
Extreme Programming
(XP)

302

@rchatley #doc302 

Here we give a brief introduction to Extreme
Programming (XP). XP is an agile method which is used
by many agile teams in industry, although it is probably
not as prevalent as Scrum, as it is harder to do - but
generally gets better results.

Kent Beck introduced XP in this book. The first edition is
known as “the white book”, and this second edition “the
green book”. In the second edition Beck updated his
thinking, and how he presented XP, but the core messages
remain the same.	
!
XP is a distillation of a set of practices, principles and
values that Beck noticed were present in a team that he
was working on, where things seemed to be going well.
For each thing that the team identified as working well,
they tried to do more of that - they called it “turning up”.
For example, test-driven development seemed to help
them with building a quality product, so they tried to do
more of that.

Photo from Unruly Media, with kind permission.
XP does not define any particular roles within the team, or
any management structure. It does though say that the
team should be cross-functional and have in it everyone
needed to fully deliver a feature - this practice is called
“whole team”. Don’t have a separate design team who you
ask to do things for you, have a designer on the feature
team. Don’t have a database team, have a database
specialist on the feature team if you need one. XP also
says that the team should “sit together” so that they can
communicate easily, and close to the customer, so that
they can discuss and clarify requirements without having
to book a meeting or communicate over a narrowband
channel like email.

http://www.extremeprogramming.org/rules.html

XP teams organise work into iterations, time boxed
periods of work that help them to plan, review, and keep a
rhythm to their work. Iterations might last a week, two
weeks, three weeks, or (very occasionally) longer.
However they do not necessarily batch work up for a big
release at the end of the iteration - if it’s finished, they can
release any time. Also, they do not necessarily pick one
theme for the iteration, they focus on doing the next most
valuable things.	
!
Iterations typically conclude with a retrospective, to see
how the team has been doing, and if there is anything that
could be improved in the way that they work.

Iteration planning
An iteration starts with a planning game, where the
customer and the team discuss what are the highest
priority stories for the next iteration, what seems likely to
be achievable (to the point where it is released within the
iteration), and what the high-level acceptance criteria for
stories are. A team might also plan to do some
technological research work, or some infrastructural work
during the iteration, just to keep the velocity up and open
up future options. If we don’t have enough information to
estimate a story, we can do a technological “spike” - that
is a quick prototype that is designed to tell us enough
about a proposed solution that we can estimate doing it
properly. Spikes are not intended to be production code, so
we might not pair on them, or use TDD.

Technical Practices

Continuous Integration

Pair Programming

Ten Minute Build

Incremental Design

Test First Programming

XP mandates a number of technical practices which it
thinks are necessary to be able to deliver quality software
and release regularly. Also sometimes picked out as a
separate practice is refactoring - a constituent part of
coming up with a design incrementally and following test-
driven development. XP teams consider refactoring an
important tool to improve the design of the codebase
continually, making it easier to make future changes.	
!
Another notable XP practice is pair programming, where
two developers work together on a task at one computer.
This gives continuous design and code review, and shares
knowledge, so it is unlikely that there is only one person
on the team who knows a certain bit of the system, or a
certain technology. Having specialists can be a risk,
especially if that person is not around when a problem
arises.

