Designing for Real People: Teaching Agility
through User-Centric Service Design

Robert Chatley
Dept of Computing
Imperial College London
London, United Kingdom
rbc @imperial.ac.uk

Carolyn Runcie
School of Design
Royal College of Art
London, United Kingdom
carolyn.runcie@rca.ac.uk

Abstract—We present the design and evolution of a project-
based course — Designing for Real People — that aims to teach
agile software development through an unwavering focus on
the user, rather than emphasising the processes and tools often
associated with a method like Scrum. This module is the result of
a fruitful collaboration between a Computer Science Department,
bringing knowledge and skills in the software engineering aspects,
and the Service Design group of a neighbouring Art College, with
expertise in user research and user experience design.

We present the details of the current structure, content and
assessment strategies developed for the module, as well as the
principles behind its design. The core theme of the course is
gathering and responding to feedback, and so here we present
how this has been applied to the design of the module itself, with
lessons learned, and improvements made over time. By reflecting
on our own work, we aim to provide recommendations that may
aid others considering how to teach these topics.

Index Terms—education, agile development, service design

I. INTRODUCTION

The first principle of the Agile Manifesto [1] states that
“our highest priority is to satisfy the customer through early
and continuous delivery of valuable software”. As with many
universities, over recent years we have developed and evolved
modules that aim to teach the mechanics of agile software
development, with student teams working to deliver a system
to meet a customer’s requirements. On completion of these
projects, the student teams typically delivered sophisticated
pieces of software, often integrating multiple technologies,
which was impressive. However, we realised that the students’
focus was often on the technical complexity of the software
produced, regardless of how well it met the users’ needs.

At the same time, a common theme in student feedback
from end-of-course surveys (from around 200 students annu-
ally, over a period of three years) was that agile practices felt
like baggage and distraction to them. Our teaching had begun
to centre on the mechanics of agile methods and the software
engineering process rather than the underlying principles.

Tony Field
Dept of Computing
Imperial College London
London, United Kingdom
ajf@imperial.ac.uk

Clive Grinyer
School of Design
Royal College of Art
London, United Kingdom
clive.grinyer @rca.ac.uk

Mark Wheelhouse
Dept of Computing
Imperial College London
London, United Kingdom
mjw03 @imperial.ac.uk

Nick de Leon
School of Design
Royal College of Art
London, United Kingdom
nick.leon@rca.ac.uk

Students reported having to commit a lot of time to meetings
and points of process (and documenting these for assessment)
which they felt was taking time away from “actually getting on
with the project” by which they meant “writing the software”.
By requiring students to complete the rituals and ceremonies
associated with a process like Scrum, and assessing them
on how they were doing these, we had diverted from the
original spirit of agile development. While we still believe that
agile methods are vital for modern software projects, we feel
our mistake was to focus on students completing the process
“correctly” rather than on satisfying the customer or delivering
early and continuously.

This feeling that a focus on how agile practices are carried
out can be an obstacle to completing a project effectively is
not unique to the classroom. The use of “agile” in industrial
software development continues to grow [2], but the practices
and processes adopted by many teams are far away from what
the authors of the Agile Manifesto originally envisaged. Allen
Holub summarises this well when he writes: “The word Agile
has taken on a meaning that the folks who coined the term
at Snowbird wouldn’t recognize—a rigid process, mindlessly
followed by a small part of an organization that isn’t the least
bit agile (lower case). The word agile means nimble, flexible,
adaptable, quick. If you aren’t all of those things, you’re not
agile, whether or not you’re using some “Agile” technique.
Agile is a frame of mind and a culture, not a process. You
can implement Scrum perfectly, and not be in the least bit
agile. What’s important, then, is agility, not Agile™.” 1

It may be natural for computer science and software engi-
neering students to be excited about developing new pieces of
software and solving difficult technical problems. Similarly it
may be easy for educators to fall into the trap of teaching and
enforcing a rigid process under the name of agile development,
but we felt the need to take a step back. We want to focus on

I'See Holub’s “Getting Started with Agility” at https://holub.com/reading/

the principles of agility. While we do want to encourage the
use of an iterative design process, and we do want the students
to develop software, we want to shift their mindset away from
the process and the technology, to focus on finding the right
problem to solve, following user feedback. Coming back to
the first principle of the Agile Manifesto, we want students
to use the continuous delivery of valuable software to satisfy
customer needs. Emphasising user needs led us to think less
about the technicalities of software development, and more
about Service Design [3]. Service Design is a human-centred
design method used to design and develop new services across
technological, social and environmental projects in commer-
cial, social and public contexts. It is not explicitly a software
engineering method, but with the digital transformation of
so many aspects of daily life — from paying your taxes to
buying a bus ticket — designing services frequently involves
a digital element. This often requires the development of
new software, and so software engineering and service design
become intrinsically linked.

In this paper we describe a project-based module called
Designing for Real People (DRP), which aims to teach the
underlying principles of agility and agile software develop-
ment through an unwavering focus on the user. The module
has been developed and is run as a collaboration between the
Department of Computing at Imperial College London, and the
School of Design at the Royal College of Art (RCA). Taking
a Service Design angle on a university software engineering
course led us to build a project-based module where teams cre-
ate digital products led by human-centred design, user research
techniques, prototyping, and iterative feedback. We underpin
these activities with effective software engineering techniques,
but these are always in a supporting role. Responding and
adapting to user feedback is always the primary goal. We want
the students teams to be agile, not to “do Agile”.

As an experience report paper the main contributions are
a description of the module, including details of its rationale,
evolution and implementation, and the insights gained after a
number of iterations on to the way the module is taught and
assessed. These insights can be summarised as follows:

« We believe it is more important and effective to focus on
teaching the underlying principles of agility rather than
any specific agile method. At the scale of a university
project, requiring teams to perform some of the cere-
monies associated with common agile methods can feel
like overhead to students. This can give the impression
that agile methods get in the way of delivering a software
project, rather than helping.

e An assessment framework based around process and
ceremony may be easy for educators to implement, but
it can send the wrong message, and can lead to students
completing certain rituals just to tick a box, rather than
helping and encouraging them to deliver better software.
We recommend structuring assessment around whether
improvements to the software are delivered iteratively
and, crucially, how the product has evolved in response
to feedback gathered from real users.

o We have found that team projects aimed at teaching agile
methods and thinking work best when guided and as-
sessed by both software engineering experts and individ-
uals whose primary expertise is in a non-software related
field. Here, we focus on a collaboration with experts in
Service Design [4], but we believe that the same ideas
can be applied to other user-focused disciplines such as
manufacturing, healthcare or education. Paired tutoring,
where experts from both disciplines work together as
equal partners, ensures that students pay equal respect
to both the enabling technology and user needs.

e Aiming to teach tools and techniques for software en-
gineering at the same time as those for effective user
research and design in a single software engineering class
can be overwhelming for students. Our recommendation
is to separate the teaching of practical technical aspects
— for example those related to automated testing and
continuous integration — into separate units that are
covered before a team project starts. This allows students
to focus on their core mission in the project of iteratively
delivering a product to their intended users, without
having to master new technical concepts at the same time.

The following sections discuss the principles of agility as

outlined in the Agile Manifesto (Section II) and background
in Service Design (Section III), which have influenced the
design of the DRP module. Details of the module’s evolution,
implementation and assessment are given in Sections IV, V
and VI. We conclude with a discussion of our reflections,
lessons learned and advice for other educators.

II. REFLECTING ON THE AGILE MANIFESTO

The Agile Manifesto [1] is a document written by a group of
eminent software engineering practitioners to characterise their
views on good practice in software development projects. This
has been the basis for a lot of subsequent work on different
aspects of “agile software development”. The manifesto sets
out four values and twelve principles. The values take the form
of “We value X over Y”. This should be taken as meaning that
although the authors do find value in Y, and it should certainly
not be discounted, they find greater value in X.

In developing the DRP course, we did not set out explicitly
to address each of the values set out in the Agile Manifesto.
However, it is interesting to reflect on the fact that by taking a
focus on the user as our north star, what has emerged is very
much in line with these four values:

A. Individuals and interactions over processes and tools

It is easy, in trying to teach agile methods, to focus
on processes and tools. These are things that are relatively
concrete. For example, it is easy to describe the ceremonies
associated with the Scrum process, and to check that student
teams are carrying them out. It is easy to ask students to
demonstrate the use of particular tooling to manage a backlog
of tasks, and to require them to cross reference code changes
with tickets and issues. There are many tools that support
automated testing, and we can use metrics like test coverage

to verify that these have been employed by teams. But, none
of these are inherently agile, and in fact the Agile Manifesto
values “individuals and interactions” over processes and tools.

Interactions between individuals are much less constrained
than defined processes. This is what makes them valuable.
Developers, users, sponsors and other stakeholders all inter-
acting freely in a high-bandwidth manner allows us to steer
the product developed to meet the user’s needs as closely as
possible, and to deliver maximum value and impact. However,
in a classroom setting, effective interactions among individuals
are much more difficult to promote and assess. One of the key
challenges has therefore been to create a learning experience
where students are encouraged to focus on individuals and
interactions, both through the message being delivered by
the course leaders, and through the assessment structures that
frame their work and incentivise their behaviour. Although
processes and tools can certainly be useful in organising work
and controlling software quality, the primary goal is to deliver
something that is of value to the user.

B. Working software over comprehensive documentation

We have evolved our software engineering teaching over a
number of years and across the curriculum. As part of this,
we have reduced the amount of documentation that students
are required to produce. For example, we used to ask teams to
write documents setting out lists of requirements, their testing
strategy, or describing how they were applying a particular
agile method. However, feedback from students suggested
that the time spent writing these documents was seen as a
distraction and took away time that could have more usefully
have been spent “working on the project”.

In the latest iterations of DRP, we have kept documentation
deliverables to a minimum, and now focus assessment and
tutor feedback on the demonstration of working software. Ev-
idence that the students have engaged usefully with their target
users comes in the form of an additional, but lightweight,
portfolio of notes, audio recordings, video clips etc.

C. Customer collaboration over contract negotiation

Reducing the emphasis on documentation has meant moving
away from writing a requirements specification at the begin-
ning of a project, or asking students to estimate and commit
to what they will deliver by the end. Instead we have moved
to a model that stresses the importance of developing their
solutions iteratively and incrementally, and to involve the user
at every stage, adapting the product based on their feedback.

We have specifically avoided an assessment scheme where
the deal is “if you build X, then you will get mark Y”, or
“you said you were going to build X, but you didn’t build X,
so you didn’t meet your goal”. Instead we want the students
to get as close as possible to solving their users’ problem, and
if this means changing direction and pivoting their idea one
or more times during development, that’s fine.

D. Responding to change over following a plan

Following on from the above, we also do not ask teams
to set out a plan for development at the beginning of their

project. Even if the students successfully break down their
initial objective into milestones for incremental delivery, and
complete those milestones as planned, this is no good if they
are not engaging with their users and responding to feedback.
We would much rather see a project that changed direction
in response to feedback and ended up delivering something
completely different, but more valuable, as a result of this, over
one that planned meticulously and delivered on time and on
budget, but without refinement through continuous feedback.

That said, we should not completely discount following
a plan, at a smaller scale. We have found that teams that
are able to organise themselves, and who plan effectively
on a shorter timescale, are able to pull together to deliver
more meaningful increments more often, which has in turn
yielded more opportunities for demonstration and feedback,
and better final products. But, once again, talking to the
user and responding to feedback is the key — everything else
supports that.

III. SERVICE DESIGN

One of the main techniques that we use in the DRP course to
promote design thinking is the Double Diamond. The Double
Diamond [5] is a framework originally created by the UK
Design Council that visualises design as a problem solving
tool. The initial aim was to allow this application of design
to be easily understood and applied by businesses, public and
third sector organisations. The separation into two diamonds
in the visual representation aims to highlight the importance
of initially spending time and resources on understanding the
problem that an eventual design may later try to solve.

The Double Diamond comprises four different stages of a
project: Discover, Define, Develop and Deliver (see Figure 1),
and is supported by a variety of practical methods. Different
methods may be used at different points in the process to
help stakeholders gain increased understanding of a challenge,
generate and then test new ideas to create new forms of value
and improved outcomes.

The course introduces students to design and technical tools,
skills and approaches that we hope will help teams to develop
innovative experiences for people in their everyday lives. To
unite design and software engineering, we focus on building
meaningful digital interactions within a given context, and
creating digital “touchpoints”. Methods introduced during the
DRP course include problem framing, stakeholders lists and
maps, empathy and user journey maps, pen portraits, personas,
prototypes, storyboards, affinity mapping and visioning tools
among others.

Student teams work on a project in a problem area proposed
by an industry partner, or in a domain that is a personal area
of interest. Finding an appropriate context enables the team
to focus on the challenges and opportunities faced by people
in real scenarios. There is some nuance to finding a good
problem area, and in particular we have found it important to
vet external project proposals.

The chosen project should require teams to understand the
people involved in that context, what they do and some of the

Discover Define Develop Deliver
Behaviour-led Creative work Review ideas Prototyping,
design research shopsandidea through culture selection and
generation thinking and mentoring
design

Fig. 1. The Double Diamond design process - figure adapted from [5]

challenges they face in everyday life. Understanding this will
inevitably reveal a variety of interactions (touchpoints), both
physical (e.g. face-to-face in a range of physical environments)
and digital (websites, apps, texts, phone calls) and using
different digital devices. Consequently, students are expected
to build a digital touchpoint within their chosen context, that
will cater for the needs of their specific target audience. This
typically takes the form of a web or mobile application.

IV. INTERDISCIPLINARY COLLABORATION

Combining the expertise of software engineers within the
Computing department at Imperial with the design expertise
of the Service Design group within the RCA has proved a
very fruitful collaboration, but it has taken a while to get to
the point where everything is aligned.

Initially we had two separate projects. One was a design
project, run by staff from the Art College, concentrating purely
on how users would interact with a system, and interface
design. The other was a technical project run by staff from
the Computer Science department, which involved building a
web application backed by a database, and using this as the
basis of an online game. In terms of the Double Diamond
model, one project covered the first diamond, while the other
covered the second, but there was no connection or progression
from one diamond to the other. Students became frustrated at
designing something that they did not go on to build. They
also felt overloaded from working on two separate projects in
parallel, and found it hard to balance their time between them.

With this realisation, combining the two projects so that
the students first designed a system and then went on to
build it seems an obvious next step. However, the feedback
that we got on the combined project was not good. The
students, being computer scientists, had a natural affinity with
technical topics and with the staff from the Computer Science
department. As a group, the students were not very engaged
by the design project as they felt it to be “non-technical” and
abstract. They came to university to study computer science
and enjoyed working on technical problems. They respected

the Computer Science faculty who spoke in a language that
resonated with them, and shared some of their values. They
felt less connection with the staff from the Art College, and
this reflected in their views about the design project and the
feedback that they got on their work.

When we combined the design and the technical projects,
the students still had negative feelings about the design work.
Technical and design aspects were assessed separately by the
relevant staff based on their respective expertise. The students
often felt that the design staff were giving feedback that was
inconsistent with what the software engineering staff were
saying, and they were upset when they had spent a lot of
effort on a complex implementation, which the computing staff
appreciated, but the design staff often did not (and hence they
were often branded disparagingly as “non-technical” by the
students). Students had a natural tendency to concentrate on
areas that they did not like in their feedback. They were quite
negative about the combined project, and often said that they
would prefer a purely technical project.

Reflecting on this we noted that there was something of
a home-field advantage for the software engineering staff.
The students knew them, and felt more connection with them
as part of their department, compared with the “away team”
from another institution who were not computer scientists and
often did not appear to appreciate the technical complexities
of what the students had produced, the innovative algorithms
and efficient data structures that they had used, etc. The away
team’s natural emphasis on users and UX meant that the
technical and user-centric aspects of the projects seemed not to
be joined up in the eyes of the students. In the next iteration of
DRP we took on board feedback from the students and worked
to develop a single unified assessment scheme. This helped
to remove the sense of “us vs them” (computer scientists
vs service design specialists) that had pervaded our earlier
iterations. We also paired up the instructors, so that at each
point of contact with a student group — for example an end-
of-iteration demo — both instructors were present and would
discuss, assess and provide feedback to the team together.

At the beginning of each iteration we now give an overview
lecture, reflecting on good things that we have seen teams
doing during the previous iteration, and highlighting things
to focus on in the upcoming iteration. We have made a
conscious effort to ensure that instructors from both disciplines
are present for all of these lectures, and that each speaks
for a roughly equal amount of time. Presenting a common
front to the students in this way seems to be effective in
overcoming the home-team advantage. These joint sessions
help the instructors to make sure they are on the same
page, clear about what has been communicated in terms of
expectations for the students that iteration, and also to speak
with a common voice, using common terminology. A key
challenge has been to get everyone involved in running these
projects to speak the same language, so that there is one clear
message at each point of contact, rather than two.

V. COURSE DESIGN

The DRP course combines service design techniques with
agile development and delivery of web applications to enable
students to create digital software that addresses challenges
faced by real people in a particular context. The course
introduces students to design skills and approaches, as well
as technical tools, the objective being to help teams to de-
sign, implement and evaluate innovative software that creates
meaningful experiences for people in their everyday lives.

A. Prior experience

The DRP course is undertaken at the end of the students’
second year of study. In order to pass the first year students are
required to demonstrate proficiency in programming across a
range of programming languages and paradigms. There is also
a short, formative, introductory course on web programming.
The second year reinforces this with a course that covers topics
such as design patterns, testing and deployment. There is also
a coordinated laboratory programme that involves students
working in small groups on a number of practical and deeply
technical projects. By the time they begin the DRP project they
are accomplished programmers but have little or no experience
of software development aimed at real users.

B. Technical Constraints

One of our universal objectives is to allow students to
explore new technologies (particularly things like web frame-
works) and to practise learning these for themselves from
official documentation and tutorials that they find online. They
are given a few starting points and suggestions, but given the
rapidly changing world of web technologies, the expectation
is that they should be able to discover, understand and use
previously unseen technology without assistance. Rather than
attempting to teach such technology, the role of the course
tutors is to help students with more general tasks, such as
how to break down problems, identify components where they
might search for an existing third-party library rather than
developing a feature from scratch, or navigate the wealth of
online content to find a solution to their particular problem.

Although we give a lot of freedom in terms of specific
technology choices, we do place a few constraints on the
overall technical architecture of the system that the student
teams develop, the objective being to ensure that everyone
develops a system of the same basic “shape”. This ensures
a reasonably level playing field in terms of the technical
complexity of the projects, and the approximate amount of
effort it should require for teams to get some basic features
working. It also simplifies the assessment. The constraints that
we put in place are:

o The product should be a web application, or a mobile

application with a back-end server.

o It must use a database for persistence.

e The product must support multiple users in some way,

and interaction between them.

o The back-end server component must be deployed in

production somewhere, not run on a local machine.

Mandating that the product must be some form of web or
mobile app implies that there should be a reasonable amount
of user interface design work (and implementation) carried
out as part of the project. This gives an immediate connection
with the human-centred design angle, as the user interface
is naturally where users interact with the service, and is the
area that will most easily elicit feedback. It also allows tutors
to bring in considerations of accessibility, responsiveness to
different screen sizes, and organisation of information.

Requiring a database steers teams in the direction that they
should develop an application providing a service that users
will interact with over time. The user interaction required
should not be ‘“one-shot”, as in a calculator or currency
converter for example, but something involving a richer user
journey where the service design aspects become more impor-
tant. Originally this constraint was imposed in order to ensure
that students practised their database and SQL skills as part
of this project. However, it has a much more nuanced effect
on the types of applications that are produced. It would have
been hard to write a clear marking scheme that judged the
sophistication of the user interaction, but imposing a binary
technical constraint such as this is something that is easy to
explain and easy to check.

Building on this, we state that the application must be
multi-user in some fashion. This usually necessitates providing
user accounts, and some kind of login or other authentication
process. This is a useful technical hurdle for the students to
overcome, but more interesting is how their service supports
the interaction between different users, including aspects of
confidentiality, privacy and other ethical concerns.

The final constraint is that when teams demonstrate their
applications they have to do so “in production”. We do not
allow demos running locally on developer laptops, which has
a number of benefits. Firstly, requiring features to be deployed
for demonstration requires them to be integrated. One devel-
oper cannot demo the feature that they have been working on
alone without integrating it with the rest of the team’s code.
This encourages the practice of continuous integration [6]
(regardless of whether or not the team has set up tooling
to support this with automated builds and testing). Secondly,
providing a version that runs in production on a public URL
increases the quality and quantity of user feedback that teams
can gather, as users can try the service on their own devices, at
a time convenient to them — not just on the developer’s laptop
for a few minutes at the time that they come to demo it. Lastly,
deploying to a production environment reinforces the use of
tools like continuous build and deployment pipelines and cloud
platforms, commonly badged as DevOps.

C. DevOps

One of the over-arching principles of our curriculum design
and evolution is to allow topics to filter down from final year,
specialist, elective modules, to core modules in earlier years as
they become more mainstream — particularly with reference to
industrial practice. We believe in threading skills through the
curriculum, rather than isolating them in specific modules. For

example, use of version control is something that we introduce
on day one, and then students use it practically every day
for the remainder of their programme. We aim for the same
with other tools and techniques, and recently this has led
to us embedding DevOps practices at various places in our
undergraduate curriculum.

Rather than introducing the technical practices associated
with DevOps [7] in a dedicated module, we have woven a
thread through several different modules and projects, empha-
sising the underpinning nature of these practices. Wherever
a software development project is undertaken as part of the
degree, particularly where it is tackled as a team, we want the
students to be able to draw on appropriate technical practices
to support them in producing high quality work. We want
students to experience first-hand the benefit of putting these
tools and practices into action, and to give them a set of tools
that they can, and will, use in future projects, not because
we told them to, but because they know they will help them
produce better results [8].

In earlier iterations of DRP, we tried to teach the students
about concepts and tooling to support things like automated
builds and deployment pipelines at the same time as they were
developing the core of their projects. However, the result was
information overload, with the effect that many teams left
the construction of their pipelines until late in the projects,
focusing instead on building their early prototypes where they
felt they could make more progress more quickly.

Moving the introduction to DevOps earlier in the year had
a transformational effect on the DRP projects. Now, by the
time students embark on DRP they are familiar with a range
of tools and their usage and are able to set up things like a
build and deployment pipeline relatively quickly and easily.
By deploying at the start of the project they are now able
to lean on their pipeline throughout, ideally making several
releases per day, reliably, repeatably, and with little overhead.
This in turn helps them to get new versions out more quickly,
and to elicit more feedback. Anecdotally, students have much
more of an appreciation for the power of the pipeline when it
fades into the background and becomes a routine day-to-day
tool that promotes an iterative way of working, rather than a
major technical hurdle to overcome.

As with programming languages and frameworks, students
are allowed to make their own technology choices when it
comes to infrastructure and deployment. They can either use
systems that are provided by the university, that they should
have used before, and which we are able to support, or they
can take the opportunity to explore and look further afield. For
example, they might choose to use the university’s internal Git
hosting for their version control, or they might choose GitHub
or BitBucket if it suits them better. They might choose to
deploy their application to a VM provisioned on the university
private cloud (for which we can provide support), or they
might choose to use a public cloud provider. Platform-as-a-
Service offerings like Heroku are popular (we include use
of Heroku for deployment in our guided DevOps labs), but
some teams choose to use other cloud providers, often taking

advantage of the free usage tiers that the vendors offer. A
database-backed webapp or a backend for a mobile service
will normally not incur any financial cost to deploy at the
scale of these university projects, so teams can explore, but at
the same time, infrastructure is not the heart of this project,
so what we really encourage teams to do is to put together a
set of tools that will work for them quickly and easily, so they
can concentrate on delivering software and iterating rapidly.
We want the DevOps work to feel like a means to an end, not
an end in itself.

D. Walking Skeleton and Vertical Slices

Throughout the project we encourage teams to follow the
principle of vertical slicing. Instead of dividing work by
technological layers, we encourage a vertical slice through the
application, adding just enough in each layer to implement a
(small) product increment — just enough to get something in
front of users to facilitate feedback.

We believe this is an important lesson as it seems to be quite
natural for teams to divide work horizontally. If they divide
work so that a different person works on each layer (back-
end, front-end, database...) in order to complete a feature, then
they introduce an integration and synchronisation problem.
Before the feature can be demonstrated, everyone needs to
complete their part, integrate the code, and have the APIs
between the layers work together correctly. If the front-end
work gets delayed, and only the back-end work is completed,
there is nothing for the user to see or try. In terms of getting
new user feedback, there is no value to the work.

There may also be waste. Spending time perfecting the
database schema to store the data for a feature which, on
contact with the user, turns out to be completely unwanted,
is a waste of time and effort. Slicing vertically means starting
at the front-end, and then building just enough of the back-end
to support a version of the feature that can be demonstrated
and trialled. This might mean hard-coding data rather than
pulling it from an API, or using a file for storage rather than
a database — whatever is the minimal reasonable solution to
get to the point where someone can try the feature and give
feedback.

Integration risks are reduced by building and deploying a
walking skeleton early in the project. This pattern was first
characterised by Alastair Cockburn, who describes it as: “a
tiny implementation of the system that performs a small end-
to-end function. It need not use the final architecture, but it
should link together the main architectural components.” [9].

As the students will often be using technology that is new
to them, and connecting several components in a (small)
distributed system, we encourage them to build a walking
skeleton that connects their front-end, their back-end, their
database, and any other key components that they plan to use
(for example external web service APIs). The idea is to ensure
that these can be made to work together successfully, even if
in a very simple way. This mitigates the risk of discovering
integration problems late on, and gives a frame for the team
to build further vertical slices on top of.

E. Example Projects

Over the years, in general, the teams with the best projects
(who gained the highest grades) have typically found a theme
or area of focus that they are personally passionate about and
where they have access to a range of relevant stakeholders.

A typical project is often based on current experiences
in students’ lives, such as living in rented accommodation
with other students and related issues (e.g. payment of bills
and sharing the household chores); helping students make the
right choice of university; improving the running of university
societies; creating better systems to organise sporting events;
finding students to collaborate with on projects etc.

These projects can be successful when teams engage with
a wide range of potential users. In the case of helping house-
mates avoid issues relating to household chores and payment
of bills, a team might set out to engage with 2-3 households to
gauge housemates’ expectations, personalities and how things
currently work. This may also involve exploring a range of
apps and online platforms that students use in general to run
and enjoy their lives, before creating an opportunity statement
(see Section VI-A) from which they can start prototyping some
early concepts.

The danger with theses types of projects comes when
students are so familiar with the issues they are currently
facing, that they do not engage with a wider group and instead
develop their own ideas using a biased approach to prototyping
based solely on their own ideas and opinions. They are very
certain of what they want to build, and proceed on the path
towards their envisioned final product. This often manifests
in the project advancing through a series of “iterations” that
simply create and build the features that the students planned
from the start, and the only “responses to feedback” are the
changing of colours, or the position of components in the
interface, with no clear overall value added. Although these
projects set out with good intentions, and the domain seems
appropriate, the proximity of the students to the problem can
often limit the degree of discovery and adaptation involved in
creating the product.

In comparison, a project that was very successful, was
with a team who initially investigated the United Nations
Sustainable Development Goals with the aim of finding a
topic they were passionate about and felt was important. They
chose mental wellbeing as an area to explore, recognising the
potential at the university by speaking to peers and members
of staff involved in providing services in this area.

Having engaged with a large number of students through
a range of design methods, as well as members of university
staff such as academic tutors and student support services,
the team created a rich bank of powerful and visual data that
helped them generate a range of ideas that they went on to
test with their stakeholders.

The team used such a rigorous and collaborative approach
that they created a project that university was keen to take
further. The project aimed to recruit second year students as
mentors who would be matched with first year students in
the following year and who would help support new students

through the difficult first year of university. Mentors would
give advice based on their own experience as well as directing
their mentees to the professional services on campus.

The team presented the idea in a compelling way, not only
through simple visual language and evidence, but by creating
a video of a university news programme that brought the idea
to life, highlighting how they planned to measure success, e.g.
by tracking how many students engaged with the proposition
and then also how it impacted on individual students.

Throughout the project, they continually adapted their ideas
and their implementation as they learned more about the
problem and how their users wanted to interact with their
system. Although they made quite radical changes to their
design through successive iterations, this was not a weakness,
instead it was a sign of iterating, responding to feedback and
adapting the product to deliver more value.

A project that did not work so well involved a team
looking at the important issue of a student needing to earn
money to support their studies. However, in terms of service
design, the team did not explore the wider context of this
issue and instead, created a system that would allow university
students to earn money by carrying out chores and other tasks
for their local community, with an aim of supporting those in
particular need such as older members of the community that
did not necessarily have family support.

There were two main difficulties that prevented this scenario
from working as a project that met the learning objectives and
also delivered a meaningful product. Firstly, the team was not
able to find a large number of potential users that fit into this
scenario, and so it is not clear that their product direction was
centred on a real need, or a real opportunity for value creation.
The second problem was that a key component of the product
involved the exchange of money. Integrating real financial
transactions into a software product is difficult, particularly
at the prototyping stage. Users will not put their money into
something they feel is incomplete or potentially insecure. But,
testing the product without real money changing hands is not
representative of the real usage and value proposition, so it is
very hard to gather realistic feedback.

We would therefore steer groups away from products and
usage scenarios that centre around financial transactions, as (at
least within the scope of a university project) it is very hard
to test them with users in a meaningful way.

VI. DRP IMPLEMENTATION

Our DRP project forms the culmination of the second year
undergraduate programme in Computer Science. The project
involves around 200 students divided into around 50 teams.
After completing their taught modules and exams, the students
finish the year by working on this project full-time for four
weeks. There then follows a final fifth week when each
group presents their work and final assessments are completed.
Figure 2 gives an overview of the timeline.

A few weeks before the full-time period begins, students
are introduced to the projects and are given some pre-
liminary lectures on Human-Centred Design principles, the

Pre Work (few weeks before)
Intro to Service Design + workshop
Intro to web development technologies
DevOps lab
2 . . ASSESSORS
g Week 1 - Project Pitch
8 Monday : Thr lecture - 3 instructors
o . -
o Midweek: clinic hours
T Friday : all groups 3 min presentation All tutors
Week 2 - Walking Skeleton
Monday : Thr lecture
™ Midweek: clinic hours
- S .
3 Friday : all groups 15 min demo
S . . Each Friday,
£ Week 3 - Thin Slicing 4 tutor paits
o Monday : 1hr lecture work in
2 Midweek: shorter clinic hours parallel to
§ Friday : all groups 15 min demo meet teams
»
Week 4 - Quantitative Evaluation
Monday : Thr lecture
Friday : all groups 15 min demo
Week 5 - Presentation Week
2 tutors +
Monday - all groups 20 min 2 moderators
Thursday: presentation + Q&A each day

Fig. 2. DRP project and assessment timeline

Double Diamond process and relevant development tech-
nologies/frameworks. The HCD concepts are cemented via a
hands-on workshop. Students are also presented with all the
assessment criteria for the project at this time.

We have found that doing a lot of this groundwork ahead
of the main part of the project means that students have more
cognitive space to gain a proper understanding of the design
techniques and the framework in which they are expected
to operate, how they will be assessed, and the technology
options available to them. They have a few weeks to let these
ideas sink in, and to finish off the assessments for their other
modules, before embarking on the main part of the project
where they will work with their team full-time.

The four week full-time period is divided into four one-
week iterations. During the first week activities focus on the
first diamond, conducting research and refining the problem,
then weeks two through four move to the second diamond, iter-
atively designing and delivering the solution, while constantly
seeking and adapting to feedback, with the aim of gradually
converging to a final product. Each week has a particular
theme for the students to focus on, each with slightly different
assessment criteria. We begin each week with a lecture setting
the scene, highlighting the theme and the assessment points.
During earlier weeks we hold midweek clinic hours to support
the teams, but demand for these diminishes in later weeks.

A. Week 1 - The First Diamond

In the first week, students dedicate their time to identifying
a problem that will become the focus of their project (the
first diamond in Figure 1). This involves researching candidate
challenge areas and gathering data on the needs of relevant
users, e.g. by assembling numerical data (quantitative) or
through user interviews (qualitative). Students are not expected
to do any coding in the first week; the focus is on identifying
a problem and a set of user needs, although early ideas may
emerge from this towards a digital touchpoint.

Assessment is carried out at the end of the week via a 3-
minute elevator pitch presentation which summarises the prob-
lem, audience, supporting evidence (including insights gained
through research and/or user interviews) and an opportunity
statement, which typically begins “How might we...”.

An example opportunity statement from a recent project
read: “How might we enable food charity project managers to
strengthen and efficiently organise their volunteers in order to
create a vibrant and reliable volunteer network whilst reaching
increasing numbers of people in need”.

Students often find it easier to write a challenge statement
describing the general problem area — e.g. in this case “Hun-
dreds of thousands of tonnes of good food is wasted by the
food industry every year ... food charity X works to support
people in need, but often struggles to manage supply and
demand of volunteers”. However, we push teams to re-form
this as an opportunity statement, as this typically identifies
the users, the need, and ways in which the success of the final
deliverable might be measured.

B. Weeks 2-4 - The Second Diamond

During the second week students are required to implement
and deploy a simple walking skeleton (Section V-D) that
will form the backbone for subsequent development and user
testing. The groups then develop the core features of their
products through thin vertical slices, adding features incremen-
tally, working across the software stack. Having the walking
skeleton deployed to production allows them to deliver each
of their features in a form where they can test them with
their users and gather feedback. Students follow this second
diamond repeatedly over three, or possibly more, iterations.
In each of these they build new features, gather feedback,
and adapt their designs and plans accordingly. The assessment
structure requires one iteration per week, with a new product
increment to demo each Friday, but we encourage students to
follow a tighter iteration cycle if they can, adding thin slices
and testing with users multiple times within each weekly cycle.

Within weeks 2-4 we have three different weekly themes.
The first is to develop the walking skeleton and a few core fea-
tures. The second theme is around making meaningful progress
on the product, getting feedback and changing direction as
needed to align closely with the user’s needs. The third is
to define one or more metrics that teams can measure and
use to optimise particular aspects of their user experience (for
example the time or number of clicks needed to achieve a
certain task). Optimising something that is the wrong feature

is a waste of time, so we encourage this quantitative work
only later in the project, once the teams have gathered enough
qualitative feedback to feel confident that their overall product
direction is correct.

C. Assessment

At the end of each week we have a checkpoint where
the student groups present and discuss their work with the
assessment team. As we have a large class we have had to
devise ways to make these meetings short, while still giving
enough time for the team to feel heard, to mark accurately,
and to provide some useful feedback.

The elevator pitches at the end of week 1 are seen by all
assessors with brief oral feedback given directly afterwards,
but in weeks 2-4 each project is assessed by a pair of
assessors, one from each of the two disciplines, in a 20 minute
meeting. The same pair follows the group over the remainder
of the project and this is an important aspect of the assessment:
we previously learnt that changing assessors from one week
to the next leads to inconsistent feedback and a lack of trust
both in the process and the way the projects are assessed.

At the weekly assessment meetings, the assessors use a
checklist to assign marks of 0, 1 or 2 in each of a number of
categories. This simple scheme helps to make the assessment
quick and consistent across pairs. The students also felt
happier when the criteria were more concrete and not (at least
in their opinion) open to interpretation by the assessors. It
seems to be another natural trait of computer scientists that
they are concrete people, used to problems with right or wrong
answers, so being assessed on subjective qualities like “quality
of visual design” or “ease of use” did not sit well with them. It
worked much better to have criteria such as “had no evidence
of feedback from users” / “had 1-2 video clips of user test
sessions” / “had 5+ video clips with a variety of users”.

In addition to the checklist matrix for assigning marks, each
week there is also a pre-prepared list of follow-up tasks that the
assessors can choose from to assign to the teams as actionable
feedback. These task lists have been accumulated in the light
of experience and are designed to make feedback concrete and
useful from the students’ perspective whilst being lightweight
to administer from the assessor’s perspective. For example,
for the walking skeleton milestone some of the suggested
follow-up tasks are: “Go to [more / different] real people with
your mock-up”, “Solve technical issues with the deployment
pipeline” or “Decide how to prototype the next stage based
on learning about [usability / desirability / functionality]”. The
assessment pair keeps a copy of the checklist showing which
tasks were assigned so that they can pick up on them the
following week.

Note that we do not separately assess the extent to which
students are adhering to agile development practices, because
the schedule of work, and the weekly assessment, essentially
enforces the practices we want the students to learn. For
example, we do not prescribe a schedule of meetings and
ceremonies and then check to see whether students have
carried them out, instead, we leave it to students to adapt

their ways of working as they think best to help them hit the
assessment targets and by extension to deliver a better product.

For the final assessment (which happens in a fifth week)
each tutor pair assesses their groups over the course of a day.
Although these pair assessments could all run in parallel we
have found it useful to have an additional moderator from each
discipline sit in on all the presentations in order to ensure
consistency of assessment and feedback. This may not be
possible to maintain if we need to scale to a much larger
class in future.

VII. RELATED WORK

With the near ubiquity of agile methods among modern
software development teams, it is no surprise that the ma-
jority of universities teaching Computer Science and Soft-
ware Engineering cover agile methods as part of their pro-
grammes [10], and that this is often associated with a practical
team project. Agile methods are often taught or applied in
capstone courses [11], [12] and particularly using Scrum [13],
[14], although some courses have started to introduce other
agile methods such as Kanban [15] as industry trends change.
De Souza et al [13] report observations similar to ours that
students felt that the Scrum ceremonies were an overhead,
and that they were often dropped in favour of more time on
development: “... a lack of commitment with Scrum practices
was reported due to the amount of overwork”.

In this experience report it is not our aim to perform a
rigorous literature survey comparing courses at other universi-
ties, merely to present our own experiences and our reflections
upon them. However, from programmes that we are aware of,
and through conversations with colleagues, it is apparent that
the teaching and assessment of agile methods is often focused
on processes and tools [16], [17]. We have taken a different
approach, for the reasons described in this paper.

The project course that we have developed combines soft-
ware engineering practices with elements of service design.
Service Design is not a new concept and has been recog-
nised in recent decades by academics and practitioners as a
discipline and approach that can transform the quality and
value of customer, employee and citizen experiences [18].
Although there is no exact definition, there is broad agreement
that Service Design entails an iterative systematic, human-
centred, holistic, creative, and iterative approach to creating
new service-oriented systems [3], [4].

Service Design is closely associated with the Design Think-
ing process of problem solving — “a methodology that imbues
the full spectrum of innovation activities with a human-centred
design ethos” [19]. A large number of university-level courses
are now being offered in the areas of Service Design and De-
sign Thinking. Linking these with computer science can prove
particularly effective, because the prototyping and feedback
cycles involved can be realised through developing software,
which is easily malleable. A number of Design Thinking case
studies have been reported in computing-related areas such as
games programming [20] and more general aspects of software
development [21], [22]. There are also interesting parallels

that can be drawn between Design Thinking and the more
structured processes associated with HCI [23], both of which
are inherently iterative and driven by interaction with, and
feedback from, users.

A critique of the focus on ceremony and process in indus-
trial software projects is given by Mancuso et al in the work
of the Software Craftsmanship movement [24]. Reflecting
on experiences from a wide range of commercial projects,
many of which failed to deliver value sustainably, the idea of
Software Craftsmanship is to focus on the technical quality of
the software being produced. Key concerns in Software Crafts-
manship are the degree to which the software is extensible,
testable and maintainable, with the view that these technical
concerns support agility, and that agile processes alone will
not deliver value without supporting engineering practices.

Perhaps closer to our focus on customer needs is the
Lean Startup movement and the work of Ries et al [25]
which has seen widespread adoption in Silicon Valley and
beyond. Here the focus is on continuous learning and feedback
based on collecting data about customers. Rather than deep
engineering efforts, the minimum viable software is produced
at each iteration, just enough to elicit meaningful feedback and
learning. As Ries writes “Success is not delivering a feature;
success is learning how to solve the customer’s problem.”.

VIII. REFLECTIONS AND RECOMMENDATIONS

We have found interdisciplinary collaboration to be very
valuable to software engineering projects. In our case, the
collaboration was with experts in the area of Service Design
and user research, and those experts happened to come from
another institution nearby. However, we believe that similarly
fruitful collaborations could be formed between different de-
partments or even different groups within the same institution.
The main value came from adding a different angle, that lifted
the students away from a purely technical focus in their work.

When software engineering students talk to software engi-
neering staff about software engineering projects, it is only
natural that their focus tends towards technology. However,
we know that for software development work to be useful and
valuable, we need to address the needs of the user, not to
develop technology for its own sake. Indeed, the development
of complex technological solutions often creates a liability.
As Daniel Terhorst-North puts it “software is like surgery;
no one wants surgery, they just want to be well”2. Our
recommendation is to construct a project where the focus is
outside of software engineering, but where software and good
software engineering practices can provide a means to an end.
Our observation is that this helps students to see the value in
the practices they are applying, and to appreciate them in a
wider context. Interaction with experts from another discipline
also naturally provides students with an additional source of
knowledge and skills which helps to broaden their education.

We discovered over many years that making such a col-
laboration work is difficult, particularly getting to the point

2This quote from a talk is recorded in Graham Russell’s blog post:
https://blog.ham1.co.uk/2016/04/03/software-engineering- as-surgery-part-i/

where students view the two parties as equal partners and
not opposing teams. There may often be a need to overcome
a home-field advantage to ensure that both teams’ input
is respected. Alignment of message and equal emphasis is
important. We have a number of practical recommendations
to help with this. Firstly, whenever there is contact between
staff and students, or there is content delivered, the staff should
appear as a team, with representation from each discipline. We
also recommend using a common style and format for slides
and written materials, again, to emphasise unity between the
disciplines, with no distinct boundaries. When assessment is
done, it should be done by a pair or team of assessors, again
with representatives of each discipline. Feedback should be
given directly, so that both assessors are part of the same
conversation with the students. There is no “we heard X from
them, but now you’re telling us something different...” which
was something that we heard a lot when different assessors met
students separately, and often gave (seemingly) inconsistent
feedback. There should be a single, unified set of assessment
criteria at each point, not one set that person X is looking for
and a different set that person Y is looking for.

A limitation of this approach is the time taken to develop a
shared vocabulary and message amongst the two disciplines.
The teams of instructors need to unify around the themes being
taught so that they are aligned and reinforce one another. In the
example presented here this took a few iterations of the course
to establish and refine, and so shorter-term collaborations, or
high churn in personnel, may make it difficult.

Another practical limitation is trying to align the scheduling
of the course so that it fits with the timetables of both
departments or institutions. In our collaboration this has been
possible, but has meant planning a long time in advance in
order to make sure that staff are consistently available to attend
the student contact sessions and create a consistent experience
for the teams across the weeks.

One of the things that we have found to work well is
scheduling these projects at a time in the academic year
where students can work on them full time, with no other
timetabled modules running alongside them. The aim is to
encourage team collaboration and broad band communication.
Providing a work schedule where team members are able to
work together synchronously, ideally in the same physical
environment (and if not, then synchronously online via video
conference) supports this. Hopefully this also simulates a
commercial work environment (at least the one envisioned
by Beck and Cunningham in the original book on Extreme
Programming [26]), where a team gets to sit together and work
together for most, if not all, of their working week.

We have run different types of projects in other courses
where students work in teams, but where each student has
a varied and individual schedule of other classes to attend
alongside working on their project, which often leads to a
fragmented team. The intensity of the work and the collabo-
ration that we see in the full time projects means that even
with a much shorter overall duration, and perhaps with a
smaller team, we see that teams get more done, and within

each iteration they are able to develop a significant increment
to their product and get meaningful feedback. Overall our
recommendation would be to favour a full time project over
part time, even if the total duration is shorter, as long as there
is enough time for multiple iterations to be completed.

Modern software engineering is a broad subject, with many
different aspects and topics. Our experience has been that
trying to teach too many of these in a single module — and
perhaps asking students to learn and apply them all in a single
project — has led to students feeling overwhelmed, and gaining
only a shallow understanding of each. We have found it more
effective to separate out some of the topics (in our case things
like core programming skills, automated testing, DevOps) and
to allow students to get a firm grasp of these before coming
into a team project. This allows the students to apply technical
practices in the project context without expending too much
cognitive effort on the processes and tools. This leaves them
mental space to concentrate on the interactions with their
users, and to plan and prioritise the features to deliver to
maximise value, leaning on the tools to support them in doing
this effectively. If there is no option in the curriculum to
separate out the learning of skills around topics like DevOps
into separate units, we would advise teaching these tools and
processes right at the start of a software engineering project,
and using a small amount of assessment credit as a lever to
get students to put them in place early on. This helps students
feel the benefit of using this infrastructure throughout a project
where they deliver iteratively.

When teaching agile methods it can be tempting to base
assessment on whether students are carrying out a process
“correctly” by checking whether various activities have been
completed. In order to scale assessment, particularly when
having to teach larger classes, checking off whether various
processes and tools are being used (for example meetings,
backlogs or pipelines) can seem like a good direction. How-
ever, what we have seen is that this can lead to students
paying lip service to the process, carrying out each part in the
minimal way necessary in order to collect the marks, and not
really understanding the purpose or the principles behind these
activities. Alternatively, we have seen teams going all in on a
particular process to do it “by the book”, but never standing
back to inspect and adapt. Our advice is that concentrating
on principles (e.g. delivering iteratively, responding to user
feedback, adapting work processes over successive iterations
etc) and setting up an assessment framework that incentivises
these things leads to deeper lessons being learnt, and a greater
understanding of the principles of agility.

ACKNOWLEDGMENTS

We would like to thank the wider team of tutors from both
Imperial College London and the Royal College of Art who
have supported and mentored students through these projects
over the years, and whose feedback and willingness to adapt
has helped to refine the course to reach its current state.

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

REFERENCES

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for Agile Software Development,” 2001.
[Online]. Available: http://www.agilemanifesto.org/

E. Papatheocharous and A. S. Andreou, “Empirical Evidence and
State of Practice of Software Agile Teams,” J. Softw. Evol.
Process, vol. 26, no. 9, p. 855-866, sep 2014. [Online]. Available:
https://doi.org/10.1002/smr.1664

D. Sangiorgi and A. Meroni, Design for Services.
Ltd, 01 2011.

R. M. Saco and A. P. Goncalves, “Service Design: An Appraisal,”
Design Management Review, vol. 19, no. 1, p. 10, 2008.

Design Council, “Framework for Innovation: Design Council’s
Evolved Double Diamond,” May 2019. [Online]. Available: https:
/Iwww.designcouncil.org.uk/our-work/skills-learning/tools- frameworks/
framework-for-innovation-design-councils-evolved-double-diamond/

P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, ser. Addison-Wesley
Signature Series. Upper Saddle River, NJ: Addison-Wesley, 2007.
[Online]. Available: http://my.safaribooksonline.com/9780321336385
N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2021 Accelerate
State of DevOps Report,” Google, Tech. Rep., 2021. [Online]. Available:
http://cloud.google.com/devops/state-of-devops/

R. Chatley and I. Procaccini, “Threading DevOps Practices through
a University Software Engineering Programme,” in 2020 IEEE 32nd
Conference on Software Engineering Education and Training (CSEET),
2020, pp. 1-5.

A. Cockburn, “Walking Skeleton,” Aug 2008. [Online]. Available:
https://wiki.c2.com/?WalkingSkeleton

D. F. Rico and H. H. Sayani, “Use of Agile Methods in Software
Engineering Education,” in 2009 Agile Conference, 2009, pp. 174—-179.
M. Persson, I. Kruzela, K. Allder, O. Johansson, and P. Johansson, “On
the use of Scrum in Project Driven Higher Education,” in Proceedings
of the International Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS), 2011.

V. Mahnic, “A Capstone Course on Agile Software Development using
Scrum,” IEEE Transactions on Education, vol. 55, 2011.

R. T. de Souza, S. D. Zorzo, and D. A. da Silva, “Evaluating Capstone
Project through Flexible and Collaborative use of Scrum framework,” in
2015 IEEE Frontiers in Education Conference (FIE), 2015, pp. 1-7.
M. Paasivaara, J. Vanhanen, V. T. Heikkild, C. Lassenius, J. Itkonen,
and E. Laukkanen, “Do High and Low Performing Student Teams Use
Scrum Differently in Capstone Projects?” in 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering: Software Engineering
Education and Training Track (ICSE-SEET), 2017, pp. 146-149.

C. Matthies, “Scrum2kanban: Integrating Kanban and Scrum in a
University Software Engineering Capstone Course,” in Proceedings of
the 2nd International Workshop on Software Engineering Education
for Millennials, ser. SEEM *18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 48-55. [Online]. Available:
https://doi.org/10.1145/3194779.3194784

C. Anslow and F. Maurer, “An Experience Report at Teaching a Group
Based Agile Software Development Project Course,” in Proceedings
of the 46th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 500-505. [Online]. Available:
https://doi.org/10.1145/2676723.2677284

H. H. Lgvold, Y. Lindsjgrn, and V. Stray, “Forming and Assessing
Student Teams in Software Engineering Courses,” in Agile Processes in
Software Engineering and Extreme Programming — Workshops, M. Paa-
sivaara and P. Kruchten, Eds. Springer, 2020, pp. 298-306.

Q. Sun and C. Runcie, “Is Service Design in Demand?” Design
Management Journal, vol. 11, pp. 67-78, 10 2016.

T. Brown et al., “Design Thinking,” Harvard Business Review, vol. 86,
no. 6, p. 84, 2008.

E. R. Hayes and 1. A. Games, “Making Computer Games and Design
Thinking: A Review of Current Software and Strategies,” Games and
Culture, vol. 3, no. 3-4, pp. 309-332, 2008.

“Design Thinking Integrated in Agile Software Development: A Sys-
tematic Literature Review,” Procedia Computer Science, vol. 138, pp.
775-782, 2018.

Taylor & Francis

[22]

(23]

[24]
[25]

[26]

A. Wolbling, K. Kridmer, C. N. Buss, K. Dribbisch, P. LoBue,
and A. Taherivand, Design Thinking: An Innovative Concept for
Developing User-Centered Software. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 121-136. [Online]. Available: https:
//doi.org/10.1007/978-3-642-31371-4\ _7

H. Park and S. McKilligan, “A Systematic Literature Review for Human-
Computer Interaction and Design Thinking Process Integration,” in
International Conference of Design, User Experience, and Usability.
Springer, 2018, pp. 725-740.

S. Mancuso, The Software Craftsman: Professionalism, Pragmatism,
Pride, ser. Robert C. Martin Series.

E. Ries, The Lean Startup : How Constant Innovation Creates Radically
Successful Businesses. London; New York: Portfolio Penguin, 2011.
K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley Publishing Company, 1999.

