
Diggit: Automated Code Review via Software
Repository Mining

Robert Chatley
Imperial College London

180 Queen’s Gate
London, UK

rbc@imperial.ac.uk

Lawrence Jones
GoCardless Ltd

338-346 Goswell Road
London, UK

lawrence@gocardless.com

Abstract—We present Diggit, a tool to automatically generate
code review comments, offering design guidance on prospective
changes, based on insights gained from mining historical changes
in source code repositories. We describe how the tool was built
and tuned for use in practice as we integrated Diggit into the
working processes of an industrial development team. We focus
on the developer experience, the constraints that had to be met
in adapting academic research to produce a tool that was useful
to developers, and the effectiveness of the results in practice.

Index Terms—software maintenance; data mining;

I. INTRODUCTION

Peer code review is a well established practice amongst
development teams aiming to produce high quality software,
in both open source and commercial environments[1]. The
way that code review is most commonly carried out today
is that the reviewer is presented with just a snapshot of the
proposed change, without the historical context of how this
code has changed over time. Mostly commonly they see a diff
giving a before/after comparison with the preceding version.
We show that tooling can support and improve code review by
automatically extracting relevant information about historical
changes and trends from the version control system, and
presenting these as part of the review.

Institutional memory is codified in version control systems.
By building analysis tools on top of this that integrate into
a developer’s workflow, we are able to automatically provide
guidance for a more junior developer, or someone new to a
codebase. This paper reports on the experiences of a commer-
cial development team using our tool, but we also see potential
for use in open source projects, where there may commonly
be a large number of contributors proposing individual patches
and changes, compared to a relatively small community of core
maintainers who may need to review these changes.

We aimed to integrate our analysis tools as seamlessly as
possible into developers’ regular workflow. We have therefore
developed tools that integrate with the GitHub pull request1

and review flow. When a pull request is made, our analysis
engine runs, and our code review bot comments on the pull
request. In order to provide timely feedback, we need to ensure
that we can perform our analysis in a relatively short time-box.

1https://help.github.com/articles/about-pull-requests/

When developing their static analysis tool Infer[2], Facebook
examined how quickly results needed to be returned in order
for their developers to pay attention to them. They determined
that a window of 10 minutes was the maximum that they could
allow for static analysis to run before developers would give up
waiting and move on. Based on this, we have also taken this 10
minute timebox as a benchmark for our tools, which informed
our decisions when selecting and tuning analysis algorithms.
Another observation from Facebook’s work on Infer was that
developers had a very low tolerance for false positives. As soon
as their tool began warning about potential bugs that turned
out not to be real problems, developers began to ignore the
tool entirely. We therefore paid great attention to false positive
rates and the relevance of generated comments.

This paper presents Diggit, a tool for running automated
analysis to produce code review comments. Diggit will com-
ment when a) past modifications suggest files are missing
from proposed changes, b) trends suggest that code within
the current change would benefit from refactoring, c) edited
files display growing complexity over successive revisions.

We show that repository analysis using a well-chosen algo-
rithm can provide automated, high quality feedback in a timely
fashion, and allows us to present results in a context where
immediate action can be taken. We evaluate the effectiveness
of these methods when used by an industrial team.

Our priority when building Diggit was to produce a tool that
would be useful in practice. To encourage adoption we needed
to reduce the barrier to entry, making it easy for developers to
integrate our tool into their existing processes. This resulted
in us paying a lot of attention to aspects like authentication,
creating a smooth setup experience for new users, integration
with existing tools, and the general user experience – things
that research projects might often place less emphasis on. The
Diggit tool is now available as open source software2.

II. RELATED CHANGE SUGGESTION

Working on large codebases can be disorientating, even for
seasoned developers [3], [4]. Making a change is often not
just a case of adding new code, but also integrating with and
adapting existing parts of the system, test suites, configuration,

2https://github.com/lawrencejones/diggit



documentation etc. New developers especially may struggle if
they have yet to become familiar with the conventions, patterns
and idioms used in a particular project. Even for developers
relatively familiar with a codebase, it is easy to miss things.
For example, perhaps in a particular codebase when a change
is made in module X, it is normally required that a system test
in module Y is updated too, but our developer has neglected
this, either by accident or because they did not know about
this relationship. Or it may be the case that the developer has
correctly changed the relevant file, but simply forgotten to add
it to the current commit. Diggit’s related change suggestion
analysis aims to suggest files that may have been omitted
from the current commit. It mines common file groupings
based on temporal coupling[5] from a codebase’s Git history.
Such suggestions act as both a safeguard and learning tool for
developers as they work within a project, raising awareness of
file coupling and the nature of idiomatic changes.

Fig. 1. Suggesting files commonly changed together.

We mine association rules from a given codebase’s version
control history. Similar analysis has previously been performed
in work such as ROSE [6] and TARMAQ [7]. Here we do not
aim to present a novel algorithm, but to describe the forces at
play when a tool based on research was developed to integrate
into the working processes of an industrial team.

For our implementation we investigated a number of possi-
ble algorithms for mining association rules and generating sug-
gestions. We started with the Apriori algorithm, together with
the Apriori-TID optimisation, as described by Agrawal [8].
We compared this with an implementation of the FP-Growth
algorithm described by Han et al [9], with optimisations as
discussed by Borgelt [10] to improve the memory usage.

We had two goals in selecting and tuning an analysis
algorithm. We wanted to provide feedback in a timely manner,
but also to maintain a low false-positive rate. Our tool will be
no use if suggestions are simply ignored by developers due to
latency or inaccuracy. Requiring high confidence might mean
that for many projects, especially those without a long revision
history, we simply do not have enough data in the repository
to produce many suggestions. Allowing a lower confidence
may well mean that we produce erroneous suggestions. For
a compelling developer experience it was important that we
come up with appropriate confidence values.

Fig. 2. Highlighting code quality trends over successive changes.

There is not room in this paper to present a full analysis
of our performance experiments, or how parameters such as
mimimun support were tuned, but full details can be found
in the accompanying technical report [11]. As a summary,
FP-Growth produced results orders of magnitude faster than
Apriori in our experiments, whilst still giving useful results.
Diggit therefore uses FP-Growth for its analysis.

III. CODE QUALITY TRENDS

Agile methods are prevalent in industrial software devel-
opment, and as such it is expected that a codebase will be
changed frequently over time. In such an environment it is
common for a codebase to deteriorate with age [12], especially
if there is no sustained effort to improve code quality, through
continuous refactoring [13].

The continuous application of small improvements helps
developers to maintain hygiene standards in a codebase, and
to prevent the accumulation of technical debt that may make
future changes difficult and possibly economically unviable.
Developers rarely introduce significant design problems all at
once – or at least if they do, we hope that the process of
code review should catch them before the change is integrated.
More difficult to detect is when there is a gradual trend of
things getting worse over time. Agile teams often favour a
culture of collaborative code ownership [14], so it may well be
that every developer on a team changes many different areas
of a codebase during their work on a system, but may not
have a long term engagement with any particular area of the
code. They may make a minor change to an existing class or
method that adds some new functionality, a small addition to
an existing foundation. If every change makes the code just a
tiny bit worse, then we may have the problem of the proverbial
“boiled frog”, where we do not notice until it is too late.

To help with this, we added the detection of code quality
trends to Diggit. When a change is made, Diggit analyses
trends in this particular area of code over previous revisions,
and generates comments suggesting that the developer might
want to consider code quality at this point. The aim is to
provide feedback “just in time” to encourage developers to
refactor before the work on this particular area of code is
completed. This is in contrast to an offline review tool that
may be able to highlight areas of a codebase that might benefit



Fig. 3. Diggit correctly highlighting a forgotten change.

from refactoring, should the team ever get around to it as a
separate maintenance activity.

The first quality trend that Diggit analyses is based upon
Feathers’ observations on refactoring diligence [15]. Feathers
analyses repository data to give a summary profile, for exam-
ple revealing that there are 135 methods that increased in size
the last time they were changed, 89 methods that increased
in size the last two times they were changed, and so on.
High numbers of methods that are consistently expanded are
indicative of a lack of diligence in refactoring.

In generating code review comments, we do not generate
a profile for the whole codebase (as Feathers does), but trace
back through the history of the code in the current change,
and look for consecutive increases in method length.

We created a similar analysis module to highlight trends in
computational complexity, using a method based on measuring
whitespace and indentation [16] to give an approximation of
code complexity whilst preserving some language indepen-
dence. It is not always the case that complex code needs to be
simplified – some modules implement complex algorithms, but
are closed and need no further change. The more problematic
case is when we have code of high complexity that changes
often. Therefore, detecting increases in complexity at the point
of change (and review) allows us to highlight a combination
of high (or increasing) complexity and frequent change, which
may indicate a hotspot in the codebase where refactoring
would be likely to be beneficial. The tool can generate com-
ments about trends either over the last n revisions, whenever
those changes occurred, or trends over a period of time. In our
trials, a threshold of n = 3 was used to trigger a warning.

IV. USE IN PRACTICE

To explore whether Diggit is a useful tool in practice, we
studied its use with the development team at GoCardless.
GoCardless is a company that runs a platform facilitating
electronic payments. They have a development team com-
prising approximately 20 developers. The company already

Fig. 4. Manual reviews addressing growing complexity.

Fig. 5. Not all of Diggit’s suggestions are helpful.

has a development process that involves manual code review
managed through GitHub pull requests. The team used Diggit
on one of their core services, for historical reasons known
simply as gocardless. This is the main repository for the
GoCardless API, with around 150k lines of Ruby code with
contributions from over 50 developers over the lifetime of the
project. Development typically proceeds at a rate of around ten
pull requests a day. Diggit was set to analyse pull requests on
the gocardless repository, at first in a hidden mode, so that
we could see what it would do and tune the parameters, and
then in a live mode, where it commented on the developers’
pull requests as part of their normal review process.

We asked the developers to provide feedback on comments
that have been useful to them during review, as well as those
that were not helpful so that we could further improve the
system. One example where the automation worked very well
is a change made by a developer from the GoCardless support
team, who wanted to modify a schema description in response
to a comment from a customer. The developer who made this
change, Lewis, makes infrequent changes to gocardless
and consequently forgot to rebuild the schema files after
changing the schemata3.

The pull request in Figure 3 was created by user lewisblack-
wood, and we see that the first comment to appear is from
the Diggit bot, suggesting that schema-secret.json and
schema-private.json were likely missing from this

3https://github.com/interagent/prmd



Fig. 6. Comment occurance on pull request 8322 of gocardless (some filenames anonymised).

change. Examining the analyses in Diggit’s database revealed
that Lewis subsequently rebuilt the schema, pushed a new
commit to the pull request. As this problem was now resolved,
when Diggit ran over later commits to the same pull request
(before it was merged), the analysis produced no comments.
This is exactly the pattern that we would expect if a developer
updates their change to resolve a problem that Diggit reports.

In Figure 3, we can see a correlation between the comment
by jacobpgn and the comment that Diggit generated. The cor-
rectness of the analysis is further highlighted by the comment
from greysteil, a member of the technical leadership team,
noting Diggit’s accuracy in this case.

More evidence of Diggit’s accuracy was pull request 8322
for gocardless, which was a large refactoring across 24
files. The initial push modified 14 files, triggering several
file suggestion and complexity warnings from Diggit. The
developer continued to refine this change over 6 revisions
before it was approved and merged into the master branch.
The table in Figure 6 shows how Diggit commented on each
of those revisions, and how by the end of the process all the
comments Diggit made were resolved. It is interesting to note
that in the second push, two warnings from the first revision
were resolved, but four new ones were triggered. These are
file suggestions for aml/checkers which were triggered
when checker_a.rb was added to the diff, and then sub-
sequently fixed. The comment about the increased complexity
of attach_check_to_last_verification.rb was
matched by a manual review comment (Figure 4) that sug-
gested moving the change out into a new action, hence splitting
the code into a larger number of simpler components.

V. USER FEEDBACK

As well as gathering data from Diggit and the GoCard-
less code repository to see what analysis was generated, and
subsequent changes, we also asked the GoCardless developers
to provide qualitative feedback and used this to refine the
tool. One issue that GoCardless experienced with the file
suggestions were false positives caused by links between two
files where changing file A would require a developer to
modify file B, but modifying B would not require modifications
to A. This issue was raised after an automated tool created pull

requests upgrading each dependency of gocardless, with
Diggit commenting (Figure 5) on pull requests that did not
change the Gemfile, only the Gemfile.lock.

As greysteil comments in Figure 5, the association between
Gemfile and Gemfile.lock is significant when a change
to Gemfile leaves Gemfile.lock untouched. Unfortu-
nately the reverse is not useful. In Ruby projects the Gemfile
lists the required libraries, but the the Gemfile.lock
records the particular versions of these libraries, so adding a
new library requires a change to both, but upgrading a version
only requires a change to the lock file. Increasing Diggit’s
confidence threshold could prevent these warnings, but would
reduce the overall recall. Also, tuning the parameters to
vary confidence requires specialist knowledge of the mining
algorithm. Most GoCardless developers working with the tool
preferred to treat it as a black box, and instead to specify
individual exceptions to the analysis rules using an ignore file.
This allowed them to filter out false positives.

GoCardless also highlighted a few spurious results from the
complexity analysis reporter. In some cases minor alterations
to files were causing warning comments about increasing
complexity, despite the change being isomorphic. Rubocop4,
the prevalent Ruby linter, suggests that method parameters
be aligned on following lines when a single line method call
would exceed the set line-length. This often leads to method
calls where the code is formatted such that the parameters
are broken onto the next line. Whitespace integration often
detected this additional indentation, resulting in a large (but
misleading) increase to reported complexity.

Reducing our analysis sensitivity to these stylistic issues re-
quired the tool to have a great understanding of the code. This
demanded language-specific tooling (which we had initially
been trying to avoid, in order to remain language agnostic),
but once this decision was taken we could perform more
detailed analysis. We changed Diggit’s analysis engine to use
a plugin mechanism that allows language-specific analyses,
keyed against particular file extensions, and used an ABC
complexity measure [17] for Ruby files, making use of the
abstract syntax tree. This complexity metric is unaffected by

4https://github.com/bbatsov/rubocop



formatting changes, and so although we lost a little generality,
we reduced false positives.

Diggit has a 21% comment ratio at GoCardless: it produces
a comment on approximately 1 in every 5 pull requests
processed. Anecdotal feedback from the team showed that this
amount of feedback felt about right to them. They were aware
of the tool doing something useful, without it overwhelming
their existing review process.

VI. EVALUATION AND CONCLUSION

We evaluated the effectiveness of Diggit’s comments by
comparing Diggit’s suggested actions for a given pull request
to those observed after manual code reviews. We explored this
correlation by running analysis on twenty software projects
(inside and outside GoCardless), looking at pull requests with
manual reviews. We consider a Diggit comment to be effective
if it is generated for one revision within a pull request, but not
in subsequent revisions (the problem has been fixed). If we see
this fix pattern for a pull request when the developers only had
access to the manual review comments (with Diggit running in
hidden mode), we infer that Diggit is automatically generating
similar feedback to what a human would give.

TABLE I
DIGGIT COMMENT RESOLVE RATES.

Reporter Resolve Rate Resolved Total

Refactoring Diligence 38% 24 64
Complexity 44% 38 87
Change Suggestion 59% 104 176

Overall 51% 166 327

Our results (Table I) support the conclusion that the same
issues Diggit highlights are being tackled during manual
review. On average, over 50% of the comments Diggit makes
are resolved prior to merging of the pull request, suggest-
ing a strong correlation between comments made by human
reviewers and Diggit’s analysis. Change suggestion has the
highest resolve rate, with 59% of suggestions fixed before the
pull request is merged. Complexity and refactoring diligence
comments also show strong resolve rates, both seeing over a
third of comments being resolved before merge.

In criticism of resolve rate, it only approximates developers
taking action on analysis suggestions. Comments made to files
that were then later removed from the change would be seen
as resolved, for example. Conversely, sometimes comments
would suggest taking action that is subsequently addressed in
a separate change, which our statistics would miss. Overall
these results indicate a general agreement between Diggit’s
comments and the actions taken in code review, but show that
there is still room for improvement.

Looking specifically at GoCardless projects, 65% of the
comments generated were taken as actionable by the develop-
ers and resulted in a fix. This higher rate may be due to the
ability to suppress false positives on a project-specific basis.

Given these results we believe that Diggit demonstrates the
potential for analysis tools to support code review. Although,
we note the particular attention that needs to be paid to
practical issues to integrate tools into an existing development
process, and have engineers engage with them. Diggit provides
an example of successfully harnessing techniques developed
in research, and applying them to historical data already
accumulated by the vast majority of industrial teams, and using
this to help developers improve code quality by providing
timely automated feedback on proposed changes.

REFERENCES

[1] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 192–201. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597076

[2] C. Calcagno and D. Distefano, “Infer: An automatic program verifier
for memory safety of c programs,” in Proceedings of the Third
International Conference on NASA Formal Methods, ser. NFM’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 459–465. [Online].
Available: http://dl.acm.org/citation.cfm?id=1986308.1986345

[3] S. Elliott Sim and R. C. Holt, “The ramp-up problem in
software projects: A case study of how software immigrants
naturalize,” in Proceedings of the 20th International Conference
on Software Engineering, ser. ICSE ’98. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 361–370. [Online]. Available:
http://dl.acm.org/citation.cfm?id=302163.302199

[4] L. M. Berlin, “Beyond program understanding: A look at programming
expertise in industry,” Empirical Studies of Programming, vol. 93, no.
744, pp. 6–25, 1993.

[5] A. Tornhill, Your code as a crime scene : use forensic techniques to
arrest defects, bottlenecks, and bad design in your programs. Frisco,
TX: Pragmatic Bookshelf, 2015.

[6] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering,
IEEE Transactions on, vol. 31, no. 6, pp. 429–445, 2005.

[7] T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the analysis of evolutionary coupling for software change
impact analysis,” in 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE,
2016, pp. 201–212.

[8] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[9] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM Sigmod Record, vol. 29, no. 2. ACM, 2000.

[10] C. Borgelt, “An implementation of the fp-growth algorithm,” in Pro-
ceedings of the 1st international workshop on open source data mining:
frequent pattern mining implementations. ACM, 2005, pp. 1–5.

[11] L. Jones, “Diggit mining source code repositories for
developer insights,” Imperial College London, Tech. Rep., 2016.
[Online]. Available: http://www.imperial.ac.uk/computing/prospective-
students/distinguished-projects/ug-prizes/archive/

[12] D. L. Parnas, “Software aging,” in Proceedings of the 16th International
Conference on Software Engineering, ser. ICSE ’94. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1994, pp. 279–287. [Online].
Available: http://dl.acm.org/citation.cfm?id=257734.257788

[13] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code, ser. Object Technology Series. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[14] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[15] M. Feathers, “Detecting refactoring diligence,” dec 2014.
[16] A. Hindle, M. W. Godfrey, and R. C. Holt, “Reading beside the lines:

Indentation as a proxy for complexity metric,” in 2008 16th IEEE
International Conference on Program Comprehension, June 2008, pp.
133–142.

[17] J. Fitzpatrick, “Applying the ABC metric to C, C++, and Java,” 1997.


