
Supporting the Developer Experience with
Production Metrics

Robert Chatley
Imperial College London

180 Queen’s Gate
London, SW7 2AZ, United Kingdom

Email: rbc@imperial.ac.uk

Abstract—In continuous software engineering, systems are con-
stantly updated and evolved, with small changes being deployed
to production every day. These production systems can be a gold
mine of data on how the system is operating. While application
performance management (APM) tools are now commonly used
in industrial practice to record such data, often in very large
quantities, we see a need to convert this data into useful
information, and to present it to developers within their regular
development environment, in a context sensitive way. When a
developer is working on a particular piece of code, we want to
tell them how that particular piece of code is currently behaving
in production. In this position paper we present a road-map of
ideas for how new tools could be developed that harness this
data, and present it back to developers in an actionable form,
where they can use it to inform decisions about the impact of
potential changes, as they work with the code day to day.

I. INTRODUCTION

This paper presents a set of practical problems faced by
developers working in a modern software engineering en-
vironment, delivering code changes to a production system
iteratively and incrementally. The fact that we make continual
small updates to a running system means that we have a
large amount of data available to us about how that system
is actually operating in production. We look at ways that this
data could be harnessed to enhance the developer experience,
and possible tools that we believe could be built to do this.
We present a roadmap for a future research direction that we
hope to follow over the coming months and years.

Predominantly we are thinking about web applications and
systems of services, where typically many requests are served
by the same components every day – in the case of high
traffic consumer websites, perhaps millions of requests per
day. This characteristic, together with Application Peformance
Management (APM) software tracing and monitoring execu-
tion, gives us access to a wealth of data about how our software
is behaving in production. The aim of the work proposed here
is to harness this data in practical developer tooling, converting
it into targeted, actionable, information.

II. PROBLEM AREAS

He we describe a set of practical situations in which we
feel that presenting production data to developers in a suitable
form as they are working on the relevant code may be helpful
in improving their ability to understand, maintain, evolve, and
fix problems with a running software system.

A. Exposing Execution Traces

As developers we have a mental model of how our code
will execute in production. We may bolster our confidence
with suites of unit tests to check the correctness of our code.
These are helpful practices in building correct software, but
what if our mental model of what happens in the software
is different from what actually happens when it executes in
the field. Consider the following function that we might have
coded in a university application:
1 public class StudentGrades {
2
3 public void showRecords(User user) {
4 if (user.role().equals("STUDENT")) {
5 showSingleRecordFor(user);
6 } else if (user.role().equals("STAFF")) {
7 showAllRecords();
8 } else {
9 showGuestAccessPage();

10 }
11 }
12
13 // more code here...

Here we might assume that the majority of people looking
at their grades will be students, so most of the time we will
enter the first block, and less of the time we will have staff
looking up the grades for a whole class. We do not really
expect guests to be accessing this system, as there is nothing
for them to see here, but in case they do, we present them a
friendly message pointing them to other relevant pages.

So, we might be surprised to find that in production, the
most commonly executed branch is the third one. Why is that?
A change in another part of the system has led to all the user
roles being passed as lower-case strings, rather than uppercase.
The system behaviour changed, but we would be unaware of
it – probably later on we would get some help-desk requests
from people saying they could not access their student records.
There are no errors in the logs, so it may take us a while to
track down the source of the problem.

What if we were able to overlay information about the
execution paths that had been taken on top of the code, inside
our IDE. Perhaps we could also highlight different branches
in different colours to show which is the “hot” branch. If in
this case, showGuestAccessPage() was highlighted in
red, with a tool-tip popping up to show that 99% of calls to
this method in the last 24 hours had taken this path, then we
would quickly see the problem. A developer working on the



codebase might even notice the problem before it is reported
to the helpdesk. We envisage that building tools that overlay
this kind of production data onto the code as the developers
are working could increase the rate at which problems can be
detected and fixed, as well as perhaps helping them to simplify
code by removing features that are rarely used.

B. Reporting Exceptions
On discovering the above problem, perhaps we decide on a

two-part change to improve the situation. Firstly, we make
a case-insensitive match on the role attribute, so that the
behaviour is corrected for staff and students. Secondly, we
decide that really only staff and students should be accessing
this system, it doesn’t make sense to support guest users, so we
decide to make this an exceptional state, and raise an appro-
priate error, with the hope that this will make problems more
visible in future. The code is therefore updated as follows,
committed and pushed to production. If the feedback cycle is
short (and if we have sufficiently high traffic in production to
yield significant results in a short time) developers may gain
confidence in the success of their fix by observing the change
in the metrics displayed after their revised code has gone live.
1 public class StudentRecords {
2
3 public void showRecords(User user) {
4 if (user.role().equalsIgnoreCase("STUDENT")) {
5 showSingleRecordFor(user);
6 } else if (user.role().equalsIgnoreCase("STAFF")) {
7 showAllRecords();
8 } else {
9 throw new UnauthorizedAccessException();

10 }
11 }
12
13 // more code here...

A few weeks later, a member of the operations team
is looking through some log files to search down a par-
ticular problem. They notice that quite a few of these
UnauthorizedAccessExceptions have appeared in the
log over the past few days. This is not related to the problem
report they are working on, so they make a note of it in a Jira
ticket to be discussed and possibly prioritised at the next sprint
planning meeting, the following week. No-one else looks at
these exceptions in the log, so the problem is not highlighted
until that meeting, and at that point a task is created to “look
into UnauthorizedAccess”, but it is not marked as urgent, so
it is put off to the following sprint.

During the current sprint, developers are working on the
StudentRecords class, and so if they had known about
this problem, they would be perfectly placed to investigate it
quickly, but there is a disconnect in the flow of information
– messages end up in a log file, which may be read by
an engineer, which may lead to a ticket being created for
developers to work on later. In fact what has happened is that
a new class of student “POSTGRAD” has been introduced,
who should also have access to their grades, but this is not
being covered by the current code. It would be a quick fix if
the developers were active in this piece of code anyway.

We propose additional tooling that would process produc-
tion logs, and overlay statistics on to the code as the developer

is working, showing how frequently exceptions have been
thrown from each point in recent execution. In the example
above, a red-highlighted line saying “Exception thrown 25,000
times today” might draw the developer’s attention as they were
working on additional functionality, and hopefully they would
take the opportunity to investigate and fix the problem.

C. What Is Deployed Where?

In a continuous delivery process, it is common for teams
to have several different pre-production environments through
which their code passes before it goes live. There may be
integration environments, where suites of automated accep-
tance tests run to check the technical correctness of the
system, and then staging environments, where teams may
assess whether or not the implemented features are correct
with respect to business needs – are they what the customer
wanted? After this, and possibly further stages, the code can
pass to production.

With all of this complexity, and in a continuous software
engineering environment where new changes are being made
every day, we believe it would be useful for developers to be
able to know when looking at a piece of code “is this code in
production”? If a particular problem is reported in production
at the beginning of the day, and a developer was investigating it
this morning, is this piece of code that looks like a fix already
in production? Or do we need to work more on this issue?

Working out what is deployed where is (or certainly
should be) possible, given an automated build and deployment
pipeline centred around structured version control usage, but it
often is not obvious when looking at the code in the IDE. We
propose tooling that would highlight the current environment
in which each section of the code is deployed, whilst looking
at it in the editor. If a developer opens a file, and there is a
recent change that looks like it addresses (or perhaps causes)
a particular problem, is that code currently in production?

A similar case might be where we commit and push a fix
(perhaps the fix suggested in the previous section), and set it
off in to the deployment pipeline to be tested and deployed. We
have confidence in the reliability of the pipeline, so assume
that after a short while the code will be deployed, and the
users’ experience improved. As we continue to work on the
code, it would be useful for the highlighting in our editor to
show if perhaps the code has reached the staging environment,
but does not proceed to production. This might lead us to go
and investigate what is blocking the pipeline – even if it is
an unrelated issue. By adding appropriate telemetry we want
to make it possible for developers to monitor the progression
of each change through the pipeline, from within their regular
working environment, without having to switch to another tool
showing the dashboard of the deployment system.

III. RELATED WORK

The idea of augmenting the display of code in the IDE
with supplementary metrics data about the performance of the
software has been explored in prior work by Beck [1], [2]
and also by Cito et al in their work on PerformanceHat [3],



Fig. 1. Envisioned architecture for metrics gathering and analysis.

[4]. Both of these provide examples of using overlays and
code highlighting inside the code editor window of the IDE to
render context-specific performance data. In the case of Beck’s
work, much investigation has been done into how data can be
presented visually in a useful way, making use of colouring
and graphing of values, but the performance data itself is
taken from profiling of the program during a performance
test. In contrast, PerformanceHat builds on this approach to
taking profiling information from execution of the software
in a production environment, which is much closer to the
situation that we envisage here.

We want to build on this work in a number of ways. Firstly,
to monitor and present data not only to do with timings and
performance, but also to expose the three cases described in
Section II, which may require more fine-grained telemetry to
be recorded and analysed. Secondly, we want to integrate
more closely between the metrics and monitoring system
and the build system. In a continuous software engineering
environment, the version control and build systems hold a
wealth of information about what change was made when, by
whom, whether that version resulted in a successful build with
all tests passing, and whether that build was then subsequently
deployed into a particular environment. We want to close the
loop so that this information can be used in order to aggregate
and slice data from production execution – which log events
correspond to which versions of the software?

IV. CHALLENGES

We currently plan to build a system architecture similar
to that shown in Figure 1. This figure shows the flow of a
change from the developer’s IDE, into version control, through
the build pipeline, to staging and production. It also shows
how the metrics platform is fed not only from profiling agents
monitoring execution in both staging and production, but by
the build pipeline itself. At one level there is an engineering

challenge of effectively integrating these different tools and
managing the flow of data between them. At a second level
we want to investigate whether the types of metrics we can
typically capture using APM tools can give deep enough
insights in order to address the problems described above.

A. Tracking Changes

It is not normally true that once a commit is made, it is
immediately running in production. Depending on the length
of the build and release process, and whether there are any
manual steps in this process, the time between commit and
release to production could range from minutes to days (or
even weeks). We therefore need integration with the build
pipeline so that we can capture data about which version is
deployed in which environment at which times, to give us
accurate cross-correlation of information.

One option is for the build pipeline to push data to the
metrics service every time that a new build is deployed,
recording the build number, and perhaps the git commit hash
that this corresponds to, so that monitoring data can be tied
back to a particular deployed version later on. An alternative
approach would be to make the monitoring agents and logging
code aware of the currently deployed version, so that log
events could be tagged at source with a particular version
number. Which of these would be more effective is an open
question.

Another issue around tracking changes is that as the rate of
release increases, with the smaller batch sizes that continuous
delivery favours, do we risk reducing the amount of data
that we have about any individual version. If we did 100
deployments per day, each would only be live for a matter
of minutes. In this state perhaps it will be more meaningful to
aggregate the monitoring data over the time since a particular
piece of code was last changed. This approach would make
the analysis rather more intricate.



Another question is whether in presenting data perhaps
rather than reporting current values (this exception was thrown
100 times today), it would be better to report changes and
deltas (this exception was thrown 10 times more today than
the average for the last week). To do this effectively would
again require more sophisticated data logging and analysis.

B. Collecting Data

To collect data from an application running in production,
we need a way of continuously profiling, without introducing
an unacceptable overhead to the performance of the appli-
cation. Several tools and approaches exist that may give us
fruitful starting points. Many popular APM tools, for example
NewRelic1, allow profiling agents to be installed on production
machines to monitor key performance indicators and ship this
data to a central analysis system. This is very similar to what
we want to do, but the level of profiling information that we
require – for example which branch of a conditional is taken –
in order to provide deep insights to the developer may be rather
more fine-grained than these off the shelf products provide.

In order to make the toolset useful across a large organisa-
tion, it needs to be easy to install for every service. Google
introduced an organisation-wide tool for profiling that is part
of their template build for all production services, meaning
that every system can be profiled, without the developers
specifically having to consider this as a requirement [5].
Opsian [6] provides an infrastructure for continuous profiling,
which works via agents that monitor the JVM. The engineering
team at Uber recently developed the PyFlame [7] profiler
as a high-performance, low overhead profiler for Python
applications, which they run in production to collect data to
help detecting performance bottlenecks. We plan to investigate
these tools further to see if they can be harnesses or adapted
for our needs.

V. RESEARCH ROAD MAP

We plan to work on ideas, techniques and tooling to address
the above problems over the coming months and years. The
planned phases of work are as follows:

Our first goal is to build an end-to-end toolchain for collect-
ing data from a web application, aggregating it in a metrics-
server, and using this as a source of data for an IDE plugin
(likely targetting the JetBrains family of IDEs), rendering the
data over the top of the code in a similar manner to the tools
of Beck and Cito. This stage will also investigate collecting
metrics in a way that does not introduce a significant overhead
to the performance of the production application. The plan is
to decouple the source of metrics data and analysis from the
visualisation as much as possible, to make it easier to build
plugins for different IDEs and editors showing the same data.

An area of particular interest within the realm of continu-
ous software engineering is looking not just at snapshots of
execution behaviour, but at deltas – particularly linking with
the information stored in version control and build systems.

1https://newrelic.com/products/application-monitoring

With each change, a developer will have a particular intended
effect. Can we use this type of analysis and tooling to gather
and present data about changes in system behaviour, either
intended or unintended?

Once this infrastructure is in place, we aim to collect and
present data around execution traces, in particular identifying
the proportion of executions following different branches. This
will require fine-grained instrumentation and profiling.

As we are building tools for developer productivity, our
planned evaluation approach centres around developer experi-
ence. Does this information help to guide developers’ work,
and allow them to evaluate the impact of their changes as
they continuously update different parts of the system? Is it
more meaningful to calculate statistics independently for every
newly deployed version of the system? Or is it more useful
to present aggregates over all versions since the last time that
a particular piece of code was edited? Does presenting these
statistics prove a useful source of information to the developer
in detecting and correcting problems? Does it inform the way
that they work? Or does it simply prove a distraction?

To assess whether or not our prototype tools are really
effective in practice is difficult in this area of work, as we
need real systems and representative production data in order
to make them work. While we could simulate this, impactful
research in this area will depend on fruitful collaboration
between researchers and practitioners. We hope that we will
be able to foster relationships with colleagues in both halves
of the software engineering world in order to advance the state
of the art in this area.

REFERENCES

[1] F. Beck, O. Moseler, S. Diehl, and G. Rey, “In Situ Understanding
of Performance Bottlenecks through Visually Augmented Code,” in
2013 IEEE 21st International Conference on Program Comprehension
(ICPC). Los Alamitos, CA, USA: IEEE Computer Society, may 2013,
pp. 63–72. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ICPC.2013.6613834

[2] F. Beck, H. Siddiqui, A. Bergel, and D. Weiskopf, “Method Execution
Reports: Generating Text and Visualization to Describe Program
Behavior,” in 2017 IEEE Working Conference on Software Visualization
(VISSOFT). Los Alamitos, CA, USA: IEEE Computer Society, sep
2017, pp. 1–10. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/VISSOFT.2017.11

[3] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller, and A. Roth,
“Runtime Metric Meets Developer - Building Better Cloud Applications
using Feedback,” PeerJ PrePrints, vol. 3, p. e985v1, Apr. 2015. [Online].
Available: https://doi.org/10.7287/peerj.preprints.985v1

[4] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall,
“PerformanceHat: Augmenting Source Code with Runtime Performance
Traces in the IDE,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 41–44. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3183481

[5] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-Wide Profiling: A Continuous Profiling Infrastructure for
Data centers,” IEEE Micro, pp. 65–79, 2010. [Online]. Available:
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68

[6] S. Jaffer and R. Warburton, “What is Continuous Profiling?”
February 2019, [Online; posted 07 February 2019]. [Online]. Available:
https://www.opsian.com/blog/what-is-continuous-profiling/

[7] E. Klitzke, “Pyflame: Uber Engineering’s Ptracing Profiler for Python,”
September 2016, [Online; posted 27 September 2016]. [Online].
Available: https://eng.uber.com/pyflame/


