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Abstract

Current representations of interaction protocols either concentrate on ease of understanding and
neglect the need to specify protocols unambiguously (e.g. [2]), or concentrate on formal rigour and
neglect usability issues (e.g. [21,10]). The on-going development of propositional statecharts has
been motivated by the need to provide a notation which satisfies both of these requirements. Here
we give a brief description of propositional statecharts, a restricted form of David Harel‘s state-
chart formalism [13] designed to represent agent interaction protocols. Statecharts are a popular
extension of Euler Diagrams and are widely used as part of the UML framework. Propositional
statecharts take advantage of the intuitive nature of the statechart formalism, and include labelling
conventions to ensure that interaction protocols are defined unambiguously while remaining easy
to understand.

Keywords: Agents, Agent Communication, Euler Diagrams, Higraphs, Propositional Statecharts,
Statecharts, UML

1 Email: hdd2@doc.ic.ac.uk, rjc@doc.ic.ac.uk
2 Email: sp@ecs.soton.ac.uk

Electronic Notes in Theoretical Computer Science 134 (2005) 55–75

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.020

mailto:hdd2@doc.ic.ac.uk
mailto:rjc@doc.ic.ac.uk
mailto:sp@ecs.soton.ac.uk
http://www.elsevier.com/locate/entcs


1 Introduction

At the turn of the millennium the field of software agent research had become
one of the most active areas of R&D activity in computing [30]. Since then
agents have been widely tipped as the logical next step in the evolution of
computer science (e.g. [8]). Much of the intuitive appeal of the agent paradigm
stems from the idea that agents could solve problems through cooperation and
negotiation, as people do, therefore providing the potential for automating
many of the tasks which currently still have to be performed by humans. The
potential ability of agents to communicate with each other in a goal directed
manner forms an integral part of this idea.

Researchers such as Greaves et al. [12] have identified three characteristics
which must be shared by different agents to enable them to communicate
effectively: a shared infrastructure for message passing, a common ontology,
and a common agent communication language. These researchers have also
noted that in all but the very simplest interactions it is necessary for each
agent to have a common understanding of the set (or collection of sets) of
rules underlying the interaction. A set of rules governing an interaction is
commonly known as an Interaction Protocol.

The problems of ensuring that the agents involved in an interaction share
a common infrastructure for message passing and a common agent communi-
cation language have been addressed by the design of general purpose frame-
works for message passing (such as the ICM, described in [7]) and languages
(such as KQML [9], or FIPA ACL, described at http://www.fipa.org 3 ).
However the design of a single generic protocol suitable for every interaction
is less realistic. Agents may be expected to interact in a wide range of different
circumstances, each of which may call for the use of different protocols. For
example an agent may be required to communicate with a single agent, or
with a group of agents at the same time, and could be required to participate
in a tightly defined interaction such as an auction, which could take any one
of a variety of forms. For this reason it would be extremely difficult to define a
single protocol that would be suitable for every situation, making it necessary
to find another way of ensuring that within any particular transaction, each
agent is using exactly the same protocol.

Current agent interaction protocols are designed independently of agents
that implement them. A library of such protocols can be found on FIPA’s
website (http://www.fipa.org). It is intended that agent designers imple-
ment these standard protocols when constructing software agents to enable

3 FIPA is a non-profit organisation aimed at producing standards for the interoperation of
heterogeneous software agents.
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them to communicate with other agents effectively.

A key question for organisations such as FIPA that attempt to provide
libraries of protocols for different agent designers to use is how to describe the
protocols to the agent designers.

A number of notations have been proposed for this purpose, such as Petri
nets [4] and modified finite state machines [10], but the most influential of
these to date has been Agent UML [2]. The current notation used by FIPA
for representing interaction protocols is the AUML sequence diagram taken
from Agent UML.

UML [29] is a collection of diagrammatic notations that was introduced
and standardised by Rational Software, Microsoft, and the Object Manage-
ment Group during the 1990s and has become a standard method for designing
object-oriented systems. Agent UML is an extension of UML which aims to
apply the principles behind UML to the problem of agent oriented system
design. There are a number of reasons why notations taken from Agent UML
are a natural choice for the representation of interaction protocols. Their sim-
ilarity to existing UML notations makes them easy to understand for agent
designers, who would be familiar with UML notations already. This reduces
the risk of agent designers choosing not to implement the standard protocols
just because they have difficulty understanding the notation used to represent
them. Another obvious advantage of UML based notations over other method-
ologies is the ability to benefit from the large amount of research which has
already gone into the development of UML, and its proven track record as an
effective means of designing complex systems.

Despite the obvious benefits of using the Agent UML suite for representing
agent interaction protocols, there is an important problem with them that
has yet to be resolved. This problem stems from a key difference between
conventional software engineering and protocol design and implementation.

In conventional Software Engineering, UML has been used to provide a
relatively abstract description of a system giving an overview of how it would
work. In this way the UML diagram has acted as a useful reference for the
programmer. The object constraint language (OCL) included in the UML
framework provided a means of introducing formal constraints, however it
was designed for object modelling and addressed only preconditions and post-
conditions [28]. The exact details of how a system would be implemented
were intentionally left out for two reasons. Firstly, the inclusion of every de-
tail could compromise the clarity and simplicity of the representation, making
it less useful for the programmer rather than more useful. Secondly, when
initially designing a system it is not the intention to give a complete and un-
ambiguous specification of it, as it would be unreasonable to expect a designer
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to be able to do this for all but the simplest of systems. In practice UML mod-
els have given a useful informal description of a system rather than a precise
specification and the programmer has been expected to fill in the local detail
as he/she goes along 4 .

Agent Interaction Protocols are often implemented separately in different
agents by different programmers. Despite this each different agent‘s interpre-
tation of a given protocol must be essentially the same in order to eliminate
misunderstandings between agents. For this reason any adequate notation
used to specify common Agent Interaction Protocols must provide an un-
ambiguous representation of the protocol being described. It is no longer
adequate to provide an informal description. Note that we include within
the loose term unambiguous the property of logical completeness described by
Paurobally and Cunningham [25].

Paurobally and Cunningham [24] have shown that, despite being extended
for the purpose of Agent Oriented software engineering, Agent UML nota-
tions lack the precise action semantics required to provide an unambiguous
representation of interaction protocols, and are better suited for informal de-
scriptions of Interaction Protocols. A more rigorous description, which would
force the protocol designer to specify the protocol exactly, is required. Pau-
robally [21] has developed one such notation, ANML, which is essentially an
extended form of dynamic logic [15], but this notation is heavily logic based,
and would therefore be of limited explanatory appeal to agent designers. An-
other notation, based on finite state machines, has been proposed by Fornara
and Colombetti in [10], but this notation also lacks the simplicity and clarity
of less rigorous forms of representation such as Agent UML.

The development of propositional statecharts has been motivated by the
need to provide a notation which is sufficiently intuitive and easy to under-
stand to encourage agent designers to adopt standard protocols while preserv-
ing the formal rigour required to represent the protocols unambiguously. It is
also intended to form the basis of further work on the automated conversion
of protocols described using a propositional statecharts into dynamic logic,
which may be verified, and also into executable program threads. In this pa-
per we will describe the propositional statechart formalism and demonstrate
its ability to provide simple yet formally rigorous descriptions of the English
Auction Protocol. The English Auction Protocol is a natural choice of interac-
tion protocol to use for this purpose because it is well known and widely used

4 The latest version of UML is designed to enable more formal descriptions, and a number
of tools have been designed which can generate code from specialised UML diagrams in a
number of application domains [18]. The current work is intended to facilitate the design
of similar tools for the automated generation of executable interaction protocols described
using propositional statecharts.
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in e-commerce. For example the auction site eBay uses this protocol [6]. It
is also surprisingly complex, and forms an interesting example of an iterative
Interaction Protocol [10]. We will conclude by discussing opportunities for
further work.

2 From Euler Diagrams to Statecharts

The propositional statechart formalism presented here is based on David
Harels statecharts [13]. These are based on higraphs [14], which are a modified
form of Euler diagrams described in [20]. An Euler diagram is a collection of
closed curves known as contours arranged on a 2D plane, which is divided into
separate regions corresponding to the areas of the plane inside different col-
lections of contours. A similar principle underlies Venn diagrams (described
in [17]).

We can recall here that a particular quality of Euler diagrams which makes
them an ideal foundation for the statechart formalism is their ability to rep-
resent hierarchies. This gives rise to a more economical way of describing
transitions to or from groups of states than is possible using conventional
state transition diagrams, making the statechart formalism potentially more
expressive 5 .

The incorporation of Euler diagrams into higraphs involved two main mod-
ifications to their definition [14]. Firstly, higraphs required unique contours
to be added to represent all identifiable sets. So while a conventional Euler
diagram might use two overlapping contours A and B enclosed in a single
contour U to represent four distinct areas (A ∩ B, A − (A ∩ B), B − (A ∩ B),
and U − (A∪B)), the modified higraph definition would require the inclusion
of four further atomic contours (which do not contain any others), one in each
of the areas specified. So in figure 1 a diagram consisting only of the contours
labelled U, A and B would be a valid diagram, but the addition of 4 further
contours such as those labelled C, D, E, and F in the diagram is necessary for
the diagram to be a valid higraph. This modification allows the different areas
to be labelled more clearly, as they each have their own contour dedicated to
them [14].

Secondly, higraphs modify Euler diagrams to allow the representation of
Cartesian products. A Cartesian product is represented by dividing a region
enclosed by an individual contour into orthogonal parts using a dashed line.

5 We say potentially, because while a hierarchy of states with predetermined finite depth can
be replaced by a flat finite state diagram, this is no longer possible with a recursive hierarchy
of unbounded depth. Such recursive hierarchies must be allowed if a visual formalism is not
to be restricted in the computational processes it can represent.
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Fig. 1. An Euler diagram containing unique contours for all non-empty sets and displaying both
overlapping contours and orthogonality

The region labelled F in figure 1 is an example. The set represented by an
orthogonally divided region is the Cartesian product of the sets on either
side of the dashed line. This property enables statecharts in the form of
higraphs to represent concurrent systems without having to represent different
combinations of states individually.

The diagram in figure 1 could be used to provide an economical description
of the states of a system, with each contour representing a possibly hierarchi-
cal state, and topological enclosure determining the hierarchy. However the
modified form of Euler diagrams described above is not sufficiently expressive
to describe state transitions. In order to do this higraphs also incorporate
directed hypergraphs. Hypergraphs [3] are an extension of discrete graphs
whereby edges in the graph are not restricted to representing binary relations,
and as such can connect sets of nodes as well as single nodes, as shown in
figure 2. In a directed graph edges signify one way relations, and are drawn as
arrows to signify their direction. Figure 2 shows a simple directed graph, in
which one node is connected to a second by means of a single edge, alongside
a directed hypergraph, in which two nodes are connected to a third by means
of a single complex edge.

Directed hypergraphs are incorporated into higraphs through the inclusion
of directed edges between contours. Figure 3 shows a higraph comprising
the euler diagram in figure 1 with some edges added. The edges allow us
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Fig. 2. A Directed Graph and a Directed Hypergraph
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Fig. 3. The higraph formed by adding edges to the Euler diagram in figure 1

to describe one way relations between contours or groups of contours. This
capacity makes them well suited to the representation of state transitions,
which are referred to in this paper as events.

While UML statecharts are based on higraphs they do contain a number
of features which are not included in basic higraphs. These are described by
Harel and Politi [16]. Perhaps the most important addition is that of edge
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State A

State B State C
a

Fig. 4. A simple statechart with a default start state

labelling. In a statechart each edge has a label associated with it. This label
defines the event that triggers the transition represented by the edge.

Another significant addition is the default start state, which allows the
designer to specify the initial state of the system and its subsystems. Figure
4 gives an example of a default start state. The black dot with an arrow
pointing to state B specifies state B as the default start state when state A
is entered. Without this feature the statechart designer would not be able to
explicitly specify the start state of a system or subsystem.

A third key feature of statecharts is the implicit assumption that atomic
states whose contours are not directly contained in an orthogonal region are
mutually exclusive (here we use the term atomic state to refer to any state
with no substates). This assumption, combined with the requirement that hi-
graphs include unique contours for all identifiable sets, means that statecharts
provide unambiguous representations of the states of a system. The syntax
and semantics of statecharts are discussed in depth in [16].

There are a number of reasons why we have chosen to base our graphical
methodology on statecharts. Firstly, since they are part of the UML suite,
they share the benefits of other methodologies derived from UML, which are
described in section 1. Secondly, the inclusion of state hierarchy enables them
to provide simpler, more economical representations of protocols than other
graphical methodologies such as finite state machines [16]. Finally, a modified
form of statecharts could provide an unambiguous representation of interaction
protocols. This would facilitate consistent implementations of the protocol in
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different agents.

3 Propositional Statecharts

The propositional statechart formalism introduced here aims to preserve the
benefits of using statecharts to represent interaction protocols while strength-
ening their ability to do so unambiguously. In order to achieve this we have
made a number of modifications to the statechart formalism. Firstly we have
simplified the definition of statecharts by removing orthogonality. Secondly,
we have introduced labelling conventions that are intended to be sufficiently
intuitive to render the propositional statecharts easy to understand, yet re-
strictive enough to help designers provide unambiguous representations of pro-
tocols. Both of these modifications are described here in detail.

3.1 The Absence of Orthogonality

While many of the elegant features of statecharts, such as their ability to
efficiently represent hierarchies, have been preserved, one important feature -
the ability to represent orthogonality - has been removed. Orthogonality was
included in UML statecharts in order to enable them to provide an economical
description of complex reactive systems made up of relatively independent
subsystems. In such a system the number of states the system, as a whole,
can be in is approximately the product of the number of states each subsystem
can be in. Without orthogonality each of these states would have to be drawn
as a separate contour on the statechart. In contrast, using orthogonality only
the states of each subsystem need be represented as contours. For a system
which is made up of a large number of subsystems which could each be in
a number of states the use of orthogonality leads to a far more economical
description than would otherwise be possible. This is illustrated in figures 5
and 6, which show the same system represented by two statecharts, the first
displaying orthogonality and the second none.

When a statechart is used to represent an interaction protocol it is pos-
sible to consider each state of the interaction as a combination of the states
of each agent involved in the interaction, and so decompose an interaction
protocol into a series of orthogonal sub-protocols, each representing the pos-
sible states of a particular agent. There are two reasons for not approaching
this task using the orthogonality mechanism of standard statecharts. Firstly
the agents themselves are not subsystems, it is only their sub-protocols which
must combine, so we have the conceptually tricky problem of combining parts
of interactions between temporally autonomous agents into a pseudo whole.
Secondly in a typical interaction protocol the agent states are far from inde-
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Subsystem 1 Subsystem 2

A B A B

Subsystem 3 Subsystem 4

A B A B

Fig. 5. A Simple Statechart with orthogonality
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Fig. 6. Figure 5 without orthogonality
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pendent, as many or all of the agents may be in the same protocol state at
any particular time, or may be following a similar sub-protocol. In these cases
the use of orthogonality would provide little benefit for the representation of
states. Instead, one can represent each sub-protocol using a separate, and
often similar, or generic, statechart. The absence of orthogonality simplifies
the propositional statechart formalism. We then seek to clarify the verifica-
tion and implementation of protocols by considering the properties of these
simpler charts, and how they interact.

3.2 Labelling Conventions

As well as simplifying Harel‘s statecharts, we have added new features to
strengthen the statechart language as a means of representing interaction pro-
tocols. These take the form of rules which govern the labelling of states and
events. These labelling conventions motivated the decision to name our mod-
ified statecharts propositional statecharts.

3.2.1 State Labels

A state label is an identifier for a state. An effective state labelling system
should enable the user of the statechart to refer to each state unambiguously.
To achieve this goal state labels should be assigned so that if the statechart
were flattened out, and the names of the superstates were appended to those
of the substates, no two states would have the same label.

Aside from this basic requirement, any labelling conventions for the states
themselves are purely for the benefit of anybody wishing to inspect the pro-
tocol by looking at the statechart. For this purpose it is useful to give an
accurate if incomplete description of the current state of the negotiation. The
convention we use to name the states is to describe them using predicates, but
expressed in terms of the action or actions either directly preceding or directly
following them within the same superstate. In this way the state labels give
a rough indication of which actions have occurred, enabling anyone looking
at the propositional statechart to understand the protocol being represented
more easily. The state labels in figures 7, 8, and 9 have been created according
to this convention.

One possible benefit of a convention such as this one, which standardises
the labelling of states, is that clear and consistent state labels could to a
large extent be created automatically using a graphical tool designed to draw
propositional statecharts for interaction protocols.

In order to provide a complete description of Interaction Protocols such
as the variants of the English Auction Protocol described in this paper it is
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necessary to include variables to represent, for example, the highest bidder,
whose value can change throughout the interaction. Furthermore, in order
to provide an unambiguous representation of the protocol it is necessary to
specify the scope of these variables. This can be done by including a single
hierarchical state which encloses all of the states and actions in which the
variables are required, and by specifying the variable names as part of that
state label. An example of this is shown in figure 8, where the largest state is
the superstate of all of the other states and its state label includes the names
of the three variables associated with the interaction.

3.2.2 Event Labels

An event label describes an event; a transition from one state to another,
denoted by a directed, hypergraph-edge between the states. The inclusion
of hypergraphs, coupled with the ability to represent hierarchies, means that
the statechart designer can choose whether to depict each transition between
concrete states using a separate edge, or to depict transitions common to a
number of concrete states by means of a single complex edge at a higher level in
the state hierarchy. For example, in figure 8, the edge labelled auctioneer gives
up represents a number of possible transitions, one for each of the concrete
states included in its initial state (labelled more than one bidder accepted).
Besides providing an identifier for such a transition, a statechart event label
also needs to describe the conditions under which a transition occurs. For an
agent interaction protocol each event may describe any agent action which
can trigger the relevant transition, and may include auxiliary pre-conditions
and post-conditions. An interaction event may involve many possible agents,
which are categorized by their role. The event labelled more than one bidder
accepts in figure 8 is an example of this. The number of participants a protocol
can handle in each role can be inferred from the event labels. For example, in
figure 9 we can infer that there is only one auctioneer from the fact that the
auctioneer is referred to directly without the use of a quantifier. In the case
of an auction the user of the protocol may wish to place further constraints
on the number of participants (for example by limiting the number of bidders
allowed). This could be achieved by requiring that each agent register to take
part in the interaction, and limiting the number of agents that could register
for any particular role. This strategy is often employed in e-commerce [22].

While an event can be simply depicted as a transition between abstract
protocol states, its definition, in terms of atomic conditions and actions, can be
complex. To include complex event labels to describe these transitions would
be contrary to the purpose of a diagrammatic notation which aims to be clear
and easy to understand. However, the complexity of event expressions can be
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directly alleviated by choosing a simple identifier to label the transition, with
an accompanying definition. This method may be considered desirable for the
complex dynamic logic path labels in figure 9, although we have not used it
here.

In their book Modeling reactive systems with statecharts [16], Harel and
Politi propose the introduction of activity diagrams to give a dual hierarchy
for information flow through processing activities. This perspective has not
persisted because an information processing activity can also be regarded as
a discrete, although possibly compound processing state, and a process as a
path between such processing states in program execution. While a primitive
interaction event may be the action of an agent in sending a message, a more
complex interaction can be expressed as the composition of primitive actions
in the way primitive programs are composed in a sufficiently rich dynamic
logic. Thus we treat an event in a propositional statechart as expressed by the
composition of actions by agents in certain roles, including test actions which
capture and generalize the auxiliary pre- and post-conditions of statecharts.
The language we have used elsewhere for expressing the events in protocols
is derived from ANML [21], and allows us to extract from the interaction
statechart a formal theory in the dynamic logic [15].

For the purpose of this exposition we take an eclectic view by illustrating
both informal, and more formal variants of event labels. In each case the agent
is specified using quantification with a role restrictor, as in some bidders bid
(figure 7), and some bidder b accepts (figure 9). Note that figures 7 and 8 do
not represent the same protocol.

In figure 9, the event label syntax is program-like, and adapted from dy-
namic logic. It includes operators for sequential composition (;) and con-
ditional action (?), as well as Boolean connectives (∨, ∧, ¬), and informal
quantifiers.

3.3 Definitional Matters

We do not include a formal definition of either syntax or semantics, because
there are unresolved issues, most obviously regarding the acceptable forms of
logical quantification in path labels. It is clear from the foregoing discussion
that the core syntax of a propositional statechart is intended to be a restriction
of conventional statecharts, so that the abstract syntax of contours as nodes
in a hierarchy, and of paths as labelled links between nodes should be similar.
Nor is there evident advantage in not borrowing tested visual representations,
as concrete syntax for the core abstract syntax.

The intended semantics of a propositional statechart its re-expression as
a theory in a definitional syntax of first order dynamic logic. There are three
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key elements to this interpretation:

(i) Each state label is interpreted as a proposition, a propositional variable
in the case of an atomic state, as a predicate with parameters (attribute
variables) in the case of a contour with substates.

(ii) In the case of states at the same hierarchical level, each can be related
to others through the action modalities of the dynamic logic in much
the same way that graph algebras can be used to represent finite state
machines.

(iii) In the case of a state hierarchy, the proposition expressed by a contour
state is defined (with appropriate quantification) as an exclusive disjunct
of its immediately contained state propositions. (This re-interprets a
key insight of Harel’s statechart formalism, that distinct non-orthogonal
states are mutually exclusive).

This interpretation appears to provide key elements a logical theory that
is amenable to the methods of computational logic, and indeed it arises from
our previous attempts to clarify imperfect statechart-like descriptions of inter-
action protocols which have arisen in the work of industrial associations such
as FIPA. Of course, such a theory needs an operational semantics as well. But
dynamic logic, although intimidating to those unfamiliar with modal logics,
is a more expressive generalisation of so-called “program logics”, with deno-
tational (Kripke) semantics, and computational interpretations.

An important motivation for our approach is the need to relate the mutual
beliefs of agents when each takes a participating role in a protocol. This
problem is illustrated by the decomposition of figure 9, as a common protocol
for an English auction, into a separate thread for the auctioneer (figure 10),
and for each bidder (figure 11). A key step that we have taken is to embody
the communicative acts bid and announce within local message actions send

and receive. But here too we have illustrated our intent, not the rules which
may govern such decomposition.

4 Representing the English Auction

Paul Milgrom [19] defines the English auction in the following way. ”Here the
auctioneer begins with the lowest acceptable price [perhaps] the reserve price
and proceeds to solicit successively higher bids from the customers until no
one will increase the bid 6 . The item is ’knocked down’ (sold) to the highest
bidder.”

6 We have inserted [perhaps], because it is manifestly the case that the auctioneer in an
English auction does not necessarily start with the reserve price, even when there is one.
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This is a loose definition, and in practice there are many variations in
everyday use. Many, if not most, do not begin with a reserve price. Figure 7
is a naive and incomplete depiction of an English auction, but one that many
will recognize. It does not have a reserve price, and the challenge of making it
into a specification which can be executable by a machine leads to contentious
alternatives, partly because most programmers are used to thinking in terms of
discrete time steps, in which many bids may occur, so that there is a problem
in managing selection. The depiction of the protocol in figure 7 leaves open
the question of how the auctioneer deals with a situation where there is more
than one highest bidder. A more detailed version of the protocol, shown in
figure 9, resolves this by specifying that the auctioneer accepts the bid made
by just one of the highest bidders, possibly arbitrarily, and it is only through
the process of one bid being accepted by the auctioneer that a partial action
path to a new bid state is composed. This can really only be represented using
a path label. In figure 9 the auctioneer also announces to all bidders the price
that has been bid and the identity of the highest bidder. This announcement
is critical if real bids are to be allowed. Thus figure 9 is closer to real life, with
independent agents, than figure 7, but its events are more sophisticated.

Electronic variants which occur on well known auction sites tend to start
with a reserve price (the logic is slightly simpler with a reserve price) and then
to receive bids. This leads to a three way choice of action for the auctioneer,
depending on whether there are no bids, just one bid, or more than one bid.
The variant of the English Auction Protocol in figure 8 illustrates this sort of
refinement. Furthermore, it is now natural for the auctioneer to be responsible
for suggesting a new price each time a bid is made. The bidders merely have to
specify that they are willing to pay the latest price suggested by the auctioneer.
Secondly, the auctioneer has the option to give up and declare the item unsold
at any stage in the auction once it has started. This ensures that the auction
can always end even if there is no single highest bidder. However, a flaw
arises when more than one bidder agrees to pay a given price, but no bidders
agree to pay the next price proposed by the auctioneer. In the auction as it is
specified here the auctioneer has no option but to give up, however in real life
the auctioneer would be unlikely to declare the item unsold, and may decrease
the price slightly, or choose a bidder at random, in an attempt to sell it.

There are two state variables associated with the versions of the English
Auction Protocol shown in both figure 9, these are denoted cp, and hb, and
stand for ‘current price‘ and ‘highest bidder‘ respectively. Values are assigned
to them through explicit assignment as part of the action path events.

The English Auction described in figure 9 does not require any messages to
be received by some agents involved in the interaction but not others. How-
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auction finished

item sold

auction
for item started

auction in progress

auctioneer does not
sell item

item not sold

simple english auction

auctioneer
starts auction for item

auctioneer sells item to
highest bidder

auctioneer
selected
highest bid

auctioneer
received no 
more bids

nobody bids highersome bidders bid

some bidders
bid higher

some bidders bid higher

nobody bids

Fig. 7. A simple statechart for an incompletely specified English Auction Protocol

ever, one can imagine a variation on the English Auction which involves a
private reserve price, which must be declared to a third party by the auc-
tioneer but cannot be revealed to the bidders. In such a case it would be
necessary to conceptually divide the auction into two separate interactions, a
main interaction representing the part of the auction which involves all of the
agents, and a sub-interaction representing the private sequence of messages
passed between the auctioneer and the third party.

5 Conclusions and Future Directions

Representations of Interaction Protocols for Agent Interactions have tradition-
ally either concentrated on ease of understanding and neglected the need for
formal rigour and unambiguous protocol specification (e.g. [2]), or have con-
centrated on formal rigour and neglected usability issues (e.g. [21,10]). In this
paper we have described the Propositional Statechart formalism, a modified
form of David Harel‘s highly successful statechart formalism [13]. By basing
our representation on Harel‘s statechart formalism we have ensured that it is
easy to use and understand, and provides an intuitive form of representation
for agent designers, many of whom are already familiar with statecharts in the
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auctioneer not
raised price

auctioneer
raised price

auctioneer
sold item

auctioneer sells item to highest
bidderone bidder accepted

more than one bidder accepts

auctioneer.
raised_price

ÿauctioneer.
raised_price

more than one bidder accepted

no bidders
accepted

more than
one bidder
accepts

auction in progress

auctioneer
gives up

auctioneer
not  sold item

english auction - different version

auctioneer proposes starting price

one bidder
accepts

one bidder accepts

one bidder accepts

auctioneer raises price
more than
one bidder
accepts

auction finished

auctioneer raises price

Fig. 8. A simple statechart for a different version of the English Auction Protocol where the
auctioneer proposes prices and multiple acceptance leads to different states

context of UML.

We have suggested some modifications to statecharts for use with inter-
action protocols, aiming to preserve the intuitive nature of statecharts while
ensuring that interaction protocols specified using the modified form of state-
charts can be specified clearly and unambiguously. Propositional statecharts
include labelling conventions for events which specify the conditions under
which the events can occur. In general this seems to require path labels in
the style of dynamic logic, because intermediate states are not always reified.
However it also appears that the logic of more conventional statecharts can
be enriched by associating program variables with states and using precondi-
tions and postconditions for implicit consulting and updating. Orthogonality
is not an efficient way to represent interaction protocols, so the propositional
statecharts we use are simpler than the standard variants.

The work presented here is also a foundation for two other technical de-
velopments. The first is work to support verification of interaction protocol
properties, such as soundness and completeness [23]. The choice of labelling
conventions proposed here has been motivated partly by the desire to enable
a direct translation between propositional statecharts and an extended form
of dynamic logic in which such logical properties can be analysed. The sec-
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auction finished

item sold

auction.
started

auction in progress

item not sold

english auction - second variant (cp,hb)

auctioneer.starts

auctioneer.
accepted(hb,cp)

auctioneer
declared
no more bids

auctioneer declares
no more bids

auctioneer.sells item
(to: hb at price cp)

auctioneer declares no sale

auctioneer  declares no sale

some bidder b bids (price: p);
(p > cp Ÿ max p(b))? auctioneer announces(b,p);
cp:=p; hb:=b

some bidder b bids (price: p);
(p > cp Ÿ max p(b))? auctioneer announces(b,p);
cp:=p; hb:=b

some bidder b bids
(price: p);
(p > 0 Ÿ max p(b))?
auctioneer
announces(b,p);
cp:=p; hb:=b

Fig. 9. A more detailed version of the English Auction Protocol shown in figure 7, with agent/action
path event labels

auction finished

item sold

auction.
started

auction in progress

item not sold

english auction - second variant- auctioneer’s perspective (cp,hb)

SEND(start)

auctioneer.
accepted(hb,cp)

auctioneer
declared
no more bids

SEND(declare
no more bids)

SEND(sell item (to: hb at price cp))

SEND(declare no sale)

SEND(declare no sale)

RECEIVE (b.bid (price: p));
(p > cp Ÿ max p(b))? SEND (announce(b,p));
cp:=p; hb:=b

RECEIVE (b.bid (price: p));
(p > cp Ÿ max p(b))? SEND (announce(b,p));
cp:=p; hb:=b

RECEIVE (b.bid
(price: p));
(p > 0 Ÿ max p(b))?
SEND
(announce(b,p));
cp:=p; hb:=b

Fig. 10. The protocol shown in figure 9 from the point of view of the auctioneer
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auction finished

item sold

auction.
started

auction in progress

item not sold

english auction - second variant - bidder’s perspective(cp,hb)

RECEIVE
(auctioneer.start)

auctioneer.
accepted(hb,cp)

auctioneer
declared
no more bids

RECEIVE
(auctioneer.declare
no more bids)

RECEIVE(auctioneer.sell item
(to: hb at price cp))

RECEIVE(auctioneer.declare no
sale)

RECEIVE(auctioneer.declare no sale)

{SEND (self.bid (price: p)); (p > cp Ÿ max p(self))?
RECEIVE (auctioneer.announce(self,p)); cp:=p; hb:=self}
⁄ {RECEIVE (auctioneer.announce(b,p)); cp:=p; hb:=b}

{SEND (self.bid (price: p)); (p > cp Ÿ max p(self))?
RECEIVE (auctioneer.announce(self,p)); cp:=p; hb:=self}
⁄ {RECEIVE (auctioneer.announce(b,p)); cp:=p; hb:=b}

{SEND (self.bid
(price: p)); (p > 0 Ÿ
max p(self))?
RECEIVE
(auctioneer.announce
(self,p)); cp:=p;
hb:=self}
⁄ {RECEIVE
(auctioneer.announce
(b,p)); cp:=p; hb:=b}

Fig. 11. The protocol shown in figure 9 from the point of view of a bidder

ond development (illustrated by figures 9-11) is that propositional statecharts,
particularly with dynamic logic path labels, also seem to provide a foundation
for the conversion of Interaction Protocols into a set of executable program
threads. The provision of a library of executable threads for a given interaction
protocol, which could be distributed and used by different agents would be
a significant step towards the goal of eliminating misunderstandings between
agents.

For these goals to be met there is more work to be done in a number
of areas: tool support for reasoning about a sufficiently rich class of proto-
cols for credible applicability, usability testing to ensure that a propositional
statechart methodology can be accepted by agent developers, and practical so-
lutions for imperfect situations like communication breakdown. In real world
applications such as those involving mobile agents, or wireless communication,
the ideal of perfect communication cannot be attained [27]. The consequences
of relaxing assumptions which constitute an ideal could present a serious hur-
dle in moving from theory to practice.
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