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Abstract. Identification of functional connections within the human
brain has gained a lot of attention due to its potential to reveal neural
mechanisms. In a whole-brain connectivity analysis, a critical stage is
the computation of a set of network nodes that can effectively rep-
resent cortical regions. To address this problem, we present a robust
cerebral cortex parcellation method based on spectral graph theory and
resting-state fMRI correlations that generates reliable parcellations at
the single-subject level and across multiple subjects. Our method models
the cortical surface in each hemisphere as a mesh graph represented in the
spectral domain with its eigenvectors. We connect cortices of different
subjects with each other based on the similarity of their connectivity
profiles and construct a multi-layer graph, which effectively captures the
fundamental properties of the whole group as well as preserves individ-
ual subject characteristics. Spectral decomposition of this joint graph is
used to cluster each cortical vertex into a subregion in order to obtain
whole-brain parcellations. Using rs-fMRI data collected from 40 healthy
subjects, we show that our proposed algorithm computes highly repro-
ducible parcellations across different groups of subjects and at varying
levels of detail with an average Dice score of 0.78, achieving up to 9%
better reproducibility compared to existing approaches. We also report
that our group-wise parcellations are functionally more consistent, thus,
can be reliably used to represent the population in network analyses.

1 Introduction

The human cerebral cortex is assembled into subregions that interact with each
other in order to coordinate the neural system. Identification of these subre-
gions is critical for a better understanding of the functional organization of
the human brain and to reveal the connections of underlying subsystems [19].
Functional connectivity studies have identified several subsystems, each of which
is spanned across different cortical areas and associated with a specific func-
tional ability [16]. This has further advanced the analysis of the functional
architecture of the brain by constructing graphical models of the connections
within individual subsystems and their interactions with each other at differ-
ent levels of detail [14,25]. Analysis of these networks is also important for
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deriving biomarkers of neurological disorders such as Alzheimer’s disease [20] and
schizophrenia [1].

In this paper, our main motivation is to identify functionally homogeneous
and spatially continuous cortical subregions which can be used as the network
nodes for a whole-brain connectivity analysis. In a typical network analysis,
nodes are usually represented by the average signal within each cortical subre-
gion, which is further beneficial to improve the SNR [9]. A good parcellation
framework should be capable of grouping cortical regions with similar functional
patterns together, thus the average signal can effectively represent each part of
the subregion. It is also highly critical to generate a reliable group-wise represen-
tation that reflects the common functional characteristics of the community, yet
is tolerant to changes in the functional organization at the single-subject level
that may emerge due to functional and anatomical differences across subjects.

Our proposed method is based on connectivity patterns captured from
resting-state functional magnetic resonance imaging (rs-fMRI) data. Rs-fMRI
records neurocognitive activity by measuring the fluctuations in the blood oxy-
gen level signals (BOLD) in the brain while the subject is at wakeful rest. Since
the brain is still active in the absence of external stimuli, these fluctuations can be
used to identify the cerebral functional connections [4]. On the other hand, task-
based fMRI parcellations driven by neuropsychological studies, e.g. language
task [12], target specific subregions in the cortex in order to investigate their
functional organization, but ignores the activation from the non-target areas,
which makes them incapable for the whole-brain network analyses. Similarly,
anatomical parcellations generated from cytoarchitectonic atlases [22] are not
able to capture the functional organization of the brain. This can be attributed to
the fact that cytoarchitecture of the cerebral cortex does not necessarily require
to be consistent with the functional connectivity patterns [12,21] and arbitrary
parts of the same cytoarchitectonic region can exhibit structural and functional
variability [6]. Nevertheless, parcellating the cerebral cortex based on resting-
state correlations can potentially identify functional organization of the cerebral
cortex without the knowledge of the cytoarchitecture and an external stimulus
or a cognitive process [18].

The rs-fMRI-based cortical parcellation literature consists of methods that
subdivide the cerebral cortex into different number of subregions according to
the requirements of the applications and topological network features across
the cerebral cortex [15]. These methods are based on but not limited to inde-
pendent component analysis (ICA) [2], region growing [5,24], spectral graph
theory [6,14,17], boundary mapping [9], k-means clustering [3,8] and hierarchi-
cal clustering [11,23]. Some of these techniques [2,3,14,25] parcellate the cortex
at a very coarse level (less than hundred subregions), with the aim of identi-
fying resting-state networks spanning across the cortex or some fractions of it.
Because of the aforementioned risks of having non-uniform functional patterns
within subregions, these parcellations cannot be reliably used for network node
identification. Other methods typically generate a few hundred clusters with-
out losing the ability of representing the functional organization of the cortex.
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The most critical issue that is not addressed by these techniques is the adapt-
ability of group representation to individual single subjects. The group-wise par-
cellations generated from a set of subjects are generally assumed to represent
the whole group. However, due to functional and structural variations at the
single-subject level, it is very unlikely that a group parcellation would highly
match with single-level parcellations [9].

We address this problem and introduce a new parcellation framework which
is capable of both generating group-wise and single-level parcellations from a
joint graphical model. To this end, we make use of spectral graph decomposition
techniques and represent the population in a multi-layer graph which effectively
captures the fundamental properties of the whole group as well as preserves
individual subject characteristics. We show that the parcellations obtained in
this setting are (a) more reproducible across different groups of subjects and (b)
better reflect functional and topological features shared by multiple subjects in
the group compared to other parcellation methods. These aspects of the proposed
method differentiate it from the previous parcellation algorithms and constitute
our main contributions in this paper. Finally, our framework can be used to
generate parcellations with different number of subregions, allowing users to
conduct a network analysis at different levels of detail.

2 Methodology

2.1 Data Acquisition and Preprocessing

We evaluate our algorithm using data from the WU-Minn Human Connectome
Project (HCP). We conducted our experiments on the rs-fMRI datasets, con-
taining scans from 40 different unrelated subjects (22 female, 18 male healthy
adults, ages 22–35). The data for each subject was acquired in two sessions,
divided into four runs of approximately 15 min each. During the scans, subjects
were presented a fixation crosshair, projected against a dark background, which
prevented them from falling asleep. The dataset was preprocessed and denoised
by the HCP structural and functional minimal preprocessing pipelines [7]. The
final result of the pipeline is a standard set of cortical time courses which have
been registered across subjects to establish correspondences. This was achieved
by mapping the cortical gray matter voxels to the native cortical surface and
registering them onto the 32k standard triangulated mesh. Following the pre-
processing step, each time course was temporally normalized to zero-mean and
unit-variance. We concatenated the time courses of each scan, obtaining an
almost 60-minute rs-fMRI data for each of the 40 subjects and used them to
evaluate our approach.

2.2 Joint Spectral Decomposition

We propose a clustering approach based on spectral decomposition to identify
whole-cortex parcellations that can effectively capture the functional associations
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across multiple subjects. At the single-subject level, the cerebral cortex is repre-
sented as an adjacency matrix, in which the functional correlations are encoded
as edge weights. Each adjacency matrix is transformed to the spectral domain
via an eigenspace decomposition. The corresponding eigenvectors are combined
into a multi-layer graph, which is capable of representing the fundamental prop-
erties of the underlying functional organization of individual subjects. Similar
to the single-level graph decomposition, this joint multi-layer graph can then
be decomposed into its eigenvectors, creating a feature matrix in the spectral
domain that can be fed into a clustering algorithm, e.g. k -means, for grouping
each vertex into a subregion, hence producing the final parcellations. A visual
summary of the approach is given in Fig. 1.

Sparse Adjacency Matrix. The cerebral cortex of the brain is represented
as a smooth, triangulated mesh with no topological defects. We model the mesh
vertices and their associations as a weighted graph G = (V,E), where V is
the set of vertices (nodes) and E is the set of edges connecting them. Here
we enforce a spatial constraint and construct an edge between two vertices if
and only if they are adjacent to each other. This spatial constraint results in a
sparse adjacency matrix with two benefits: (a) it ensures that resulting clusters
are spatially continuous and (b) it reduces the computational overhead during
the spectral decomposition of the graph. Finally, the edge weights between the
adjacent vertices are set to the Pearson product-moment correlation coefficients
of their rs-fMRI time courses (after discarding negative correlations and applying
Fisher’s z-transformation) and represented as an n×n weighted adjacency matrix
W , where n is the number of vertices on the cortex.

Spectral Decomposition. Given the adjacency matrix W , the graph Lapla-
cian can be computed as L=D−W , where D=diag(

∑
j wij) is the degree matrix

of W . L is a diagonalizable matrix which can be factorized as L = UΛU−1, where
U = (u1, u2, ..., un) is the eigensystem, with ui representing each eigenvector and
Λ is a diagonal matrix that contains the eigenvalues, represented as Λii = λi.
Eigenvectors are powerful tools in terms of encapsulating valuable information
extracted from the decomposed matrix in a lower dimension. In particular, after
sorting the eigenvalues as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and organizing the corre-
sponding eigenvectors accordingly, the first k eigenvectors denoted as the spectral
feature matrix F = (u1, u2, · · · , uk) are capable of representing the most impor-
tant characteristics of the decomposed matrix. Thus, each vertex on the cortical
surface can be represented by its corresponding row in F , without losing any
critical information.

Spectral Matching. The idea of spectral matching is finding the closest vertex
pairs in two eigensystems by comparing their eigenvectors in the spectral feature
matrices [13]. The observations on the cortical surfaces transformed to the spec-
tral domain revealed that eigenvectors show very similar characteristics across
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Fig. 1. Visual representation of the parcellation pipelines with an emphasis on
(a) single-subject and (b) joint spectral decomposition, illustrated on the patches
cropped from the cortical surfaces S1 and S2. The red and blue edges correspond
to the mappings c12 and c21, obtained by matching the closest vertices in S1 and S2,
respectively (Color figure online).

subjects. This attribute can be utilized to obtain a common eigensystem that
reflects structural and functional features shared by the subjects in the group,
while also preserving individual subject characteristics.

Notably, the same cortical information represented with the eigenvector ui

in F1 can be decoded in the eigenvector uj in F2, without the necessity of being
in the same order or having the same sign. Therefore, an additional correction
must be carried out in order to find the corresponding eigenvectors on both
cortical surfaces before applying spectral matching. To this end, we make use
of a simple spectral ordering technique, where for each eigenvector ui in F1 we
compute its closest eigenvector uj in F2 using Euclidean distance and if i �= j
we mark uj for re-ordering. We then take another iteration and repeat the same
process after flipping the signs of each eigenvector in F2 and if a closer match is
found, the new eigenvector is marked and its new sign is preserved throughout
the sequential processes. Finally, the marked eigenvectors in F2 are re-ordered
accordingly.

After spectral ordering, we use only the first 8 eigenvectors for spectral match-
ing, since our experiments showed that increasing the number of eigenvectors do
not change the mappings between corresponding vertices, thus has no effect on
the final parcellations. The spectral matching problem can be solved by map-
ping the closest vertices x and y on cortex S1 and cortex S2 with respect to their
re-ordered spectral feature matrices F1 and F2 as illustrated in Fig. 1. The map-
pings c12 : xi �→ yc12(i) and c21 : yi �→ xc21(i) for i = 1, · · · , n can be identified
with a nearest-neighbor search applied on F1 and F2.

Multi-layer Correspondence Graph. The use of spectral matching to find
the mappings between pairs of cortical surfaces can be extended to generate a
multi-layer correspondence graph for representing the whole group of subjects.
The most critical part in such a setting is the definition of edge weights that
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constitute the connections between the mapped vertices. Using the correlations
of rs-fMRI time courses for this purpose is not sensible, since the mapped ver-
tices do not belong to the same cortex. Instead, we use the correlations of the
connectivity fingerprints, computed by correlating the rs-fMRI time courses of
each vertex with the rest of the vertices on the cortical surface (after Fisher’s
z-transformation). Connectivity fingerprints effectively reflect the functional
organization of the cerebral cortex and intuitively, we expect two fingerprints
in different cortices to be similar if they are matched with each other in spectral
domain.

We define the multi-layer correspondence graph W = (Wij | ∀ i, j ∈ [1, N ])
as a combination of weighted adjacency matrices, where Wii = Wi and Wij

(i �= j) is the set of edges between cortical surfaces Si and Sj with respect to
their mappings cij and cji, weighted by the connectivity fingerprint correlations.
W is an N -layer graph, with a size of (n × N) × (n × N) where N is the number
of subjects in the group. A small patch taken from a 2-layer graph is illustrated
as an example in Fig. 1(b).

Generation of Group-wise and Single Subject Parcellations. The spec-
tral decomposition of W is performed similarly as described in the Spectral
Decomposition section. The corresponding eigenvectors provide us with a shared
feature matrix F, representing every subject in the group with a combined para-
metrization. That is, each eigenvector can be separated into sub-vectors and used
to characterize the underlying subjects. Similarly, each row in F can be used to
describe its corresponding cortical vertex, thus can be used in a clustering set-
ting. Here, we use k-means clustering for its simplicity and applicability, however
it can be replaced by any other technique. We set the number of eigenvectors k
to the desired number of subregions K, into which we would like to parcellate
the cortical surfaces.

The output of the clustering approach is a label vector L of length n × N
that assigns a parcel to each vertex on all cortical surfaces used to define W. By
dividing L into sequential sub-vectors of length n, we can obtain a parcellation
for each subject. A simple majority voting across the single parcellations can
then be used to generate the group parcellation. Hence, our method is capable
of computing both a group-wise parcellation and single subject parcellations
from the same graphical model.

3 Results

We compare our algorithm with a state-of-the-art parcellation approach based
on spectral clustering [6]. This method decomposes subject specific adjacency
matrices and makes use of the corresponding eigenvectors to obtain single-level
parcellations with the help of normalized cut clustering. In order to be consis-
tent in comparisons, we used the same adjacency matrices initially computed
in our approach. The single level clustering is followed by a second level clus-
tering, in which a coincidence matrix is computed [10]. This is a special adja-
cency matrix where an edge between two vertices is weighted by the number
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of times they appear in the same parcel across all individual parcellations and
used to obtain a group-level parcellation. Alternatively, a group-wise parcellation
can be performed by averaging the individual adjacency matrices (after Fisher’s
z-transformation) and then submitting the average to the normalized cut clus-
tering algorithm. These methods will be referred as two-level and group-mean
clustering, respectively, throughout the rest of the paper.

We assess the performance of the methods in two ways: (a) parcellation
reproducibility across different groups of subjects and (b) functional consistency
between single-level parcellations and the group-wise parcellation.

3.1 Reproducibility

We measure the reproducibility using the Dice similarity measure [5,17]. We first
identify overlapping parcels in two parcellations and compute their Dice scores.
The overlapping parcels with the highest Dice score constitute a match and
both are excluded from the parcellations. The algorithm iteratively continues
to match the remaining parcels until all overlapping pairs are identified. The
average Dice score of all pairs is used to measure the reproducibility of the
parcellations. We also include overlap scores of 0 for non-matching parcels to
the average calculation in order to penalize parcellations with non-overlapping
parcels.

We present the group-wise reproducibility results obtained by our proposed
algorithm as well as the comparison methods in Fig. 2. In this experiment, we
separated all subjects in the dataset into two equally-sized, mutually exclu-
sive groups by random selection and computed group-level parcellations for
each group by running the algorithms separately on the left and right hemi-
spheres. This process was repeated for 10 times, each time setting new groups and

Fig. 2. Group-wise parcellation reproducibility results for different number of parcels
obtained on different groups of subjects by running each method separately on the
left and right hemispheres (indicated by L and R, respectively). (a) Dice scores of the
proposed method, boxes indicating the range within different runs. (b) Dice scores of
each method, averaged across all runs.
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generating the corresponding group-wise parcellations for each method. Results
indicate that our joint spectral decomposition approach is able to obtain more
reproducible parcellations at each level of resolution, with at least an average
Dice score of 0.72. The right hemisphere is slightly more reproducible than its
left conjugate, which can be attributed to the topological differences between
two hemispheres. There is a general decreasing trend in all methods with the
increasing parcellation resolution. Dice scores for K > 200 were even lower, which
might indicate that larger resolutions are not appropriate for parcellation. This
can be attributed to the fact that, as K gets larger, the functional variability
across subjects gets more prominent, thus, reducing the similarity between the
common characteristics within different groups and leading to less reproducible
group parcellations.

In Fig. 3, we present the group-wise parcellations obtained by our approach
from one group of 20 randomly selected subjects with different number of parcels
and visualize the reproducibility of each group-level parcel across single subject
parcellations. Cross-subject reproducibility is measured by the same Dice simi-
larity based method. For each group-level parcel we find its match in a single-
level parcellation and record their Dice score. We repeat the same process for all
subjects and average the Dice scores to get the reproducibility measure for that
group-parcel. Darker colors indicate a high reproducibility across single-subject
parcellations. Due to high functional inter-variability between different individ-
uals and the varying levels of SNR in the rs-fMRI data, it is not possible to
obtain high Dice scores for each part of the cerebral cortex [9]. Nevertheless, our
approach is robust enough to achieve an average Dice score of at least 0.5 for
each group-wise parcel.

3.2 Functional Consistency

Another critical performance measure for group-wise parcellations is their ability
to represent individual subjects in terms of functional consistency. We expect
the variability in functional evaluation measures to be consistent and minimal
in order to reliably use the group-wise representation in place of each subject
in the group. To this end, we evaluate functional consistency by computing
(a) the change in parcel homogeneities and (b) the difference across functional
connectivity networks, when we replace a single-level parcellation with its corre-
sponding group-wise parcellation without changing the underlying rs-fMRI data.
Both measurements were computed with respect to 20 different group-level par-
cellations obtained by randomly selected groups of 20 subjects. We excluded the
group-mean method from this experiment, since it does not provide individual
subject parcellations.

In Fig. 4(a), we present the whole-brain homogeneity changes for different
number of parcels. Homogeneity of a parcel is measured by summing the Euclid-
ean distances between the constituent rs-fMRI time courses and their aver-
age. A homogeneous parcellation consists of subregions with alike time courses,
thus the sum of distances is expected to be low across the parcellated brain.
The results indicate that the homogeneity levels between group- and single-level
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Fig. 3. Group-wise whole-brain parcellations obtained by the joint spectral decompo-
sition method, run on each hemisphere separately for the number of parcels K = 50,
100, 150, and 200. The color of the parcellations indicates the average reproducibility
score of each parcel across single-level parcellations (Color figure online).
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Fig. 4. Functional consistency results of the proposed and two-level method computed
for 20 different group-level parcellations obtained by randomly selected groups of 20
subjects at different resolution levels. (a) The change in parcel homogeneities aver-
aged throughout the whole brain, boxes indicating the range across different groups.
(b) The sum of absolute differences (SAD) between the functional connectivity net-
works obtained by the individual parcellations and their group-wise representations,
averaged across all runs. Left and right hemispheres are indicated by L and R,
respectively.

parcellations obtained by our approach are highly consistent across different runs
and at varying levels of detail compared to the other approach, which performs
even worse for higher number of parcels.

In Fig. 4(b), we present the average sum of absolute differences (SAD)
between the functional connectivity networks obtained by the individual parcel-
lations and their group-wise representations. A functional connectivity network
is computed by cross-correlating parcels, each of which is represented by its aver-
age time course. In order to compare two networks, we first match the single-
and group-level parcellations using the Dice similarity method and exclude the
non-matching parcels from the comparison in order to allow an objective com-
parison of both methods. SAD results show a similar pattern as the homogeneity
results, with our approach producing more consistent networks compared to the
two-level clustering.

4 Conclusions

We presented a spectral graph decomposition approach to parcellate the entire
human cerebral cortex using resting-state fMRI data. Our experiments demon-
strated that the proposed algorithm can produce robust parcellations with higher
reproducibility and can better reflect functional and topological features shared
by multiple subjects compared to other parcellation methods. The functional
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consistency of our parcellations can be attributed to the graphical model we pro-
pose, which combines individual functional features with the general functional
tendency of the group. Group-wise parcellations obtained by our approach can
be reliably used to represent the individual subjects in the group as well as to
identify the nodes in a network analysis. In order to show the effectiveness of
our approach, a planned future work is to conduct a network analysis using par-
cellations derived from different age groups and demonstrate how connectivity
changes though aging.

One bottleneck of the proposed approach is the high computational space
and time requirements in order to decompose the multi-layer graph. To overcome
this, we are working on an initial clustering stage for grouping highly correlated
and spatially close vertices into pre-parcels represented by their average time
course, thus reduce the dimensionality of the graph and improve the SNR levels
across the cerebral cortex.
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