Nimbus: Improving the Developer Experience for Serverless
Applications

Robert Chatley
Imperial College London
London, United Kingdom

rbc@imperial.ac.uk

ABSTRACT

We present Nimbus, a framework for writing and deploying Java ap-
plications on a Function-as-a-Service (“serverless”) platform. Nim-
bus aims to soothe four main pain points experienced by developers
working on serverless applications: that testing can be difficult, that
deployment can be a slow and painful process, that it is challenging
to avoid vendor lock-in, and that long cold start times can introduce
unwelcome latency to function invocations.

Nimbus provides a number of features that aim to overcome
these challenges when working with serverless applications. It uses
an annotation-based configuration to avoid having to work with
large configuration files. It aims to allow the code written to be
cloud-agnostic. It provides an environment for local testing where
the complete application can be run locally before deployment.
Lastly, Nimbus provides mechanisms for optimising the contents
and size of the artifacts that are deployed to the cloud, which helps
to reduce both deployment times and cold start times.

Video: https://www.youtube.com/watch?v=0nYchh8jdY4

CCS CONCEPTS

- Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Development frameworks and
environments.

KEYWORDS
serverless, developer tools, developer experience

ACM Reference Format:

Robert Chatley and Thomas Allerton. 2020. Nimbus: Improving the De-
veloper Experience for Serverless Applications. In 42nd International Con-
ference on Software Engineering Companion (ICSE ’20 Companion), May
23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3377812.3382135

1 INTRODUCTION

Function-as-a-Service technologies such as AWS Lambda are of-
ten gathered together under the term “serverless” and since 2014,
each of the major cloud providers has developed a serverless of-
fering. Rather than deploying and running monolithic services,
or dedicated virtual machines, users are able to deploy individual

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20 Companion, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7122-3/20/05.

https://doi.org/10.1145/3377812.3382135

Thomas Allerton
Starling Bank
London, United Kingdom
thomasjallerton@gmail.com

functions, and pay only for the time that their code is actually exe-
cuting. Serverless has become a popular technology for developers
to use in building and deploying applications, and can significantly
change how client/server applications are designed, developed and
operated [2].

A serverless application architecture often leads to systems com-
prised of many separate functions (in our experience often tens or
hundreds of functions). Much of the application infrastructure is
handled by the cloud provider, with developers only required to
write handlers to be triggered by events such as HT TP requests, file
uploads, or messages appearing on a queue. While breaking down
applications into very small components definitely has its benefits,
a lot of the structure of the overall application can be hidden, and
it becomes difficult to run the system as a whole without deploying
it to the cloud. Rather than just being a hosting platform, the cloud
infrastructure becomes an integral part of the application.

Development tools specifically targetting serverless are still in
their infancy[3]. Multiple surveys have been performed asking
developers working on serverless applications what they consider to
be the most significant challenges [4, 5]. Some of the most common
answers were: that testing can be difficult, that deployment can be
a slow and painful process, that it is challenging to avoid vendor
lock-in, and that long cold start times can introduce unwelcome
latency to function invocations.

The authors have also experienced these problems first hand,
notably during an industrial project that involved developing a
Java REST API deployed on AWS Lambda. While working on this
application, the most time-consuming activity was not getting the
business logic right, but trying to successfully deploy code and have
it interact correctly with the cloud environment. Often the applica-
tion was deployed, a configuration error was revealed, fixed, and
then another deployment performed. This process was repeated
until everything was configured correctly. As each deployment typ-
ically took several minutes, this wasted time quickly accumulated.
The errors that caused the issues ranged from typos in the large and
complex deployment configuration files, to incorrect permissions
set for the functions so that they could not interact with other cloud
resources such as datastores.

Another pain point was the limit set by the cloud provider for the
maximum file size that can be uploaded when deploying a function.
It is not unreasonable for a provider to set such a limit, but as the
application grew, with all the functions and their dependencies
compiled together into one unit, the file size naturally grew larger
and larger. Eventually, the limit was reached and the entire codebase
had to be restructured to split it into a number of distinct modules
(each built as its own Maven project and deployed separately) before
further development could proceed.

https://www.youtube.com/watch?v=0nYchh8jdY4
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1145/3377812.3382135

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

2 NIMBUS

Nimbus is a framework for writing serverless applications in Java
and deploying them to AWS Lambda. The philosophy of Nimbus is
that developers should be able to think about and work with their
application as an integrated whole, even though the component
parts will be deployed separately as a set of independent functions.
Nimbus provides a number of features that aim to overcome the
identified challenges when working with serverless applications. It
uses an annotation-based configuration to avoid having to work
with large configuration files. It aims to allow the code written to
be cloud-agnostic, so that it could easily be deployed to a differ-
ent cloud provider in future. It provides an environment for local
testing where the complete application can be run locally before
deployment. Lastly, Nimbus provides mechanisms for optimising
the contents and size of the artifacts that are deployed to the cloud.
Nimbus is implemented in Kotlin, and can be included in any
Java project as a Maven dependency. It provides Maven integration
to allow deployment tasks to be handled within a standard Java
development environment. Java was targeted due to its popularity
in enterprise development. We believe that the concepts used in
Nimbus could translate to other languages, if equivalent tooling was
developed, but it is not a goal of Nimbus to be language agnostic.

2.1 Annotation-based Configuration

Deploying a serverless application typically requires a configuration
file that describes the cloud resources required. For example with
AWS Lambda, this is typically done in the form of a CloudFormation
template [1]. As the configuration is separate from the associated
code, it can be difficult to determine from the code how a function
will be deployed. When this configuration is written manually it is
prone to errors, and many of these are not found until a deployment
is attempted. An error in a CloudFormation template will cause an
AWS stack update to be aborted, with any changes up to that point
automatically rolled back. If the configuration contains more than
one error, only the first error is reported. This means that if there
are many errors, multiple deployments may be required to discover
and fix them all. As deployments usually take several minutes, the
time taken to fix multiple errors can significantly increase the time
taken to deploy an application successfully.

With Nimbus, instead of one large configuration file, functions
and resources are defined by placing annotations on classes and
methods. This drastically reduces the amount of configuration re-
quired to be written by the user. Additionally, use of annotations
allows for type checking, meaning that a large class of errors can
now be caught at compile time rather than at deployment time.

To deploy a particular Java method as a Lambda function, and
configure an appropriate event on which it should be triggered, we
simply apply the appropriate Nimbus annotation to the method
concerned, and then at deployment time, Nimbus will generate
the relevant CloudFormation template and use this to deploy our
function and any associated resources.

Nimbus can create functions with many different types of event
triggers. HTTP functions are triggered when an HTTP request is
made to a particular endpoint. To create an HTTP function, we
annotate a method with @HttpServerlessFunction and define a
unique URL path and HTTP method.

Chatley and Allerton

The method can have at most two parameters. If header, path
or query parameters need to be processed, one of these should be
of type HttpEvent. The second method parameter available is one
with a domain specific type which will be automatically deserialised
from the JSON body of the request.

The example in Listing 1 shows configuring an HTTP API end-
point to receive POST requests to create Customer records in an
associated data store. The code also uses the @UsesDocumentStore
annotation which will cause Nimbus to set up an appropriate data
store in the cloud (for example using DynamoDB in AWS) and
set appropriate permissions to allow the function to write to the
relevant store when it is invoked. Nimbus generates the CloudFor-
mation template based on type safe annotations, which is much
more reliable, and much more concise, than writing the configura-
tion by hand.

import com.nimbusframework.annotations.UsesDocumentStore;
import com.nimbusframework.annotations.HttpMethod;

import com.nimbusframework.annotations.HttpServerlessFunction;
import com.nimbusframework.clients.ClientBuilder;

import com.nimbusframework.clients.DocumentStoreClient;

public class CustomerApi {

private DocumentStoreClient<Customer> customerStore =
ClientBuilder.getDocumentStoreClient (Customer.class);

@HttpServerlessFunction(method=HttpMethod.POST,path="customers")
@UsesDocumentStore (dataModel=Customer.class)
public boolean addCustomer (Customer newCustomer) {
try {
customerStore.put(newCustomer);
return true;
} catch (Exception e) {
return false;
}
}
)

Listing 1: Configuring an API endpoint using annotations.

2.2 Cloud-agnostic Application Code

The example in Listing 1 shows that there is nothing AWS-specific
in the application code. Nimbus provides a layer of adapters to con-
nect to and interact with the various AWS-specific datastores (for
example DocumentStoreClient). The annotation processor that
runs at deployment time will generate AWS-specific CloudForma-
tion templates, but this could easily be swapped out for a generator
targetting another platform. At the time of writing, only AWS is
supported, but we hope to look at generating configurations for
Azure or IBM’s Cloud Functions in the near future.

Another benefit of insulating the application code from directly
referencing the cloud provider’s services and APIs is that Nimbus
can transparently switch out the cloud-based data stores for local
alternatives when we want to run the application locally.

2.3 Local Testing

With existing platforms, the primary ways of testing functions are
either by testing them in isolation using unit tests, or by deploying
the system to the cloud in a development environment and test-
ing it there. This is slow and also incurs additional hosting costs.
Nimbus can deploy our full application locally to allow for local

Nimbus: Improving the Developer Experience for Serverless Applications

‘_

Document
Store

34—

Key-Value
Store

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

Figure 1: Example architecture for a serverless chat application.

integration testing and then deploy the same code to a production
environment in the cloud without any further changes. With exist-
ing tools and frameworks (for example AWS SAM!) it is possible
to run a function locally, but it is not possible to create a mirror of
the complete environment, including datastores, queues, static web
pages, websockets etc. Nimbus supports all of these locally.

Local deployment allows for a development experience much
closer to that of traditional web-development, where we run the
application locally, load it up in a browser, and explore directly to
see how our new feature looks and feels. Working locally allows for
much faster feedback than deploying to the cloud after every change.
The local environment also supports automated tests which can be
run on a developer’s workstation, or as part of a build pipeline.

2.4 Optimising JAR Size

Nimbus includes a deployment plugin that can optimise the size of
deployed JARs by analysing the code’s dependencies and including
in the JAR only the classes that are actually required. This optimised
JAR size helps to reduce cold start times and to avoid the size limit
on files that can be deployed.

Cold starts are a common source of latency in serverless systems.
To handle a function invocation it may be necessary to spin up a
new container, start the language runtime, and load the function,
before it can be executed. The JVM is already slow to start compared
with some other language runtimes, but the problem is exacerbated
if we have to load large JARs. Building smaller JARs improves the
cold start times [6]. In order to deploy a Java function to AWS
Lambda the function must be compiled and packaged into a shaded
JAR containing all the function’s dependencies as well as our own
code. The Maven Shade plugin? does this by combining all the JARs
that our function depends on together into one big JAR, even if
we only use a few classes. Nimbus analyses the code at a finer-
grained level so that it can build a separate JAR for each serverless

!https://docs.aws.amazon.com/serverless-application-model
Zhttps://maven.apache.org/plugins/maven-shade-plugin/

function, containing only the subset of classes that it actually needs
in order to run. For example if we depend on Spring Framework,
but only because we use the StringUtils class, Nimbus will include
the Spring StringUtils class in our deployment JAR, but will omit
any other parts of the Spring Framework. This analysis also works
for transitive dependencies.

Additionally, Nimbus can analyse our source code so that even
if we define all of our functions in one project (which is much more
convenient for development and local testing), when we deploy,
Nimbus can detect which functions have changed, and will build
and deploy only those particular functions. This again helps a lot
with the turn-around time for deployment, especially in big projects.

24.1 Evaluating effectiveness of JAR optimisation. To evaluate the
effectiveness of Nimbus’s JAR optimisation, several different func-
tions with different types of dependencies were created and pack-
aged both using the Maven Shade plugin, which creates one all
encompassing JAR, and using Nimbus, which creates separate JARs
for each function. The results are shown in Table 1.

Functions Packaged | Maven Shade | Nimbus

Plugin Assembler
1 function, no deps 28,616 KB 589 KB
1 function, using SQS 28,616 KB 8070 KB

2 functions, one uses | 28,616 KB 8087.5 KB (per
SQS, the other SNS JAR)
2 functions, using small | 34,199 KB 5198.5 KB (per
subsets of separate libs JAR)
Table 1: Comparing JAR sizes produced by different tools

The Maven Shade Plugin always builds a large JAR when packag-
ing a Nimbus project, as it needs to include the Nimbus framework.
It pulls in the whole library, even if we only need the annotations
and clients. The Nimbus assembler cuts this down as it only pulls in

https://docs.aws.amazon.com/serverless-application-model
https://maven.apache.org/plugins/maven-shade-plugin/

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

the parts of the Nimbus library that are required post-deployment,
stripping out any unused clients for AWS services, the testing in-
frastructure, etc.

Thus, when using the Nimbus framework, using the Nimbus
assembler drastically reduces the size of the packaged JAR. When
compared to the Maven Shade Plugin, the Nimbus assembler is also
beneficial when different functions pull in separate dependencies.
The examples in Table 1 where we package two functions show a
significant reduction in the size of each JAR. Remember that with
Nimbus a change to one function means that only one JAR has
to be built and deployed. Unchanged functions do not need to be
redeployed, which is another defence against cold starts. This could
be particularly effective in a project with a large number of different
functions with varying dependencies - for example, if some interact
with a relational database, some with a DynamoDB table, and some
focus on application logic. In this case, when packaged with Nimbus
Assembler each function will have a reduced package size compared
to the one large shaded JAR created by the Maven Shade Plugin.

3 DEVELOPING WITH NIMBUS

To show how a more complex system can be built and deployed with
Nimbus we have developed a simple chat application. The chat app
has simple a web frontend (HTML and JavaScript) allowing users to
log in and send messages to other online users. Sending messages
is handled by a WebSocket-based backend API. Registering new
users is handled by a REST API, invoked when an HTML form on
the frontend is submitted.

Figure 1 shows an architecture diagram for the chat application.
When deployed to the cloud, the web frontend is hosted in and
served from a file storage bucket (S3). The WebSocket API comprises
three functions: one to handle connections, one for disconnections,
and one for sending messages. Each of these is deployed as a sep-
arate lambda function. The REST API has just one function that
registers new users, called via HTTP POST requests. Due to the
stateless nature of serverless functions, data stores are needed to
persist data between requests. A key-value store is used to map Web-
Socket connection IDs to usernames, and a document store to store
data on users, including their current active WebSocket. Three Web-
Socket topic endpoints are needed for the API These are $connect,
to handle incoming WebSocket connections, $disconnect, to han-
dle WebSocket disconnections (on a best-effort basis) and finally
$sendMessage to send messages between active users.

All of this can be configured using Nimbus annotations in the
Java code, and the full application can be run and tested locally,
before deploying it into the cloud. The full code for the chat appli-
cation can be found in the Nimbus examples GitHub repository>.

4 COMMUNITY RESPONSE

Nimbus was released in April 2019, with the website, source code
and documentation made public4, as well as an article written on
the Medium platform to advertise it to developers. Subsequently
the project accumulated over 30 stars on GitHub. Shortly after its
release, an article on Nimbus appeared on the InfoQ news site [7],
which has a very large readership among software developers.

3https://github.com/thomasjallerton/nimbus-examples
*https://www.nimbusframework.com/

Chatley and Allerton

Dustin Schultz, Lead Software Engineer and InfoQ Editor, in a
personal communication, wrote: “I've been doing Java development
for about 15 years now and I've run into exactly the problems that
your framework is trying to solve. I can vividly remember creating a
simple CRUD-based, function-as-a-service / serverless API at one of
the companies I worked for and how many moving parts there were
to create just a simple serverless-based API. I also remember how
painful the iterative development process was, not to mention the
testing (or lack thereof). I had used a combination of Terraform and
AWS SDKs to create my API but when it was all completed I wasn’t
really happy with how the whole development process had played
out. As a team lead, I thought to myself that some of the junior
members of my team would struggle to put all the pieces together,
especially the ones that didn’t have any devops or cloud experience.
What I really liked about your framework is that it abstracted away
a lot of these moving parts. I loved the use of annotations as it had
a very Spring-Framework-like feeling to it. I also thought the local
deployment and testing was a great idea. With your framework,
you can really improve the speed of iteration ... I was quite surprised
that there wasn’t already a project like [Nimbus] in development
from some of the major players like Spring”

5 CONCLUSIONS AND FUTURE WORK

Nimbus provides a smoother developer experience when develop-
ing applications targetting a serverless platform. When developing
applications with Nimbus that provide REST APIs and use a doc-
ument store or a key-value store it is very easy to forget that you
are writing a serverless application and not a more traditional
monolithic server. In general this is a good thing, as it allows the de-
veloper to work quickly, and to concentrate on the business logic of
their application, rather than the details of how it will be deployed.
However there is a potential danger that the local infrastructure
provides only a relatively simple simulation of the cloud infrastruc-
ture and storage services. If developers want to fine tune specific
details then they might need more control than Nimbus currently
offers, especially given its aims of being cloud agnostic.

The next obvious step for development is to allow additional
cloud platforms beyond AWS to be targeted by the same applica-
tion, by generating different configuration and interacting with the
appropriate APIs to trigger deployment.

REFERENCES

[1] 2019. AWS CloudFormation - Infrastructure as Code & AWS Resource Provisioning.
https://aws.amazon.com/cloudformation/

[2] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic and
Architectural Impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 884-889.

[3] Kyriakos Kritikos and Pawel Skrzypek. Dec 2018. A Review of Serverless Frame-
works. IEEE, 161-168. https://doi.org/10.1109/UCC-Companion.2018.00051

[4] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
Mixed-method Empirical Study of Function-as-a-Service Software Development
in Industrial Practice. Journal of Systems and Software 149 (March 1, 2019), 340-359.
https://doi.org/10.1016/j.jss.2018.12.013

[5] Andrea Passwater. 2018. 2018 Serverless Community Survey: Huge Growth
in Serverless Usage. https://serverless.com/blog/2018-serverless-community-
survey-huge-growth-usage/

[6] Hussachai Puripunpinyo and M. H. Samadzadeh. May 2017. Effect of Optimizing
Java Deployment Artifacts on AWS Lambda. IEEE, 438-443. https://doi.org/10.
1109/INFCOMW.2017.8116416

[7] Dustin Schultz. 2019. Nimbus: New Framework for Building Java Serverless
Applications. https://www.infoq.com/news/2019/04/nimbus-serverless-java-
framework/

https://github.com/thomasjallerton/nimbus-examples
https://www.nimbusframework.com/
https://aws.amazon.com/cloudformation/
https://doi.org/10.1109/UCC-Companion.2018.00051
https://doi.org/10.1016/j.jss.2018.12.013
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://doi.org/10.1109/INFCOMW.2017.8116416
https://doi.org/10.1109/INFCOMW.2017.8116416
https://www.infoq.com/news/2019/04/nimbus-serverless-java-framework/
https://www.infoq.com/news/2019/04/nimbus-serverless-java-framework/

