery

Continuous Delivery (CD) is a practice closely associated
with DevOps [4] and builds on the practice of Continuous In-
tegration (CI). CI involves (a) frequent commits to a common
code repository, (b) automated building and testing of the code,
and (c) generation of reports on build failures. CD then adds
the notion that every successful build should be a potential
release candidate and should be deployable to a production
environment “at the click of a button”. A further extension
to this idea is to completely automate the pipeline and deploy
every change to production (as long as all the quality gates are
passed) with no further human intervention. This more extreme
version of the practice is known as Continuous Deployment.

The steps of a build pipeline are executed in succession
— usually compile, then run unit tests, run integration tests,
deploy to a staging environment, run acceptance tests, and
finally deploy to the production environment — and, on failure
of any step, the whole pipeline stops. The key objective
of Continuous Delivery/Deployment is that of getting code
changes (be they features, configuration updates or bug fixes)
to the end-users in a quick, predictable and reliable fashion,
and failing fast when problems are detected.

RN © localhost:5000 [€ © localhost:5000/2q=shakespeare&format=html

ii Apps Apple [A] Google Maps ® YouTube [ES Notizie BS Apple [A] Google Maps ® YouTube [E5 Notizie B3

Welcome! shakespeare

William Shakespeare (26 April 1564 - 23 April 1616) was an
English poet, playwright, and actor, widely regarded as the greatest
writer in the English language and the world's pre-eminent dramatist.

Enter your query in the box below:

shakespeare

Back to Search Page

(a) Query for shakespeare (b) Result

Fig. 1: Sample interaction with the web app.

III. THE DEVOPS LAB

Our DevOps laboratory exercise (hereafter referred to as
DevOps Lab) is undertaken by all second year undergradu-
ate Computing students approximately one third of the way
through Year 2. By this stage the students are already well
versed in writing code and developing systems, so here we
want to complement these skills with practices focussing
on infrastructure and operations. The core of this exercise
revolves around setting up a pipeline for the building, testing
and deployment of a simple Java web application. We pro-
vide the students with a git repository containing an initial
version of the application, which has some complete but
basic functionality. The details of the web application are
unimportant, but we designed something that allowed a very
simple and immediate form of user interaction: the user typing
a string query into a “search box” and the application returning
a suitable result (see Figure 1). We chose a programming
language that our students were familiar with, and kept the
application as a simple skeleton. This allows the students to
iteratively add simple features, or enrich the user interface,
with small code changes. During the exercise students often
want to make a small change, and see that change reflected in
the user interface in production so that they know that their
new code has successfully deployed. We wanted this to be
achievable without the need to learn a new language or a
complex web framework. The focus of the exercise is on the
build and deployment process, not on the application itself.

After an introductory lecture, students work at their own
pace, following our exercise specification. We also give them
pointers to the official documentation for the suggested tools
and to additional tutorial resources that they can follow to dive
deeper into particular areas of interest. We wanted to strike a
balance between giving enough guidance so that all students
could complete the basics of the task and not revealing too
many details, so that they had to do some research on their own
and develop their skills in reading and understanding technical
documentation.

The task involves iterating on the given application to add
a few features, and at the same time evolving their build
and deployment infrastructure from something simple running
on the local network to a more sophisticated system encom-
passing a range of cloud tools and supporting infrastructure.
The following sections give a detailed overview of the aims,



general organisation and assessment criteria of the DevOps
Lab. The full exercise specification as provided to the students
is available online for further reference’.

A. Aims

The intended learning outcomes for the DevOps laboratory
exercise are for the students to be able to:

« assemble their own build pipeline from scratch

o perform basic system administration tasks on Linux

o demonstrate continuous delivery practices, developing
and deploying an application iteratively and incrementally

« investigate a variety of DevOps tools

« select appropriate tools and techniques to apply to future
software development projects within their degree.

B. Structure

The exercise is divided into three phases:

1) Deploy to a virtual machine on an internal network: For
phase one, the students are asked to set up a virtual machine
on an internal cloud and a three-stage pipeline using GitLab
CI? to build, test and deploy the application to this VM. This
phase involves installing and configuring a GitLab Runner® to
execute the pipeline jobs, triggering a Maven* build with the
relevant configuration file, and writing a shell script to launch
the application cleanly.

2) Improving availability and scaling with an external
Paa$: The deployment environment used in phase one (i.e. the
virtual machine in the departmental cloud) is located within
the university’s internal network, meaning that the deployed
application is not publicly visible and has limited scaling
potential. In this second phase students move their deployment
to a public cloud provider, so that their application is visible
on the public internet. To make this an easy step, we make use
of Heroku®, a popular Platform-as-a-Service provider. Students
can create free accounts and deploy their applications easily
by using some simple tools and adding these to their build
pipeline. The suggested path for the students is to (a) install
the Heroku CLI and use it to initialise a deployment area on the
Heroku platform, (b) write the necessary Heroku configuration
files to launch their application, and (c) update the pipeline to
also deploy the application to Heroku whenever the previous
pipeline stages pass. We recommend that the students retain
the deployment to the VM as a separate stage, so as to have
a staging environment as well as a production one.

Overall, these technologies together are representative of a
tech-stack the students might have to deal with later on in
a future career as software engineers, but did not present an
overly steep learning curve as long as we provided appropriate
guidance. The selection we made was based on what was
simple to use but still representative of what might be used
in an industry environment, and freely available (we did not

Thttps://www.doc.ic.ac.uk/ ip914/teaching/devops-spec.pdf
Zhttps://about.gitlab.com/

3https://docs.gitlab.com/runner/

“https://maven.apache.org/

Shttps://www.heroku.com/what

want students to have to enter their credit card details to sign
up to any services).

3) Packaging and portability with containerisation: We
motivate the third phase by giving the students a new feature
to implement. We ask for the application to be able to provide
its results not only in HTML, but also in PDF. We suggest
that this be done by calling out to an external tool — pandoc®.
This library is not provided in the Heroku environment,
and so we introduce the idea of packaging the application
together with all of its dependencies in a container image,
and deploying that to the cloud platform. The students are
presented with Docker’, and given auxiliary online materials
to quickly gain a working knowledge of the tool. They are
then in a position to write a simple Dockerfile for their
application and its dependencies. They are finally guided to
change their Heroku app configuration so as to be able to
deploy their containerised application. If everything goes well,
their production application should allow them to download
PDFs of their query results.

C. Sys-Admin Tasks

The virtual machine that we provide to the students is in
a clean state. We do not pre-install the tools they need. This
means that they must perform some basic system administra-
tion tasks, including installing packages, creating users etc.
Working in a VM environment offers a good way for students
to familiarise themselves with these sorts of tasks, which they
cannot normally perform on our locked-down lab PCs.

D. Extensions

Once they have worked through the three phases of the
exercise, we encourage the students to explore the extensive
set of features offered by GitLab pipelines, ranging from
convenient configuration capabilities, to Shared Runners, to
Google Kubernetes Engine® and Prometheus’ integrations. We
also suggest that they investigate other comparable CI/CD
tools, like Jenkins!® or Circle CI'' and consider migrating
part of their pipeline to use a different tool. This allows them
to see that the basic process and principles they learnt are
transferable, even when a different set of tools is chosen, and
gives them confidence in assessing and selecting appropriate
technology for future projects.

E. Logistics and Assessment

The DevOps lab takes two weeks to run in total, and runs
alongside other modules that the students are taking. The
laboratory exercise itself runs over one academic week (i.e.
five days) and is supported by 6 hours of laboratory sessions
distributed over three days, during which help is available from
staff and teaching assistants. The students however are free to

Shttps://pandoc.org/
7https://www.docker.com/resources/what-container
8https://cloud.google.com/kubernetes-engine/
“https://prometheus.io/

10https://jenkins.io/

https://circleci.com/product/



work on the exercise in their own time if they prefer. We ask
them to work in groups of 4, although if we had a smaller
class we might recommend working in pairs. Then during
the following week, the work of each group is assessed by
a marker during a 20-minute live review session. Students can
book a convenient slot for them using an online diary. As of
January 2020, with 52 groups and three markers working in
parallel to assess roughly the same number of groups each,
the whole assessment process took a total of 6 hours (so 18
assessment hours in total, spread over three days). During each
live review, the marker and the group members discuss:

o Continuous Deployment - do failing tests successfully
block a bad change from being deployed to production?
To answer this, the students are asked to demonstrate that,
after introducing a change that forces one of their tests
to fail, their pipeline stops at the test stage, and no new
deployment occurs until the tests are fixed.

o Docker and Heroku - what are the benefits of deploying
a containerised application? And what are those of de-
ploying to a PaaS provider like Heroku? The students are
expected to show an understanding of the advantages of
these technologies in terms of portability, maintainability,
scalability and service availability.

o Scripting solutions - how is the application deployed
to the virtual machine? Is sensitive data (like Heroku’s
API key) exposed as plain text or is it rather stored in
a secret variable? The configuration files and associated
scripts are reviewed, with particular focus on how the
Java application is launched during the VM deployment.
Ideally, the application is launched in the background,
with standard output and error streams redirected to a
file. A strategy should also be devised for cleanup of old
instances of the application on every new deployment.
Some security aspects are also considered with respect
to the VM firewall (did the students create a firewall ex-
ception for the port their app listens to, or did they simply
disable the firewall entirely?), the system privileges of the
GitLab Runner user (did the students grant root privileges
to this user to run certain tasks?), etc.

« Extensions - At the end of the review session, each group
is invited to showcase any work completed beyond the
exercise’s specification. This might be UI and/or testing
improvements to the application itself, or any of the
extensions to the deployment pipeline discussed earlier in
Section III-D. Any extra work falling in either of these
broad categories is considered for credit, but given the
aims of the exercise, we decided to award more marks
for CI/CD-specific extensions.

IV. LATER PROJECTS

Having completed the DevOps Lab exercise, we expect
students to be able to set up a CI/CD workflow for projects
related to other courses in their degree. In particular, we
explicitly ask students to demonstrate DevOps practices during
the two group projects that follow later in Year 2. The first
of these projects supports the Compilers course, and involves

writing a compiler for a simple programming language from
scratch. A compiler obviously takes quite a different form from
the simple web application discussed previously, but students
are able to transfer their knowledge and skills and set up
tests and a pipeline appropriate for the design of a compiler.
Later in the year the students undertake a more free-form web
development project, in a module where the focus is on agile
product development and human-centred design. Students are
free to use whatever technology they choose, but we require
them to demonstrate their use of continuous delivery practices
and regular progress through working software, which they
are to demo on a weekly basis in a production environment.
Again, students are able to reuse, and build upon, the skills
from the DevOps Lab to support this.

The following year, as Year 3 students, they will undertake
a larger team project, again to be delivered iteratively. Each
team works on a different project with one or more clients
and adopts a wide variety of tools and platforms as best fits
the software they are building. At this point we do not make
it an explicit requirement that teams follow and demonstrate
DevOps practices, but we observe that almost every team sets
up an appropriate infrastructure to help them build, test and
release their software, having seen the value of this in their
Year 2 projects.

V. DISCUSSION AND CONCLUSIONS

We are certainly not the first university to introduce the
topic of DevOps into its Computer Science curriculum. Several
other universities advertise modules on this topic, including
Glasgow Caledonian University'?, Cardiff University!? and
Johns Hopkins'*. These modules often target masters-level
students and are typically organised as complete modules, with
lectures, tutorials and final exams. This allows for a more in-
depth discussion of the theory than with our approach, but in
doing so perhaps presents the topic as something “advanced”
to be learned in isolation after more fundamental software
engineering courses have been completed. In contrast, our
approach favours a more hands-on introduction to DevOps
practices earlier in the degree followed by continuous appli-
cation of the practices through subsequent projects, presenting
it as something fundamental on top of which other software
engineering practices can sit.

Work at the University of Luxemburg [12] seems closer to
what we have done, given its practical focus, but it is still
structured as a traditional university module that spans several
weeks. As described in Section III-E, the DevOps Lab lasts a
single week (or two, if we consider the code review sessions
to be part of the learning process), which we have found to be
just the right amount of time for our students to pick up the
essentials of DevOps, and build a basic set of skills. After this,

2https://www.gcu.ac.uk/study/modules/info/?Module=M31325687

Bhttps://www.cardiff.ac.uk/study/undergraduate/courses/2020/applied-
software-engineering-bsc

https://apps.ep.jhu.edu/course-homepages/3562-605.609-devops-
software-development-garonzik



students are equipped to develop their skills and knowledge
through application in different modules across the curriculum.

Another interesting approach is to teach DevOps practices
by means of a dedicated web-based platform, for example
ALECSS [13] or DevOpsEnvy [14]. In the case of De-
vOpsEnvy, the platform acts as a facade for a variety of
open source tools, such as Jenkins, Docker and SonarQube
, hiding away their configuration complexities. This way of
lowering the barrier to entry for first experiments sounds
enticing; however, in our case we wanted to expose students
directly to the real tools. We wanted to support re-use of the
acquired skills in many varied projects, which would likely
not be possible if too many of the details were abstracted.

We have consciously decided not to merge the teaching
of technical DevOps practices with that of agile development
processes and human-centred design principles. We found that
students found it hard to learn all of these concepts together
in one project, and so the discussion of agile development and
HCD is postponed until the summer term of Year 2. By this
time the students are confident working with the technical side
of writing tests and setting up build and deployment pipelines,
leaving them more head space to think about designing a
product and managing an agile project.

In our DevOps Lab we aim to train the students to read
and understand the official documentation and configuration
settings of the tools they choose. This has worked well over
the past two runs of the DevOps Lab: after a few hours
(on average) of a moderately steep initial learning curve, the
students show a remarkable improvement in their ability to
navigate new documentation and get started with new tools,
as they can draw from the experience of having already gone
through the whole configuration and set-up processes with
similar services. Students who took part in the DevOps Lab in
Spring 2019 and undertook an internship over the following
summer reported that the skills they had acquired during the
course helped them speed up the technical on-boarding process
in their respective companies and fit easily into the ways of
working of a professional team.

Overall we are encouraged by the results of using a short
practical exercise early on in the degree programme to intro-
duce DevOps skills and techniques, which we believe to be
fundamental to engineering quality software. Although tools
and technologies will inevitably change with time, we hope
that instilling students with these ways of working will serve
them well during their future careers as software engineers.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

REFERENCES

M. Kropp, A. Meier, and R. Biddle, “Teaching agile collaboration skills
in the classroom,” in 2016 IEEE 29th International Conference on
Software Engineering Education and Training (CSEET), April 2016,
pp. 118-127.

Z. Masood, R. Hoda, and K. Blincoe, “Adapting agile practices in
university contexts,” Journal of Systems and Software, vol. 144, pp.
501 — 510, 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121218301419

J. Campbell, S. Kurkovsky, C. W. Liew, and A. Tafliovich, “Scrum and
agile methods in software engineering courses,” in Proceedings of the
47th ACM Technical Symposium on Computing Science Education, 2016,

pp. 319-320.
J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2019 Accelerate
State of DevOps Report,” Google, Tech. Rep., 2019. [Online]. Available:
http://cloud.google.com/devops/state-of-devops/

G. Kim, P. Debois, J. Willis, and J. Humble, The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in Technol-
ogy Organizations. 1T Revolution Press, 2016.

N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean
Software and DevOps Building and Scaling High Performing Technology
Organizations, 1st ed. IT Revolution Press, 2018.

R. Chatley and T. Field, “Lean Learning - Applying Lean Techniques to
Improve Software Engineering Education,” in 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering: Software Engineering
Education and Training Track (ICSE-SEET), May 2017, pp. 117-126.
R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What
is DevOps? A Systematic Mapping Study on Definitions and
Practices,” in Proceedings of the Scientific Workshop Proceedings
of XP2016, ser. XP 16 Workshops. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2962695.2962707

N. Abbas, A. M. Gravell, and G. B. Wills, “Historical roots of agile
methods: Where did “agile thinking” come from?” in Agile Processes
in Software Engineering and Extreme Programming, P. Abrahamsson,
R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan, and X. Wang, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 94-103.

G. Kim, K. Behr, and G. Spafford, The Phoenix Project: A Novel about
IT, DevOps, and Helping Your Business Win, 1st ed. IT Revolution
Press, 2013.

E. Bobrov, A. Bucchiarone, A. Capozucca, N. Guelfi, M. Mazzara, and
S. Masyagin, “Teaching DevOps in Academia and Industry: Reflections
and Vision,” in Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment, J.-M.
Bruel, M. Mazzara, and B. Meyer, Eds. Cham: Springer International
Publishing, 2020, pp. 1-14.

M. Ohtsuki, K. Ohta, and T. Kakeshita, “Software Engineer Education
Support System ALECSS Utilizing DevOps Tools,” in Proceedings
of the 18th International Conference on Information Integration and
Web-Based Applications and Services, ser. iiWAS 16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 209213.
[Online]. Available: https://doi.org/10.1145/3011141.3011200

G. Rong, S. Gu, H. Zhang, and D. Shao, “DevOpsEnvy: An Education
Support System for DevOps,” in 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEET), Nov 2017, pp.
37-46.



