
Boundary Mapping through Manifold Learning
for Connectivity-Based Cortical Parcellation

Salim Arslan, Sarah Parisot, and Daniel Rueckert

Biomedical Image Analysis Group, Department of Computing,
Imperial College London, London, UK

Abstract. The study of the human connectome is becoming more pop-
ular due to its potential to reveal the brain function and structure. A
critical step in connectome analysis is to parcellate the cortex into co-
herent regions that can be used to build graphical models of connectiv-
ity. Computing an optimal parcellation is of great importance, as this
stage can affect the performance of the subsequent analysis. To this end,
we propose a new parcellation method driven by structural connectiv-
ity estimated from diffusion MRI. We learn a manifold from the local
connectivity properties of an individual subject and identify parcella-
tion boundaries as points in this low-dimensional embedding where the
connectivity patterns change. We compute spatially contiguous and non-
overlapping parcels from these boundaries after projecting them back to
the native cortical surface. Our experiments with a set of 100 subjects
show that the proposed method can produce parcels with distinct pat-
terns of connectivity and a higher degree of homogeneity at varying res-
olutions compared to the state-of-the-art methods, hence can potentially
provide a more reliable set of network nodes for connectome analysis.

1 Introduction

Connectome analysis has recently gained a lot of attention due to its poten-
tial to reveal the functional and structural architecture of the human brain, as
well as understand its evolution through development, aging, and neurological
disorders [14]. Brain connectivity is typically analyzed via graphical models ob-
tained by connecting cortical regions to each other with respect to the similarity
between their connectivity profiles, derived from functional MRI (fMRI) or dif-
fusion imaging (dMRI). In a whole-brain connectivity analysis, parcellation of
the cortex constitutes an integral part of the pipeline, as the performance of the
subsequent stages depends on the ability of the parcels to reliably represent the
underlying connectivity [6]. Traditionally, parcellations derived from anatomical
landmarks or randomly partitioned subregions have been used for connectome
analysis, however such parcellations generally fail to fully reflect the function of
the cortical architecture [14]. More recent approaches take into account the con-
nectivity information, generally in association with clustering algorithms [5, 12,
1, 2] in order to group vertices of connectional similarity [16]. Despite promising
results, the parcellation problem is still open to improvements. This is primar-
ily due to the fact that the problem itself is ill-posed, thus, obtaining accurate
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parcels both depends on the proposed method’s fidelity to the given data [12]
and its capacity to differentiate vertices with different connectivity profiles [6].

To this end, we introduce a new parcellation method, in which we learn a
manifold from local connectivity characteristics of an individual subject and de-
velop an effective way of computing parcels from this manifold. Our approach
rests on the assumption that through dimensionality reduction, we can cap-
ture the underlying connectivity structure that may not be visible in high-
dimensional space [10]. We use the manifold to locate transition points where
connectivity patterns change and interpret them as an abstract delineation of
the parcellation boundaries. After projecting back to the native cortical space,
these boundaries are used to compute non-overlapping and spatially contiguous
parcels. We achieve this with a watershed segmentation technique, originally
utilized to parcellate resting-state correlations [8]. Nonlinear manifold learning
has been formerly used to identify functional networks from fMRI [9, 17] and for
surface matching [10], as well as within many other fMRI analysis techniques,
such as [15]. Nevertheless, we propose to use such technique in association with
dMRI-based structural connectivity and boundary mapping, in order to compute
cortical parcellations for individual subjects, which can be used as the network
nodes in a whole-brain connectome analysis.

We assess the parcellation quality based on parcel homogeneity [2, 8] and
silhouette analysis [5, 6]. Besides the dMRI data, we also evaluate the parcella-
tions with functional connectivity data obtained from resting-state fMRI as a
means of external validation [6]. Our method is compared to the state-of-the-
art connectivity-based parcellation techniques [5, 12], as well as two parcellation
schemes which do not take into account any connectivity information [16]. In
addition, we show the extent to which our parcellation boundaries agree with
well-established patterns of cortical myelination and cytoarchitecture.

2 Method

We start with preprocessing the dMRI data using probabilistic tractography
to estimate a structural connectivity network, which is then reduced in dimen-
sionality through manifold learning. Driven by the boundaries identified in the
low-dimensional embedding as points where connectivity patterns change, we
utilize a watershed segmentation to achieve the final parcellation (Fig. 1).
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Fig. 1. Parcellation pipeline, summarizing all steps after preprocessing.
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Estimating Structural Connectivity We perform whole-brain probabilistic
tractography on dMRI data by following the procedures summarized in [12].
We applied an element-wise log transformation to the tractography matrix to
reduce the bias towards short connections and sampled 5000 streamlines from
each of the cortical vertices. We define a connectivity fingerprint for each vertex
vi by counting the number of streamlines that connect vi to other vertices.
Each subject’s structural connectivity network C ∈ RN×N is estimated as the
cross-correlations of the fingerprints associated with each vertex, where N is the
number of vertices. We excluded the medial wall vertices from further processing
as they do not possess reliable information for connectivity analysis.

Learning a Manifold from Connectivity We propose to use Laplacian
eigenmaps to compute a nonlinear embedding from a connectivity network [3].
This method can reveal the intrinsic geometry of the underlying connectivity
by forming an affinity matrix based on how vertices are connected within their
neighborhoods. To this end, we transform C into a locality-preserving affinity
matrix W ∈ R+N×N by only retaining the correlations of the k nearest neigh-
bors of each vertex. We set k = 100 in order to effectively capture the local
connectivity structure and to ensure that the affinity matrix is connected and
positive-semidefinite (i.e. all Wij ≥ 0) for each subject. A nonlinear embedding
is computed through spectral decomposition of the normalized graph Laplacian,
defined as L = D−1/2(D −W )D−1/2, where D is a diagonal matrix with each
entry Dii =

∑
jWij representing the degree of vi. Solving the generalized eigen-

vector problem [3] with respect to L reveals the eigenvectors f0, f1, . . . , fN−1,
ordered according to their eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1. After omitting
the eigenvector f0 corresponding to λ0, we can use the next d eigenvectors to de-
fine an embedding that can approximate a low dimensional manifold [3]. Hence,
each cortical vertex vi can be expressed as a row in this spectral embedding, i.e.
i 7→ (f1(i), . . . , fd(i)).

Eigenvector Discretization The process of dimensionality reduction pre-
serves local connectivity as well as imposes a natural clustering of the data [3].
Therefore, the parcellation problem can be cast as a graph partitioning problem
and one would attempt to subdivide the connectivity graph with spectral clus-
tering, e.g. using the normalized cuts criterion and solving the aforementioned
generalized eigenvalue problem [13]. In particular, each of the smallest eigen-
vectors corresponds to a real valued solution that optimally sub-partitions the
graph. These partitions can be approximated by transforming the real valued
eigenvectors into discrete forms, ideally by dividing them into two parts with
respect to a splitting point [13]. This can further be generalized towards a multi-
way partitioning with a recursive or simultaneous discretization of the smallest
eigenvectors [13], and thus, can be used to obtain a parcellation [5]. However,
by definition, our affinity matrix does not impose any spatial constraints, hence
such spectral methods cannot guarantee spatial contiguity within the parcels.
Instead, we propose a more effective way of deriving parcellations from discrete
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eigenvectors and later show that this method can produce more reliable parcel-
lations compared to spatially constrained spectral clustering.

We discretize the eigenvectors using k -means and partition each eigenvec-
tor into two subregions. The edge between these subregions potentially provides
good separation points towards obtaining a parcellation, as the vertices within
the same subregions tend to have similar connectivity properties, whilst the
points closer to the boundary attribute to the cortical areas where the connec-
tivity is in transition. For example, Fig. 2(a) shows that connectivity profiles
of different vertices may exhibit similar or varying patterns, depending on their
relative location to an edge. In order to show that this tendency holds across the
whole cortex, we randomly selected vertices from one subregion adjacent to the
edge and paired them with their closest neighbors residing in the other subregion.
Keeping the distance between the vertices in pairs approximately the same, we
selected new pairs of vertices, but this time from within the same subregions. We
then measured the average correlation between the paired vertices’ connectivity
profiles in each set and repeated this for all eigenvectors and subjects. Fig. 2(b)
shows that, the similarity between the connectivity profiles of vertices drops by
at least 20% if they reside on different sides of a boundary.

Boundary Map Generation and Cortical Parcellation To locate the con-
nectivity transition points and construct a boundary map, we first transfer the
discrete eigenvectors back to the native high-dimensional space. We then cal-
culate the gradients of each eigenvector across the cortical surface and combine
them into a boundary map. This map constitutes a more robust substitution for
the boundary maps based on gradients directly calculated from the spatial cor-
relations [8], since it can adjust for possible spurious gradients. In addition, the
traditional boundary mapping requires a considerable amount of data in order
to effectively model the brain function at the individual level [11] and only be-
comes reliable for parcellation when averaged across many subjects/datasets [8].
In order to obtain the final parcellations from the boundary map, we use a
marker-controlled watershed algorithm [8]. We define a set of markers on the
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Fig. 2. (a) Connectivity profiles of vertices from different sides of a boundary. (b) Left:
Illustration of the vertex selection procedure. Right: Average similarity (correlation)
between paired vertices for each eigenvector. Dotted lines show the standard deviations.
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boundary map where each marker corresponds to an estimated parcel position
and then grow these markers until a boundary is reached or two ridges touch
each other in the flooding process of the watershed. The marker definition is
typically performed by defining a threshold on the boundary map. We set this
threshold to the 25th percentile of the boundary map intensities, since in many
empirically tested cases, this effectively revealed approximate parcel locations to
be used as ideal markers for a watershed transformation.

3 Experiments

Data Experiments are conducted on a set of 100 randomly selected adults
(54 females, age 22-35) from the Human Connectome Project (HCP) S500 re-
lease1. All data have been acquired and preprocessed following the HCP minimal
preprocessing pipelines [7]. For each subject, the gray-matter voxels have been
registered onto the 32k triangulated mesh at 2 mm spatial resolution, yielding a
standard set of cortical vertices per hemisphere.

Evaluation We assess the quality of the parcellations using two validation
techniques: parcel homogeneity [2, 8] and silhouette analysis [5, 6]. The former
expresses the degree of homogeneity that a parcellation exhibits by calculating
average cross-correlations within each parcel. Silhouette analysis combines par-
cel homogeneity with inter-parcel separation and measures how vertices within
a parcel are similar to each other, compared to the vertices in the nearest
parcels [6]. The goodness-of-fit is estimated based on the structural connectivity
data from which the parcellations have been derived. In addition, we evaluate
parcellations by measuring their extent to reflect the underlying connectivity
estimated from resting-state fMRI, which can provide an external data source
for validation [6]. We compare our parcellations to the ones obtained by hier-
archical clustering applied to the low-dimensional embedding (HC-Low), hier-
archical clustering driven by the connectivity profiles in the high-dimensional
space (HC-High), multi-scale spectral clustering (M-Scale) [12], normalized cuts
(N-Cuts) [5], random parcellations by Poisson disk sampling, and geometric par-
cellations, i.e. k -means clustering of the vertex coordinates [16]. All methods are
spatially constrained to ensure the contiguity of parcels. M-Scale and HC-High
are based on an initial connectivity-based over-parcellation of the cortex to com-
pensate for the noise, and thus, to obtain higher accuracy (1000, 2000 and 3000
regions for M-Scale; 3000 regions for HC-High). Random and geometric par-
cellations do not account for any connectivity information, therefore provide a
baseline for the assessment [16].

Results As there is no known optimal number of parcels, we evaluate the pro-
posed method at different scales, determined by the number of eigenvectors
incorporated into the boundary map. We present results for d = 10, 15, and 20

1 http://www.humanconnectome.org/documentation/S500/
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eigenvectors per hemisphere, which on average, yield parcellations with around
180, 230, and 280 regions for each subject, respectively. Our experiments with
fewer eigenvectors resulted in very coarse parcellations that may not be ideal
for network analysis, whereas using d > 30 eigenvectors led to noisy boundary
maps, generating many unreliable parcels. For a fair comparison, other methods
are tuned to use the same number of parcels as inferred by our models. Validation
measures were calculated for each subject-parcellation pair and then averaged
across all subjects. We present the results based on structural and functional
connectivity data in Fig. 3 and Fig. 4, respectively.

Fig. 3 shows that our method surpasses other approaches at all resolutions in
terms of silhouette analysis and performs equally effective as HC-Low with re-
spect to homogeneity. This may indicate that, spectral embedding, which drives
both methods, can successfully reveal the intrinsic geometry of the underlying
connectivity, and hence, provides a more robust set of features towards parcel-
lating the cortical surface. In addition, the way we utilize discrete eigenvectors
for deriving parcellations help obtain more distinct parcels compared to the
others. This can be deduced from silhouette coefficients, where we especially
perform better than HC-Low, which directly applies a traditional clustering ap-
proach to the spectral coordinates. In addition, considering the results obtained
by HC-High, we can infer that nonlinear dimensionality reduction can identify
local connectivity patterns which may not be directly detected in the high di-
mensional space. On the other hand, M-Scale and N-Cuts can obtain reliable
parcellations only to some extent. These spectral approaches solely consider the
immediate neighbors for the construction of their affinity matrices. Therefore,
they may fail to fully capture the underlying connectivity.

The difference in performance between our approach and the others becomes
more prominent with the resting-state functional connectivity results (Fig. 4).
Both homogeneity and silhouette analysis indicate that, the proposed method
can effectively subdivide the cortical surface into functionally coherent subre-
gions, hence can better reflect the underlying function. Although, other methods
can generate homogeneous parcels to some degree, they fail to separate vertices
with different signals from each other, as indicated by silhouette coefficients.
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Fig. 3. Quantitative results based on structural connectivity estimated from dMRI.
Error bars represent the variability across subjects. Stars (*) indicate statistical signif-
icance between the winner and the runner-up with p < 0.01.
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Fig. 4. Quantitative results based on resting-state functional connectivity.

Finally, visual assessment of parcellations shows some alignment with Brod-
mann’s cytoarchitectural areas and highly myelinated cortical regions (see Sup-
plementary Material). Dice-based overlapping measures [4] indicate that this
observation is substantially consistent across subjects, especially for the motor
(BA[1,3,4]) and visual cortex (BA17), with average Dice scores of 0.81 (±0.05)
and 0.82 (±0.05), respectively.

4 Conclusions

In this paper, we introduced a new connectivity-driven parcellation approach
based on dMRI. The proposed method models the local connectivity character-
istics with manifold learning and describes an effective use of this manifold to
identify locations where connectivity patterns change. Particularly, these tran-
sition locations are interpreted as an abstraction of the parcellation boundaries,
and hence, used to derive distinct parcels at different scales. We showed that
our parcellations can more reliably capture the underlying connectivity of the
brain compared to a set of other approaches. This paper focuses on developing a
complete framework for computing subject-specific parcellations, which can be
used in many application areas, such as for driving a registration process based
on brain connectivity. In addition, a planned future work is to explore the vari-
ability across individual parcellations towards generating a connectivity-based
cortical atlas, which can allow performing population level connectome studies.
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