

Perceptual Watersheds for Cell Segmentation in Fluorescence Microscopy Images

Presenter: Salim Arslan Supervisor: Çiğdem Gündüz Demir

Department of Computer Engineering Bilkent University August 6th, 2012

Outline

- Introduction
- Background
 - Problem Domain
 - Related Work
- Motivation
- Method
- Experiments
- Conclusion
- Future Work

2

Introduction

- High content screening helps scientists
 - Analyze complex biological systems
 - Collect quantitative data
- Advances in automated fluorescence microscopy imaging systems lead to
 - Rapid high-throughput screening
 - Better reproducibility

High Content Screening

Cell Segmentation

- The core step is cell/nucleus segmentation
 - Results directly affect the performance of the system
- It is of great importance to develop accurate segmentation algorithms both for
 - Monolayer isolated cells
 - Confluent cells growing in aggregates as over-layers
- These algorithms should be robust to
 - Uneven illumination
 - Noise

Isolated vs. Confluent Cells

Monolayer / Isolated	Touching / Adjacent	Confluent (Clustered)

Uneven Illumination & Noise

Related Work

- Thresholding
 - Global [1] and adaptive (local) [2]
- Active contours (deformable models)
 - Edge based active contours (snakes) [3]
 - Region based active contours [4]
- Watershed-based methods
 - Marker-controlled watersheds [5][6]

[1] Chen et al., 2006, IEEE T Biomed Eng,
[2] Kass et al., 1988, Int J Comput Vision,
[3] Kass et al., 1988, Int J Comput Vision,
[4] Zimmer et al., 2006, IEEE T Med Imag,
[5] Cheng et al., 2009, IEEE T Biomed Eng,
[6] Yang et al., 2006, IEEE T Circuits-1

Marker–Controlled Watershed

- Water rises from only previously defined seed points, a.k.a. markers
- Marker detection and marking function
 - Define markers/marking function on the gradients/intensities or distance transform map calculated after binarization
 - H-minima transform to suppress undesired minima
 - Common to refine results afterwards
 - Validate, merge, split the segmented regions
- Gives accurate results when
 - One-to-one match between cells and markers

- Previous studies lead to promising results, but there still remain challenges to overcome
- Segmentation of both
 - Isolated cells
 - Confluent cells
- Noise and uneven lighting conditions in images

Motivation

- A new algorithm that incorporates human perception into cell segmentation
- The algorithm relies on modeling a very trivial fact a human uses
- Each cell should have a
 - Left boundary (yellow)
 - Right boundary (green)
 - Top boundary (magenta)
 - Bottom boundary (red)

• These boundaries should be in the correct position with respect to each other

Method Overview

Primitive Definition

Benefit of the Mask

- Used to locally threshold gradients for primitive definition
 - Removes noise from the image 0
 - Preserves local gradient information 0
- Used nowhere else throughout the algorithm
- Any binarization method is possible as soon as it captures most of the cellular regions

Graph Construction

- Primitive graph G=(V, E)
- V={P\$\$\left\$, P\$\$right\$, P\$\$top\$, P\$\$bottom}}
- An edge $e = (\mathcal{U}, \mathcal{V}) \in E$ is assigned if
 - Primitives have overlapping pixels
 - One primitive is vertical (left or right) and the other is horizontal (bottom or top)
 - Each primitive has a "large enough" segment in the correct side of the other

Iterative Search Algorithm

 Cell localization searches structural patterns in the constructed graph

17

Cell Localization

Region Growing

- Starts flooding from the centroids of cell primitives in accordance to
 - A pixel <u>cannot</u> flood to outer boundaries of a primitive
 - For a cell, pixels reached after the last point that it floods to a primitive pixel are excluded
- Uses geodesic distance from a pixel to a marker as criterion
- Smoothes results by majority filtering

Experiments

- Images taken from Huh7 and HepG2 cell lines
 - A total of 2661 cells in 37 images
 - I6 Huh7 images with I378 cells
 - 21 HepG2 images with 1283 cells
- HepG2 images are more confluent than the Huh7 images
- Gold standard images were annotated by experts

Comparisons

- Adaptive h-minima [I]
 - Binarization via active contours without edges
 - Identify markers with applying h-minima on inner distance map
 - Marking function based on outer distance transform and intensities
- Conditional erosion [2]
 - Binarization via global thresholding
 - Markers obtained by iterative erosions on the binary map

[1] Cheng et al., 2009, IEEE T Biomed Eng, [2] Yang et al., 2006, IEEE T Circuits-I

Evaluation

- Cell-based evaluation
 - How good an algorithm is in segmenting cells
 - Match computed and annotated cells
 - Compute precision, recall, and f-score
- Pixel-based
 - How good an algorithm is in delineating cells
 - Find true positive pixels of one-to-one matches
 - Compute precision, recall, and f-score

22

Cell-based evaluation

- One-to-one match: a computed cell and an annotated cell make a unique pair
 - Consider the overlapping pixels as true positive in *pixel-based* evaluation
- Oversegmention: an annotated cell matches with more than one computed cell
- Undersegmentation: a computed cell matches with more than one annotated cell
- Miss: an annotated cell matches with no computed cell
- False: a computed cell matches with no annotated cell

Parameter Selection

- Proposed algorithm has four external model parameters
 - The primitive length threshold $t\downarrow size = 15$
 - The percentage threshold $t\downarrow perc = 0.3$
 - The standard deviation threshold $t\downarrow std = 4.0$
 - The radius of the structuring element W=5
- Internal parameter d=3
 - For selecting only *d*-outermost pixels in primitive definition

Visual Results - I

Visual Results - 2

Gold standard

Perceptual watershed Adaptive h-minima Conditional erosion

Quantitative Results

Cell based evaluation results for the Huh7 dataset

	One-to-one	Overseg.	Underseg.	Misses	Falses
Perceptual watershed	1232	44	72	28	30
Adaptive h-minima	1140	14	205	45	19
Conditional erosion	1131	35	138	61	74

Cell based evaluation results for the HepG2 dataset

	One-to-one	Overseg.	Underseg.	Misses	Falses
Perceptual watershed	1002	53	153	62	75
Adaptive h-minima	867	4	390	51	22
Conditional erosion	820	19	364	63	80

Quantitative Results

Precision, recall, f-score measures for the Huh7 dataset

	Cell-based			Pixel-based		
	Prec.	Recall	F-score	Prec.	Recall	F-score
Perceptual watershed	89.15	89.40	89.28	77.87	86.11	81.78
Adaptive h-minima	87.90	82.73	85.23	79.97	77.35	78.64
Conditional erosion	85.17	82.08	83.59	84.06	71.20	77.10

Precision, recall, f-score measures for the HepG2 dataset

	Cell-based			Pixel-based		
	Prec.	Recall	F-score	Prec.	Recall	F-score
Perceptual watershed	80.22	78.10	79.15	65.22	74.54	69.57
Adaptive h-minima	80.20	67.58	73.35	65.45	65.10	65.27
Conditional erosion	76.35	63.91	69.58	66.15	57.42	61.48

Discussion

- Our proposed method relies on boundary primitives
 - Adequate to locate cells even if their boundaries are partially present
 - Segmentation is not based on a binary map
 - Both conditional erosion and adaptive h-minima rely on their binary maps
 - If they cannot capture a foreground pixel it will be never segmented

Conclusions

- In this thesis, we proposed a new markercontrolled watershed algorithm inspired by human perception, which
 - Introduces high-level primitives for boundary representation
 - Constructs an attributed relational graph on these primitives to model their spatial relations
 - Searches for pre-defined patterns on the graph to locate markers
 - Guides flooding also using the primitives

Conclusions

- Both visual and quantitative results demonstrated that our proposed method
 - Can better handle segmentation problems in both isolated and confluent cells

- Its power comes from
 - Using the high-level boundary primitives
 - Instead of shape information via binarization

Future Work

- One future research direction is to implement a primitive-distance based marking function
 - This is expected to yield better segmentation boundaries
- Segmented cells may be further used for quantitative analysis in different applications of molecular biology research

- Thanks for listening
- Any questions are welcomed

Parameter Analysis

