
Kanban

302

@rchatley #doc302 

Here we give a brief introduction to Kanban. Kanban is a
method that has relatively recently seen adoption in the
software industry, but has its roots in manufacturing. A lot
of the ideas were developed originally in places like
Toyota in Japan, producing cars. Toyota were
concentrating on trying to produce cars efficiently on the
production lines in their factories, minimising waste.

The original kanban systems at Toyota were designed by
Taichi Ohno (pictured bottom right observing the
production line). A lot of the work in popularising it
amongst the software development community was led by
David Anderson, who wrote the pictured book. He also
has an earlier book “Agile Management for Software
Engineering: Applying the Theory of Constraints for
Business Results” which focussed more on some of the
work he did at Corbis, and his thinking at that stage is
presented using more mathematics, which aren’t always
useful to individual teams (they might be to higher levels
of management).	
!
Another strong influence on Kanban is Goldratt’s theory
of constraints (TOC) - https://en.wikipedia.org/wiki/
Theory_of_constraints 	
!

Kanban/TOC

QA
To 

ReleaseAnalysis DevTo Do

Kanban is not a method for managing people, it is for
managing work. We do not focus on what people are
doing, we focus on the work - what state is it in, and what
does it need next? We use a board to visualise the
workflow. This kanban board shows that a number of
stories have been developed, but they are backing up in
QA - none have been released. The team should focus on
getting these features through QA and into production
before doing more dev or analysis work.	
!
But, it is a natural trait of developers to want to keep busy
(and of managers to want to keep them busy), so we might
be tempted to start more of the things in the To Do
column. This causes us to have more work in process.
More things have been started, but not necessarily
finished. If we came to the end of a Scrum sprint in the
situation shown here, we would have nothing to release.
Kanban focusses on getting work to flow through the
system.

Limit WIP

QA
To 

ReleaseAnalysis DevTo Do

One way to help highlight these problems is to enforce a
work-in-process (WIP) limit on each activity. We impose a
policy where we can only pull a task into the next phase
when there is a space to do so. When the team comes to
look at this board and decide what to do next, they start on
the right hand side - not the left. Can we move anything
from QA into To Release? If not, what needs to be done
before that can happen? What can we best do as a team to
get something ready to release - get it to the end of the
pipeline. Once there is a space in the QA column, we can
ask the same questions about the tasks in the Dev column.
These constraints focus us on moving things through the
pipeline.	

Release as a Flow

QA
To 

ReleaseAnalysis DevTo Do

Unreleased features
are inventory

More features
per release

implies more risk

Although this board looks good, there is still a problem.
We have lots of things that are “ready to release”, but they
are not released. This suggests that perhaps our release
process is troublesome or time consuming. If we work on
making this easy, then release becomes routine, and we
can get features released as soon as they are finished.
Keeping the work in progress low and releasing often, a
few features at a time helps to keep customers happy as
they see a continuous flow of delivery. It also means that
we have less half-developed features to maintain, and
smaller changes in each release.	
!
Instead of working in fixed timeboxes, whenever there is
space to pull something from the To Do column, we start
on the next most important thing. Instead of planning what
we can do in a fixed time box, we measure how long it
takes for each task to pass through the pipeline. Then we
can say “on average it takes us X days to deliver a new
feature after it reaches the top of the To Do list”.

http://kanbantool.com/kanban-library/analytics-and-metrics/explaining-cumulative-flow-diagrams

With Kanban we try to analyse our workflow and make it
more efficient. Our aim is that each piece of work should
spent the minimum possible time in each phase -
particularly we want to eliminate waiting. One way we
can investigate this is using a cumulative flow diagram.
Each day we take a snapshot of the kanban board and note
the number of items in each phase. Ideally over time the
number of things in “done” should increase, but if we
keep up our throughput and flow, then only a small
number of tasks should be in any of the other phases at
any time.	
!
If one of the phases starts accumulating work, we can use
this as a sign that we need to focus our efforts on making
our work in this phase more effective. For example we
might want to spend more time building some tools to
speed up testing and deployment, rather than starting new
features.

