
Language and Runtime Implementation of
Sessions for Java

Raymond Hu1, Nobuko Yoshida1, and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

1 Introduction

The purpose of this work is to incorporate the principles of session types into a
concrete object-oriented language, specifically an extension of Java, as a basis
for communications-based programming for distributed environments. Building
on preceding theoretical studies of this topic, we present the first practical im-
plementation of such a language, including a treatment of asynchronous com-
munication, higher-order sessions (delegation) and session subtyping. This paper
summarises the key design ideas of this work including the runtime architecture.
Benchmark results for our current implementation demonstrate that our design
introduces minimal overheads over the underlying transport, and is competitive
with, in many cases outperforming, RMI, the standard API for typed inter-
process communication in Java. A detailed version of this paper [12] is available
online [11].

1.1 Background

Sockets Communication is becoming one of the central elements of application
development in object-oriented programming languages. A frequent program-
ming pattern in communications-based applications arises when processes inter-
act via some structured sequence of communications, which as a whole forms
the natural unit of a conversation. The socket (in particular, the TCP socket)
is one of the most widely used programming abstractions for expressing such
conversation structures. Available through APIs in many object-oriented lan-
guages such as Java and C], sockets represent the communication endpoints of
a bidirectional byte stream abstraction, typically thought of as a connection.
Although well suited to this purpose, socket-based programming suffers from
several disadvantages.

• The byte stream abstraction is too low-level: no direct language level ab-
straction is provided for what each chunk of raw data means, let alone the
structure of a conversation as a whole.

• Control flows in a pair of communicating processes should together realise a
consistent conversation structure: the lack of an abstraction for the conver-
sation as a whole means a programmer can easily fail to, for example, handle
a specific incoming message or send a message when expected, with no way
to detect such mistakes before runtime.

• The socket abstraction is directly coupled to a specific transport mecha-
nism. Thus streams are tied to a physical connection, which complicates, for
example, the delegation of an ongoing conversation.

These observations motivate the search for an abstraction mechanism for object-
oriented programming that can naturally represent diverse conversation struc-
tures and be efficiently mapped to representative transport mechanisms, whilst
preserving the familiar programming style of socket. Note Java RMI supports
type-safe communication, but the rigid shape of method call makes it difficult
to express general communication patterns using RPC.

Session Types A session is essentially a unit of sequential conversation, and
the associated session type is an abstraction of the conversation structure and
the messages exchanged, against which the communication behaviour of a pro-
gram can be validated. Session types have been studied in many contexts in the
last decade, including π-calculus-based formalisms [9]; multi-threaded functional
languages [16]; CORBA [15]; operating systems [7]; and Web services [2].

With respect to the present problem, recent studies [6, 5, 4, 3] have demon-
strated a clean integration of session type theory with object-oriented languages,
through formalisms distilling selected object-oriented concepts for accurate anal-
ysis. Our work furthers these studies by contributing the design and implemen-
tation of a concrete, distributed language with session communication primitives
and type system, including the key components of the runtime architecture such
as the protocols that guarantee type-safe session delegation.

1.2 Problem Outline

The task at hand can be divided into three main problems.

Session programming abstractions. The abstractions should be expressive,
enabling the representation of diverse conversation structures, and moreover us-
able, which stipulates a combination of clear syntax and intuitive (unsurprising)
semantics, generating programming patterns natural to OOP. Naive implementa-
tion of the simplified theory has limitations other than usability, for instance the
object calculi mentioned above [6, 5, 4, 3] do not permit operations on different
sessions to be interleaved, precluding many real-world communication patterns.
Exception handling for session operations is another such issue not addressed in
the preceding theoretical work but certainly required for practical use.

Integration of session types. Session type theory has often focused on type
inference, whereas Java has explicit type declaration: an implementation of ses-
sion types closer to the latter would probably be easier for Java programmers
to understand. Hence, syntax for session type declaration and an algorithm for
static type checking (including new features such as interleaving and exceptions)
are required. In addition, we consider how the standard imperative constructs
in Java should combine with the chosen session programming abstractions, as
reflected by our extended type system.

2

Runtime architecture. One of the main technical contributions of the present
work is the design of the runtime support for asynchronous session communica-
tion, with the use of session type information as a fundamental element. Firstly,
a safe execution of communication cannot be verified for distributed systems at
compiletime, as a communicating party cannot statically assess the behaviour of
peers discovered only at runtime. We solve this problem using a validation mech-
anism at session initiation, in which the two parties exchange their session types
to determine whether or not their interactive behaviours are compatible. This
session type information is used throughout the established session by both par-
ties; for example, session types play a crucial part in coordinating the protocols
for higher-order communication, session delegation. To validate the feasibility
of our approach, we measure the performance of our primitives using several
benchmark programs, comparing their cost over the untyped transport.

2 Approach

We outline the approach of our current design-implementation framework for
the proposed language [11]. A core design feature is the use of session types
in decoupling user description of session operations (abstraction concerns) and
their execution mechanism (implementation concerns), analogous to high-level
control flows and the underlying machine instructions in structured sequential
programming. The key elements of our approach, addressing the issues described
in the previous section, are as follows.

1. A type syntax for sessions based on [5, 6, 4, 3], but with enhanced readabil-
ity and conformance to Java syntax.

2. Object-based session programming primitives that present an API-style
interface. The fundamental abstraction is the session-typed socket, which
represents a session endpoint.

3. A new programming discipline/style, derived from the first two points,
for communications-based programs with guaranteed type and communica-
tion safety, which begins with a specification of intended communication
structures using session types.

4. Static session type checking, implemented using the Polyglot compiler
framework [14], coupled with dynamic compatibility validation at ses-
sion initiation through a handshake protocol. Both components utilise session
subtyping [8, 2].

5. The runtime support for the session abstraction, which encapsulates a va-
riety of communication mechanisms with minimal overhead whilst abstract-
ing from physical connections. The runtime incorporates the protocol for
session initiation as well as delegation and close, and makes extensive use of
session type information from point 3.

Session type declaration. The session type syntax abstracts the basic (object)
send and receive actions, conditional behaviour through branching and selection

3

(rather than binary if-statements, as in [5, 6, 4, 3]), and unbounded behaviour
through while-loop iteration. We illustrate using a small example.

protocol p {

begin. // Session initiation

?[// Iteration

?{ // Branch, two possible subconversations (labelled)

GET: !(T), // Send (object) type T

PUT: ?(T) // Receive (object) type T

}

]*.

end

}

T may itself be a session type, representing session delegation.

Session-typed sockets. We augment the standard socket to support the ses-
sion communication primitives and session type checking. A session-typed socket,
hereafter referred to as simply session socket, represents a session endpoint, over
which session operations are performed like method calls to the socket object.
We continue the above example.

STSocket s = STSocketImpl.create(p); // ‘p’ as declared above

s.request(host, port); // begin.

T t = ...;

s.inwhile() { // ?[

s.branch() { // ?{

case GET: { s.send(t); } // !(T),

case PUT: { t = s.receive(); } // ?(T)

} // }

} //]*.

s.close(); //end

Whilst session programming is similar to standard API-based socket pro-
gramming, the branch and inwhile operations (also, the corresponding select

and outwhile operations), are new language constructs with intuitive semantics.
The branch waits for the opposing session party to select a label, and inwhile
iterates according to a control message implicitly communicated between the
two session parties; these operations can be thought of as distributed versions
of the standard switch and while statements that maintain synchronisation of
control flow across both parties.

Session type checking. The type checker tracks the implementation of a ses-
sion against the specified protocol, observing the correspondence between session
operations and their types as demonstrated in the above example. For receive
operations, both type inference, from the declared type, and checking, through
explicit casting of the received object, are supported. The implementation may
subtype the specification [8, 2]: a branch can offer more, and a select can use

4

less, labels than specified. Type checking delegation operations is uniform with
normal message types, but cannot occur within an iterative context.

The above issues relate to checking structural correspondence; we must also
preserve session linearity. For example, aliasing of session sockets is forbidden,
and session operations are not permitted within iterative constructs other than
in/outwhile. Session implementation may diverge over conditional constructs
provided there is a common supertype across all branches: the statement is
typed as the lowest such type if it exists, for instance

// Session type: !{GET:?(T), PUT:!(T)}

if(...) {

s.select(GET) { T t = s.receive(); } // !{GET:?(T)}

}

else {

s.select(PUT) { s.send(new T()); } // !{PUT:!(T)}

}

The type system allows session sockets to be passed as method arguments,
which can be thought of as a “local” delegation: methods that accept session
sockets specify the expected session type of the socket in place of STSocket in
their declaration. We also have a treatment of exception handling for sessions.

try {

s.request(host, port);
... // Body of session implementation

}

catch(SessionIncompatibleException sie) { ... }

catch(IOException ioe) { ... }

finally {

try { s.close(); } catch (IOException x) {}

}

Sessions should be implemented using the try-catch construct to handle the
listed exceptions (or within a method that throws these exceptions). The first
exception signals that session initiation has failed because the opposing party
has an incompatible behaviour for interaction; this is determined by a duality
relation on session types (!(T) duals ?(T), etc.) that also permits subtyping e.g.
a client that requires just one service may enter a session with a server offering
several services. IOException is inherited from standard Java socket program-
ming to signal communication failure during a session. For linearity, a session
may not span multiple try-catch blocks unless delegated or passed as a method
argument; thus, the occurrence of an exception necessarily terminates the session
at both session parties. However, session interleaving is freely supported within
a single try-statement, which expresses some semantic dependency between such
sessions: an exception on any of the sessions is implicitly signalled to the others.
Nested session exceptions can be thrown to an outer level, and the type checker
permits only the close operation to be performed within the finally-block of a
try-statement. The design of the session exception mechanism is ongoing work.

5

Runtime layer. The runtime layer encapsulates the underlying communication
mechanisms; the interface to the runtime layer is the device by which session
abstraction is decoupled from actual implementation. This enables exploitation
of the transport, using session type information, for efficient communication with
minimal overhead. The runtime is currently implemented in Java as the STSocket
API: the compiler translates user code to the target API as a source-to-source
translation. We describe some of the key components of the runtime.

• Initiation handshake. Session initiation involves a duality check between
the session types of the two parties; if incompatible, the specified exception is
raised at both parties. The current implementation uses literal class naming,
which is sufficient for many examples. An earlier implementation [10] has
support for class downloading; we plan to further investigate extensions that
combine runtime verification of class compatibility and class downloading.
Optimisations such as piggy-backing user messages on the handshake for
short sessions are possible.

• Delegation protocol. The runtime incorporates an implementation of the
delegation protocol [12], which governs the interaction between parties in
bringing about session delegation in a transparent manner. Session types
play a crucial role in treating asynchrony, one of the main design factors of
the delegation protocol which includes the case for simultaneous (double)
delegation of a session by both parties. Our protocol allows the delegat-
ing party to immediately close the delegated session, precluding (indefinite)
message forwarding by a proxy agent (an alternative design).

• Closing protocol. An additional handshake at session closure is required
to handle certain delegation cases, specifically when the passive party of a
delegated session performs only output operations, namely send, select and
outwhile. This is because this party may asynchronously complete his/her
session contract before the delegating party is actually able to perform the
delegation operation: the session must be kept “alive” until both parties
agree that it has ended. The collaboration between the delegation and closing
protocols is non-trivial, and to maintain asynchrony, the latter is performed
in a separately spawned thread.

The current implementation of our work includes session sockets based on
the Java Socket and NIO libraries. Performance results of several benchmark
programs [12, 11] demonstrate that the session-based programming principles
proposed in this work can be realised with low overhead. Indeed, our imple-
mentation in many cases exhibits better performance than RMI, the standard
method for typed inter-process communication in Java. One factor is that the
RMI supports additional features such as class downloading; however, the bench-
mark programs do not use this feature, and so the overheads incurred by RMI
are minimal for this point. Moreover, the presence of session types and the in-
formation they convey, such as communication direction and (bounded) message
size, suggest the potential for further optimisation at both the user and transport
level.

6

3 Conclusion and Related Work

The present work clarifies, through a concrete implementation, the significant im-
pact that the introduction of sessions and session types into object-programming
languages can have, on both programming discipline and runtime architecture.
Below we summarise the key technical contributions of the present work over
the preceding (mainly theoretical) work on session types.

– Practical programming methodology for session types. Starting from
protocol declaration, we ensure type safety through combined type checking
and inference, extending typability with session subtyping.

– Integration of session types into OOP. This is realised by the design of
session sockets, extending the type system to prevent aliasing of the socket
objects, and through a natural and consistent integration with standard
imperative constructs and exception handling, allowing session interleaving.

– Runtime architecture. The design of the runtime mechanisms is key to
the practical use of session types, which in turn are a fundamental element
of this design. The runtime encapsulates the underlying message transport
and session communication protocols, including the session initiation hand-
shake, where session types are exchanged and validated; and the delegation
protocol, which separates the session abstraction from physical connections.

In the following we discuss some of the related works; a more complete discussion
such as a comparison with several typed languages based on process calculi
(Pict, Polyphonic C], Cω, the Concurrency and Coordination Runtime (CCR),
JavaSeal, Occam-pi and X10) can be found in [12].

One of the first applications of session types in practice is found in Web
Services. The Web Service Description Language (WS-CDL) [17], developed by
a W3C standardisation working group, employs a variant of session types to
address the need for static validation of business protocols. A WS-CDL descrip-
tion is realised as the interactions of distributed endpoints written in languages
such as Java or WS4-BPEL [1], or that proposed by the present work. Recent
work [2] has studied the principles behind deriving sound and complete endpoint
implementations from a CDL description.

A variant of session types has been combined with a derivative of C] for
systems programming, playing a crucial role in the development of Singularity
OS for shared memory uni/multiprocessor environments [7]. Session types, re-
ferred to as contracts, are used to specify the interaction between OS modules
as message-passing conversations. Reflecting the hardware and software assump-
tions of this work (i.e. shared memory and homogeneity of OS modules), features
for distribution, such as the session initiation handshake, are not significant. Fur-
ther, their work does not support subtyping, another requirement of practical
distributed applications, and promotes a programming methodology more tightly
coupled to the underlying execution mechanism than our approach.

An implementation of a session type system in Haskell is studied in [13]
through an encoding of a simple session calculus. Again, this work is targeted

7

at a concurrent, but not distributed, environment. It may be difficult to realise
the session compatibility check or type-safe delegation since the encoding does
not directly type I/O channels.

References

1. WS-BPEL OASIS Web Services Business Process Execution Language.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

2. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-
Centred Programming for Web Services. In ESOP ’07, LNCS. Springer-Verlag,
2007.

3. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asyn-
chronous Session Types and Progress for Object-Oriented Languages. To appear
in FMOOSE’07. http://www.di.unito.it/ dezani/papers/cdy.pdf, 2007.

4. Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and
Nobuko Yoshida. Bounded Session Types for Object-Oriented Languages. Sub-
mitted for publication. http://www.di.unito.it/ dezani/papers/ddgy.pdf, 2007.

5. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session Types for Object-Oriented Languages. In ECOOP ’06,
volume 4067 of LNCS, pages 328–352. Springer-Verlag, 2006.

6. Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alex Ahern, and Sophia
Drossopoulou. A Distributed Object Oriented Language with Session Types. In
TGC ’05, volume 3705 of LNCS, pages 299–318. Springer-Verlag, 2005.

7. Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt,
James R. Larus, , and Steven Levi. Language Support for Fast and Reli-
able Message-based Communication in Singularity OS. In EuroSys 2006, ACM
SIGOPS, pages 177–190. ACM Press, 2006.

8. Simon Gay and Malcolm Hole. Subtyping for Session Types in the Pi-Calculus.
Acta Informatica, 42(2/3):191–225, 2005.

9. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives
and Type Discipline for Structured Communication-Based Programming. LNCS,
1381:122–??, 1998.

10. Raymond Hu. Implementation of a Distributed Mobile Java. Master’s thesis,
Imperial College London, 2006.

11. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Online appendix of this paper.
http://www.doc.ic.ac.uk/ rh105/sessiondj.html.

12. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Type-safe Communication in
Java with Session Types (18pp. draft). March 2007.

13. Matthias Neubauer and Peter Thiemann. An Implementation of Session Types.
In PADL, volume 3057 of LNCS, pages 56–70. Springer-Verlag, 2004.

14. Polyglot home page. http://www.cs.cornell.edu/Projects/polyglot/.
15. Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the Behav-

ior of Objects and Components using Session Types. In FOCLASA ’02, volume
68(3) of ENTCS, pages 439–456. Elsevier, 2002.

16. Vasco T. Vasconcelos, António Ravara, and Simon Gay. Session Types for Func-
tional Multithreading. In CONCUR ’04, volume 3170 of LNCS, pages 497–511.
Springer-Verlag, 2004.

17. Web Services Choreography Working Group. Web Services Choreography Descrip-
tion Language. http://www.w3.org/2002/ws/chor/.

8

