Lean Learning - Applying Lean Techniques to
Improve Software Engineering Education

Robert Chatley
Imperial College London
180 Queen’s Gate
London, UK
rbc@imperial.ac.uk

Abstract—Building a programme of education that reflects and
keeps pace with industrial practice is difficult. We often hear of a
skills shortage in the software industry, and the gap between what
people are taught in university and the ‘“real world”. This paper
is a case study showing how we have developed a programme
at Imperial College London that bridges this gap, providing
students with relevant skills for industrial software engineering
careers. We give details of the structure and evolution of the
programme, which is centred on the tools, techniques and issues
that feature in the everyday life of a professional developer
working in a modern team. We also show how aligning our
teaching methods with the principles of lean software delivery has
enabled us to provide sustained high quality learning experiences.
The contributions of this paper take the form of lessons learnt,
which may be seen as recommendations for others looking to
evolve their own teaching structures and methods.

Keywords-education; software engineering; curriculum design;

I. INTRODUCTION

In order to provide training in the types of software en-
gineering methods and practices that are used in industrial
development projects, many universities and other higher-
education institutions are striving to bring modern industrial
software development techniques into the classroom. Keeping
pace with rapid changes in industrial practice has required
changes in the way software engineering is taught. Like any
such institution, Imperial College has been faced with the
challenge of updating and evolving its software engineering
education to prepare its students for modern industrial careers.
This includes teaching modern development methods and
giving students hands-on experience of putting those methods
into action through practical work [1], [2]. This evolution
has not been easy but, through continuous experimentation
and iterative improvement, we believe that we have evolved a
software engineering programme that strikes a good balance
between teaching, learning and assessment.

One of the main challenges we have faced is to teach
software engineering in a way that allows us to give sustained,
high-quality feedback and guidance to all of our students, even
in the face of large class sizes. In our case we have classes of
up to 150 students; class sizes at some other institutions are
larger still. A key lesson we have learnt from iterating on our
course formats is that to achieve high quality education, we

Tony Field
Imperial College London
180 Queen’s Gate
London, UK
ajf@imperial.ac.uk

must aim for lean learning, with fast feedback and short cycle
times, working in small frequent increments. In other words,
we argue that the learning experiences that we provide for our
students should be aligned with the principles promoted by the
agile methods that we are trying to teach, and which industry
has adopted widely for the production of quality software [3].
Properly administered, the application of lean principles to
content delivery and to assessment reduces the burden on both
students and instructors, and we believe that at the same time
this can enhance the learning experience.

The objective of this paper is to describe our experiences,
both successes and failures, documenting what we have learnt.
Although Imperial’s student intake, learning culture and degree
structures may be very different from other institutions, we be-
lieve that the principles we have adopted are widely applicable
and that they scale well to large classes for which, invariably,
there is limited teaching support.

The contributions of this paper are in the form of the lessons
learnt, which may be seen as recommendations for others
looking to evolve their own teaching structures and methods.
In summary these are:

o Students should learn by doing and, wherever possible,
software engineering principles should be assessed in the
context of practical work, rather than by regurgitating
material taught or extracted from text books.

o Assessment should be done “little and often”. Frequent,
small assignments align perfectly with the principles of
modern agile development and facilitate sustained high-
quality feedback. We believe that setting many small
goals avoids large peaks of exertion and stress for both
students and staff, and that this allows students to learn
more than they might otherwise, at a sustainable pace.

e Good tools reduce the assessment burden and instil good
practice in the students” workflows. Time spent on tooling
and automation is therefore time well spent.

« Industry engagement in the teaching of software engineer-
ing is essential. Instructors and guest contributors who are
themselves practising software engineers are often much
better placed to teach practical software engineering skills
than pure academics, and naturally lend a greater sense
of relevance to the material being taught.



We revisit these points in more detail in the discussion section
at the end of the paper (Section VII).

The remainder of this paper is structured around four
key components of software engineering education that have
guided the development of our own teaching programmes.
The first concerns the set of core skills that we expect
every student to acquire prior to learning wider aspects of
software engineering, which includes the ability to program
“in the small” (Section III). The second concerns the transition
between programming “in the small” and developing, testing
and deploying large software systems; we refer to this as
as software engineering design (Section IV). The third is
team project work, including project management (Section V),
which is about working together to build a product or service
that fulfils the needs of particular users. The fourth is industrial
practice and experience (Section VI), which is about providing
students with the tools to appreciate, explore and debate issues
facing industrial software engineers in their daily work. It
so happens that Imperial’s curriculum has one major module
associated with each of the last three aspects described, but
the focus of the paper is the curriculum content and delivery
methods, not the structure of individual modules.

II. SOFTWARE ENGINEERING EDUCATION

The majority of students entering a specialist computer
science or software engineering programming are looking to
gain industry-relevant skills and knowledge to further their
future careers in the growing technology sector. Our learning
objectives in designing a programme must then be aligned
to and informed by the needs of industry. The software
engineering content of our degree programmes is centred
on the four components outlined above (core skills, design,
group work and industrial practice). In the following sections
we detail an approach for teaching these topics, and most
importantly, allowing students to practise skills, and to obtain
feedback on their progress.

It should be noted that there are many other aspects of
the computer science curriculum that one could consider to
fall under the umbrella of software engineering, but that we
do not address here. Whilst our own curriculum has many
courses addressing topics like formal methods (formal specifi-
cation, verification, model checking, etc.), software security,
performance engineering and so on, this paper focuses on
the more practical aspects of software design and delivery,
as broadly exemplified by the first eight elements of the
“SE. Software Engineering” component of the ACM Computer
Science Curricula (2013) [4].

A. Industrial Landscape

Together with more formal surveys [3], a quick search
online for software development job adverts will demonstrate
that the vast majority of software development teams working
today are employing some kind of agile method (or at least
proclaiming to do so). The aim of these methods is to improve
efficiency and effectiveness in teams delivering software.

There are several popular development methods or processes
that come under the banner of agile software development.
Extreme Programming (XP) [5] is one of the original agile
methods, and includes project management techniques as well
as technical practices to help to deliver reliable software
quickly. Scrum [6] concentrates more on the project manage-
ment methods, and does not talk specifically about building
software. Both XP and Scrum focus on delivering software
iteratively and incrementally in fixed length cycles - typically
timeboxes of between one and three weeks.

Kanban [7] is a more recent method influenced by Japanese
manufacturing techniques, particularly from companies like
Toyota, that aims for a continuous flow of work. It is based
on the principles of lean manufacturing [8] that focuses on
eliminating waste to increase throughput, but does not work
in a regular iteration cycle.

In recent years, continuous delivery [9] has become popular
and widely adopted, where every individual change to a piece
of software should produce a potentially shippable product
increment. Through the use of automation, the batch size of
changes can be made small, reducing lead time to delivery
without compromising engineering rigour or quality.

B. Staffing

Classes in research-led universities are almost always taught
by academics, but few academics have personal experience
of developing software in an industrial environment. While
many academics, particularly computer scientists, do write
software as part of their research work, the way in which
these development projects are carried out is normally not
representative of the way that projects are run in industrial
settings. Researchers predominantly work on fairly small soft-
ware projects that act as prototypes or proofs-of-concept to
demonstrate research ideas. As such they do not have the
pressures of developing robust software to address a mass
market. They may concentrate on adding new features required
to further their research, paying less attention to robustness or
maintainability. They do not typically have a large population
of users to support, or need support the operation of a system
that runs 24/7, as the developers of an online retailer, financial
services organisation or telecoms company might.

Furthermore, even within large research groups, academics
and postgraduate researchers often work on their own, and
so often do not have experience of planning and managing
the work of many different contributors to a software project,
integrating all of these whilst preserving an overall architecture
that supports maintainability, and making regular releases to a
customer according to an agreed schedule. Because of this, few
academics have occasion to develop practical experience of the
project management and quality assurance methods prevalent
in modern industrial software development.

Our approach to tackling these issues is, wherever possible,
to engage members of the industrial software engineering com-
munity to aid in teaching our software engineering curriculum,
drawing on their practical experience to guide content and
the delivery. This has ranged from offering advice on specific



current issues, helping to outline course content, delivering
guest lectures or coaching and, to greatest effect, joining the
faculty staff. One of the senior teaching fellows at Imperial
is employed on a part-time basis to teach much of the soft-
ware engineering content, whilst also working as a practising
software engineer. This has been instrumental in aligning our
material with current industrial practices as well as providing
access to external contributors through professional contacts.
We have found that practitioners are generally very happy to
help shape the curriculum for the next generation of software
engineers and to give something back to the community. They
can also benefit by exposing students to their own areas of
business and this in turn benefits both students and companies
when it comes to recruitment.

C. Perspectives on Teaching

Over the past five years, we have refined our courses in a
series of iterations. In order to discuss the approaches that we
have tried, we borrow some vocabulary from [10]. This gives
us three useful terms to describe different types of learning
experience. The first is transmission, which describes the
classic lecture situation. An expert holds a body of knowledge
and tries to transmit it to a hopefully attentive audience. This
is typically a one way interaction between one teacher and
many learners. The second is apprenticeship, which refers
to a learning experience focussed on the development of
skills rather than theoretical knowledge, most likely through
kinaesthetic learning and practical exercises. You can imagine
this in a setting like a cookery class, where each student can
practise a recipe repeatedly until they have mastered a dish.
The third is developmental, which describes a personalised
learning experience without a set curriculum. It focuses on
taking the learner from where they are to somewhere more
advanced, in a particular direction depending on their strengths
and weaknesses. This sort of individual tuition works well in
a situation like a piano lesson, but it is hard to replicate it with
a lecture class of 150 students.

Unfortunately universities typically do not have the re-
sources to offer individual tuition and personally tailored pro-
grammes for every student taking computer science, perhaps as
a student at a music conservatoire might experience. However,
we will discuss how we have tried to blend these three
approaches in order to improve on a style of teaching purely
based on weeks of transmission followed by final exams.

D. Brief Overview of the Imperial Programme

Like many UK institutions, Imperial runs three-year Bache-
lors and four-year “integrated” Masters degrees in Computing
at undergraduate level. The first three years are fundamentally
the same across both programmes, but those going on to take
the fourth year also undertake a six month industrial work
placement between their (shortened) third and fourth years.

Each year is divided into three ferms, with the bulk of
the classroom teaching happening in the Autumn (Fall) and
Spring terms which are 11-weeks long and run either side of
a Christmas break. The third, Summer, term is separated from

the Spring term by an Easter break; it is slightly shorter than
the other two terms and is primarily reserved for project work.

At the end of each term students complete an anonymous
on-line survey. This feedback has been instrumental in guiding
the evolution of our programme and, where appropriate, we
include selected comments in the paper, both positive and
negative, as part of the narrative.

III. TEACHING CORE SKILLS

It seems futile to teach software engineering before learning
to program, so the first year of Imperial’s degree places a great
deal of emphasis on programming “in the small”. Students
are taught to program in a variety of paradigms (functional,
object-oriented, procedural), are exposed to several languages
(presently Haskell, Java, C and assembler) and are expected
to be able to produce succinct, elegant solutions to reasonably
well-specified problems using appropriate language features
and abstractions, including those for basic concurrency and
parallelism. We believe that high quality feedback and high-
touch personalised support is crucial during these early stages.
To achieve this, core programming skills are acquired pri-
marily through the completion of weekly exercises. These
are assessed and fed back in small-group tutorials led by se-
nior undergraduate students acting as Undergraduate Teaching
Assistants (UTAs) working alongside faculty staff [11]. To
stress the importance of good tools, all students are required
to use Git' for version control from day one. To add to the
feedback from the weekly tutorials, students must pass a series
of practical on-line programming tests throughout the year in
order to progress to subsequent years.

Crucially, in addition to learning programming, students are
exposed to a wide spectrum of computer science topics in
the first two years. This includes the structure and operation
of computer systems (computer hardware, architecture, net-
working, compilers, databases and operating systems), for-
mal reasoning about programs and systems (logic, discrete
structures, program reasoning, computational models, algo-
rithms and complexity) and the continuous mathematics that
underpins both analysis and some of the key applications of
computing. By the time students are introduced to software
engineering, at the start of the second year, we know that
they are proficient programmers with an appreciation of the
core computer science principles that guide and influence the
design of software.

IV. SOFTWARE ENGINEERING DESIGN

Within Imperial’s curriculum, software engineering design
concerns the methods, tools and techniques for the devel-
opment and deployment of large-scale software systems that
are robust, well engineered and easy to maintain by design.
This is taught within a single course of the same name. In
an earlier iteration of the course, the material concentrated
on notation, formal specification languages and catalogues of
design patterns [12]. This meant that students would know

Thttps://git-scm.com/



a range of ways to document and communicate software
designs, but these were not tied to a particular implementation
language. Much of the material was thus taught “in the
abstract” and the learning outcomes did not align well with
mainstream industrial practice. The following survey comment
typified these concerns:
“Would have preferred design patterns to be prac-
ticed more in lab exercises, ... the patterns I under-
stood best were the ones for which I wrote and tested
actual code...”

It is worth spending a moment to consider the issue of
formal methods when teaching software engineering. Formal
specification techniques are used by engineers developing
safety-critical and high-precision systems, but these make up
only a small proportion of industrial teams. Many more are
working on doubtless important - but not safety-critical -
systems that support business in different types of enterprise,
consumer web services, apps and games etc. The use of formal
specification techniques among such teams is relatively rare.
Also, as agile development methods are now prevalent [3],
design is no longer considered a separate phase of the project,
to be completed before coding commences - rather it is a
continuous process of decision making and change as the
software evolves over many iterations. There are still design
concerns at play, but rather than needing a way to specify a
software design abstractly up-front, the common case is that
team members need ways to discuss and evaluate design ideas
when considering how to make changes and add new features
to an existing piece of software.

Our philosophy is thus to think of design as a constant
effort to maintain a codebase in a way that makes it amenable
to continuous evolution and change [13].

A. Batch Sizing for Feedback

Historically, teaching in our software design course was
based largely on transmission, referring back to the termi-
nology of [10]. Students attended lectures twice per week
throughout the autumn, took other modules during the spring,
and then had their examinations after Easter, as shown in
Fig. 1. There were tutorial classes alongside the lectures,

Term 2 Term 3

_|
m
=
3
-
uoneIRA SEUNSLIYD
uonesep 1alse]

L

.

Results

~

T ——
o T

m
3

Lectures

Fig. 1. Traditional lecture course schedule

usually with paper-based exercises, but typically only the most
diligent students kept up with the exercises week by week, and
most left them to use as revision aids come exam time.

Fig. 2. This agile team organises their work using a physical Kanban board.

This approach is completely at odds with the typical delivery
cycle of a modern industrial software project. The feedback
cycle is very long, and a large amount of work is in process
before we get to the quality assurance stage. Only when we get
the exam results do we really know whether we have taught
the students effectively. We can think of the course as starting
out with a long list of requirements for things that students
should learn - a syllabus - and that we then go into a phase
of transmission, after which we check the results. There is no
iteration or incremental delivery - it’s one big batch.

In modern software development projects, we typically
strive to reduce batch size, with the aim of decreasing cycle
time, decreasing risk, and increasing quality. One mechanism
by which we might do this would be to employ Kanban
methods. Kanban is a lean method that focusses on flow
through a system, and by using it we can aim to maximise
throughput and minimise cycle time. In software development,
we want to minimise the time between someone having an idea
for a feature and prioritising it, and that feature being working
software in the hands of the users.

One of the tools of a Kanban practitioner is to visualise the
workflow. In a software project this is typically done with a
physical or virtual “card wall”, divided into columns for the
different phases that each piece of work needs to go through
(see Fig. 2). The different columns map the “value stream”
[14]. Typically the board is divided into columns representing
the “backlog” of upcoming tasks, those that are in analysis,
those in development, those being tested, and those ready
for release, or released. Cards representing separate tasks are
moved from column to column as work on them progresses.
The key idea is to use the current state of the work to
decide what to do next, and always to “pull from the right”,
so that we concentrate on getting individual pieces of work
finished before starting new ones [15]. This way we focus on
completion and keep the work in process low. A limit can be
placed on the number of pieces of work that may appear in
any column at once in order to enforce this focus on finishing.

We take this idea and redraw the columns on the board to
form a value stream of learning. Here we list the items on the



To Do | Explain | Practise | Check | Learnt

T

i [

il [

Fig. 3. Value stream of learning

syllabus as our backlog - “to do” - and then have columns for
“explain” (transmission), “practise” (apprenticeship), “check”
and “learnt” (fig 3). If we follow the “pull from the right”
mantra, then we want to get each item over to the right hand
side as quickly as possible. That means that we aim to do
a minimal amount of transmission on each topic before the
students get to practise in a hands-on exercise, and then verify
the quality of their learning obtaining feedback before we
move further on in the syllabus.

Putting this into practice, we first tried the common ap-
proach of adding a small project as coursework part way
through the term. However, as it took a couple of weeks to
complete the project, and about the same again to get all the
assignments marked up and graded, it was pretty much the end
of the course before the students got their feedback. There was
a wide variation in how students chose to approach the design
project we gave them. Those who were more dedicated and
had understood well tried out a lot of different ideas and added
many features. Those who had not understood well did much
less, or did the wrong thing. If anything, rather than making
sure that everyone had learnt the material, it seemed that we
had widened the gap between the stronger students and the
weaker ones.

In order to give more guidance, and earlier feedback, we
changed from asking students to design a whole system to
asking them to consider individual design choices in different
situations, and examining how implementing something one
way or another would affect the future maintenance of the
system. In terms of the assignments that were set, we moved
from “design a system with the following requirements, dis-
cuss the design choices you made”, to a set of weekly smaller
coding exercises of the form “Add feature X to this system by
using design pattern Y. Now try design pattern Z. What are
the trade-offs?”. By constructing a number of small scenarios,
each student had the same design issues to think about, and
by making them into coding examples students get a much
more hands-on, kinaesthetic learning experience.

This “lean” approach leads to a weekly cycle of assessment,
as shown in Fig. 4. A new topic is addressed each week with
an associated assignment, and students submit their solution

by the same time the following week. Grades and feedback
are then returned within 4 or 5 working days, i.e. before they
submit their next assignment.

B. Achieving Weekly Feedback

The obvious problem with weekly assignments is the vol-
ume of grading and feedback required. Because of the limited
teaching resources that institutions generally have to work
with, the temptation is to reduce the frequency of assignments,
e.g. to once every two weeks, in order to be able deliver
feedback ‘at scale’. However, this is at odds with what we
are trying to achieve. Relating this again to the conditions
that apply in a software development project, often we strive
to release software more frequently, but integrating and testing
new code requires a lot of time and effort. By adopting
a process of continuous integration [16] we tend to find
that doing these things more often causes us to streamline
processes, remove waste, and often apply automation. As
Martin Fowler often says “if it hurts, do it more often” [17].

A key to reducing the burden of assessment and feedback
is to add automation. Our approach here has been to provide
tools that enable students to test their solutions as they work.
From the first week of their first year students learn to use
version control through Git and GitLab?. When they start an
exercise they clone a repository to obtain skeleton files that
form a starting point and are encouraged to work in small
steps, committing each change as they go. When they submit
their work for assessment, what they actually submit is a Git
commit hash corresponding to the version to be marked. We
have also implemented a Lab Test System (LabTS), which
allows students to view and test each version of their code.

For first year courses, we provide a (partial) test suite that
students can run against their code, to check the correctness
of their solutions. However, when learning about software
design, we do not want students to follow the same approach.
Providing a test suite has a consequence of defining an API
that the students need to implement. Here we want them to
design their own API as part of the exercise, and to write their
own automated tests against that API. Writing automated tests,
and utilising test-driven development, is a key skill that we
want to instil at this stage of the students’ education.

As a mechanism to encourage students to write their own
tests, we use LabTS to check a test-coverage metric, with a
coverage threshold that we deem appropriate for that week’s
exercise. LabTS gives each submission a score out of 5: 1 point
if the code compiles, 1 point if it passes some basic linting
and formatting checks, 1 point if all the tests the students
have written pass, and 2 points if these tests meet the code
coverage threshold. The exercises for our second-year design
course are in Java, so we use a Maven® build to choreograph
the compilation, testing and other checks. We configure Maven
plugins to check code formatting against a given style guide,
and to measure test coverage. LabTS is then set up to run this

Zhttps://about.gitlab.com/
3https://maven.apache.org/



Maven build against each submission and report the results.
Usually if a LabTS test run does not score 5/5, it is relatively
easy for the student to see what they need to do to make up the
remainder of the marks. We put a policy in place for the class
that if a solution does not score 5/5 on LabTS then a human
marker does not need to look at it. Once they have 5/5 on
LabTS then a human marker can give more nuanced feedback
on the design, and should not have to pick up on basic points
about compilation, style, or test coverage. This makes the most
of the marker’s time by allowing them to focus on more subtle
design issues, and not to waste time commenting on things that
can be detected automatically.

One further change that made a big difference to both
student learning and marking load is to encourage students to
pair-program, which has been shown to be highly effective in a
classroom environment [18]. We have found that students en-
joy the experience of working with a colleague — a class survey
showed that from 148 students, 119 declared that they found
learning to through pair-programming to be a good experience,
18 were neutral, and just 9 stated that they preferred to work
individually. Students get to practise pair-programming, which
is an industry-relevant skill, but not something that necessarily
comes naturally to everyone; becoming good at it is difficult
and requires work. The students get to coach each other and
help each other to learn and understand. By engaging them
in pair-programming we had effectively set up a network of
peer coaches — a developmental learning style personalised to
each individual. Although we are aware of studies that show
that constructing pairs by matching weak and strong students
perhaps produces more learning, in this case we allowed them
to work with whomever they liked as we wanted to smooth the
path to adoption — we may experiment with pre-selected pairs
in future. Lastly, a major benefit in terms of giving weekly
feedback on assignments was that pair-programming reduced
the number of submissions from 150 to 75!

Although we have not been able to automate marking
completely — this seems like a grand challenge — we have
found that a team of five people can now complete the
feedback for the entire class in around two hours each week.

We have found that this weekly cycle of assessment and
feedback now works really well. The small batch size and
short turnaround time means that students are motivated to
do the weekly assignments and this gets them to practise and
to improve. The concrete nature of the exercises results in
students feeling that their coding skills as well as their design
skills are improved by completing them. They also appreciate
getting weekly feedback on their work. The following com-
ments from recent student surveys are quite typical:

“A well structured and engaging course, which I
could immediately benefit from as it helped improve
the quality of my code and Java knowledge.”

“I liked that I had to submit the tutorials every week,
otherwise I would not have done them.”

Term 1 Term 2 Term 3

Exercise

I o

\ [ [

Feedback

UOIIBIBA SEWISLYD)
uopedep J21seg

Fig. 4. Weekly exercises and weekly feedback. Red shows when assessments
(exercises or exams) are set, and green when feedback is returned. As before,
purple shows transmission of content through lectures.

V. SOFTWARE ENGINEERING GROUP PROJECTS

Team working is an essential component of any software
engineering programme and is a key skill that many employers
look for when hiring graduates. At Imperial, students get
experience of working in small groups from as early as the
first year, but the third year group projects represent their
main exposure to teamwork on a larger scale. Students form
groups of 5 or 6 and are given a major assignment to work
on over a period of about 3 months (in parallel with other
taught courses). The projects are assigned at the start of Term 1
with the project being demonstrated and the final assessment
happening immediately after the Christmas break (Fig. 5).

Each group has a different brief, but all are aiming to
build a piece of software that solves a particular problem
or provides a certain service for their users. Recent exam-
ples include an open-source implementation of Microsoft’s
RoomAlive [19], systems for estimating heart rate based on
video or speech recordings, and verifying product provenance
using BlockChain technology. Each group has a supervisor
— a member of the faculty, or an industrial partner — who
acts as a customer to set requirements and guide the product
direction. The aims from an educational point of view are
to build the students’ skills in teamwork and collaboration,
and to put into practice software engineering techniques that
support this kind of development work. To support this, we
run in parallel a supporting course on Software Engineering
Practice, covering development methods, tools, quality assur-
ance, project and product management techniques, all aimed at
enhancing the team-working experience and maximising each
team’s productivity and chances of success.

We do not mandate a set development process for the
students to follow, but we encourage teams to adopt practices
that might be used by an industrial team of a similar size
carrying out a similar type of project. We suggest that they
follow an agile method - either Extreme Programming, Scrum,
or Kanban - and back this up with engineering practices
such as continuous integration, automated testing and staged
deployments. While these may not manifest themselves in
exactly the same way between different teams, depending on
the exact nature of their project, each team should be able to
adopt and benefit from most of these in some guise.



Term 1 Term 2 Term 3

g -

@ 2

Groups formed Ef o)

/ B <

5

g 5

o =]

| > | ||
Projects start

) Reports and Feed_back
published

presentations

Fig. 5. Schedule for third year Group Projects - project duration is 3 months

We have found the Software Engineering Practice course to
be one of the most difficult to get right. The main problem
is one of relevance and application. We want the material
to support the projects and enable students to deliver better
products as a result. However, there is a danger that teaching
and assessing software engineering practice takes time away
from the group work itself. Furthermore, although group
projects are similar in format they differ widely in the technical
challenges that need to be overcome. For example, some
may be developing mobile apps, while others create web
applications, desktop software or even command line tools.

In an early version of this course, we delivered a series
of lectures and required students to write up reports on how
techniques for project management, quality assurance and
particular technologies could be applied to their projects.
These reports were assessed separately from the group project
itself. The problem we found was that whilst a particular
tool or technique — for example cloud deployment — may
be perfectly suited to some projects, it may be irrelevant to
others. As a result many students were either not motivated
to spend time on topics that did not directly apply to them,
or felt aggrieved that learning and being assessed on such
topics took away precious time from their development work,
as exemplified by the following survey comments:

“[writing reports about tools and processes] (at
times) felt like it took away time I'd have liked to
spend on actually working on the project.”

“I think you need to change the [course] structure
somehow, it took too much focus away from the
actual projects.”

Another problem that we identified is that although we
are encouraging the students to adopt agile methods, and to
work in an iterative way, the project assessment, which was
separate from the assessment of software engineering practice,
was more in line with a waterfall model - a one-shot delivery
in January, comprising the developed software, an associated
project report, and a presentation. There was no particular
incentive for students to work at an even pace throughout
the term, and project work was often put aside in favour
of coursework for other courses. As the deadline was not
until after Christmas, there was no great urgency to make

Term 1 Term 2

High

Student
Effort
(approx)
| | 1
Low \ T | 1

Software Engineering lectures

Fig. 6. Perceived effort curve for students during Group Projects (in blue)

progress early in the term. Based on talking to groups and
supervisors anecdotally, our impression was that the students’
effort on project work during the term roughly followed the
curve shown in Fig. 6.

In response to feedback from students and supervisors,
and aiming to provide a tailored learning experience relevant
to each project team, the following year we cut back the
assessment for software engineering practice radically. We also
reduced the number of lectures and offered supporting material
online for students to refer to on demand to address issues in
their projects. To support this we introduced consultation time
for each group through “clinic hours” that they could use at
will. This seemed an attractive structure, as by allowing groups
to pull help when they needed it, we ought to be optimising
for relevance, and eliminating waste from the system.

Unfortunately this did not work very well. Many students
chose not to pull help or to dig in to the online material.
They perceived that they were better off spending their time
“getting on with the project”. To an extent they did not know
what they did not know. To add to this, the size and length
of the project was probably not great enough for them to feel
pain caused by lack of software engineering practice until late
on - perhaps during the effort spike just before the deadline
(Fig. 6). Anecdotally, we found that those groups that did use
the consultation sessions generally produced better projects,
but may be down to self-selection: better organised groups,
or groups containing a higher proportion of high-achievers,
tended to be the ones that made use of the clinics.

Term 1 Term 2

\ I I [

lightweight delivery checkpoint
(end of iteration)

Fig. 7.

Lightweight end-of-iteration checkpoints every two weeks

In order to encourage development at a consistent and
sustainable pace throughout the project without burdening



students and supervisors with assessment we have recently
(from 2016) introduced bi-weekly checkpoints, effectively
enforcing a two-week iteration cadence in a similar spirit to
the weekly assessment cycle in Software Engineering Design
(Section IV). We have given marks — the only real currency
that we have — for demonstrating enhanced functionality every
two weeks. To acquire the marks, each group is required to
demonstrate progress, and useful, working software, to their
supervisor, who will give their sign-off if they are satisfied. It
is important that the teams deliver something simple but end-
to-end in early iterations. For example, there are no marks for
a beautiful database schema with no user interface. Through
this mechanism we encourage a pattern of development that
maps closely to the relationship between the customer and the
development team expected in a mature agile team.

As before, following this pattern gives us a mechanism to
give feedback more often and in smaller batches. In order
for this mechanism to work, we have made the deliverables
lightweight — not a project progress report, just a demonstra-
tion of the software produced, a customer conversation, and a
signature on a piece of paper.

The software engineering practice material now comprises a
short period of intensive tuition at the beginning of the project
covering methods and tools that all teams could use to manage
their work and ensure the quality of the software they build.
Once the two-week iterations are under way, we again offer
clinic hours for individual consultation to help with issues
arising, where we can address the problems of individual teams
in depth. The later iterations of these projects revolve around
adding functionality to each component of the initial “walking
skeleton” to grow the system towards maturity.

As the group projects have evolved we have moved away
from teaching and assessing theoretical knowledge and un-
derstanding of agile methods per se, preferring instead for
students to learn by experience. Where some other universities
have simplified the technical deliverables of their projects to
allow students to focus on learning the processes [20], we
have instead tried to simulate industrial conditions as closely
as possible, focussing on regular delivery of working software.

VI. SOFTWARE ENGINEERING FOR INDUSTRY

The last aspect of software engineering that we address in
our programme, with the aim of producing industry-ready en-
gineers, is an exploration of industrial practice and experience.
The aim is to discuss issues that are current hot topics in
the industry, and to look at wider forces that affect software
engineering decisions, particularly those that are economic
and social as well as those that are technical. We strive to
keep this course up to date with current industrial trends,
drawing on practical experience, whilst keeping a grounding
in fundamental engineering principles.

The syllabus is fluid, but an important recurring theme is
working effectively with legacy code [21]. A large proportion
of practising software engineers spend their working lives
making changes to existing codebases, rather than starting
from scratch. Successful systems evolve [22] and need to

be updated as new requirements come in, market conditions
change, or other new systems need to be integrated. This is
not second class work, but engineers need techniques to work
in this way which differ from what they might do if they had
free reign to start from a blank slate. How to comprehend
an unfamiliar codebase? How to manage risk when making
changes? When is it better to refactor, and when to rewrite?

Other topics the course has covered recently include soft-
ware evolution, microservices, continuous delivery, and re-
silience at scale. Such topics are the realm of opinion rather
than hard fact. Our aim is for students to develop their critical
thinking, and to voice their own opinions and arguments
based on reading around each topic presented. There is thus a
research element to the course and this exercises the students’
ability to use reasoned engineering judgement. As the course
has evolved, we have delivered less content by transmission,
and have instead designed an experience where students can
participate and learn for themselves.

It is vital that this course is facilitated by people with
industrial backgrounds; previous experience has taught us that
students are very quick to detect a lack of authenticity among
the contributors. To strengthen the industrial perspective, each
week we invite a “panel” of industrial practitioners as guests
— normally two per week. We elicit the panel’s views on the
topic under discussion, and they share their own stories and
examples during the classroom discussions. Note that this is
not the same as simply including a couple of guest lectures
within a lecture course. We carefully plot out the narrative
arc of the course, and then invite guests who can illustrate
each topic based on their experience, drawing on contacts in
local companies. In particular, we make sure that every guest
knows what topics have been covered in earlier weeks of the
course, what topics are coming up, and the message that we
are aiming to deliver. We have found that alumni can make
excellent contributors, provided they are well versed in the
format and objectives of the discussion sessions. The guest
speaker model in this course has worked exceptionally well,
as highlighted in many survey comments, for example:

“I thoroughly enjoyed the guest speakers, they of-
fered real world problems that they had solved
utilising the course material. It was also great to hear
a lot of discussion with the guests in [class].”

A. Format and Assessment

The current course format combines reading, coding, writ-
ing and discussion. We examine a new topic each week
for seven weeks, and the main part of the week’s work is
undertaken outside of the classroom. Students research the
topic through blogs, articles, papers, videos of conference
talks etc. and are required to write a short position statement
based on this, answering one of a given set of discussion
questions. The classes involve a series of discussions which are
initiated by selected students briefly presenting their findings
from their week’s work. It is important that the deadline for
the written work is before the discussion class. This means
that the facilitator can assume that every student present has



done some reading and thinking about the topic. They can then
direct the discussion based on the content of the written work
and are relatively free to call on any student to contribute.
As with our experience in the second and third year courses,

we have found this course to be most successful when the
students work in weekly submission cycles. There is no
final exam, so all the marks are accrued from the weekly
courseworks together with a small number of more open-ended
assignments. The solution to the weekly marking load for this
course was not to add automation, but to change the constraints
on the learning experience to cause the students to learn from
their discussions with one another, and to reduce the volume
of work submitted for assessment. To do this, we changed
from individual work, to paired work, to groups of three — in
each case reducing the number of submissions and increasing
the number of ideas and viewpoints to be incorporated. We
also imposed a relatively short word limit of 300 words per
submission. This meant that submissions cannot be long and
meandering; they must be short and well argued, making them
much easier to assess. At the same time it increases the amount
of discussion the students must have refining their ideas and
constructing their arguments, as exemplified by the following
survey comment:

“The quick feedback on the [assignments] was ex-

tremely appreciated and allowed us to implement

the suggestions for the next exercises. The questions

were challenging and forced us to spend hours

thinking about pros and con and to do extensive

research on the topics.”

B. Evolving Practice

As we have iterated on the second and third year courses,
we have tried to include more and more industry-relevant
content, and this has often meant moving material down from
the fourth year course. For example some material on test-
driven development that we used to cover in the fourth year
is now a core part of the second year, and an introduction
to agile methods is now a key feature of third year software
engineering practice course that supports the group projects.
While we do not want to be jumping on all the passing
trends, this advanced course gives us a vehicle to discuss and
distil the current state of practice, and to filter ideas down
into lower years whenever they become core. We therefore
believe that it provides an excellent driver for ensuring that our
software engineering material is relevant and up to date at all
levels. It also instils an important element of critical thinking
and analysis that employers often look for at interview. The
students’ own experiences in this respect have proven to be
very positive, for example:

“The course is very well structured and you learn
things that are really useful in the industry! I can
say that this course helped me to get a job offer;
every single thing that we have learnt during this
course was asked during the interview process.”

“Overall I'd say the Software Engineering for Indus-
try course was one of the most enjoyable this year...

Ultimately, software engineering courses and fre-
quent group projects are what helps make Imperial
students so very employable — this course embodies
that success.”

VII. DISCUSSION AND LESSONS LEARNT

While we could try to present improvements in the exam
grades achieved by classes over the years as we worked on
different aspects of these courses, we do not feel that this
makes for a meaningful comparison, as there are too many
variables affecting students’ results. We have a different cohort
of students each year and we cannot put the same class of
students through two different variants of the same course
in a properly controlled experiment. Although the classes are
large, with approximately 150 students in each year group, it is
hard to contend that quantitative results would be statistically
significant. Instead we will discuss the lessons that we have
taken from the iterative improvements to the format and
content of the programme and constituent modules, and the
learning outcomes achieved.

Decreasing batch size for feedback increases engagement.
By setting assessed work each week, we encouraged students
to participate actively in their learning in a sustained way
throughout modules. Even a small amount of credit available
motivates them to work on weekly tasks, where previously
many students would not have attempted unassessed exercises,
or left them until much later as revision aids. Students greatly
appreciate getting weekly feedback on their work so that they
can check their progress, and determine where they need to
focus their efforts to meet the expected learning outcomes
for the course. We saw this in both the second year and
fourth year courses, and are currently implementing the same
mechanism to try to flatten the effort curve in third year
software engineering group projects.

Setting many small targeted assignments, rather than larger
projects, helps increase consistency in learning outcomes
across a class. When we gave larger, more synoptic course-
work projects, we found that the results showed a lot of
variation in the skills and knowledge that students could
demonstrate. By leading them through a more structured
programme of smaller, more focussed exercises, incentivised
by small amounts of credit, we made sure that every student
had done in depth study on each of the core topics throughout
the course. In the second year, this manifested itself in every
student having implemented a core set of design patterns,
and having developed their automated testing and refactoring
skills by applying these to every exercise. In the fourth year,
the weekly assessments led to all students investing time
researching and discussing every topic in our syllabus.

Investing time in tooling and automation supports tighter
feedback loops. Decreasing batch sizes and setting more,
smaller, assignments increases the burden substantially in
terms of giving feedback. Although ideas of automating this
entirely are probably wishful thinking — at least if insightful
and nuanced comments are to be made — we have found that
by developing tooling, and integrating it into the students’



workflow, we can provide basic feedback automatically, and
make better use of the markers’ time. We have found that
tools built for one class can be reused in other classes,
and in subsequent years, with only minor modifications —
amortising the development effort required to build them. For
programming-based courses, we also found that managing all
of the students’ work using a version control system gave them
familiarity with tools that they would use daily in industry.

Aiming for sustained opportunities for students to practise
skills, and short feedback cycles, caused us to change class
formats in a way that also supported more developmental
learning. In our attempts to make short feedback cycles more
tractable, we introduced pair-programming and group work.
One of our primary drivers in doing this was to reduce the
number of submissions that had to be processed each week,
but a very positive side-effect was that it made the learning
experience more developmental, increasing discussion and
debate between fellow students, so that they ended up coaching
one another. A similar effect was produced when we set a
relatively small word limit (just 300 words) for written work
by our fourth year groups. Shorter submissions were quicker
to read and to mark, and also caused the groups to spend
longer discussing and distilling their arguments and setting
out their ideas clearly and succinctly - again, learning from
their interactions with one another.

Engaging practitioners with industrial backgrounds im-
proves the relevance (and perceived relevance) of course
material. By nurturing links with practitioners we have been
able to adapt our curriculum to align with the needs of the
industry. We have adopted industrial tools in student projects
and assignments, and constructed practical courses teaching
techniques like test-driven development and working with
legacy code that reflect industrial practice, while maintaining
our focus on the principles of computer science. Bringing prac-
titioners into the classroom, either as guest lecturers, panellists,
or by creating roles where they can join the staff, has given
a credibility to the material being taught, and an extra level
of insight drawn from experience which resonates deeply with
the students looking forward to their future careers.

Evidence suggests that we are producing graduates who
are well versed in modern software engineering principles
and practices, and whose skills align well with the needs of
industry. Our undergraduate degrees currently top LinkedIn’s
university rankings [23] for career outcomes of graduate soft-
ware engineers in the UK and our graduates’ starting salaries
in these roles are impressive [24]. Furthermore, feedback
from students, which has in part driven the evolution of the
programme, also suggests that the skills that they learn are of
great benefit to them, both in obtaining sought after jobs and
in becoming better and more productive engineers.

REFERENCES

[1] M. Kropp and A. Meier, “New sustainable teaching approaches in
software engineering education,” in 2014 IEEE Global Engineering

Education Conference (EDUCON). IEEE, 2014, pp. 1019-1022.
[2] C. Anslow and F. Maurer, “An experience report at teaching a group

based agile software development project course,” in Proceedings of

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

the 46th ACM Technical Symposium on Computer Science Education.
ACM, 2015, pp. 500-505.

E. Papatheocharous and A. S. Andreou, “Empirical evidence and state
of practice of software agile teams,” Journal of Software: Evolution and
Process, vol. 26, no. 9.

Association  of  Computing  Machinery, “Computer  sci-
ence curricula 2013, online, 2013. [Online].  Available:
https://www.acm.org/education/CS2013-final-report.pdf

K. Beck, Extreme Programming Explained: Embrace Change, ser. An
Alan R. Apt Book Series. Addison-Wesley, 2000. [Online]. Available:
https://books.google.co.uk/books?id=G8EL4H4v{7UC

K. Schwaber and M. Beedle, Agile Software Development with Scrum,
Ist ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

D. Anderson, Kanban: Successful Evolutionary Change for Your
Technology Business. Blue Hole Press, 2010. [Online]. Available:
https://books.google.es/books?id=RJOVUkfUWZkC

J. Womack and D. Jones, Lean thinking: banish waste
and create wealth in your corporation, ser. Lean Enterprise
Institute. Simon &  Schuster, 1996. [Online]. Available:

https://books.google.co.uk/books?id=DJwoAQAAMAAJ

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

M. Guzdial, Learner-Centered Design of Computing Education: Re-
search on Computing for Everyone, ser. Synthesis Lectures on Human-
Centered Informatics. Morgan & Claypool Publishers, 2015. [Online].
Available: https://books.google.co.uk/books?id=BAIVCwAAQBAJ

E. Alpay, P. S. Cutler, S. Eisenbach, and A. J. Field, “Changing
the marks-based culture of learning through peer-assisted tutorials,”
European Journal of Engineering Education, vol. 35, no. 1, pp. 17-32,
2010.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

S. Metz, Practical Object-Oriented Design in
Agile Primer. Pearson Education, 2012. [Online].
https://books.google.co.uk/books?id=VRCv_bATuSIC

M. Rother, J. Shook, and L. E. Institute, Learning to See: Value
Stream Mapping to Add Value and Eliminate Muda, ser. A lean tool kit
method and workbook. Taylor & Francis, 2003. [Online]. Available:
https://books.google.co.uk/books?id=mrNIH60087wC

T. Ottinger, “Over-starting and under-finishing,” online, 2015.
[Online]. Available: https://www.industriallogic.com/blog/over-starting-
and-under-finishing/

P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

M. Fowler, “Frequency reduces difficulty
[online],” July 2011. [Online]. Available:
http://martinfowler.com/bliki/FrequencyReducesDifficulty.html

L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller, “In support
of pair programming in the introductory computer science course,” pp.
197-212, 2002.

B. Jones, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson,
E. Ofek, B. Maclntyre, N. Raghuvanshi, and L. Shapira, “Roomalive:
Magical experiences enabled by scalable, adaptive projector-camera
units,” in Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST 14, 2014, pp. 637-644.
J.-P. Steghofer, E. Knauss, E. Alégroth, I. Hammouda, H. Burden,
and M. Ericsson, “Teaching agile: Addressing the conflict between
project delivery and application of agile methods,” in Proceedings of
the 38th International Conference on Software Engineering Companion,
ser. ICSE 16, 2016, pp. 303-312.

M. Feathers, Working Effectively with Legacy Code.
River, NJ, USA: Prentice Hall PTR, 2004.

D. L. Parnas, “Software aging,” in Proceedings of the 16th International
Conference on Software Engineering, ser. ICSE *94, 1994, pp. 279-287.
N. Kapur, “Ranking universities based on career outcomes [online],” Nov
2014. [Online]. Available: https://blog.linkedin.com/2014/10/01/ranking-
universities-based-on-career-outcomes

Unistats, online. [Online].
http://unistats.direct.gov.uk/Subjects/Overview/10003270FT-
G401/ReturnTo/Search

Ruby: An
Available:

Upper Saddle

Available:



