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e Sub-division of the brain into non-overlapping
subregions that share similar features

Parcellation

* Constitutes one of the core steps to reveal
the functional organization of the brain

http://scimaps.org/images/maps/865W/IT_06_02_Connectome.jpg



Why parcellate the brain?

Transform high dimensional

data into a network
* Parcels 2 Network nodes
e Connections = Network edges

S

Neural units co-operate to | |Abstract representation

perform cognitive functions | |° Aftempting to assemble
the brain at the voxel level

is not feasible

Constitutes a common
language

e Brodmann area 4 = the
© Glass Brain pr|mary mOtOI’ COFteX
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Functional connectivity captured at “rest

Resting-state fMRI measures neurocognitive activity from
BOLD! signals, while the subject is at wakeful rest

Despite of no external stimulus, the brain is still active

BOLD signals can be used to identify the functional
connectivity [Biswal et al. 1995, Magnet Reson Med]
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1: BOLD = Blood-oxygen-level dependent
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Parcellation with rs-fMRI: Motivation

* May reflect the functional structure of the brain

more effectively than anatomical parcellations
[Thirion et al. 2006, Hum Brain Mapp]

* Does not need an external stimulus or a cognitive
process to capture functional activity as opposed to
task fMRI based parcellations (smith 2013, Trends Cogn ci]

* Does not necessarily target specific cortical areas
(e.g. motor cortex), thus can be used for whole-brain
network analysis
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Parcellation methods using rs-fMRI

Resting-state network Node identification for
(RSN) identification connectome analysis
Parcellation at a very coarse level Parcellation at a higher resolution
(less than hundred clusters) (typically a few hundred clusters)
[Yeo et al. 2011, J Neuroph] [G] [Gordon et al. 2014, Cereb Cortex] [G]
[Power et al. 2011, Neuron] [G] [Shen et al. 2013, Neurolmage] [S/G]
[Van den Heuvel et al. 2008, PLoS ONE] [S/G] [Blumensath et al. 2013, Neurolmage] [S]
[Beckmann et al. 2004, IEEE TMI] [G] [Craddock et al. 2012, Hum Brain Mapp] [S/G]

Parcellations can be done at single [S] and/or group [G] levels

* Single-subject level: Straightforward connectivity analyses for individual
subjects, also useful for the study of inter-subject variability in functional
connectivity

* Group-level: Useful for exploring how the connectivity changes in a
population, for example, through aging or in disease
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Functional connectivity across the population is modeled
as a multi-layer graph

Contributions

Generation of coherent groupwise and single-subject
parcellations using spectral decomposition

Parcellations better reflect the common functional
characteristics across the population

Parcellations are tolerant to the variability in functional
connectivity at the single-subject level

Increased reproducibility and functional consistency across
different groups of subjects with respect to previous work



Data acquisition and preprocessing

Rs-fMRI datasets of 40 unrelated subjects from HCP!
Preprocessed, de-noised, and ready to analyze?
Data is normalized to unit-variance and zero-mean

Temporal concatenation of time series

HUMAN

Connectome

PROJECT

http://www.humanconnectome.org/
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HCP cortical surface model and rs-fMRI
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HCP minimal preprocessing pipelines
[Glasser et al. 2013 Neurolmage]

* Gray matter voxels and their associated time series
are mapped to the native cortical surface and
registered to the 32k standard triangulated mesh

* Enables cross-subject comparisons and multi-
modal analysis of the brain

Rs-fMRI
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Subject-level spectral decomposition

C b W=(V,E) = L=D-W
L o L=UAU"
> O=A=<sA =..=A

H-I,Mfww.. @ F =(u,,uy,...,1u;) Multi
| layer
graph

: Constraint: Only connect adjacent nodes :
1 * Ensures spatial contiguity in clusters I
I« Reduces computational overhead :

Inter-cortical
connections
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] , Eigenvectors of different subjects tend to :
| show similar characteristics. I
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Spectral matching

Spectral matching
[Lombaert et al. 2013, IPMI]

NN | Spectral matching: Locate the most similar |
search | vertices in two cortical surfaces w.r.t. their i
spectral coordinates. :

1
L e e e e o e e o e e e e e e e = = =

: Spectral ordering: Eigenvectors are sign-corrected :
I and may be re-ordered to allow direct comparisons
| .

; between cortical surfaces. [Lombaert et al. 2011, IPMI] :

Correlations of connectivity

fingerprints ’
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Inter-cortical
connection
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Correlation of
connectivity fingerprints

0.848

* A connectivity fingerprint attributes to the functional connectivity of a vertex across
the cortical surface.

 Computationally, it is a vector of correlations between the vertex time series and the
time series of the other cortical vertices.



Joint spectral decomposition

N-layer joint graph
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connections
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connections

Joint spectral
decomposition
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Group
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. . ?
Functional consistency @H ﬂ
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Evaluation

Reproducibility ?
How reproducible are the parcellations @ @

across different groups of subjects?
Dice scores measured from parcel 888 888

overlaps

How well does a group parcellation
represent the whole population?

Change in homogeneity and connectivity @ @

networks when a subject is replaced by QQQ

its group parcellation QQQ
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Comparison methods

Spectral clustering based on normalized cuts (NCUTS)
[van den Heuvel et al. 2008, PloS ONE; Craddock et al. 2012, Hum Brain Mapp]

e Two-level parcellation (Two-level)

@ Compute individual subject parcellations with NCUTS
@ Compute a stability graph from the parcellations
@ Cluster the graph to obtain the group parcellation

 Group average parcellation (Group-mean)
@ Compute average of the individual adjacency matrices

@ Cluster the average matrix with NCUTS to obtain the
group parcellation

15



Experimental setting
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* 40 subjects were separated into two equally-sized, mutually exclusive
groups by random selection

QQQQQS

99988

Group parcellation 1

repeat the process

x10

Group parcellation 2
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Reproducibility

Groupwise reproducibility

[ Proposed

[ JTwo-evel ||

[ IGroup—-mean
O Mean

* v Median

: Proposed approach is able
| to obtain more reprodu-

| cible parcellations, with at
I least an average Dice score
1 of 0.72.

: Statistical significance is

I tested with the two-sided

! ; Wilcoxon signed rank test.

l Ip< 0.005 for all resolutions.

: A decreasing trend in

I reproducibility is observed
I : .

; With the increasing

l parcellation resolution.
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Visual results (K=100) ‘
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Dice score
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: Due to high functional inter-variability across different individuals and the 1
1 varying levels of SNR in cortical subregions, it is not possible to parcellate
: all parts of the cortical surface equally consistently.
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Whole-brain homogeneity change

« Homogeneous (reliable) parcellations
are expected to accommodate parcels
with alike time series

 Homogeneity: Sum of the Euclidean
distances between a parcel’s time series
and their average [Shen et al. 2013, Neurolmage]

<€— How parcellation homogeneity changes?

! Homogeneity levels between group- and
1 single-level parcellations obtained by our
' , approach are highly consistent across

' different runs and at varying resolutions.
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Functional consistency — 2

Average sum of absolute differences (SAD)

Compute connectivity networks (correlation
profiles) by cross-correlating parcels

Two networks using subject’s rs-fMRI data

Compute sum of absolute differences
between the networks

Differences

f
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I OQur approach computes more !

I
| to the other method.

. 1
consistent networks compared I



Conclusions

We presented a joint spectral decomposition technique for
cortical parcellation using resting-state fMRI

Parcellations with higher reproducibility and functional
consistency

Ability to reflect functional features shared by multiple subjects

Parcellations obtained by our approach can be reliably used to
identify the nodes in a group-wise network analysis

Application: Divide subjects into subgroups based on age,
analyze how network connectivity changes through aging

Future work: Run method with different modalities (e.g.
diffusion) and/or different clustering approaches
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