
A Session Programming Tutorial for SessionJ

Raymond Hu

August 19, 2008

1

Contents

1 Introduction 3

2 Quick Start 3
2.1 Installing SJ . 3
2.2 A Simple SJ Program . 4

3 SJ Language Reference 9
3.1 SJ Background and Motivation 9
3.2 Overview of SJ Session Programming 10
3.3 Protocol Declaration . 10
3.4 Session Sockets . 15

3.4.1 Session Client Sockets 16
3.4.2 Session Server-sockets 16

3.5 Session-try Statements . 17
3.6 Session Operations . 18

3.6.1 Session Initiation . 18
3.6.2 Basic Message Passing 19
3.6.3 Branching . 19
3.6.4 Iteration . 20
3.6.5 Recursion . 20
3.6.6 Higher-order Communication 21
3.6.7 Combining Session Operations and Regular Java . . . 21

3.7 Session Methods . 23
3.8 Session Threads (Under Development) 23
3.9 Eager Remote Class Loading and Verification 25

4 About the SJ Implementation 26

2

1 Introduction

This note is a tutorial on writing, compiling and running SJ programs.
The aim is to simply cover the basics of session programming in SJ from
a practical perspective; a more detailed specification of the SJ language is
presented in [7]. Note that session, in the context of this work, means a
binary session, i.e. an interaction between two parties.

The latest version of SJ can be downloaded from the project homepage
[8]. This page also links to further information, such as papers [4] and bench-
mark results. Please see the README included in the sj distribution for version
specific details, including known bugs and features to be completed soon.
Questions and comments are very welcome: raymond.hu05@imperial.ac.uk.

2 Quick Start

The purpose of this section is to quickly get a simple SJ program compiled
and running.

2.1 Installing SJ

The first thing to do is download a copy of the SJ distribution, containing
the compiler and runtime libraries, from the SJ homepage [8]. Java 5 or
later is required to both compile and run SJ programs.

After unpacking the archive, in the top sj directory you should see the
following:

• README See this for details regarding the particular SJ version as
well as general information.

• bin Contains scripts for running the compiler (sjc) and compiled
programs (sj).

• lib Repository for the library classes needed to run the compiler
and executables. The above scripts are set to automatically include
this directory.

• tests/src Contains some example SJ programs, ready to be com-
piled and run.

As a test, entering

> bin/sjc

3

at sj should invoke the sjc compiler script, and return

sjc: No command line arguments given
usage: sjc [options] <source-file>.sj ...
where [options] includes:
...

because no source file was specified.

2.2 A Simple SJ Program

If we do, from sj,

> cat tests/src/quickstart/Alice.sj

we should see the SJ source file for the quickstart.Alice class, as in List-
ing 1. This is an example implementation of an Alice role, who will attempt
a session with a Bob role (see below) in which she sends a greeting (a mes-
sage of type String) and then waits for a reply. The comments in the first
two lines give command line instructions for compiling and running this
program.

Most of the actual code is just regular Java code: for now, we simply
describe the key parts related to SJ session programming.

• SJ package imports (line 6). The libraries required by most typ-
ical SJ programs live in the imported packages: sj.runtime.* and
sj.runtime.net.*.

• Protocol specification (line 11). The purpose of the Alice role is
to interact with a Bob role. In SJ, the protocol by which the inter-
action should proceed is explicitly declared using session types [3, 1].
A session type describes the sequence and structure of communication
actions to be performed from the perspective of a particular role. In
this example, the AliceToBob protocol states that Alice should initiate
the session (begin), then send the greeting (!<String>) and receive a
reply (?(String)). See § 3.3 for a more comprehensive description of
session types for protocol declarations.

• Session server-addresses (line 14). Alice is going to request a ses-
sion from Bob: Alice is the client side, and Bob the server, of this
binary session. To do so, Alice needs to know the address of Bob: this
information is represented by a session server-address entity, an object
of type SJServerAddress, which encapsulates the IP and TCP port of
the server, and the type of the session offered by the server. Here, we

4

1 //> bin/sjc tests/src/quickstart/Alice.sj -d tests/classes/

2 //> bin/sj -cp tests/classes/ quickstart.Alice

3

4 package quickstart;
5

6 import sj.runtime.*;
7 import sj.runtime.net.*;
8

9 class Alice {
10 public static void main(String[] args) throws Exception {
11 protocol AliceToBob { begin.!<String>.?(String) }
12

13 SJServerAddress c =
14 SJServerAddress.create(AliceToBob, "localhost", 8888);
15 SJSocket s = SJFSocket.create(c);
16

17 try (s) {
18 s.request(); // begin

19 s.send("Hello Bob from Alice!"); // !<String>

20 System.out.println((String) s.receive()); // ?(String)

21 }
22 finally { }
23 }
24 }

Listing 1: tests/src/quickstart/Alice.sj

5

pass this information as arguments to the static create method of the
SJServerAddress class.

• Session sockets (line 15). The communication actions that make up
a session are performed via session sockets, objects of type SJSocket.
Here, we create a new session socket by calling create on the SJFSocket

class, passing as an argument the session server-address c to indicate
that this socket is for conducting sessions with this particular server.
SJFSocket and SJRSocket are the two concrete SJSocket implementa-
tions provided in the current version of SJ; the differences between
them and how session sockets may be used are discussed in §3.4.

• Session-try statements (line 17). Session operations are performed
within session-try statements. Session-try is an extension of the reg-
ular Java try that accepts session socket parameters: in this example,
just s. Sessions may only be initiated within the scope of a session-try
for which the corresponding socket is specified, and any initiated ses-
sions must be completed, according to the associated protocol, within
the scope of the session-try. The session-try in this example does not
handle any of the potential exceptions itself, but catch blocks can be
added in exactly the same way as the regular Java try. See §3.5 for
more details about session-try.

• Session operations (lines 18–20). The communication actions com-
prising a session are performed much like method calls on the affiliated
session socket object. In Alice, we use request to initiate the session
with Bob, send to send the greeting message and receive to read Bob’s
reply. For this simple example, it is easy to see how this sequence of
session operations corresponds to the AliceToBob protocol that we de-
clared above (line 11). The SJ compiler statically verifies that session
implementations conform to the intended protocols, thus guaranteeing
the correctness of our communication behaviour. The session opera-
tions supported by SJ are presented in §3.6.

The code for Bob (Listing 2) comprises the server side of this session. The
declared protocol (BobToAlice, line 11), and hence the subsequent session im-
plementation, duals the corresponding protocol and session implementation
in the above Alice class: basically, where Alice is sending a message, Bob is
receiving, and vice versa. The main differences in the server side program
are as follows.

6

1 //> bin/sjc tests/src/quickstart/Bob.sj -d tests/classes/

2 //> bin/sj -cp tests/classes/ quickstart.Bob &

3

4 package quickstart;
5

6 import sj.runtime.*;
7 import sj.runtime.net.*;
8

9 class Bob {
10 public static void main(String[] args) throws Exception {
11 protocol BobToAlice{ begin.?(String).!<String> }
12

13 SJServerSocket ss = null;
14

15 try {
16 ss = SJFServerSocket.create(BobToAlice, 8888);
17 SJSocket s = null;
18

19 try (s) {
20 s = ss.accept();
21 System.out.println((String) s.receive());
22 s.send("Hello Alice from Bob!");
23 }
24 finally { }
25 }
26 finally {
27 if (ss != null) ss.close();
28 }
29 }
30 }

Listing 2: tests/src/quickstart/Bob.sj

7

• Session server-sockets (line 16). Session server-sockets, objects of
type SJServerSocket, wait for incoming session requests. We associate
the intended protocol to the session server-socket when it is created,
and state which local TCP port the server should listen on. In this ex-
ample, we create a SJFServerSocket to match the SJFSocket of Alice.

• Server accept (line 20). The accept operation processes the next ses-
sion request or blocks until one is available. If the request is for a com-
patible session, i.e. the session types of the two parties are indeed dual,
then the SJFServerSocket of Bob returns an SJFSocket representing the
server side endpoint for the newly established session that partners the
session socket used by the client to request the session. The returned
session socket s is used to implement the actions to be performed by
Bob in this session (lines 20–22), according to the BobToAlice protocol.
If the session request is not compatible, then the accept and request

operations at each party raise a SJIncompatibleSessionException to
abort the session.

Compiling Alice.sj and Bob.sj. The most convenient way to compile
SJ programs is to use the bin/sjc script. From the top sj directory, we can
separately compile each class using the commented commands in the first
line of each source file (see Listings 1 and 2), or as a shortcut, we can just
do:

> bin/sjc tests/src/quickstart/Alice.sj
tests/src/quickstart/Bob.sj -d tests/classes/

Either way, the resulting Java source and binary files will be output to
tests/classes/quickstart.

Running Alice and Bob. The bin/sj script is for running compiled SJ
programs. In this example, Bob is hardcoded to open his session server-
socket on TCP port 8888 (this example will fail if this port is not available),
and Alice is similarly instructed to look for Bob on the localhost at that
port. Being the server, Bob needs to be started first, otherwise Alice will fail
to find Bob (since the port will not be open). From sj, we can do (as per
the commented commands in the second line of each source file):

> bin/sj -cp tests/classes/ quickstart.Bob &

and then

> bin/sj -cp tests/classes/ quickstart.Alice

8

which will produce the output:

Hello Bob from Alice!
Hello Alice from Bob!

3 SJ Language Reference

The previous section illustrated the basic features of SJ through a simple
example; this section presents a more detailed reference for session program-
ming.

The current version of SJ is an extension of Java 1.4, i.e. generics
are not supported; this is due to the third-party tools used in the current
implementation of the compiler (see §4).

3.1 SJ Background and Motivation

The purpose of SJ is to provide direct language support for (binary) session
programming as an extension to Java. As illustrated in the preceding section,
session programming starts from the description of protocols for interaction
(using session types), which can then be concretely implemented using a set
of structured communication operations available on session sockets. These
operations provide the building blocks for interactive computing in an anal-
ogous way to how standard (imperative) language constructs are used to
build sequential algorithms. The SJ compiler statically verifies that session
implementations conform to the protocol specifications; combined with a
runtime compatibility validation between the peers at session initiation, SJ
programs guarantee communication safety.

Session programming in SJ has several benefits in comparison to widely-
used alternatives such as regular socket programming and Java RMI. Byte
stream communication through raw network (TCP) sockets, e.g. java.net.Socket,
is inherently untyped, and the intended communication protocols have no
direct representation in the program, neither as types nor programming con-
structs. These limitations can make communications programs more difficult
to read and write, and also to verify. RMI and other RPC-based technolo-
gies provide a type-safe procedure (method) call abstraction to distributed
objects. The fixed call-return shape of procedure call is, however, not suited
to expressing certain interaction patterns, and there are no natural means
of treating a sequence of such calls as a one complete unit of interaction, i.e.
a session.

9

3.2 Overview of SJ Session Programming

First, we must understand the terms session and session type.

• Session programming is for systems and applications where the con-
stituent parties or components interact according to certain protocols:
session types are formal specifications of such protocols. Session types
describe structured sequences of interactions including basic message
passing, branching and repetition.

• A session is an instance of a session type, i.e. the unit of interaction
encapsulating one run of a protocol. From the perspective of the ab-
straction, each session, including those of the same type, is conducted
without interference on a separate channel.

Session programming in SJ comprises the following stages.

1. The first step is to design the protocols by which the parties should
interact, and specify them as session types.

2. The above protocols are explicitly incorporated into the programs for
each party or component: we declare the session types for the interac-
tions to be performed.

3. The actual interactions that comprise a session are implemented us-
ing the session programming constructs and operations. The session
operations are performed like method calls on session socket objects,
endpoint handles to the session channels.

4. Each session implementation is statically verified by the compiler against
the associated protocol according to the type system for session pro-
gramming. Session implementations must respect the property of ses-
sion linearity in terms of control flow and object aliasing.

The following sections describe the core features of SJ and demonstrate
their use across the stages of session programming.

3.3 Protocol Declaration

Session programming begins by declaring the protocol for the intended in-
teraction as follows,

protocol name { ... }

10

T ::= T.T // Sequencing.

| begin // Session initiation.

| !<M> // Message send.

| ?(M) // Message receive.

| ⊕{L1:T1, ...,Ln:Tn} // Session branching.

| ⊕[T]* // Session iteration.

| rec L[T] // Session recursion scope.

| #L // Recursive jump.

| @p // Protocol reference.

M ::= Object type | Primitive type | T // Message types.

L ::= Label
⊕ ::= ! | ?

Figure 1: Session type syntax.

where name identifies the protocol, following the standard Java naming rules.
Protocols may be declared as both local and field variables, although field
protocols are currently restricted to private access.

The body of the protocol (inside the curly braces) is a session type,
given by the syntax rules in Figure 1. The session type specifies how a
session should proceed in terms of the actions that the particular party
should perform, i.e. a view of the session from the perspective of that
party. The key point is that the implementation of a session (see §3.6)
is governed by the associated protocol: the SJ compiler statically verifies
session implementations against the protocols.

The kind of actions that can be specified include basic message pass-
ing, conditional and repeated behaviours. The session type elements that
describe these actions are explained below in pairs according to the dual-
ity relation between corresponding elements. Session type duality ensures
that two parties implement compatible protocols, checked through a runtime
validation at session initiation. Duality essentially means when one session
party is sending a message, the peer is (or will be) expecting a message of
that type (or supertype), thus precluding dynamic type errors from message
communication.

Interaction sequences. If T and T ′ are session types, then

T .T ′

11

is the session type that describes first performing the interactions of T fol-
lowed by the interactions of T ′.

Session initiation. The action of initiating a new session with a peer is
denoted by:

begin

Unlike most of the other session type constructors, begin is symmetric,
meaning that both parties have the same specification of this action1. Note
that begin can only appear as the initial prefix at the top level of a session
type, since a session can only be initiated once. N.B. there is no explicit
session type for the action of closing a session: the end of a session is implicit
at the end of a type.

Basic message passing. Sending and receiving a message of a type M
are respectively described by the dual types

!<M> ?(M)

Message types are serializable Java object types, primitive types and session
types (the latter are explained in ‘Higher-order Message Types’ below). The
notion of duality between send and receive includes session subtyping [2],
which allows a message subtype to be sent where a supertype is expected.
In general, the ‘!’ (‘?’) symbol in session types denotes some form of output
(input) action, of which send (receive) is a particular instance.

Branching. Sessions can branch into one of multiple paths: one of the
parties is responsible for making the branch decision (which path to select),
and the other party must follow. Paths are identified by string labels.

!{L1:T1, ..., Ln:Tn} ?{L1:T̄1, ..., Ln:T̄n}

The type on the left specifies that the session party is the decision maker and
may select one of the paths labelled from L1 to Ln. The dual type on the right
(where T̄x is a dual type to Tx.) says the session peer should follow the first
party’s decision and take the corresponding path. Session subtyping allows
the select type to select from a subset of the paths that the corresponding
branch type supports, i.e. from labels Lm, where m is a subset of n.

Note that the type,
1This may be revised in a future version of SJ to distinguish the client and server sides.

12

⊕{L1:T1, ..., Ln:Tn}.T ′

means that, whichever branch is selected, the session will then proceed ac-
cording to the type T ′ (if and) after the branch has been completed.

Iteration. Sessions may involve the iteration of some subsession. Similarly
to branching, one session party is responsible for making the decision at each
iteration whether or not to iterate, and the session peer must follow. The
syntax for the dual iteration types is

![T]* ?[T̄]*

where T̄ is a dual type to T . The decision to iterate or not is made before
each iteration, so the subsession may be performed zero or more times.

Recursion. Repeated behaviour in session types can also be specified us-
ing recursion, which has the type syntax

rec L[T] #L may occur in T

where L is an alphanumeric label, and ‘#’ is just a symbol which essen-
tially means “jump” back to the protocol state at which the label was de-
clared (rec L) and repeat T (although different paths can of course be taken
through T each time round). Recursions with differing labels can be nested:
can jump back out to any nesting level by specifying the appropriate la-
bel. N.B. only tail recursion is supported, so the corresponding syntactic
restrictions apply on where #L can occur in T .

Note that recursion uses a symmetric type constructor. The decision
whether or not to repeat the subsession is not directly associated to the
recursion itself, but rather depends on a branch nested within the recursion:
generally some paths should lead to a #L and some should not. However,
recursions that never “quit” (except on failure) may be useful for certain
situations.

Higher-order message types. As mentioned above, message types can
themselves be session types. Whereas the “regular” message types specify
the communication over some established session, the higher-order com-
munication types additionally express changes in the shape of the session
network. For example, the dual types

!<?(int)> ?(?(int))

13

Alice

Bob

Carols s’
s: !<int>

s’: !<?(int)>
s’: ?(?(int))

Alice

Bob

Carols s’
s: !<int> s: ?(int)

Figure 2: Delegation of s from Bob to Carol.

respectively say that we should send and receive a session of type ?(int).
Higher order session communication is often referred to as session delegation.

Figure 2 illustates a basic delegation scenario. The left depicts the session
configuration before the delegation is performed: Alice is engaged in a session
s of type !<int> with Bob, and Bob is also in a session s’ of type !<?(int)>

with Carol. Then instead of accepting the integer from Alice himself, Bob
can delegate his role in s to Carol so that she will receive this message. This
delegation action corresponds to Bob’s higher-order send type for the session
s’ with Carol.

The right hand side of Figure 2 shows the change in session configuration
after the delegation has been completed: Alice is now interacting with Carol
for the session s. The key point is that by accepting the delegated s, Carol
makes an implicit promise to finish the session on behalf of Bob; thus, Carol
will perform ?(int) to match the action of Alice. Because Bob has delegated
full responsibility for completing s to Carol, he will proceed as if his contract
for this session has been fulfilled.

An important property of delegation is that the type of the session being
delegated does not itself convey any information about the delegation: the
delegation action is between Bob and Carol, and is transparent to Alice, the
passive party. Because Carol will fulfil the session contract originally signed
by Bob, i.e. as Alice expects, session delegation respects communication
safety.

Another useful application of higher-order session types is the commu-
nication of types like

!<begin.T> ?(begin.T)

14

which do not specify the delegation of an active session (as in the above
example); since the nested session type is prefixed by begin, the session has
not yet been initiated. Rather, this communication informs the recipient
about another peer from which new sessions of the specified type may be
requested. In other words, this permits the creation of new edges in a session
configuration as well as the migration of existing edges. This type of action
arises naturally in many real world settings, such as FTP.

Higher-order communication is a key feature of session programming,
enabling type-safe programming for mutually-transparent endpoint mobility.

Referencing other protocols. For syntactic convenience, one protocol
can be referenced from another using the @ operator. For example, given

protocol p1 { ... }

we can write protocols like

protocol p2 {@p1 ... }

protocol p3 {!<@p1> ... }

with the expected meaning: the @p is syntactically substituted for the pro-
tocol of that name. N.B. protocols cannot make forward references nor
reference themselves: (mutually) recursive protocol declarations are not per-
mitted. This is in keeping with the standard Java rules for variable reference,
including fields.

3.4 Session Sockets

After declaring the required protocols, we create session sockets for imple-
menting the actual session code. Session sockets represent the endpoints of
a session connection: each of the two peers owns one endpoint and performs
the specified interactions via the SJ session operations on that endpoint.

Session sockets are objects that extend the abstract SJSocket class. The
current version of SJ provides two types of session socket, SJFSocket and
SJRSocket, both of which employ TCP as the underlying transport; N.B. the
two socket types are not currently interoperable. The differences between
the two are mostly related to the mechanisms for handling session delega-
tion: the first implements the bounded-forwarding protocol and the second
implements the resending protocol, as presented in [4]. However, these de-
tails (such as impact on performance [8]) are not important for most users,
only that the two socket types are not yet compatible.

15

As in many regular socket programming libraries (e.g. java.net.*), we
distinguish session client and server sockets. The former are used to request
sessions from the latter.

3.4.1 Session Client Sockets

Session client sockets (or just session sockets for short) are created by calling
the static create method on the desired socket class, SJFSocket or SJRSocket.
This method takes as a parameter an object of type SJServerAddress, which
binds the IP address and TCP port of the target session server with the type
of the session supported by that server. SJServerAddress objects are also
created by calling a static create method on the class, passing as parameters
the information just described.

For example, assuming we have a protocol p,

SJServerAddress c = SJServerAddress.create(p, "host", 1234);
SJSocket s = SJFSocket.create(c); // Or use SJRSocket.

first creates the session server-address c, associated with the protocol (ses-
sion type) p. c is then used to create the session socket s (of type SJFSocket),
which means that s should be used for sessions of type p with the specified
server, in this case located at port 1234 on the machine identified by "host".

An important requirement in SJ is that the session-typed objects, such
as SJSocket and SJServerAddress, are not permitted to be aliased. In par-
ticular, assignment both from and to session-typed variables is forbidden,
as is passing the same session-typed variable as multiple arguments in the
same method call (see §3.7). The only exception is the assignment of a
freshly created session-typed object to a null-initialised and fresh (that is,
not previously assigned to) variable, e.g.

SJSocket s = null;
... // ‘s’ is not assigned to yet.

s = SJFSocket.create(c);

Session client sockets cannot be “reused”, i.e. once a session has been
completed, it cannot be run again using the same session socket object.

3.4.2 Session Server-sockets

Session server-sockets are the counterpart to the above session (client) sock-
ets. Session server-sockets are created in much the same way,

SJServerSocket ss =
SJFServerSocket.create(q, 1234); // ‘q’ is a protocol.

16

but are created active, meaning that the specified port is opened and ss is
immediately ready to accept session requests. Unlike server-address objects
and client sockets, creating a server-socket can throw a SJIOException, typ-
ically if there is a problem opening the local port. If this is the server being
targeted by the client socket created above, then the protocol q should be
of dual type to p.

3.5 Session-try Statements

Sessions are implemented within session-try statements. Session-try is very
similar to the regular Java try, but also takes as parameters the session
sockets for sessions that may be implemented within its scope. Furthermore,
any sessions initiated within a session-try must be completed within the
scope of that session-try. Active sessions are automatically closed when
leaving the scope of a session-try.

try (s1, s2) { // Assume session sockets ‘s1’ and ‘s2’.

... // Implementation of ‘s1’ and/or ‘s2’ sessions.

} catch (...) {
...

} finally {
...

}

As for regular try statements, the finally clause is optional if there is a
catch clause, and vice versa. The implementations of s1 and s2 may be
interleaved along with other Java code, provided that they respect their
protocols and the other rules of the session type system.

The SJ compiler statically verifies that initiated sessions are completed
within the parent session-try according to the relevant protocols. However,
the completion of a session includes the session being delegated (§3.3), passed
as an argument to a SJ session method (§3.7) or handed over to a SJ session
thread (§3.8); each of these actions implicitly complete the sessions involved
with respect to the current session-try scope.

Session-try statements can be nested, although sessions specified as a pa-
rameters to an outer scope cannot be accessed from within an inner scope,
except if the outer session is being delegated over an inner session. In such
a case, no further actions need be (nor can be) performed for the delegated
session in its parent scope. The programmer is free to decide whether ex-
ceptions raised in an inner session-try are consumed there, or thrown out
to the outer scope; this depends whether the failure of the nested session
should fail the outer session.

17

s.request(); // begin

s.send(m); // !<M>

s.receive(); // ?(M)

s.outbranch(L) {P} // !{L:T}

s.inbranch() {case L1:{P1}... case Ln:{Pn}} // ?{L1:T1, ..., Ln:Tn}

s.outwhile(cond) {P} // ![T]*

s.inwhile() {P} // ?[T]*

s.recursion(L) {P} // rec L[T]

s.recurse(L); // #L

Figure 3: The SJ session operations and their types.

3.6 Session Operations

After creating a session socket, a session can be implemented within a
session-try using the session operations. The following sections describe the
main session operations, listed in Figure 3, for performing the interactions
specified by the associated protocol declaration §3.3. The session operations
are generally invoked via session sockets in a method call-like manner. As
stated in the preceding section, session implementations must be completed
within the scope of the parent session-try statement.

3.6.1 Session Initiation

The begin type is implemented by the session socket request and server-
socket accept operations. The server accept operation blocks until a request

is received: if the two parties support compatible session types, then accept

returns a session socket as the server-side endpoint of the new session,
matching the client side socket used to make the session request. Otherwise,
a SJIncomaptibleSessionException is raised at both parties to abort the
session.

SJSocket s = ss.accept(); s.request();

Compatible means that the session peers implement dual protocols, meaning
that when one sends a message, the other will expect a message of that
(super) type (correspondence between ! and ? actions), and allowing for
branch subtyping (one can select from a subset of the choices offered by the
other).

18

Note that each type of session socket (SJFSocket or SJRSocket) can cur-
rently only be used to initiate sessions with the corresponding server-socket
type.

3.6.2 Basic Message Passing

Message passing in SJ is asynchronous but lossless and order preserving,
meaning that send operations complete immediately, but receive operations
block until a message is available, and that all messages sent over a particular
session will be received by the session peer in the same order they were sent.

Serializable objects (implements java.io.Serializable) and primitive
types are sent using the send operation. (Non-serializable objects cannot be
communicated.)

s.send(myObject); // !<MyObject>

s.send(123); // !<int>

For code clarity, dedicated sendBoolean, sendInt, etc., for the primitive types
are also supported. However, dedicated variants must be used to receive
primitive types.

String m = s.receive(); // ?(String)

int v = s.receiveInt(); // ?(int)

No cast is needed for receive operations, as this information is inferred
from the expected type according to the protocol being implemented. N.B
the type of the ?(String) receive in the above example is being inferred in
this way, and not from the assignment of the received object to the String

variable. Explicit casts are, of course, still permitted.

3.6.3 Branching

The outbranch and inbranch operations respectively select and switch on a
branch label.

// !{LAB:...}

s.outbranch(LAB) {
...

}

// ?{LAB..., ...}

s.inbranch() {
case LAB: {
...

}
...

}

19

Operationally, the outbranch party implicitly sends the decision to the inbranch
peer so that both select the same path. One can view session branching as
something like a distributed or interactive version of the regular Java switch
statement.

3.6.4 Iteration

Session iteration is performed using the outwhile and inwhile operations.
The argument to outwhile is a boolean expression; inwhile takes no argu-
ments.

// ![...]*

s.outwhile(...) {
...

}

// ?[...]*

s.inwhile() {
...

}

The result from evaluating the boolean condition at each iteration is im-
plicitly sent by the outwhile party to the inwhile peer, so that both parties
iterate and exit in tandem. outwhile and inwhile are like interactive ver-
sions of regular iteration constructs, such as the while statement

3.6.5 Recursion

The session recursion construct and recurse operation take a label as ar-
guments. recursion marks the scope for a recursive subsession under the
specified label, and recurse makes the recursive “jump” back to the start of
the specified scope.

// rec L[...]

s.recursion(L) {
...

}

// #L

s.recurse(L);

N.B. Session recursion is restricted to tail recursion: neither session op-
erations nor regular Java code may follow a recurse at any lexical scope
level up to the outermost recursion scope that may be jumped to. However,
recurse can jump to any valid outer recursion scope, i.e. not just the in-
nermost recursion scope. Unbound recurse labels are not permitted. Note
that neither recursion nor recurse perform any actual communication.

20

3.6.6 Higher-order Communication

To delegate a session, we simply pass the session socket variable for the
session being delegated as an argument to a send operation on the target
session.

s1.send(s2); // !<T>, where T is the remaining

// session type of ‘s2’.

Only active session sockets can be delegated, and delegation implicitly com-
pletes the delegated session; in the above example, no further operations are
permitted on s2. Note that it is not safe to delegate an outer session inside
an iterative or recursive context. Such use would be detected as error by
the compiler.

The receive operation receives delegated sessions.

SJSocket s2 = s1.receive(); // ?(T), where T is the expected

// session type for ‘s2’.

Casts are optional, as for ordinary receive operations.

s2 = (T1)s1.receive(); // ?(T1)

s3 = (@p)s1.receive(); // ?(T2), where T2is the session

// type declared by ‘p’.

The communication of session server-addresses is similar.

s.send(c); // !<begin....>

SJServerAddress c = s.receive(); // ?(begin....)

Like the operations for communicating primitives, dedicated sendSession

and receiveSession can be used for clarity; similarly for server-addresses.

3.6.7 Combining Session Operations and Regular Java

Regular Java also plays a part in session implementation. For instance, if-
statements are naturally treated as conditional session contexts: sessions
can be nested within a branch, and operations on outer sessions must be
consistent across all branches. For example, whereas

if (...) s.send(...);

is simply illegal,

21

if (...) {
s.send(...);

} else {
s.send(...);

}

is fine, provided that the send operations do indeed conform to the expected
session type. A slightly more complicated version of this is, for example,

// !{ LAB1:..., LAB2:... }

if(...) {
s.outbranch(LAB1) { // !{ LAB1:... }

...
}

} else {
s.outbranch(LAB2) { // !{ LAB2:... }

...
}

}

which allows us to select different branches based on the condition of the
if-statement.

While-loops, etc. are similarly treated like iterative session contexts:
complete sessions can be nested within a loop, but operations on outer
sessions is not type safe. For example,

while (...) {
s.send(...);

}

is illegal, but a common, valid pattern is

while(...) {
try (s) {
s = ss.accept(); // ‘ss’ is a server-socket.

... // Implementation of ‘s’.

}
catch(...) {
... // Don’t bring down server just because of one bad client.

}
...

}

which handles multiple (concurrent) session requests made to the server-
socket.

22

3.7 Session Methods

Session sockets can be passed as arguments to, and returned from, session
methods. Session methods are the same as regular methods, except the
parameter or return type for session values should the expected session
type (not SJSocket). The current version of SJ restricts session methods to
private access.

The following is an example session method that takes a session type
argument as well as an integer.

try (s1) {
... // Partial implementation of ‘s1’.

finishSession(s1, 123); // ‘s1’ remaining session type ‘T1’.

}

...

private void finishSession(T1 sarg, int i) throws SJIOException {
... // Finish ‘sarg’ according to ‘T1’.

}

The key point is that the type of the session argument sarg, T, must cor-
respond to the remainder of the session s1 at the point of the method call.
Session methods serve as implicit session-try scopes for the session argu-
ments. Hence, the implementation of sarg can be continued directly within
the method body. By the standard rules for exceptions, any exceptions that
may be raised by the session operations used, such as SJIOException must
be thrown out by the method back to the parent session-try.

The next example, listed in Figure 4, returns a session from a ses-
sion method. The session s2 is initiated and partially implemented within
getSession before it is returned to the calling context, where the remainder
of the session is implemented. Exceptions that may be raised by the ses-
sion operations within the s2 session-try must be thrown out to the calling
context. This is enforced by the fact that the s2 session-try cannot catch
any exceptions itself, as this would not guarantee that a session of type T2

is returned; the compiler rejects such cases. Inactive session sockets, i.e.
uninitiated sessions of begin... type, cannot be returned.

3.8 Session Threads (Under Development)

A session socket can be passed to a session thread using the spawn opera-
tion, meaning that the (remainder of the) session is to be performed by that

23

try (sret) {
... // ‘sret’ is null-initialised and not yet assigned to.

sret = getSession(123);
... // Finish ‘sret’ according to ‘T2’.

}

...

private T2 getSession(int i) throws ... { // Multiple exceptions.

... // ‘s2’ created.

try (s2) {
... // ‘s2’ partially implemented.

return s2; // ‘s2’ has remaining type ‘T2’.

}
finally {
...

}
}

Figure 4: Returning a session from a session method.

thread. This operation is in effect a “local” delegation, that is, a delega-
tion between parties in the same JVM instance. N.B. Session threads are
currently under development; in particular, exception handling for session
threads is incomplete.

Following is an example session thread class.

class MyThread extends SJThread {
public void run(T1 s1, T2 s2) throws SJIOException {
... // Implementation of ‘s1’ and ‘s2’.

}
}

Session threads extend the sj.runtime.net.SJThread class. Like java.lang.Thread,
SJThread must declare a single public void run method containing the thread
body. The differences are that a session thread run accepts arguments in-
cluding session values, the method can throw exceptions, and the thread is
started immediately upon creation. N.B. Currently, session thread excep-
tions serve only to terminate the thread and cannot be directly handled.

Like other session methods, run serves as an implicit session-try scope
for its session arguments. The only difference is that uninitiated sessions
(those of type begin...) are automatically incorporated into the try-scope
of session thread run methods.

24

Given the above session thread class, the spawn operation can be used as
follows.

... // ‘s1’ and ‘s2’ created and partially implemented.

<s1, s2>.spawn(new MyThread()); // Note the ‘<...>’ syntax.

spawn takes as an argument the session thread instance to which the target
session should be passed. However, spawn differs from the other session
operations in that it can operate on multiple sessions, passing them all to
the specified thread. The types of the sessions being passed, s1 and s2, must
match the parameters of the run method declared for the session thread class,
MyThread, at the point of the spawn.

3.9 Eager Remote Class Loading and Verification

Due to session subtyping, in particular message subtyping, it is possible for
a session peer to lack some of the classes needed to deserialize an object
received from its peer. For this purpose, the SJ session sockets support a
remote class downloading feature similar to that used by Java RMI.

// ‘s’ is an inactive session socket.

s.setCodebase("http://www.doc.ic.ac.uk/~me/codebase/");
s.setRemoteClassLoading(true);

Session sockets can be configured to look for missing classes at a codebase,
a HTTP class repository. After creating a session socket, but before the
session is initiated, we can set the codebase parameter on the socket and
enable remote class loading. If the required class cannot be retrieved from
the codebase, then the usual ClassNotFoundException is raised. The class
loading parameters cannot be modified after the session has been initiated.

Because session types describe all the messages that may be communi-
cated in a session, the session type of the peer, obtained at session initiation
can be used to conservatively anticipate all potentially missing classes. These
classes can then be eagerly downloaded before (and if) they are actually re-
quired. Similarly, compatibility between the classes that both parties share
can be eagerly verified.

// ‘s’ is an inactive session socket.

s.setEagerClassDownloading(true);
s.setEagerClassVerification(true);

Note, however, that eager class downloading does not guarantee to load
all potentially needed classes, only those for all specified message types; it
is possible to send a subtype of the specified message.

25

4 About the SJ Implementation

The full distribution of SJ includes the source code for the compiler and run-
time libraries [8] under the compiler/src and runtime/src directories respec-
tively. The compiler is implemented as an extension to the Polyglot compiler
framework (version 2.2.3) [6], and the project can be built using Ant [5] (a
compiler for Java 5 or later is required). The default (empty) Ant target will
place the resulting classes in compiler/classes and runtime/classes accord-
ingly; the jar target will compile the source and make sj.jar and sj-rt.jar

in the lib directory. The sjc and sj scripts will first look for dependencies
in the classes directories; if they cannot be found, then the scripts will look
for the jar archives in lib. Compiling and running SJ programs require
both the compiler and runtime class files.

References

[1] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida and S. Drossopoulou,
Session Types for Object-Oriented Languages.

[2] S. Gay and M. Hole, Subtyping for Session Types in the Pi Calculus.

[3] K. Honda, V. T. Vasconcelos, and M. Kubo., Language Primitives and
Type Disciplines for Structured Communication-based Programming.

[4] R. Hu, N. Yoshida and K. Honda, Session-based Distributed Program-
ming in Java.

[5] Apache Ant, http://ant.apache.org/.

[6] Polyglot extensible compiler framework, http://www.cs.cornell.edu/
projects/polyglot/.

[7] SJ Language Specification (draft).

[8] The SJ project homepage, http://www.doc.ic.ac.uk/~rh105/
sessionj.html.

26

