
Development Practice
and Quality Assurance

Dr Robert Chatley - rbc@doc.ic.ac.uk

@rchatley #doc302 

302

In this section we will talk about and demonstrate
technical practices that modern development teams
commonly undertake in order to deliver software
smoothly and reliably as a team, and quality assurance
practices that they follow to ensure that their software is
always in a working state.

#doc302 

Version Control

“The first thing you should
be told when you start a

new job…” - Steve Freeman

Version control (sometimes referred to as “Software
Configuration Management - SCM”) is fundamental to
team development. It allows teams of developers to work
together on a project, to track everything that got changed
at every point, to revert changes, go back to a known good
version, or search through the project’s history to find out
how things used to be, and who changed them.

#doc302 

• CVS	

• Subversion (svn)	

• ClearCase	

• Perforce

• Mercurial	

• Darcs	

• Bazaar	

• Git

There are many different version control tools available,
some commercial, some free. They typically fall into two
categories: centralised (those listed in the left column
above), or distributed (those listed in the right hand
column).

#doc302 

Version Control in DoC
In DoC the favoured version control system is Git. In
order to aid collaboration, you are encouraged to use the
department’s GitLab service (which is like an internal
version of GitHub), or indeed GitHub itself. Set up groups
or shared projects to allow you to work collaboratively on
your codebase.

Branches
Some teams like to have different branches for working on
different features, to keep them separate. If too many
different features are worked on at once, different people
can end up with different versions of the software on their
machines (or SCM branches). Merging back together is
often difficult, time consuming and painful. Particularly if
we are releasing often, it causes a lot of problems if we
have different parallel versions of the code in
development.	
!
When things are painful, we try to do them more often.
Continuously integrating your changes into the master
copy reduces merge problems and gives us one true
version of the latest code.

#doc302 

Workflow

Repository

Fresh Copy

Merge Changes

Local Changes
checkout

private List<!
private Strin

class Model {

Repository

<html>!
 <body>!
 <p>....

view.html

update

local build

Build Successful

Repository

commit

compile +  
test locally

make changes

For successful team development using version control as
a collaboration mechanism, the normal workflow is as
follows: a developer checks out the latest version of the
code from the repository, then makes the necessary
changes to the code to implement the feature they are
working on. They build and test the system locally on
their machine. Then they update from the repository to see
if their colleagues have made any changes whilst they
have been working. If there are changes to be merged in
you should build and test the code again once these have
been applied. Once you have a successful build, commit
your changes back to the repository so that they are
available to everyone else.

#doc302 

Continuous Integration
“Continuous Integration is a software development
practice where members of a team integrate their work
frequently, usually each person integrates at least daily -
leading to multiple integrations per day. Each integration
is verified by an automated build (including test) to detect
integration errors as quickly as possible.” - Martin Fowler
- h t t p : / / w w w. m a r t i n f o w l e r . c o m / a r t i c l e s /
continuousIntegration.html . It is one of the practices that
make up Extreme Programming. - http://
www.extremeprogramming.org/rules/integrateoften.html	
!
Continuous Integration is a practice, not a tool, although
there are tools that can help. In this article, James Shore
explains how to do Continuous Integration with an old
workstation, a rubber chicken, and a bell. - http://
www.jamesshore.com/Blog/Continuous-Integration-on-a-
Dollar-a-Day.html	

#doc302 

Automated Build

compile
run unit  

 tests
run system  

tests
package  

for release

Write a script to perform all of these steps from one command - “one button build”	

 
Stop as soon as any step fails	

!
Build tools help: Ant, NAnt, Rake, MSBuild etc

Key to being able to build and test your code easily and
reliably is to automate this process. There are many tools
available for automating build processes for different
languages. Another benefit of having an automated build
is that everyone builds the project in the same way, and
the build files can be checked in to version control with
the source code, so that whenever a new developer checks
out the code, they can build it easily in one step.	

#doc302 

Automated Build: Project Structure

root

src test lib build

prod test
A.java ATest.java

A.class ATest.class

utils.jar

Inputs: in version
control

Outputs:
generated

A typical project structure is to separate production code
from test code and library code using separate directories.
Built code is (in a compiled language) separate from
source code, and normally source code and tests are not
built into artifacts that are to be deployed.

#doc302 

Automated Build: Stages
root

src test lib build

prod test
A.java ATest.java

A.class ATest.class

utils.jar

1. prepare (create or clean)	

2. compile	

3. test	

4. package

12

3

4

A typical build process will: a) create the relevant
directory structure, and clean out any generated files
remaining from the last build. b) compile the latest source
code and tests c) run the tests against the generated
binaries d) if all goes well, package the binaries up into a
form to be deployed or distributed.

#doc302 

Automated Build: Using Ant
root

src test lib build

prod test
A.java ATest.java

A.class ATest.class

utils.jar

$ ls!

build.xml lib src test!

$ ant compile

build.xml

Ant is an example of a build tool for Java projects that is
quite commonly used, but many other tools are available.
The instructions for the build are encoded in an ant file, in
XML format, which is conventionally called build.xml. In
the build file you define different targets for different
stages of the build, and these can be triggered individually
using the command line ant tool.

#doc302 

Using Ant: build.xml<project name=”MyProject”>!
!
 <property name=”src.dir” value=”src” />!
 <property name=”build.dir” value=”build/classes” />!
 <property name=”lib.dir” value=”lib” />!
!
 <path id=”project.classpath”>!
 <pathelement location=”${build.dir}” />!
 <fileset dir="${lib.dir}" includes="*.jar"/>!
 </path>!
 !
 <target name=”prepare”>!
 <mkdir dir=”${build.dir}” />!
 </target>!
!
 <target name=”compile” depends=”prepare”>!
 <javac srcdir="${src.dir}" destdir="${build.dir}">!
 <classpath refid=”project.classpath” />!
 </javac>!
 </target>!
!
</project>!

The above shows an example of an Ant build file.
Different stages of the build are defined as targets. Targets
can be specified as depending on other targets, so that
running a later target in the chain will cause the earlier
ones to be triggered first, so running the tests will first
compile the code.

#doc302 

TDD Cycle

Write a  
failing test

Code to 
pass test

Refactor

When following the Test-Driven Development (TDD)
practice, we work in a cycle. We start by writing a test. We
write the test first, before writing the implementation. This
helps us to specify what we want the code we are about to
write to do. How do we expect it will behave when it
works properly? Once we have written a test, we watch it
fail. This is expected, as we haven’t implemented the
feature yet. Then we write the simplest possible piece of
code we can to make the test pass. After this we refactor
our design to clean up, remove any duplication, improve
clarity etc etc. Then we being the cycle again. When
working with unit tests this cycle should be short, and
provide us very rapid feedback about our code.

#doc302 

RSpec - TDD in Ruby

http://pragprog.com/book/achdb/the-rspec-book

describe FibonacciSequence do

 fib = FibonacciSequence.new
!
 it "defines the first two terms to be 1" do
 fib.term(0).should == 1
 fib.term(1).should == 1
 end
!
 it "has each term equal to the sum of the previous two" do
 fib.term(2).should == 2
 fib.term(3).should == 3
 ...

FibonacciSequence
- defines the first two terms to be one
- has each term equal to the sum of the previous two
- ...

TDD is practised widely in current software development.
There are unit testing tools for almost every language, and
we can apply the principles of TDD to help ensure quality
regardless of the language we are working in. Here we
show an example in Ruby using RSpec.

Unit Tests

System Tests
amount	

of	

feedback

external qualityinternal quality

Types of Quality
Two different types of test, unit and system, give us two
different types of information about the quality of our
system. Unit tests give us a lot of feedback about the
quality of our code - they help us gauge the internal
quality of our system, but they don’t really tell us much
about whether the system as a whole does anything useful
for the user. System level tests give much more feedback
on the external quality - does the system behave correctly
as the user sees it, but don’t tell us much about the quality
of the code inside.

#doc302 

Care for Your Build

automate everything	

!
10 minute build	

!
care and feeding to keep it fast	

!
keep it green

Photo by Andrew Morrell

If you set up the build and the project structure carefully at
the beginning of the project, then normally it doesn’t need
to be changed too much during day to day development.
But, it is important to take care of the build. As more and
more code, and especially tests, are added to the project
the build can slow down. If it takes more than 10 minutes
to run then people become reluctant to run the build, and
then do not benefit from the feedback it provides. The
quality of feedback is also reduced by builds that fail for
spurious reasons - people begin to expect, or ignore,
failures.

Continuous Integration Server

Repository

Alice’s  
Working Copy

Charlie’s 
Working Copy

Bob’s 
Working Copy

CI Server

build + test

Sometimes, on larger projects with many frequent
commits, it is difficult to run a full build locally on every
commit. A secondary check, and perhaps a larger test
suite, can be run by a Continuous Integration (CI) server.
The CI server can also gather data and statistics on
changes that have been made, test failures, fixes etc etc.
The CI server can be set up to build on a regular schedule,
or to watch the repository and run when it detects a
change.

#doc302 

Workflow

Repository

Fresh Copy

Merge Changes

Local Changes
checkout

private List<!
private Strin

class Model {

Repository

<html>!
 <body>!
 <p>....

view.html

update

local build

Build Successful

Repository

commit

compile +  
test locally

make changes

CI build
Integration  
Successful

When we have a CI server, our workflow is extended so
that the CI build runs after we commit our changes. If the
CI build takes around 10 minutes or less to run, then we
can take a short break, get a cup of coffee, and reflect on
our work while it runs. Then, when we have confirmed
that the CI build was successful, we can move on to the
next feature.

Teams often use a visual signal, such as a display screen,
to show the status of their builds, and maybe other builds
that they depend on. Then if they notice that a certain
build fails - normally shown boldly in red - then they can
turn their attention to fixing it before continue to work on
new features.

Grid of Build Servers

Repository

Alice’s  
Working Copy

Charlie’s 
Working Copy

Bob’s 
Working Copy

CI Server

coordinate

Build Agent

build + test

Build Agent

build + test

For teams that have a lot of CI builds to run - perhaps
testing on different platforms - a grid of CI servers or
agents can be useful. CI servers such as TeamCity or
Jenkins support this without too much work. Parallelising
the builds and farming them out to different agents can
speed up the rate at which feedback is obtained a lot.

#doc302 

Fitness

Whenever something is painful, we try
to do it more often

Photo by Rennett Stowe

If building and testing the code for your project is painful
- perhaps it has some manual steps, or tests often fail -
then trying to do it more often highlights the pain points,
and encourages us to fix them using automation and
improving the tests.

#doc302 

If your tests pass, why not check in?	

Keep working set small	

Many small changes	

Less cognitive load	

!

Photo by Justin See

If we make large changes, and try to check in once a day,
or less often, we often have to fix large merges, and cause
lots of tests to fail which have to be fixed before we can
commit. If we have a quick build, and work in small
change sets then it is much easier to keep development
flowing. You don’t have to wait until you have a complete
feature before checking in, you can work in small steps,
committing after each, as long as your build passes.

#doc302 

CI Culture

Don’t break the build	

!

If the build is broken	

 - fix it	

 - don’t commit unless you are fixing it

The main rule for development teams using CI is “don’t
break the build”. Breaking the build affects other team
members and prevents them from getting their work done,
so run tests locally before you check in to make sure that
everything works. It is inevitable that the build will break
once in a while. When this happens, the team should
concentrate on fixing it before committing more changes.
If the build stays red for a long time then people start to
ignore it and its value is lost.

Releasing can
be Stressful

Photo by Stuart Pilbrow

Release is often one of the points of a project that causes
most stress. Pushing software into production to be used
by real users is unfortunately often the point where
problems come up and fixes have to be made.

Promotion of Good Builds

Integration

UAT

Production

Local

We don’t want to put code straight into production - we
want to test it first in various pre-production
environments, and promote builds through this chain
when we are confident that they are of good quality.

Representative Environments

Integration

UAT

Production

Local

Production-like cluster

Production OS

Often developers’ local environments differ substantially
from production environments. They may differ in
architecture, OS, network infrastructure etc etc. We aim to
test in a production-like environment as early as possible.

Automate

Requirements Design Coding Testing Deployment Release

Users

Release stage is  
often a bottleneck	

!

Automate to make it  
fast and repeatable

It doesn’t matter how much code you have written and
how many features you have implemented it if you can’t
get it into production. If no-one can use it then it isn’t
complete. Release processes, especially manual ones, are
often a bottleneck.

Walking Skeleton

Integration

UAT

Production

Local
Release smallest slice of

application to production
in early iteration

It Works!

It Works!

Trying to release to production often reveals problems and
incurs delays. If you leave this right to the end of your
project then it can have a big effect on whether the project
is delivered on time. We aim to iron out these difficulties
as early as possible in the project by deploying a walking
skeleton in the first iteration.

Kanban/TOC

QA
To 

ReleaseAnalysis DevTo Do

This kanban board shows that a number of stories have
been developed, but they are backing up in QA - none
have been released. The team should focus on getting
these features through QA and into production before
doing more dev or analysis work.

Limit WIP

QA
To 

ReleaseAnalysis DevTo Do

One way to help highlight these problems is to enforce a
work-in-progress (WIP) limit on each activity. You can
only pull a story into the next phase when there is a space
to do so.

Release as a Flow

QA
To 

ReleaseAnalysis DevTo Do

Unreleased features
are inventory

More features
per release

implies more risk

Keeping the work in progress low and releasing often, a
few features at a time helps to keep customers happy as
they see a continuous flow of delivery. It also means that
we have less half-developed features to maintain, and
smaller changes in each release.

Pull Systems

Requirements Design Coding Testing Deployment Release

Users

Users (or product
managers) prioritise
features and decide

when to release

In an agile process, prioritisation of features for the team
to work on is done by the customer. If we integrate
continuously and always have a releasable (tested) build,
then the business can decide when they want to release -
when they are happy with the functionality.

Self-Service Release

Integration

UAT

Production

Local
Anyone (e.g. QA) can deploy

any good build to any
environment as they need it

v38

v41

CI Server

...v37, v38, v39, v40

v39

If we automate the release fully, it can be a self-service
operation. If the QA team wants to release a particular
version to a UAT server, they just go ahead and do that.
Ideally if the business want to promote a version to
production, they should be able to do that whenever they
want. IT should not be a bottleneck.

Rollback - when things go wrong

Integration

UAT

Production

Local
v39

v39

v39

v38

v39v38
Archive

If we quickly notice that things are not working correctly
with the new version, we can roll back to the previously
released version. It is a good idea to make sure that this is
easy to do as the times that you need to do this are often
very stressful.

Rollforward - when things go wrong

Integration

UAT

Production

Local
v39.1 v39v38

Archive

v39.1

v39.1

v39.1

Sometimes it is not appropriate or possible to rollback. In
these cases it is sometimes tempting to make changes on
production. This is very risky. If your release procedure is
smooth and automated you are better to create a new
version with the fix and roll forward through the normal
procedure.

Continuous Deployment

Integration

UAT

Production

Local

Automatically
promote every

good build

Under the continuous deployment model, we release very
often, perhaps many times per day, each time a feature is
ready. If all of the automated tests pass, the system
automatically deploys the build to production. This gives
us very rapid feedback.	
!
This model has gained some popularity, particularly in the
startup world. You might have good reasons why you
wouldn’t want to deploy all the way to production
automatically following a commit, but it is a useful
thought experiment to try and decide why not.

