
An investigation into the use of
blockchain to record NHS GOSH

meetings

Shubham Bakshi ∗

MEng Computer Science

Supervisor: Dr. Graham Roberts

Special thanks to Sirvan Almasi and Prof. Neil Sebire

Submission date: 29 April 2019

∗Disclaimer: This report is submitted as part requirement for the MEng in Computer Science at
UCL. It is substantially the result of my own work except where explicitly indicated in the text. The
report may be freely copied and distributed provided the source is explicitly acknowledged

Abstract

Multidisciplinary Team (MDT) meetings are conducted by GOSH to make medical deci-
sions about patients. These meetings have real consequences for the patient, and thus there
is a need to record them in a way that they can be audited later. Traditional databases
are not sufficient to guarantee the authenticity and integrity of recorded events that have
taken place in a meeting, as participants can refute, and even accuse the software system of
tampering with the data. This project investigates if blockchain can provide a solution that
delivers on the guarantees.

The project provides a proof of concept implementation of a system that records a MDT
meeting, and then stores the very minimum amount of data on the Ethereum blockchain
while maintaining the integrity promises. The data stored in the blockchain can then be
used by any participant to verify the occurrence of the events. The project also integrates
with DeeID to provide identity for the users in the system, and thus guarantee authenticity.
All in all, it is concluded that blockchain can be used to solve the stated problem, at a
reasonable cost.

1

Contents

1 Introduction 6
1.1 Motivation and Problem Description . 6
1.2 Aims and Objectives . 7
1.3 Goals and Deliverables . 7
1.4 Report Outline . 8

2 Context 9
2.1 Blockchain . 9

2.1.1 Bitcoin . 9
2.1.2 Ethereum and dApps . 11
2.1.3 Quorum . 12

2.2 Identity . 12
2.2.1 DeeID . 13

2.3 Problem Research . 14
2.3.1 MDT meeting . 14

2.4 Development Research . 15
2.4.1 Truffle Suite . 15
2.4.2 Web3.js and Metamask . 15
2.4.3 Angular Framework . 16
2.4.4 Flask . 16

3 Requirement Analysis 17
3.1 Definitions . 17
3.2 Functional Requirements . 17
3.3 Security, Integrity and Transparency Requirements 19
3.4 Non functional requirements . 19
3.5 Stakeholders . 19
3.6 Use Cases . 20

4 Design and Implementation 21
4.1 Overview . 21

4.1.1 C-meet components . 21
4.1.2 DeeID components . 22
4.1.3 Ethereum Node . 22

4.2 Login with DeeID . 22
4.3 Web App . 23

4.3.1 MVC Architecture . 26
4.3.2 RxJS . 26
4.3.3 Metamask . 26

4.4 Servers . 26
4.4.1 Meeting Server (Websocket Server) . 27
4.4.2 REST API Server . 27

4.5 Attendance . 28
4.6 The Events Protocol . 29

4.6.1 Starting and Joining a meeting . 31
4.6.2 Polls and Voting . 32

2

4.6.3 Comment and Reply . 33
4.6.4 Discussion . 34
4.6.5 Disagreement . 34
4.6.6 Patient Data Change . 34
4.6.7 Ending a meeting . 35
4.6.8 Data Integrity and Proof of Inclusion . 35

4.7 Blockchain and Meeting Contract . 36
4.8 Implementation Choices . 37

4.8.1 JSON and JSON Schema . 37
4.8.2 Session Keys and Signature Scheme . 38
4.8.3 Websockets vs Peer to Peer (WebRTC) 38

5 Testing 39
5.1 Meeting Server . 39

5.1.1 Unit Tests . 39
5.1.2 Integration Testing . 39

5.2 REST API Server . 40
5.2.1 Mock Data Generation . 40

5.3 UI Testing . 40
5.4 Smart Contract Testing . 41
5.5 End to End Testing . 41
5.6 Testing Summary . 41

6 Evaluation 42
6.1 Goals Evaluation . 42
6.2 Requirements Evaluation . 42
6.3 Cost Evaluation . 43

6.3.1 Data generated by the Events Protocol 43
6.3.2 Cost of interacting with the smart contract 44

6.4 Limitations . 44
6.5 Summary . 45

7 Conclusions and Future Work 46
7.1 Future Work . 46

7.1.1 Mobile client for participants . 46
7.1.2 Integration with InfoFlex system . 46
7.1.3 Improving the Voting system . 46
7.1.4 Investigation into Private/Hybrid Blockchain 46
7.1.5 Further tests . 47

7.2 Conclusion . 47

A Miscellaneous 51
A.1 Size of events . 51

B Test Listings 52
B.1 End to End Test Descriptions . 52

C Use Cases 55
C.1 Use Case Documents . 55

3

D System Manual 59
D.1 Setting up the database . 59
D.2 Setting up the servers . 59
D.3 Setting up the web app . 59
D.4 Setting up DeeID app . 59
D.5 Setting up DeeID WS server . 60
D.6 Setting up Ganache (Private Ethereum network) 60
D.7 Setting up Metamask . 60
D.8 Topping up the server Ethereum account . 61

E Documents 62
E.1 Project Plan . 62
E.2 Interim report . 64

F Code Listing 67
F.1 JSON Schema . 67

F.1.1 Events Schema . 67
F.1.2 Comment content Schema . 68
F.1.3 Discussion content Schema . 69
F.1.4 Join content Schema . 69
F.1.5 Poll content Schema . 69
F.1.6 Reply content Schema . 70
F.1.7 Start content Schema . 70
F.1.8 Vote content Schema . 71

F.2 Meeting contract . 71
F.3 Meeting Server . 72
F.4 Meeting Contract Helper . 90

4

List of Figures

2.1 Block object consisting of transactions and pointer to the previous block 10
2.2 Illustration of the layout of MDT meetings in GOSH 14
3.1 Use case diagram for host and participant of an ongoing meeting 20
4.1 Overview of all components in the system and who they interact with. 21
4.2 The DeeID Login procedure . 23
4.3 UI Flow Diagram . 24
4.4 Login Page . 24
4.5 The Meeting Page . 25
4.6 Web app screens . 25
4.7 Folder structure for MeetingPage component . 26
4.8 Illustration of events referencing previous events, thus forming a tree. 30
4.9 Sequence diagram of start and join interaction 32
4.10 Illustration of the event tree preserving the logical order of POLL and VOTE events 33
4.11 UI implementation of vote inclusion verification 33
4.12 Sequence diagram interaction between host, server and participants for a poll . . 34
4.13 Illustration showing the preservation of order of a comment and it’s replies. . . . 34
4.14 Illustration showing the storage of START and END ACK event IDs into Ethereum. 35
4.15 Sequence diagram showing interactions with the smart contract and Ethereum. . 37
5.1 Meeting Server CLI used for testing of Meeting server without the web app. . . . 39
5.2 Example of an UI test written using Jasmine framework. 40
5.3 Example of a smart contract test written using Truffle framework. 41
6.1 The amount of data generated per meeting. 43
D.1 Ganache Home screen . 60
D.2 Metamask Custom RPC setup Screen . 61

5

1 Introduction

This project is about designing a system to record medical decisions that are made in meetings,
with the help of blockchain, so they can be audited later.

1.1 Motivation and Problem Description

Great Ormond Street Hospital (GOSH) is a NHS hospital for children that treats many con-
ditions and diseases including cancer. Cancer is a complex illness, and patients have to follow
complex pathways from their diagnosis to their treatment. The decision-making process in the
patient’s pathway are done though a meeting consisting of a group of professionals from different
teams where they discuss the diagnosis, treatment and the management of patients one-by-one.
This is known as a Multi-disciplinary team (MDT) meeting [1].

Since these meetings have real consequences for the patient, there is a need to record the
decisions that are made in the meeting to allow the medical staff to refer back to them if there
are any disputes or disagreements in the future. A traditional solution is to have the meeting
video recorded by GOSH, and make them available for auditing. However, there are two issues
with such an approach; (i) the solution requires the participants to trust a single entity who
is responsible for recording and storing the video; (ii) it is difficult to record certain actions
through video such as voting processes, passive disapproval of comments and more. Although
the latter can be rectified through software systems, there is still the issue of trust between the
participants of the meeting and the system. Furthermore, with current advancements in artificial
intelligence and image processing, even videos can be tampered with to generate fake footage [2].
The participant must therefore trust the system completely to provide the correct data, which
may not be the case when there is a dispute. For example, if a participant is under investigation
for an event that took place in a meeting, and the system is audited, the participant can just
refute the events claiming the data is incorrect or worse, tampered with by the system or an
external adversary. This argument also flows vice versa, as a participant could also be falsely
accused of incidents and decisions that they might not have been involved with.

The solution to this problem needs to provide strong notions of data integrity and support
the non-repudiation of events that take place in a meeting. In order to provide these properties,
it is necessary to understand more about the meetings, and the nature of the events that take
place. The project was hence carried out in close collaboration with Professor Neil Sebire, who
is a medical professional at NHS GOSH, and has been the host of many MDT meetings. He
mentioned the following events should be considered for recording:

• Attendance: Recording which participants attended the MDT meeting and at what time,
will allow the auditors to know what information the participant was exposed to and what
decisions they were involved in.

• Votes and Polls: Most of the decisions that are made in the meeting usually involve some
sort of democratic process (such as a show of hands or verbally saying ”yes”). This process
can be formalised by introducing a voting system, where all or a subset of participants vote
and a consensus is reached. How each person votes, as well as the tally of the votes will be
recorded in the system..

• Comments: Participants may leave arbitrary comments, so they are officially recorded in
the system. These comments may be left by anyone participating in the meeting.

6

• Images: Images of scans and results that is displayed in the meeting should be stored, so
auditors know exactly what information the participants were exposed to.

Prof. Sebire was also consulted on what promises the solution should provide, that would
be of interest to GOSH, and what existing technologies and systems should be considered. It
was understood that the investigation should be about a system that is able to store meeting
data, which all the participants agree on; and then later, when these events are audited, the
system should be able to provide guarantees about the integrity and authenticity of the data.
It’s inevitable that adversaries will try to corrupt the data if there is enough incentive. So, such
attempts should be detectable, and perhaps even correctable. There is also a parallel project in
GOSH that aims to provide secure identities for patients and staff, known as Omnee (DeeID),
which should also be investigated to see if it can provide any value to this project. During the
consultation, one of the suggested approaches to solve the problem, was to look into blockchain,
and how it can be utilized to deliver on the guarantees. Blockchain itself is quite a broad term,
and can refer to anything from hash pointers and the immutability of data, to consensus proto-
col and the lack of trust in central entity. However, a technology that is of particular interest
is decentralised apps (dApps), which uses Ethereum (a decentralised computing platform) and
smart contracts to achieve some of the properties that we are pursuing in this project. This is
further investigated in section 2.1.

So in summary, the premise of this project is to:

Investigate the use of blockchain for storing data, in a way that guarantees the au-
thenticity and integrity of the data, when audited.

1.2 Aims and Objectives

• Investigate how MDT meetings are currently held and formalize the format; as well as
understand the current standards for data sharing in NHS.

• Learn about blockchain and the cryptography concepts behind it.

• Learn about Ethereum, smart contracts, and how they are used in decentralised apps.

• Acquire experience in writing smart contracts in Ethereum.

• Acquire experience with web frameworks for web/UI development.

• Investigate decentralised identity and how every patient and staff can be represented in the
system.

1.3 Goals and Deliverables

In order of importance:

• An architecture for storing meeting metadata in a way that can be audited later, with data
integrity, authenticity and accountability in mind.

• A proof-of-concept implementation of the architecture (including servers).

• A proof-of-concept of a web app (UI) that will be used by the users to participate in the
meetings.

• A login system that utilizes DeeID identification scheme.

7

1.4 Report Outline

An outline of the report and it’s chapters are described below:

• Chapter 2 discusses the research that was done to understand the problem better and
the background needed to understand the solution. It takes a deeper dive into how MDT
meetings are conducted, and also analyses the different technologies including blockchain,
decentralised identity, smart contracts and more that is used in the project.

• Chapter 3 analyses the abstract requirements gathered from the initial meeting, and
formalises them to more concrete functional, non-functional and security requirements. It
also illustrates the use cases from a user’s perspective.

• Chapter 4 goes through the design and implementation of the solution, giving details
about the components that are involved, as well as the decisions that were made.

• Chapter 5 describes the testing strategies that were employed to ensure the correct be-
havior of the system.

• Chapter 6 evaluates the system as a whole, going through requirements to see if they
have been met. It also evaluates the cost and performance overheads.

• Chapter 7 describes the future work that is needed, and concludes.

8

2 Context

2.1 Blockchain

By definition, blockchain is a data structure that is resistant to mutations, however the term
blockchain has been used to refer to various different concepts and protocols in the industry.
Usually it’s the amalgamation of these concepts working together that give the advantages that
is needed for the solution. So, it was important to explore these concepts in detail. In this
section, an overview of how Bitcoin works is provided, followed by an analysis on Ethereum and
smart contracts, and finally, a look into other protocols such as Quorum is taken.

2.1.1 Bitcoin

The popularity of blockchain and the applications of it, emerged from the success of cryptocur-
rencies, and the first cryptocurrency, and still the largest is Bitcoin with a market capitalisation
of $100bn [3]. Developed under the pseudonymous name Satoshi Nakamoto [4], Bitcoin laid the
foundations for decentralised currency system with a high Byzantine Fault Tolerance (BFT).
To understand how Bitcoin achieves this, the system has been broken down into three layers:
(i) The transaction layer; (ii) The consensus layer; (iii) and finally the network layer. A brief
overview of these layers is provided in the section below. Please note that the descriptions and
data structures have been truncated and simplified for brevity. More specific details about the
system can be found in Bitcoin documentation [5].

2.1.1.1 The Transaction Layer The transaction layer deals with how the currency is rep-
resented, and how it flows from one owner to another. Bitcoin uses a so-called UTXO model.
In this model, instead of tracking every account and how many bitcoins they own, the system
tracks every coin that has ever been minted in the system, and tracks the ownership of those
coins. Every change of ownership is represented in a object called a transaction. A transaction
in general contains of following:

• List of Inputs, every input then contains:

– An output that is not used yet, also know as a Unspent Transaction Output (UTXO)

– A signature by the user who owns the UTXO (represented as an executable script
known as scriptSig)

• List of Outputs, every output then contains:

– The id of the user who will be the owner of the bitcoins (represented as an executable
script known as scriptPubKey)

– The value i.e. how many bitcoins being sent

To verify if a transaction is valid, a node needs to perform three checks: (i) The UTXOs
referred in the inputs have not already been used (to prevent double spending); (ii) The scriptSig
and scriptPubKey executes without error; (iii) The values from inputs ≥ the output values.

The challenge of storing this information in a way that is resistant to changes was considered
by Nakamoto, and the solution was to use hash pointers. The idea was to collate a group of
transactions into a larger object known as a block. Then the hash of the block will become its
address and id, which the next block will refer to (as shown in Figure 2.1). This creates a chain of
block objects also known as a blockchain. This chain is resistant to mutations, as any change to

9

Figure 2.1: Block object consisting of transactions and pointer to the previous block

the contents of the block, will change the hash, and therefore the next block’s reference becomes
invalid. To achieve a valid blockchain, the adversary will need to change all the blocks from the
block that was changed to the most recent one, which is not a trivial task. However, as one
can see, having one entity control this chain would be dangerous, as they will be able to control
the rules of a valid transaction, and also the order of them. Therefore, the system needed to be
decentralised.

2.1.1.2 The Consensus Layer Bitcoin allows anyone to become a node in the system,
allowing them to download a copy of all the blocks that have been generated, process validity of
new transactions and propose new blocks. However, this creates an issue of how the nodes reach
a consensus especially when the nodes cannot trust each other. The consensus layer deals with
this problem. The consensus protocol presented in Bitcoin paper, is known as the Nakamoto
consensus. The idea is that one of the nodes will be selected to propose the next block, however
the selection itself will not be random, but weighted in favour of the nodes that have higher
computational capability. This is achieved by using a ‘puzzle-friendly’ hash. Every node tries to
compute the next block who’s validity is given by:

Hash(previousBlock||transactions||nonce) < targetV alue

Since the hash chosen by Bitcoin is ‘puzzle-friendly’, the only feasible way to calculate a valid
hash is to iterate through every nonce. This process of finding the correct nonce is known as
mining. The nodes that have higher computational capability, have more chance of computing
the correct nonce, and thus proposing the next block. The target value is adjusted by all nodes
to have a constant time of 10 minutes between each block.

This protocol achieves strong Byzantine Fault Tolerance. Nodes cannot broadcast invalid
blocks or transactions, as it will be rejected by other honest nodes and the blocks that have been
accepted are difficult to change (due to hash pointers). However, as nodes accept the longest
chain of valid blocks, a node could potentially calculate a chain of valid blocks that is longer
than the one currently accepted by all other nodes. This causes issues with the immutability of
the blockchain, and its implications in the real world. However, computing a competing chain of
valid blocks is difficult as it requires at least 50% of the computational power of all nodes, and
becomes exponentially more difficult as deeper the fork gets. In the real world, most entities
will wait six blocks (60 minutes), before considering a block immutable, as the probability of a
competing blockchain overtaking approaches zero[4][6].

10

2.1.1.3 The Network Layer The network layer deals with how the transactions and blocks
relayed between nodes. Bitcoin uses a peer to peer network to broadcast transactions and
blocks. However, as with peer to peer networks, the usual problems such as discovery exists.
The bitcoin nodes are usually hard coded with other nodes known as DNS seed that act similar
to traditional DNS server. The node upon joining the network, downloads a list of peers from
the DNS seed [5]. The peer then connects to one or more nodes and announces its presence, this
announcement then propagates throughout the network. The peers use the Gossip protocol [7] to
announce transactions and blocks. Although, peer to peer protocols are inherently decentralised,
concentrations of power in the Bitcoin system does exist. For example, the hard coded DNS
seeds may provide a list of dishonest nodes, or if one of the peers knows the topology of the
network (such as an ISP), they may be able to perform eclipse attacks [8].

2.1.2 Ethereum and dApps

Much like Bitcoin, Ethereum [9] is another cryptocurrency that has gained significant popularity
in recent years [3]. The intent behind Ethereum was to create a decentralised platform for apps.
It maintains similar design decisions as Bitcoin, however there are significant differences. Unlike
Bitcoin’s UTXO model, Ethereum utilizes an account based model. In an account based model,
every account is tracked, and they are updated by transactions which transfer Ether (Ethereum
currency) from one account to another. Although, it’s more intuitive to have accounts, it’s much
harder to prevent double spends. An account in ethereum contains of the following:

• Nonce - Used for verification.

• Ether balance - How much ether the account has.

• Contract code (if any) - Used by smart contracts (discussed below).

• Account storage.

One of the limitations in bitcoin is that the script with which scriptSig and scriptPubKey
are written (see section 2.1.1.1), is very limited and not Turing complete. Although this simplifies
the protocol and improves security [5], it also discourages developers from writing complex code.
Ethereum improves on this by providing a Turing complete Ethereum Virtual Machine (EVM).
This allows developers write complex scripts in higher level language such as Solidity [10].

2.1.2.1 Smart Contracts Ethereum allows two types of accounts to exist: (i) accounts
which are externally owned (for e.g. by humans); (ii) contract accounts that are essentially
autonomous agents controlled by their contract code. These contract accounts are also known
as ‘smart contracts’. Ethereum transactions not only allows ether to be transferred between
accounts, but also allows accounts to call functions in the smart contract. When an account calls
a smart contract code, the account needs to compensate the node that computes the code. A
transaction in Ethereum consists of the following:

• Recipient - The id of the recipient.

• Signature - The signature of the caller.

• Amount - The amount of ether to be transferred.

• Data - Optional field for smart contract.

• GASPRICE - Fee the caller is willing to spend for computation.

11

• STARTGAS - Maximum fee the caller is willing to spend.

For creating a smart contract, the fields of the transaction has the following semantics:

• Recipient - The address where the contract will reside.

• Signature - The contract author.

• Amount - The amount of ether to be sent to the node that will compute.

• Data - The contract code.

For calling a smart contract, the fields of the transaction has the following semantics:

• Recipient - The address of the smart contract to be called.

• Signature - The caller.

• Amount - The amount of ether to be transferred.

• Data - Data need to execute the contract code such as function inputs.

This allows Ethereum to essentially act as a distributed computing platform, allowing devel-
opers to write apps with distributed architecture also known as dApps (decentralised apps).

2.1.3 Quorum

Quorum is a permissioned/private blockchain solution developed by J.P. Morgan, that is based
on Ethereum but with a number of modifications:

• The network layer has been modified so it is no longer follows the P2P protocols, but only
connects to permissioned nodes.

• Instead of using the proof-of-work (Nakamoto consensus), it gives a choice of two protocols:
(i) Raft - which is a consensus protocol based on Paxos, and doesn’t have any Byzantine
Fault Tolerance (BFT); (ii) Istanbul BFT which does provide BFT.

• GasPrice is no longer used.

• Private Transactions and contracts, that only allow a selective number of users to view the
transaction and account.

• Higher performance than Ethereum.

Quorum [11] was designed with the financial services in mind, providing a distributed ledger
for entities (such as banks) that is private to them. Although this system could be explored
further to see if it can be used in NHS and in MDT meetings, one of the biggest disadvantages
of Quorum is that all users will now have to trust the owner of the private blockchain (in our
case NHS) to maintain the immutability of the. which may not be ideal.

2.2 Identity

The problem requires the investigation of an identity system known as DeeID (formerly Omnee)
which was developed by Sirvan Almasi [12]. The reason for this requirement becomes clear, when
considering that there is a need to guarantee the authenticity of the events that happen in a
meeting. As such, a simple database maintained by GOSH is not sufficient, as a participant of
a meeting can claim that the system deliberately tampered with identities, and accused them
falsely.

12

2.2.1 DeeID

DeeID is a identification system that uses Ethereum smart contracts and Fierge-Fiat-Shamir
identification scheme [13] to verify user’s identity. The idea is that there is a trusted entity (such
as the government), who is responsible for verifying the user’s identity in real life, and creating
keys to identify the user in the future. This trusted entity is trusted by both the user as well as
the other entities that want to verify the user’s identity (such as GOSH). The identity itself is
stored in a smart contract for permanence.

There are two parts in the DeeID identity system: (i) Registration; (ii) Verification. These
parts are briefly described in this section. For full explanation and the details on the crypto-
graphic primitives behind this identification scheme, please refer to the DeeID paper [12].

2.2.1.1 Registration

• To register, the user deploys a DeeID smart contract using it’s Ethereum account. This
smart contract is responsible for storing public keys that the user can later use for other
purposes. The user then generates a string I, that uniquely represents them. The string
I can include personal information such as name, email, bio-metric data and most impor-
tantly the DeeID smart contract address.

• The trusted entity, who knows the factorisation of some modulus n = pq, makes n public
along with some pseudo-random function f which mapsI to a range [0, n). The trusted
entity verifies I (in real life, using Passport etc.), and generates a number of secret keys
s1...sk which are given back to the user.

• The user then stores these secret keys in their DeeID wallet/app.

2.2.1.2 Verification

• The user wants to now prove their identity with another entity (lets consider GOSH as an
example). The user provides GOSH with the string I (which contains personal information
about the user).

• GOSH computes the set of public keys v1...vk using the publicly available function f and
the value n. GOSH then challenges the user by selecting a random r such that r < n and
sending x = (±r2) mod n.

• The user then chooses a random vector e1...ek, who’s values are either 0 or 1.

• The user then computes and sends:

y = r
∏
ej=1

sj mod n (1)

• The verifier (GOSH) then verifies x, by computing:

x = y2
∏
ej=1

vj mod n (2)

If the verification is successful, the verifier (GOSH) knows that the user was verified by the
trusted entity (in our example, the government), and the DeeID contract (from string I), contains
the keys added by the user.

13

2.3 Problem Research

2.3.1 MDT meeting

As the problem specialises on Multidisciplinary Team (MDT) meetings, it was necessary to
research how these meetings are held. I was invited to attend a MDT meeting on 10th of
January for the purpose of fact-finding.

2.3.1.1 Layout and Structure The meetings are held in a conference room, with approx-
imately 50 participants, with one of the participants acting as the host of the meeting (as il-
lustrated in Figure 2.2). The host is responsible for going through the agenda of the meeting,
as well as operating the software that shows the patient details. The agenda usually includes
around 5-20 patients, each of whom are discussed individually. The MDT meetings can last up
to 3 hours, and participants join and leave at any time during meeting.

Figure 2.2: Illustration of the layout of MDT meetings in GOSH

2.3.1.2 Software and Information The software that the host operates is known as In-
foFlex, developed by Chameleon Information Management Services Ltd. [14]. It displays two
types of information across three screens; (i) one type of information is images (for example
scans from medical tests) which is shown across two of the screens; (ii) and the second type is
the details (text) of the patient that is being discussed at the time, which is shown in one of the
screen. The latter type can be further split into two categories:

• Patient’s personal details which include:

– Name

– Date of Birth

– Patient Number

14

– Hospital Number

• Patient’s MDT meeting discussion details that changes per meeting, which include:

– Group

– MDT Outcome

– Investigation

– Questions for MDT

– Surgery

– Main Opinion

– LC

2.3.1.3 Voting After each patient has been discussed, there would usually be a vote to
determine the outcome (for example, whether the patient needs further tests). The way voting
was done in the meeting is either by raising hands or yelling ‘yes’. No formal procedure of voting
was observed, and the privacy of the votes did not seem to be an issue. Additionally, the majority
of the participants would usually abstain from voting.

2.4 Development Research

During the development of the solution, a number of libraries, frameworks and development tools
were utilised. A few of them which were significant to the development have been described in
this section.

2.4.1 Truffle Suite

Truffle Suite is a collection of open-source tools that provide a development environment and a
testing framework for writing Ethereum smart contracts [15]. It allows developers to manage
the life cycle of smart contracts and automatically deploy updates to existing smart contracts
(migration). It also allows the developer to interact with the smart contract through a simple
command line interface. One of the tools available in Truffle Suite is Ganache [16], which creates
a private Ethereum blockchain network for the developer to test and deploy smart contracts on.
Ganache also has a GUI which helps in visualising the blocks and the transactions within them.

2.4.2 Web3.js and Metamask

Web3.js is a collection of JavaScript libraries that allows a website to interact with Ethereum
blockchain node, which might be hosted locally (such as geth or Ganache) or remotely (such
as Infura [17]). It also provides the cryptography libraries for signing, verifying and creating
ethereum addresses (public, private key pairs). There is also a similar library for python known
as Web3.py which provides similar functionality and interface. Metamask is a chrome extension
that connects to an ethereum node, which may be hosted locally. As a website cannot access a
locally hosted client, Metamask provides the bridge, by injecting the Web3.js library when the
website loads, thus allowing websites to interact with locally hosted Ethereum nodes.

15

2.4.3 Angular Framework

Angular is an open-source web app framework, developed by Google that enables developers to
build web apps [18]. Typescript is the language used in Angular instead of JavaScript. There
are two reasons for using Angular instead of other frameworks such as React, Vue.js or server
side rendering templates. The reasons are: (i) Familiarity with Typescript and experience with
the older version of the Angular, which sped up the development process; (ii) Angular is a single
page application development framework, this allows for better separation of the front-end from
the back-end, so in the future, the GUI can be replaced without the need to tweak the back-end.

2.4.4 Flask

Flask is a library for Python that enables developers to create web servers. The reason for using
this library instead of Django, Bottle or other libraries, is because the code base for the DeeID
system (see Section 2.2.1) is written in Python/Flask, so it helped speed up the integration
process, reducing interoperability issues. Additionally, the simplicity of Flask’s interface also
enabled rapid prototyping.

16

3 Requirement Analysis

As described in Section 1, the initial meeting with the MDT staff members revealed two important
requirements; (i) the solution should capture attendance, voting, and comments from the MDT
meeting; (ii) the solution should also guarantee integrity and authenticity of the data generated
in the meeting. To better understand how this can be achieved, these abstract requirements have
been broken down into more specific functional, non-functional and security requirements that
will be considered during design and implementation of the solution. Since this is such a large
project with numerous facets, it was necessary to prioritise each requirement, this has been done
using the MoSCoW methodology.

3.1 Definitions

Before drafting the requirements, some terms need to be defined which will be used in further
sections:

• Participant: A participant is any user who is authorized to participate in a meeting.

• Host: A host is a participant with higher privileges, able to perform actions that a
ordinary participant cannot.

• DeeID: An Ethereum address associated with the user’s identity (see Section 2.2.1).

• DeeID system: Refers to the DeeID identification scheme and the system as a whole.

3.2 Functional Requirements

ID Requirement Priority Complexity

Meeting management

F1.1 The system must allow users to create meetings. M Low

F1.2 The system must allow users to cancel meetings. M Low

F1.3 The system must allow users to edit meetings. M Low

F1.4 The system must allow users to view meetings. M Low

Active meeting

F2.1 The system shall allow the host to start a meeting. M Low

F2.2 The system shall allow the host to end a meeting. M Low

F2.3 The system shall allow the participants to join meet-
ings.

M Low

17

F2.4 The system shall allow the participants to leave
meetings.

M Low

F2.5 The system shall allow the participants to record
their voice.

W High

F2.6 The system shall allow participants to leave com-
ments in the meeting.

M Medium

F2.7 The system shall allow participants to reply to com-
ments.

C Medium

F2.8 The system shall allow participants to record their
disagreement with any event in the meeting.

S Low

F2.9 The system shall capture the host’s screen for the
duration of the meeting.

W High

F2.10 The system shall allow the host to add patient details
that are meeting specific.

C Medium

F2.11 The system shall allow the host to create a poll. M Medium

F2.12 The system shall allow participants to vote in polls. M Medium

F2.13 The system shall allow participants to see the poll
results.

S Medium

Stakeholder requirements

F3.1 The physical attendance of participant in a meeting
must be recorded.

M High

F3.2 The system shall record what time the participant
joined the meeting.

S Medium

F3.3 Participants must not know the results of votes until
the poll has ended.

C High

F3.4 The system shall allow retrospective auditing of
events that happened in a meeting.

W Medium

F3.5 Events must be recorded in the order that they hap-
pened.

C Medium

F3.6 The system shall allow users to login using DeeID. C Medium

18

3.3 Security, Integrity and Transparency Requirements

ID Requirement Priority Complexity

S1.1 The system must protect the privacy of voters in a
meeting poll.

C High

S1.2 The system must be able to detect any tampering or
corrupting of data.

M High

S1.3 The system must not store any patient or meeting
data on the public domain.

M Medium

S1.4 The system shall allow participants to see what meet-
ing data was stored.

C Medium

S1.5 The system shall be open sourced. W High

3.4 Non functional requirements

ID Requirement Priority Complexity

N1.1 The system shall be user-friendly. C Medium

N1.2 The system shall be secure. M High

N1.3 The system shall be performant. W High

N1.4 The system shall be scalable. W High

3.5 Stakeholders

• Great Ormond Street Hospital: Since the idea of the project came from GOSH, they
will be the first to consider the deployment of the system, as such they need to be consulted
frequently on all design decisions.

• Staff at GOSH: If the system is ever realised, the staff members of GOSH will be the
users of the system. Their opinion of the system is important, and must be considered
during the design process.

19

• Patients: Since the system will handle patient data, the patients inevitable become
stakeholders, and thus they should have a say in the design. However, since this is a proof
of concept and an investigation, the project assumes that the patients hold no objections.

• Author of DeeID system: This project is one of the first to realise the DeeID identity
system, as such there is a great deal of interest from the author, to see the benefits and
the flaws of the identity system in a concrete implementation.

3.6 Use Cases

Figures 3.1 shows the use cases from the host and participant’s perspective in an on-going
meeting. Please refer to Appendix C for the use case documents.

Figure 3.1: Use case diagram for host and participant of an ongoing meeting

20

4 Design and Implementation

4.1 Overview

During the literature review, it was realised that there wasn’t much related work which met the
requirements that were set out initially, so existing systems could not be used to construct a
solution. Therefore, a bespoke system was designed which is dubbed as c-meet (short for crypto
meeting), that aims to deliver on the requirements. The system comprises of two servers, a
client (UI) and a protocol dubbed as the ”Events protocol”. This section gives an overview of all
the components that are involved, and briefly mentions their purpose. A diagram (Figure 4.1)
is also provided to show the interaction between components. Deeper dive is taken into these
components in later sections.

4.1.1 C-meet components

• Meeting Server: This is the server responsible for facilitating the communications be-
tween participants in an active meeting. The server is also responsible for interacting with
smart contract on Ethereum network. This component was developed in python using
flask, socket.io and web3.

• Rest API Server: This is the server responsible for CRUD operations on meetings and
the user sign in functionality. This component was developed in python using Flask.

• Meeting Database: This component is responsible for storing meeting metadata (such
as title, participants etc.), patient specific meeting data (see Section 2.3.1), as well as all
the events that happen in a meeting (such as votes, comments etc.). MongoDB is used in
the implementation of the system, however, any DBMS would be appropriate assuming it
is ACID [19] compliant.

Figure 4.1: Overview of all components in the system and who they interact with.

21

• User Interface: The user interface is how all users will interact with the system. The
user interface connects with the servers mentioned previously, as well as with the Ethereum
network for verification. There could be many interpretations of how an UI for the system
can be visualised, however a one working implementation has been provided. Angular 4
was used to develop a web app that both the host and participants can use.

4.1.2 DeeID components

The DeeID system is used for identifying staff members. Although this a separate development
from this project, there was close collaboration with the author of DeeID to integrate the c-meet
system with the DeeID system. As such, components from the DeeID system have been briefly
described below:

• DeeID App (Wallet): This is an app that all users of the system will need to possess in
order to login. This app contains the wallet (private keys) needed to verify their identity.

• DeeID Web socket Server: A server that acts as a bridge between the c-meet system
and the user’s DeeID wallet. This is explained further in Section 4.2.

4.1.3 Ethereum Node

The system requires at least one full node that is connected to the main Ethereum network.
However, since this is a prototype, a private network provided by Ganache has been used [16].

4.2 Login with DeeID

As mentioned previously the identification is done through DeeID, as such the login is developed
using the DeeID system. During the development, it is assumed that users have already gone
through the registration system provided by the DeeID system (as described in Section 2.2.1),
and also the user’s DeeID contract has been verified and there exists a database with the details
of the users mapped to their DeeID. The login system then works as follows (see Figure 4.2):

1. The user navigates to login page. The web app contacts the DeeID WS server using a
websocket connection. The web app keeps the connection active.

2. The DeeID WS server responds with a unique ID (uID).

3. The web app then generates a LoginSig JSON object, and displays it as a QR Code to the
user (Figure 4.4), The LoginSig object contains the following:

• Type - which is set to ”loginSig” as required by the DeeID system.

• uID - that is received from the DeeID WS server.

• WsURL - the URL of the DeeID WS server.

• Data - a field that can contain arbitrary data. This is populated with session keys,
which is used later in the Events protocol (Section 4.6).

4. The user scans the QR code with the DeeID app, which then verifies all the data with the
user. The app then signs the LoginSig object and sends it to the DeeID WS server.

5. The DeeID WS server verifies the signed object, specifically the uID (to make sure that it
originated from the server), and creates a session for which the signed object is valid. The
server then passes the signed object back to the web app.

22

Figure 4.2: The DeeID Login procedure

6. The web app verifies that the key with which the object was signed is indeed from the
user’s DeeID wallet. It does this by checking the smart contract associated with the DeeID
on the Ethereum blockchain.

7. The web app then connects with the REST API server using the “/login” API endpoint,
presenting it with the signed LoginSig object.

8. The REST API server then verifies the key with the DeeID contract (similar to the web
app).

9. The server then verifies if the uID is valid with the DeeID WS server.

10. If the verifications are successful, the REST API server then issues a JSON Web Token
(JWT) [20], asserting that the user is authenticated. The web app can then present the
JWT for all future REST API requests until the JWT token expires.

4.3 Web App

In this section an overview of how the web app is structured is provided. The web app is how
the user manages their meetings, as well as participates in them. The major components of the
web app are described below. A diagram to illustrate the UI flow (Figure 4.3) has also been
provided. Also, please note that these are only the major components, there are many smaller
components that have not been listed.

• LoginPage (Figure 4.4): This component is responsible for displaying the QR code,
needed for logging in the user (as described in the previous section).

23

• MeetingPage (Figure 4.5): This is the component that will interact with user the most.
This displays and handles all interactions related to an ongoing meeting. It allows creating
polls, changing patient data, starting a formal discussion and ending the meeting for the
host, as well as commenting, replying and voting for all participants.

• MeetingListPage (Figure 4.6a): This component is responsible for fetching the meet-
ings, sorting them by the date, and categorising them as either “previous” or “upcoming”.

• MeetingCreatePage (Figure 4.6b): This component displays the details of the meeting,
and also allowing the user to create, edit and delete the meeting.

Figure 4.3: UI Flow Diagram

Figure 4.4: Login Page

Services are singletons, that run in a separate thread, they can be accessed by any component
as long as they have been injected with them (using the component’s constructor [18]). There
are four services in the web app, they are as follows:

• AuthService: This service handles all authentication functionality that is requested by
other components or services. This includes generating and verifying signatures, generating
keys, storing JWT as well as connecting with smart contracts.

• EventStorageService: This is another service that assists the MeetingPage, in handling
the stream of events that arrive from the Meeting server.

24

Figure 4.5: The Meeting Page

• RESTService: This service handles all REST API requests on behalf of all the compo-
nents and services.

• MeetngService: This service opens a web socket connection with the Meeting server,
and listens to the socket for new events in an active meeting, it also notifies other com-
ponents by providing observer objects. It also handles sending events to the Meeting server.

(a) Meeting List Page (b) Meeting View/Create Page

Figure 4.6: Web app screens

25

4.3.1 MVC Architecture

Figure 4.7: Folder structure
for MeetingPage component

In the implementation of the web app, a strict Model-View-
Controller architecture is followed. Since this is a proof of con-
cept and the UI was not the focus of the project, having the
functionality of the web app separated from the GUI, helped to
quickly iterate and check if new ideas worked in practice. Once
the functionality was deemed to be correct, efforts were diverted
to improve the design and UI of the web app. Angular-cli [21]
was used to generate the project, this automatically organised
the project according to MVC architecture (Figure 4.7). So for
every component there is:

• *.html, *.css - this can be thought of as the view.

• *.ts, *.spec.ts - this is the Typescript file containing the logic of the code and hence can be
thought of as the controller.

• model.ts - this is where all the class definitions of models exist.

4.3.2 RxJS

There is a lot of asynchronous data operations in the web app, as such it becomes quite tricky
to implement correct behaviour. RxJS [22] helps to solve this issue. It implements the reactive
programming paradigm, where instead of using traditional callback functions, it treats every-
thing as a stream of events. An “observer” then subscribes to the stream of events, and performs
operations on them using an iterator. This paradigm allows for more complex behaviour such
as filtering, joining two streams, mapping and more, without needing to implement complicated
design patterns. However, there were certain scenarios in the project where using reactive pro-
gramming was unintuitive, in such cases it was more natural to use traditional callbacks and the
observer pattern.

4.3.3 Metamask

As mentioned in the login procedure, the web app needs to be able to connect with the Ethereum
blockchain to verify identity. However, since a web page cannot connect to Ethereum network
(due to security concerns), the web app relies on Metamask extension to inject the web3.js library.
This library provides a bridge between the web page and the Ethereum network. As such there
are two requirements for web app:

• The web app must run on a browser that can install the Metamask plugin. As of April
2019, these are: Google Chrome, Mozilla Firefox and Brave Browser [23].

• The Metamask plugin must be configured to connect to a Ethereum node, which might be
running on the user’s device, or they may trust a third party such as Infura [17] to run a
node for them.

4.4 Servers

There are two servers in the c-meet system. These servers are implemented using Flask, which
is a library for Python that utilises the Werkzeug WSGI toolkit to interface with a web server.
Flask has it’s own development server that is used to serve the web pages and APIs in the project,

26

however, in a full deployment it is expected that a dedicated HTTP server such as Apache or
nginx will be used. It is also assumed that all communications happen over TLS.

4.4.1 Meeting Server (Websocket Server)

This server’s main purpose is to facilitate an ongoing meeting. All communication with the
server happens through the websocket protocol [24]. When a user starts a meeting, it creates a
websocket “room” for that meeting, and broadcasts any event that it receives from the any of the
participant registered in the room. It validates all events it receives against the rules in Events
protocol (described in Section 4.6), and stores them in the database. It is also responsible for
creating smart contracts for meetings on the Ethereum network.

4.4.2 REST API Server

This is a simple HTTP server, that provides REST API endpoints for the web app to access the
staff, meeting and patient database. It is also responsible for logging in the user using the DeeID
system and JSON Web Tokens.

This server provides a REST API for the following operations:

Endpoint Method Description Authentication

/login GET Performs authentication
of the user. Returns a
JWT if authentication
successful

Not required

Meetings

/meetings GET Gets all the meetings for
the staff member

JWT required
in request
header to iden-
tify staff

/meeting POST Creates a new meeting JWT required
in request
header to iden-
tify staff

/meeting/{id} [GET, PUT,
DELETE]

Read, Update and Delete
operation on a specific
meeting

JWT required
in request
header to iden-
tify staff

Patients

/patients GET Gets list of all patients JWT required
for authoriza-
tion

27

/patient/{id} GET Gets the patient id JWT required
for authoriza-
tion

Staff

/staff GET Gets list of all staff JWT required
for authoriza-
tion

/staff/{id} GET Gets the staff id JWT required
for authoriza-
tion

Patient Meeting Data

/meeting/{id}
/patient/{id}

[GET, PUT] Read and Update opera-
tions for meeting specific
patient data

JWT required
in request
header to iden-
tify staff

Events

/events/{id} [GET] Lists all events that hap-
pened in a meeting

JWT required
in request
header to iden-
tify staff

Updating or creating events is not allowed through the REST API. This is because all events
are created during a meeting, as such the Meeting server handles the creation of events; as for
updating, allowing users to update the events would mean they have means to change what they
contributed to a meeting, which goes against the requirements. There is also no API for the
creation of meeting specific patient data. This is because the fields are automatically created by
the REST API server, when the user creates or updates a meeting.

4.5 Attendance

As defined in Requirement F3.1, there is a need to record physical attendance of all users who
join a meeting, as well as the time they joined at. A few approaches were considered to achieve
this requirement:

• Approach 1: Geo-fence meeting rooms, and use GPS to determine the user location

– Pros: Easy to implement. Provides accurate physical location of users.

– Cons May not work in certain cases (such as multi story buildings). Can be easily
spoofed by users. Users need to have a GPS enabled device.

• Approach 2: Use hardware (such as RFID scanner) that’s present in the room, and
require participants to have their IDs scanned in order to join.

– Pros: Very accurate. Not easy to spoof.

28

– Cons Expensive and difficult to implement as it will require new hardware to be
installed in every meeting room.

• Approach 3: Ask already joined participants if they the new user is physically present in
the room.

– Pros: Easy to implement. Reliable.

– Cons Disruptive, as participants will need to approve whenever someone joins the
meeting. Prone to collusion, as users can approve even if they are not present.

• Approach 4: Show some unique information that is only visible to people physically in
the room.

– Pros: Similar to Approach 3

– Cons Prone to collusion, as users may share the unique piece of information.

Approach (4) was chosen for implementation. The reason was because it was reliable and
easy to implement. Approach (3) was not chosen over (4), because it was realised that there
will be 50+ participants, all of whom will require the approval of someone to join. This may
be impractical and inconvenient for the user. Additionally, if a user joins in the middle of a
meeting, there is a possibility that they might not be approved at all, as the participants may
be focused on the meeting. In the implementation of this approach, a unique four digit one time
pin is shown that is only valid for that meeting. This pin is generated automatically by the host
when the meeting starts, which is then used by all the other participants to join. One issue that
arises from using a short pin is that it can be brute forced; to rectify this, the number of times
a user can try a pin in any given time can be limited. Finally, when the user joins, the time is
also automatically recorded.

4.6 The Events Protocol

In the requirements, it was determined that there is a need to record the order of events in a
meeting such as polls, comments etc. (F3.5). In order to achieve this requirement correctly, the
system needs to record two types of order; (i) Temporal order, that is when an event occurred in
relation to time; and (ii) Logical order, that is the context an event happened under, for example
a reply to a comment, or a vote to a poll. Now, it was also determined in the requirements
(S1.2), that there is a need to detect if the data was corrupted (perhaps by an adversary). It was
realised early on, that to achieve this, a write once read many (WORM) type of storage system is
needed. Cryptocurrencies emulate the WORM property in their blockchain, so a cryptocurrency
system which also has the ability to process business logic, such as Ethereum, was an ideal
choice. However a single meeting can generate lots of events, all of which needs to be stored in
the blockchain, which is both impractical and also expensive (as users pay for computation and
storage). Thus, the information that is stored in the blockchain needs to be minimised, without
compromising on either of the requirements.

In this section, a protocol is proposed which attempts to minimise the data that is stored on
blockchain, without compromising on the authenticity or integrity of the events or their order.
In the protocol, an event is defined using the following properties:

• By: This is the property that identifies the author of the event. For example, if its a
comment, this field will contain the DeeID of the user who commented, if it’s an acknowl-
edgement from the server, then this field represents the server’s identity using the server’s
Ethereum account address.

29

Figure 4.8: Illustration of events referencing previous events, thus forming a tree.

• Type This field identifies the type of event, which also influences the content field later.
The types include:

– Action Types: [START, JOIN, LEAVE, POLL, POLL END, VOTE, COMMENT,
REPLY, DISCUSSION, DISAGREEMENT, PATIENT DATA CHANGE, END]

– Acknowledgement Types: [ACK, JOIN ACK, POLL END ACK, END ACK, ER-
ROR ACK]

• Reference Event (refEvent): This is the field that provides a way of maintaining logical
order. Every event apart from (START) must refer to some valid event that has already
happened. This creates a tree data structure, with the START event acting as the root
node, and all other events being descendants (as shown in Figure 4.8).

• Timestamp: This field keeps the temporal order of events. This is a UNIX timestamp.

• MeetingId: This field identifies the meeting that the event happened in. An UUID (as
defined in RFC 4122 [25]) is used in the implementation.

• Content: Represents the contents of the event, can be empty.

• ID: This field serves two purposes; (i) it provides the event with an unique ID; (ii) it
provides a means of verifying the authenticity of the event. The ID is computed as:

ID = sign(privateKey, [by, refEvent, timestamp,meetingId, type, content]) (3)

Before the meeting server accepts any event, it does the following check:

1. Event is formed correctly.

2. The timestamp is within tolerance of the server timestamp (10 second window is used).

3. The event has a valid reference event (except for START event).

4. The signature of the event is valid.

5. The author of the event is authorised to post the event.

30

Once validated, the server then sends an ACK event. The ACK event varies depending the
type of the original event. If the event is invalid for any reason, then an ERROR event is sent
with the following properties:

• Error code: A string that represents the type of error (such as unauthorized, malformed
etc)

• Details: An object containing further details about the error

This error event (and the original event) is sent privately, and is not broadcast to other users.
This is done to prevent malicious users from flooding the websocket stream, and also to prevent
other honest users from parsing the event (as it could be a security risk).

4.6.1 Starting and Joining a meeting

To start a meeting, the host needs to send the meeting server an event (as defined before), with
type set to “start”, and content object containing the following properties:

• OTP: This is the one time pin generated by the host, that is used for verifying physical
attendance (as detailed in previous section).

• Session Key: This is the public key that the host will sign future events with. The
reason this is needed is because, in order to sign anything using DeeID, the user needs
to use their phone to scan a QR code (as described in the Login section). So it will be
inconvenient for the user to have to sign every event they generate in the meeting. So
instead the user signs a DeeID object (which contains a new key) with their DeeID private
key. The event itself is then signed with the newly generated session key. Once the meeting
has ended, the client can throw away the private key associated with the session key.

• DeeID Object: This contains the signature of the new session key by the DeeID wallet
(previously referred as the LoginSig object in the Login section).

• Meeting: An object with details of the meeting that is being started.

The server then performs the following check (in addition to the checks mentioned before for
an event):

1. The content section is well formed.

2. The DeeID key with which the session key was signed is valid.

3. The DeeID key is in the DeeID smart contract (on Ethereum network).

Once the meeting has been started, other participants can then join the meeting, and a similar
interaction will take place, with the addition that the server will now check if the one time pin
(OTP) matches the one created by the host. The event will be a JOIN event (which does not
contain the Meeting object), and the server will respond with a JOIN ACK, which contains the
START event as well as all the JOIN events the server has seen until that time. This is so the
participant that’s joining knows what keys other participants are using to sign their messages.
This is just as an optimization technique to improve performance, as the user does not need to
download all events to find the keys. The whole interaction between the host, participant and
the server for starting and joining a meeting is visualised in Figure 4.9.

31

Figure 4.9: Sequence diagram of start and join interaction

4.6.2 Polls and Voting

The host can start a poll by send a POLL event to the server, with content containing the
following properties:

• Patient: The ID of the patient that the poll concerns. This is an optional field which
can be left blank.

• Question: The question being asked by the host

• Options: A list of strings which are the options that the voter will have.

• Voting Key: This is a public key which all participants will use to encrypt their votes.

Once the poll has been created, the participants can start voting by sending a VOTE event,
which will contain the encrypted vote. The VOTE event’s reference event property must refer to
the POLL event. This check is done by the server when accepting the vote. After the host has
given enough time, they can end the poll by sending a POLL END event. The content property
of the POLL END event contains the following:

• Decrypt Key - This is the private key that all the participants will use to decrypt each
other’s votes.

Although all events are followed by a generic ACK event from the server, the POLL END
event gets a POLL END ACK. This event contains the IDs of all the votes that have been casted
thus far. The participants then use the votes that are referenced in this POLL END ACK event
to tally the results.The reason this is needed is because it records the logical order of the votes
that were casted before the poll was ended, and thus recording what results were displayed to
the user. For example, if a participant were to vote after the poll ends, even though the event
itself will be valid, but since it’s not referenced by the POLL END ACK event, we can conclude
that it was not casted before the end of the poll (see Figure 4.10).

32

Figure 4.10: Illustration of the event tree preserving the logical order of POLL and VOTE events

However, this opens up a issue where, the user might not know if their vote was counted in
the results, however since all of the events are broadcasted to everyone, they can keep a copy of
the vote they casted and check its ID against the list of votes included in the POLL END ACK.
In the web app implementation a “Includes your vote?” button is provided, to help the user 4.11.
Another issue is that when the vote is casted, the server cannot check if the vote is valid (i.e.
one of the options provided in the poll), and thus cannot reject them. So the number of invalid
votes needs to be included when showing the results of the poll.

As per requirement F3.3, there is a need to conceal the vote until the end of the poll, this
is the primary reason why there is an encryption and decryption key for votes. Although the
solution is not perfect, as the participants need to “trust” the host to not reveal the votes, in my
opinion, its an appropriate solution for the use case, as the host has no incentive to reveal.

4.6.3 Comment and Reply

Since the requirement F2.6 and F2.7 state that the user should be able to record comments
and reply to them in the meeting, COMMENT and REPLY events have been provided. The
COMMENT event has a content with two properties:

• Comment: The user’s comment.

• Patient: The patient the comment refers to (can be empty).

The REPLY event is also similar to the COMMENT event, but the difference is that the
REPLY event must reference either a COMMENT event or another REPLY event (as shown in
4.13).

Figure 4.11: UI implementation of vote inclusion verification

33

Figure 4.12: Sequence diagram interaction between host, server and participants for a poll

4.6.4 Discussion

The DISCUSSION event content has one property ‘patient’. The purpose of this event is to
formally state what patient is being discussed at the time. It also helps the web app (UI) know
what defaults to set (such as automatically populating the patient property when posting a
comment).

4.6.5 Disagreement

The DISAGREEMENT event formally records if a user disagrees with any event that has been
broadcasted, as required by requirement F2.8.

4.6.6 Patient Data Change

The PATIENT DATA CHANGE event records, the changes made to patient data that is meeting
specific. The content of this event has three properties:

1. Patient: The patient’s who’s data is being changed

Figure 4.13: Illustration showing the preservation of order of a comment and it’s replies.

34

2. From: The old state of patient’s data

3. To: The new state of patient’s data

4.6.7 Ending a meeting

To end a meeting, the host sends an END event. The END event is then acknowledged by the
server using the END ACK event. The END ACK event contains a list of IDs of all events that
have not been referenced by any other event.

4.6.8 Data Integrity and Proof of Inclusion

As mentioned earlier, the main reason for having this protocol is to minimise the amount of data
that is stored on blockchain, without compromising data integrity. With this system, only the
IDs of the START and the END ACK event needs to be stored on the blockchain, to be able to
determine if the data was corrupted.

Figure 4.14: Illustration showing the storage of START and END ACK event IDs into Ethereum.

As can be seen from Figure 4.14, every event (apart from the start) is referenced by another
event. So, if one of the events is corrupted (perhaps by an adversary), then:

• The signature will have to change for it to be a valid event.

• If the signature changes, the ID of the event will also change.

• If the ID changes, the event is no longer referenced by any other event.

• Thus, the event must not have happened in the meeting.

The adversary will need to change all events up to the the END ACK event, to be able to
make their corrupted event part of the meeting, however since the END ACK event is stored in
the Ethereum blockchain, this becomes almost impossible to do, assuming that the Ethereum

35

blockchain is stable.

This argument also goes the other way. In order to prove that an event is part of a meeting,
the user can traverse the tree and look for two conditions:

• If a path exists from the END ACK event to that event.

• If a path exists from that event to the START event.

If both conditions are true, it can safely be concluded that the event is part of the meeting.
These checks can be done using any tree traversal algorithm.

4.7 Blockchain and Meeting Contract

Once the IDs/signatures of the START and the END ACK event have been generated, they need
to be stored in the blockchain. As mentioned before, the Ethereum blockchain is used for this
purpose. During the life cycle of a meeting, the following interactions take place:

• When the meeting starts, the server automatically generates a smart contract for that
meeting and deploys it on the Ethereum network. The smart contract code (truncated) is
shown in Listing 1. Please refer to Appendix F for the full listing.

• Once the meeting ends, the server uses setEvents() function to populate smart contract
with START and END ACK event IDs. The setEvents() function has a flag that only lets
the owner (in this case the server) call it and it can only be called once.

• After the smart contract has been populated, the participants then fetch the contract ID
from the REST API server and fetch the START and END ACK event IDs.

• The participants verify if their version of events in included within the event tree (as
mentioned in 4.6.8).

• If they are satisfied, they call the approve() function to sign the smart contract. The approve

() function has a guard that only lets participants of the meeting call the function.

This allows all the participants, as well as the server to reach consensus on what events
happened in the meeting, making it difficult to refute the events later.

1 contract MeetingContract {

2 struct Meeting {

3 string id;

4 mapping (address => bool) participants;

5 string eventStartHash;

6 string eventEndHash;

7 mapping (address => bool) approvals;

8 }

9
10 Meeting public meeting;

11
12 constructor (string memory id , address [] memory participants) public {

13 meeting.id = id;

14 // Populate participants ’ addresses - code not listed for brevity

15 owner = msg.sender;

16 }

17

36

18 function setEvents(string memory start , string memory end) public

19 onlyOwner eventsNotPopulated {

20 meeting.eventStartHash = start;

21 meeting.eventEndHash = end;

22 eventsPopulated = true;

23 }

24
25 function approve () public onlyParticipant{

26 meeting.approvals[msg.sender] = true;

27 }

28
29 }

Listing 1: Truncated meeting contract code in Solidity, this is deployed for each meeting.

Figure 4.15: Sequence diagram showing interactions with the smart contract and Ethereum.

4.8 Implementation Choices

4.8.1 JSON and JSON Schema

In the implementation, JSON was used to represent the events (Listing 2). The reason for choos-
ing JSON is that it is human readable (allowing for easier debugging), and also compatible with
the various sub-systems (such as MongoDB). This choice however, created a need to check if
the events are formed correctly. To do so, JSON Schema [26] was utilised. JSON schema is a
vocabulary that allows for writing rules on how JSON documents should be formed. Rules for
the event and all event content types were written using the vocabulary, and they can be found
in F. Existing libraries [27] was then used to validate the JSON events before processing any of
its content.

37

1 {

2 "by": "0 xb78e5bb6ff6a849e120985d32532e5067f262e19",

3 "_id": "0 xda5dfa7c0a7b0e020eba13d86a6a ...",

4 "timestamp": 1555282628 ,

5 "refEvent": "0 xbf9bbbf60077538eba133cfa72dd ...",

6 "meetingId": "b05674b1 -400b-4411 -a668 -71203331 c67a",

7 "type": "leave",

8 "content": {}

9 }

Listing 2: Example of an event implemented using JSON

4.8.2 Session Keys and Signature Scheme

The main purpose of the session keys are to sign the events created by the user. In the im-
plementation, the JSON objects are first encoded using Bencode [28] which converts any JSON
object into a string in a deterministic way (such as preserving the order of keys), an example of
bencode encoding is given in Listing 3. This is done to make sure that when these events are
hashed, they always result in the same string, regardless of how the JSON document is parsed.
Then, Elliptic Curve Digital Signature Algorithm (ECDSA) is used for singing, which is the same
scheme that is used by Ethereum. Web3.js [29], web3.py [30] and eth-crypto [31] libraries are
used for performing these cryptographic functions. There were two reasons for using ECDSA:

• The keys are smaller than other schemes like RSA signature schemes [32] [33], as it uses
Elliptic Curve Discrete Logarithm Problem (ECDLP). This helps reduce the size of START
and JOIN events.

• The security of ECDSA and it’s parameters are already well understood by the Ethereum
community, as such the implementation of signature scheme was used as is in order to avoid
implementing from scratch, which is out of scope for this project.

1 d3:_id33 :0 xda5dfa7c0a7b0e020eba13d86a6a ...2: by42:0

xb78e5bb6ff6a849e120985d32532e5067f262e197:contentde9:meetingId36:b05674b1 -400

b-4411-a668 -71203331 c67a8:refEvent33 :0 xbf9bbbf60077538eba133cfa72dd ...9:

timestampi1555282628e4:type5:leavee

Listing 3: Example of Bencode encoding: the JSON event in Listing 2 encoded in Bencode.

4.8.3 Websockets vs Peer to Peer (WebRTC)

One of the decisions that was made early on was whether to use server-client paradigm (and thus
websockets) or a peer to peer connection (using WebRTC [34]). Some initial experiments with
WebRTC was done, and it was realised that peer to peer connections is quite difficult to manage
when there are 50+ participants. A lot of networking issues arise from using peer to peer system,
such as using STUN [35] server for messaging, and using TURN [36] (relay) server as a fallback
when a peer to peer cannot be formed. A performance slow down was also noticed when testing
with 50 connections streaming lots of events, as such in order to simplify, a server-client model
was used. Although this creates a central point of trust (as the server can selectively broadcast
the event), but in my opinion, the Events protocol provides sufficient information to the user to
detect and protest. In the future, an implementation of the Events protocol using peer to peer
connections can be investigated.

38

5 Testing

This chapter will elaborate the testing strategies used in the development of this project. As
this is a complex project, various tools were utilised to test and debug different components of
the system.

5.1 Meeting Server

This is the most complex component in the c-meet system, as it implements the Events protocol,
thus, testing it was difficult. Testing was done in two phases as described in sub sections below.

5.1.1 Unit Tests

The Meeting Server relies on various minor components that provide very specific functionality.
For example, the Auth class is responsible for cryptogtaphic and authentication functionalities
(signing, verification, etc.), the MeetingContractHelper class, is responsible for all Ethereum
contract interactions. These small components, for the most part, do not rely on other com-
ponents and can be tested on their own. Furthermore, these components remained mostly
unchanged as the development progressed; thus, unit tests were written to check the correctness
of these components. Unit tests were also written for model classes such as Meeting, Event,
Patient, etc. to test the marshalling of objects into JSON and vice versa. Although the model
classes changed through out the development of this project, these unit tests helped catch bugs
with interoperability, which often results in unusual behaviors.

5.1.2 Integration Testing

Figure 5.1: Meeting Server
CLI used for testing of Meet-
ing server without the web
app.

After making sure that all the minor components had the
correct functionality, it was then necessary to make sure
that they worked correctly when integrated together in the
meeting server.py script. The script is responsible for commu-
nicating meeting events with the web app (UI), as such, it was
difficult to test without having the UI present. However, since
the web app is a complex system in and of itself, relying on it
to test the Meeting Server seemed like a bad strategy. Thus, it
was necessary to develop a simple interface that would serve as
an alternative to the web app, and so, the Meeting Server Client
CLI was developed.

The Meeting Server Client CLI (see Figure 5.1) is a simple
script written using Click [37] python library, that takes in the
public and private key of any user, and generates signed meet-
ing events (in JSON format), which is then sent to the Meeting
Server using web sockets, similar to the web app. This allowed
the integration tests to take place independent of the UI.

Since this was integration testing, the focus was mainly on
whether the events were interpreted and handled properly by
the Meeting Server, and not on the correctness of the c-meet
system as a whole; however, some tests that are not traditionally
considered ”integration tests” (for e.g. behavior of the server

39

when multiple users are logged in simultaneously) were also conducted, to eliminate any errors
early.

5.2 REST API Server

The REST API server shares a lot of components with the Meeting Server (such as the Auth
class), therefore, the unit tests that were developed for Meeting Server also helps the testing of
REST API server. Additionally, integration tests were also written to check the correctness of
the server, as well as manual tests using API development tools like Postman [38].

5.2.1 Mock Data Generation

In order to test the REST API server (and also the c-meet system as a whole), realistic mock
data had to be generated. This data was generated using the gen sample.py script. It generates
patients (with realistic names and dob), staff members (with valid Ethereum keys as DeeID) and
meetings (with valid staff and patients), and automatically populates the database with them. It
also prints out the private keys for the staff members, which are kept safely for tests that require
signing in.

5.3 UI Testing

The web app (UI) was tested separately from all other components. Angular provides powerful
tools to perform unit and integration testing. It uses Jasmine testing framework, which encour-
ages a behavior driven approach to testing [18]. The tests created for the web app mainly focus
on the the UI components, and whether they render correctly. One example of this is given in
Figure 5.2.

Figure 5.2: Example of an UI test written using Jasmine framework.

One of the biggest challenges when testing the UI was the need for DeeID app in order to
login. This was especially challenging considering the fact that the wallet can only hold one key,
as such allowing only one person to sign in at a time. There were attempts made to bypass the
login system, however, since the DeeID system is integrated deeply into the c-meet system, it
proved to be quite difficult. Furthermore, developing systems to bypass the DeeID login risks
leaving back doors into the web app, and therefore risked making it insecure. In order to solve
this problem, a DeeID wallet emulator was developed in JavaScript with the help of Sirvan
Almasi (the author of DeeID). The emulator takes in the data generated by the QR code and the
DeeID keys as a command line argument, and automatically does the authentication (described
in Section 4.2) using similar libraries as the mobile app. This enabled the testing of the web app
without the depending on the DeeID app.

40

5.4 Smart Contract Testing

The meeting contract is one of the choke points for integrity in the c-meet system. If the behavior
of the contract is incorrect, it invalidates a lot of integrity guarantees that is achieved by the
system. Furthermore, Ethereum smart contracts are permanent, i.e. once they are deployed,
they cannot be modified. Therefore, it was necessary to write tests specifically for the meeting
contract. Truffle Suite provides all the tools needed to test the deployment of a smart contract.
It uses Mocha testing framework, which has a similar syntax to the Jasmine framework used
by Angular, therefore the learning curve for writing smart contract tests was gentle. The tests
focused on the contract functions, and checking whether they perform correctly when invoked
by an Ethereum account. They also checked whether the functions reject unauthorised accounts
form changing the state. An example of a smart contract test is given in Figure 5.3

Figure 5.3: Example of a smart contract test written using Truffle framework.

5.5 End to End Testing

After performing the unit and integration tests, and making sure that the system had the correct
behavior, it was decided to perform end to end tests. The test cases were prepared using the use
cases mentioned in section 3.6. The end to end tests were designed to check whether the system
can perform correctly, when real users are involved, as such, no components or data (apart from
patient) were mocked during the testing process. The testing was performed manually and the
full list of tests can be found in Appendix B.

5.6 Testing Summary

Although testing was not the main focus of this project, as it is a proof of concept, the tests did
boost confidence that the results that was acquire from this investigation is sound and correct.
Various strategies were applied to overcome significant challenges that materialise from testing a
complex system. Automated unit and integration tests were performed for the servers, the web
app and the smart contract, as well as manual end to end tests to check the correctness of the
system as a whole.

41

6 Evaluation

This section evaluates the achievements and the limitations of the c-meet system against the
requirements that was set out initially. It also evaluates the cost and performance of operating
the system.

6.1 Goals Evaluation

The goals that were set out in Chapter 1 were:

• An architecture for storing meeting metadata in a way that can be audited later, with data
integrity, authenticity and accountability in mind.

• A proof-of-concept implementation of the architecture (including servers).

• A proof-of-concept of a web app (UI) that will be used by the users to participate in the
meetings.

• A login system that utilizes DeeID identification scheme.

All of the four goals were delivered. An architecture was presented that utilized Ethereum smart
contracts and the Events protocol (Section 4.6) to guarantee data integrity. The architecture
integrated with the DeeID system to provide a concrete notion of identity, and there by providing
authenticity. An implementation of the system was also provided which proved the viability of
the system, and finally, an interpretation of the UI (as a web app) was provided.

6.2 Requirements Evaluation

The requirements described in Chapter 3 provided the project with specific targets for the de-
liverables to target, so it’s logical to go back to them, and check if they have been met. Upon
inspection, the following can be interpreted:

• Must have requirements met: 13/13 (100%).

• Should have requirements met: 4/4 (100%).

• Could have requirements met: 6/7 (86%).

• Would have requirements met: 1/4 (25%).

Overall, 24 out of the 28 requirements were met, the ones that were not achieved have been
analysed below:

• F2.5 and F2.9: The requirements stated that the participants would be able to record
audio and the host would be able to record their screen. As time was limited, this was not
prioritised, as it didn’t contribute much to the architecture of the system, and required a
substantial amount of work.

• S1.1: The requirement stated that the privacy of a voter in a meeting poll should
be protected. This proved to be very challenging, as the voter also needs to be held
accountable for their vote. Although, this can perhaps be achieved using decentralised
voting systems and zero knowledge proofs [39], however, such a system would be quite
complex to implement, and is out of scope of this project. After consultation with GOSH,
the requirement was deemed a non priority, and thus, it was not worked on.

42

• S1.5: The requirement was to open source all the code. Although, this could have been
achieved, it was decided otherwise, as further work is required to make sure that no sensitive
information is leaked in the source code, as well as, to make sure that proper protocols are
followed before open sourcing. This can however be achieved in the future.

6.3 Cost Evaluation

6.3.1 Data generated by the Events Protocol

The Events protocol uses substantial amount of cryptography to achieve some of the goals, as
such, the system generates lot of data (from hashes, keys etc.). As this was an investigation,
it was necessary to evaluate the amount of data that needs to be stored in the database, to
determine the system’s practicality. Simulations of meetings were done to get an idea of how
much data is generated per meeting, however as these were simulations, reasonable assumptions
had to be made. The assumptions were as follows:

• Number of patients: 20

• Length of poll question: 100 characters

• Number of options per poll: 5

• Number of comments/replies per participants: 20

• Length of comments/replies: 100 characters

• Data per patient: 500 characters

Using these assumption, simulations were ran with varying number of participants, and the
results of how much data was generated are shown in Figure 6.1. Please refer to Appendix A to
see the amount of data generated per event.

Figure 6.1: The amount of data generated per meeting.

43

As can be seen form figure 6.1, the amount data generated from a meeting grows linearly in
relation to the number of participants. As MDT meetings have approximately 50 participants,
one can expect to generate approximately 7 MB of data per MDT meeting.

6.3.2 Cost of interacting with the smart contract

As mentioned in Chapter 4, smart contracts are utilised to store event IDs for permanence.
Interacting with the smart contract costs money, as the miner that is responsible for executing
the smart contract code needs to be compensated. The cost of interacting with smart contract
depends on the following:

• The amount of data that is stored in the smart contract account (using arrays, maps etc.).

• The amount of computation done by the smart contract (based on the opcodes of the
Ethereum Virtual Machine [40]).

• The GAS price advertised in the transaction. The GAS is essentially a unit of computation,
so the price of GAS is how much the caller is willing to pay for each unit of computation.
The higher the GAS price, the lower the time for the confirmation, as more nodes will be
attracted to complete the transaction.

Functions that do not change the state of the smart contract are not charged in the Ethereum
blockchain, as such, all read functions can be computed for free. However, there are three
interactions in the c-meet system which change the state of the meeting contract. The functions
along with the transaction GAS cost are as follows:

• Initial deployment of the contract: 1124564 GAS

• Storing the START and END ACK event IDs (setEvents()): 289047 GAS

• Approval from each participants (approve()): 42115 GAS

Assuming that there are 50 participants in an average MDT meeting, and assuming a rea-
sonable GAS price for confirmation time of approximately one minute, the total cost is:

Total GAS = 1124564 + 289047 + (50 ∗ 42115) = 3519361

GAS Price : 11.1 GWEI

Total cost (as of 28 April 2019) : 6.172 USD per meeting

6.4 Limitations

The limitations of the c-meet system are as follows:

• DeeID: The DeeID system provides the identity layer for the c-meet system. It is a
critical part of the solution, and without it, the solution cannot guarantee the authenticity
of any events that take place in a meeting. The DeeID system proves to be a choke
point for the whole solution, which is a limitation. If the DeeID wallet is compromised or
if the participant’s phone (containing the DeeID keys) is stolen, the adversary can then
forge events on behalf of the participant, thus breaking the guarantees of authenticity.
Fortunately, the DeeID author has provided protocols on what to do, if such thefts occur,
for example, the victim could re-register (as described in Section 2.2) with GOSH as soon
as possible, thereby nullifying the old keys. However, such systems need to be in place,
and maintained by GOSH.

44

• Data recovery: The c-meet system stores only the very necessary information in the
Ethereum blockchain to minimise the costs. If an adversary tampers with the events that
are stored in the system database, or deletes the database itself, the system can only detect
the tampering or deletion of data. It cannot recover the data back from the blockhain,
which is a major limitation. Therefore, appropriate backup and security systems need to
be in place to combat such acts.

• Ethereum Ethereum itself becomes a limitation for the system, as the system assumes
that the Ethereum blockchain is stable and will be for the foreseeable future. If for any rea-
son, the Ethereum blockchain collapses, the c-meet system cannot guarantee the integrity
or authenticity of any meetings that occur in the future or in the past.

6.5 Summary

In summary, the project has achieved all the goals that was set out initially, and most of the
requirements in Chapter 3. The amount data generated by c-meet system is reasonable at around
7 MB per meeting (assuming 50 participants), and the cost of interacting with the blockchain
is around 6.17 USD per meeting, which is also reasonable considering the benefits the solution
provides.

45

7 Conclusions and Future Work

7.1 Future Work

7.1.1 Mobile client for participants

In this project, an interpretation of the UI was provided through a web app. However, this is not
ideal for all participants as they may not have access to a desktop/laptop during a meeting. Thus,
a mobile client needs to be developed that implements the Events protocol. The most significant
challenge that would come about when developing the mobile app, would be implementing the
login system. Currently a QR code is used to interact with the DeeID app. However, with
the mobile client, the interaction needs to happen through Inter Process communication (IPC).
This would require the modification of the DeeID app to accept objects through IPC. Another
challenge when developing a mobile client would be access to an Ethereum node for smart contract
interactions. In the web app, this is provided by Metamask, however no such bridge exists for
mobile apps yet, although it is in development [41].

7.1.2 Integration with InfoFlex system

In the investigation, a database of patients with the name, date of birth and ID was assumed
to exist. In a deployment scenario, such database will be handled by the InfoFlex system.
Therefore, understanding the interface and the data standards of this system is important to
avoid interoperability issues. There were attempts made to procure such systems during the
investigation, but unfortunately the attempts were unsuccessful.

7.1.3 Improving the Voting system

Currently, the voting system in c-meet is quite centralised. The host owns the decryption key
for votes during a poll, allowing them to corrupt the results by revealing them before the end
of the poll. Although this is an acceptable solution under the assumption that the host has no
incentive do so, it however begs the question whether there is a better way of conducting such
polls. Furthermore, there were concerns raised by GOSH staff members that the participants
would prefer casting anonymous votes, as such, a system could be investigated that uses advanced
cryptography to protect the privacy of the voter as well as hold them accountable under certain
conditions.

7.1.4 Investigation into Private/Hybrid Blockchain

The c-meet system relies on the public Ethereum blockchain for the permanence of events and
their order. However, for reasons concerning costs and privacy, it may not be possible store
meeting data on the public blockchain, as such, a private blockchain (such as Quorum) could
be deployed. However doing so risks diluting the non repudiation property of the system, as
the organisation (in this case GOSH) hosting the blockchain will possess a significant amount of
power on the consensus protocol, thereby being able to control the order of blocks. There could
be hybrid solutions, for example, having a private blockchain running on all GOSH computers,
and having hooks to a public blockchain, but this will need to be investigated further.

46

7.1.5 Further tests

The testing methodology mostly relied on simulations and predetermined scenarios, as such,
it was difficult to know how the system will perform under unknown conditions. A full fledged
testing with real users needs to be conducted to verify if the system behaves correctly. This would
require collaboration with DeeID developer, as all the staff and patients need to be registered
with the DeeID system to participate in the meeting.

7.2 Conclusion

The project was conceived to investigate whether blockchain technology could be used to record
GOSH MDT meetings. The motivation being that the participants need to be held accountable
for the actions and decisions they take during the meeting. The c-meet system provides a proof
of concept implementation of a system that is able to store the meeting events in a way that is
resistant to tampering by any entity. It utilizes the Ethereum blockchain to store key pieces of
information from every meeting, which can be used later to determine the integrity of all the
events. The key pieces of information that is stored in the blockchain is constant and does not
depend on the length of the meeting, thus allowing the cost of interacting with the Ethereum
blockchain to remain low. In order to guarantee the authenticity of the events, a novel system of
identity known as DeeID was used. Finally, the Events protocol that forms a major part of the
c-meet system was developed specifically for this project, but can be abstracted to have uses in
other projects as well.

47

References

[1] NHS. Supporting information: Multidisciplinary team meeting.
https://www.datadictionary.nhs.uk/data_dictionary/nhs_business_definitions/

m/multidisciplinary_team_meeting_de.asp, Accessed: 2019-04-16.

[2] Steven M. Seitz Supasorn Suwajanakorn and Ira Kemelmacher-Shlizerman. Synthesizing
obama: Learning lip sync from audio. 2017.

[3] Cryptocurrency market capitalizations. https://coinmarketcap.com, Accessed:
2019-04-16.

[4] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
https://bitcoin.org/bitcoin.pdf.

[5] Bitcoin developer guide. https://bitcoin.org/en/developer-guide, Accessed:
2019-04-16.

[6] Meni Rosenfeld. Analysis of hashrate-based double-spending. 2013.
https://bitcoil.co.il/Doublespend.pdf.

[7] Dan; Hauser Carl; Irish Wes; Larson John; Shenker Scott; Sturgis Howard; Swinehart Dan;
Terry Doug Demers, Alan; Greene. Epidemic algorithms for replicated database
maintenance. Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, page 1–12, 1987.

[8] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on
bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security
15), pages 129–144, Washington, D.C., 2015. USENIX Association.

[9] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.

[10] The solidity programming language. https://solidity.readthedocs.io/en/latest/,
Accessed: 2019-04-16.

[11] JP Morgan. Quorum. https://www.jpmorgan.com/global/Quorum, Accessed:
2019-04-16.

[12] Sirvan Almasi. Decentralised identity and data management network, 2018.

[13] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, Jun 1988.

[14] Infoflex. https://infoflex.co.uk/, Accessed: 2019-04-16.

[15] Truffle suite (source code). https://github.com/trufflesuite/truffle, Accessed:
2019-04-16.

[16] Ganache. https://truffleframework.com/ganache, Accessed: 2019-04-16.

[17] Infura. https://infura.io/docs/gettingStarted/makeRequests, Accessed: 2019-04-16.

[18] Angular. https://angular.io/docs, Accessed: 2019-04-16.

48

https://www.datadictionary.nhs.uk/data_dictionary/nhs_business_definitions/m/ multidisciplinary_team_meeting_de.asp
https://www.datadictionary.nhs.uk/data_dictionary/nhs_business_definitions/m/ multidisciplinary_team_meeting_de.asp
https://coinmarketcap.com
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/en/developer-guide
https://bitcoil.co.il/Doublespend.pdf
https://solidity.readthedocs.io/en/latest/
https://www.jpmorgan.com/global/Quorum
https://infoflex.co.uk/
https://github.com/trufflesuite/truffle
https://truffleframework.com/ganache
https://infura.io/docs/gettingStarted/makeRequests
https://angular.io/docs

[19] Jim Gray. The transaction concept: Virtues and limitations. Proceedings of the 7th
International Conference on Very Large Databases, page 144–154, Sep 1981.

[20] M. Jones, J. Bradley, and N. Sakimura. Json web token (jwt). RFC 7519, RFC Editor,
May 2015. http://www.rfc-editor.org/rfc/rfc7519.txt.

[21] Angular cli command reference. https://angular.io/cli, Accessed: 2019-04-16.

[22] Reactive extensions library for javascript.
https://rxjs-dev.firebaseapp.com/guide/overview, Accessed: 2019-04-16.

[23] Metamask - brings ethereum to your browser. https://metamask.io/, Accessed:
2019-04-16.

[24] I. Fette and A. Melnikov. The websocket protocol. RFC 6455, RFC Editor, December
2011. http://www.rfc-editor.org/rfc/rfc6455.txt.

[25] Paul J. Leach, Michael Mealling, and Rich Salz. A universally unique identifier (uuid) urn
namespace. RFC 4122, RFC Editor, July 2005.
http://www.rfc-editor.org/rfc/rfc4122.txt.

[26] A. Wright and H. Andrews. Json schema: A media type for describing json documents.
Technical report, IETF, November 2017.
https://tools.ietf.org/html/draft-handrews-json-schema-01.

[27] Json schema validator for python. https://github.com/Julian/jsonschema, Accessed:
2019-04-16.

[28] Bram Cohen. The bittorrent protocol specification. BEP 03, BitTorrent.org, January
2008. http://www.bittorrent.org/beps/bep_0003.html.

[29] Web3.js (source code). https://github.com/ethereum/web3.js, Accessed: 2019-04-16.

[30] Documentation for web3.py. https://web3py.readthedocs.io/en/stable/index.html,
Accessed: 2019-04-16.

[31] Cryptographic javascript-functions for ethereum (source code).
https://github.com/pubkey/eth-crypto, Accessed: 2019-04-16.

[32] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

[33] Mishall Al-Zubaidie, Zhongwei Zhang, and Ji Zhang. Efficient and secure ecdsa algorithm
and its applications: A survey. 02 2019.

[34] Anant Narayanan, Cullen Jennings, Bernard Aboba, Jan-Ivar Bruaroey, Daniel Burnett,
Adam Bergkvist, and Taylor Brandstetter. WebRTC 1.0: Real-time communication
between browsers. Candidate recommendation, W3C, September 2018.
https://www.w3.org/TR/2018/CR-webrtc-20180927/.

[35] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session traversal utilities for nat
(stun). RFC 5389, RFC Editor, October 2008.
http://www.rfc-editor.org/rfc/rfc5389.txt.

49

http://www.rfc-editor.org/rfc/rfc7519.txt
https://angular.io/cli
https://rxjs-dev.firebaseapp.com/guide/overview
https://metamask.io/
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc4122.txt
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://github.com/Julian/jsonschema
http://www.bittorrent.org/beps/bep_0003.html
https://github.com/ethereum/web3.js
https://web3py.readthedocs.io/en/stable/index.html
https://github.com/pubkey/eth-crypto
http://www.rfc-editor.org/rfc/rfc5389.txt

[36] R. Mahy, P. Matthews, and J. Rosenberg. Traversal using relays around nat (turn): Relay
extensions to session traversal utilities for nat (stun). RFC 5766, RFC Editor, April 2010.
http://www.rfc-editor.org/rfc/rfc5766.txt.

[37] Welcome to click - click documentation. https://click.palletsprojects.com/en/7.x/,
Accessed: 2019-04-16.

[38] Postman — api development environment. https://www.getpostman.com/, Accessed:
2019-04-16.

[39] Xuechao Yang, Xun Yi, Surya Nepal, and Fengling Han. Decentralized voting: A
self-tallying voting system using a smart contract on the ethereum blockchain. In Hakim
Hacid, Wojciech Cellary, Hua Wang, Hye-Young Paik, and Rui Zhou, editors, Web
Information Systems Engineering – WISE 2018, pages 18–35, Cham, 2018. Springer
International Publishing.

[40] Evm opcode gas costst. https://github.com/djrtwo/evm-opcode-gas-costs/blob/
master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv, Accessed:
2019-04-16.

[41] Metamask develops mobile client.
https://www.ethnews.com/metamask-develops-mobile-client, Accessed: 2019-04-16.

50

http://www.rfc-editor.org/rfc/rfc5766.txt
https://click.palletsprojects.com/en/7.x/
https://www.getpostman.com/
https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv
https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv
https://www.ethnews.com/metamask-develops-mobile-client

A Miscellaneous

A.1 Size of events

Event Type Data (Bytes)
START 3803
POLL 1056
POLL END 661
DISCUSSION 631
PATIENT DATA CHANGE 5625
END 535
JOIN 1218
LEAVE 547
VOTE 1614
COMMENT 723
REPLY 688
DISAGREEMENT 554
ACK 545
ACK JOIN 4106
ACK POLL END 612 + (132 * Participants)
ACK END 575 + (132 * Event count)

51

B Test Listings

B.1 End to End Test Descriptions

• Test 1: Login successful

– Prerequisites: None

– Steps: Navigate to any page

– Expected Results: Naviagated to Meeting List Page, all meetings appear.

• Test 2: Login failure

– Prerequisites: None

– Steps: Navigate to any page

– Expected Results: QR code still appears, an error message also appears.

• Test 3: Login timeout (DeeID WS server killed)

– Prerequisites: None

– Steps: Navigate to any page

– Expected Results: QR code still appears, an error message also appears.

• Test 4: Meeting creation

– Prerequisites: Test 1

– Steps: Click ’New meeting’, populate the fields, Click ’Create’

– Expected Results: Navigated back to Meeting List Page, new meeting appears.

• Test 5: Meeting deletion

– Prerequisites: Test 1

– Steps: Click ’edit’ on existing meeting, Click ’Delete’

– Expected Results: Navigated back to Meeting List Page, the meeting disappears.

• Test 6: Meeting update

– Prerequisites: Test 1

– Steps: Click ’edit’ on existing meeting, change the date of meeting, Click ’Update’

– Expected Results: Navigated back to Meeting List Page, the meeting has the
updated date.

• Test 7: Start meeting

– Prerequisites: Test 4

– Steps: Click ’start’ on existing meeting

– Expected Results: Navigated to Meeting Page, no errors, the events stream show
’start’ and ’join’ events.

• Test 8: Join meeting

52

– Prerequisites: Test 4 and Test 7 (from another client)

– Steps: Click ’join’ on existing meeting

– Expected Results: Navigated to Meeting Page, no errors, ’Create poll’, ’Patient
Data’ and ’Discuss’ options are disabled, the events stream show ’join’ events.

• Test 9: Discuss patient

– Prerequisites: Test 7

– Steps: Click on ’Discuss’ on any patient

– Expected Results: ’Discuss’ event of the appropriate patient appears in the stream

• Test 10: Comment

– Prerequisites: Test 7 or Test 8

– Steps: Click on ’Comment’ tab. Populate the text box. Click ’Comment’

– Expected Results: Comment event appears (with the comment) in the stream

• Test 11: Reply

– Prerequisites: Test 10

– Steps: Click on ’Reply’ on a comment event. Populate the text box. Click ’reply’

– Expected Results: Reply event appears (with the reply) in the stream

• Test 12: PDC

– Prerequisites: Test 7

– Steps: Click on ’Patient data’. Populate the fields. Click ’update’

– Expected Results: PDC event appears in the stream

• Test 13: Poll

– Prerequisites: Test 7

– Steps: Click on ’Create poll’. Populate the fields. Click ’Create’

– Expected Results: Poll event appears, with the options and question

• Test 14: Vote

– Prerequisites: Test 13

– Steps: Click on ’Vote’ of a Poll event. (Options should appear). Click on any
option. Click ’Vote’

– Expected Results: Vote event appears

• Test 15: Vote not decryptable

– Prerequisites: Test 14

– Steps: Click on ’see vote’ on a vote event.

– Expected Results: alert box opens stating the vote cannot be decrypted.

• Test 16: Poll end

53

– Prerequisites: Test 13

– Steps: Click on ’end poll’ on a poll event.

– Expected Results: Poll end event appears.

• Test 17: Vote inclusion

– Prerequisites: Test 14

– Steps: Click on ’Includes my vote’ on a vote event.

– Expected Results: alert box opens stating the vote is included.

• Test 18: Poll results

– Prerequisites: Test 14

– Steps: Click on ’See reults’ on a poll event.

– Expected Results: the right panel shows a pie chart of the results

• Test 19: Leave meeting

– Prerequisites: Test 8

– Steps: Click on ’Leave meeting’ on the header panel.

– Expected Results: Navigated back to Meeting List page. Download of events
initiated.

• Test 20: End meeting

– Prerequisites: Test 7

– Steps: Click on ’End meeting’ on the header panel.

– Expected Results: Navigated back to Meeting List page. Download of events
initiated. The meeting shown as a past meeting.

54

C Use Cases

C.1 Use Case Documents

ID 1
Actor User
Pre-conditions Already Logged In
Description Create a meeting

Flow

1) User clicks on ’create meeting’ button
2) User populates the appropriate fields
3) User clicks ’create’ button
4) The web app sends the meeting using the RESTful API
5) The database gets updated with new meeting

Post-conditions User has successfully created a meeting

ID 2
Actor User
Pre-conditions User has already Logged In
Description Cancelling a meeting

Flow

1) User clicks on ’edit meeting’ button
2) User clicks ’delete’ button
3) The web app sends the request using RESTful API
5) The meeting is deleted from the database

Post-conditions User has successfully cancelled a meeting

ID 3
Actor User
Pre-conditions User has already Logged In
Description Changing a meeting

Flow

1) User clicks on ’edit meeting’ button
2) User populates the appropriate fields
3) User clicks ’update’ button
4) The web app sends the meeting using the RESTful API
5) The database gets updated

Post-conditions User has successfully updated a meeting

55

ID 4
Actor User
Pre-conditions None
Description Log In

Flow

1) User navigates to ’/login’ page
2) User uses DeeID app to scan the QR code
3) The DeeID system authenticates
4) The web app verifies the authentication
5) The web app provides auth object to REST API server
6) The REST API server authenticates and creates JWT session
7) The web app upon receiving JWT navigates to
Meeting List page

Post-conditions User has successfully logged in

ID 5
Actor Host
Pre-conditions Host is logged in and a meeting is created
Description Start a meeting

Flow

1) Host clicks on start meeting
2) Web app generates OTP and sends START event to
Meeting Server
3) Meeting server authenticates and creates room
4) Meeting server sends ACK
5) Web app sends the JOIN event
6) Meeting server validates event
7) Meeting server sends the JOIN ACK event
8) Web app renders the Meeting Page

Post-conditions Host has successfully started the meeting

ID 6
Actor Host
Pre-conditions Host has started a meeting
Description Ending a meeting

Flow

1) Host clicks on end meeting button
2) Web app sends LEAVE and END events to Meeting Server
3) Meeting server validates and responds with ACK
and ACK END events
4) Web app navigates back to Meeting List page
5) Web app initiates download of all events

Post-conditions Host has successfully ended the meeting

56

ID 7
Actor Host
Pre-conditions Host has started a meeting
Description Creating a poll

Flow

1) Host clicks on create poll button
2) Host populates the desired fields, and clicks ’create’
3) The Web app sends the POLL event with the poll data to
Meeting server
4) The POLL event is validated by the Meeting server
5) Meeting server responds with ACK
6) The web app renders the poll event

Post-conditions Host has successfully created a poll

ID 8
Actor Host
Pre-conditions Host has started a meeting
Description Change patient meeting data

Flow

1) Host clicks on ’Patient Details button’
2) Host populates the desired fields, and clicks ’update’
3) The Web app sends the event to the Meeting server
4) The event is validated by the Meeting server
5) Meeting server updates the database
6) Meeting server responds with ACK

Post-conditions Host has successfully updated patient meeting data

ID 9
Actor Participant
Pre-conditions Participant is logged in and Host has started a meeting
Description Join meeting

Flow

1) Participant clicks ’join’
2) Web app prompts for OTP
3) Participant enters OTP and clicks ’Submit’
4) The web app sends the JOIN event
5) The Meeting server authenticates and responds with
JOIN ACK
6) The web app renders the Meeting page

Post-conditions Participant has successfully joined a meeting

ID 10
Actor Participant
Pre-conditions Participant has joined a meeting
Description Leave meeting

Flow

1) Participant clicks ’leave meeting’ button
2) The web app sends the LEAVE event
3) The Meeting server authenticates and responds with ACK
4) The web app navigates to Meeting List page
5) The web app initiates download of all events.

Post-conditions Participant has successfully left the meeting

57

ID 11
Actor Participant
Pre-conditions Participant has joined a meeting
Description Comment

Flow

1) Participant clicks ’comment’ tab
2) Participant write the comment, and clicks ’comment’ button
3) The Meeting server authenticates and responds with ACK
4) The web app renders the comment event

Post-conditions User has successfully lodged a comment

ID 12
Actor Participant
Pre-conditions Participant has joined a meeting and Host has created a poll
Description Vote

Flow

1) Participant clicks ’vote’
2) Participant is presented with voting choices
3) Participant selects an options and clicks ’vote’
4) The web app encrypts the vote with the voting key
5) The web app sends the VOTE event to Meeting server
6) The server validates and sends an ACK.

Post-conditions User has successfully voted in a poll

58

D System Manual

The code can be obtained from the following Github repos:

• Servers: https://github.com/bakshi41c/mdt_server

• Web App: https://github.com/bakshi41c/mdt_web

Please send an email to shubham.bakshi.13@ucl.ac.uk for access to these repositories.

D.1 Setting up the database

• Install MongoDB from https://www.mongodb.com/

• Make sure MongoDB is running on localhost:27017

• To visualise the data, MongoDB Compass can also be used (https://www.mongodb.com/
products/compass)

D.2 Setting up the servers

• Make sure you have Python3.7+ installed

• Navigate to the code directory

• Create a python virtual environment

• Install the requirements using the command pip install -r requirements.txt

• Open config.py and check if all the configurations are appropriate

• Generate some test data using the command python gen_sample.py

• Run the HTTP server using command python rest_api_server.py

• Run the Meeting server using command python meeting_server.py

D.3 Setting up the web app

• Make sure you have Node v10+ and NPM installed (urlhttps://nodejs.org/en/)

• Navigate to the code directory

• Install angular-cli using command npm install -g @angular/cli

• Run command npm install. This should install all dependancies in a /node modules
folder.

• Run command ng serve

• The web app should now run on http://localhost:4200

D.4 Setting up DeeID app

• To install the DeeID app, follow instructions on https://github.com/sirvan3tr/OmneeMobileApp

59

https://github.com/bakshi41c/mdt_server
https://github.com/bakshi41c/mdt_web
shubham.bakshi.13@ucl.ac.uk
https://www.mongodb.com/
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/compass
http://localhost:4200
https://github.com/sirvan3tr/OmneeMobileApp

D.5 Setting up DeeID WS server

• Make sure you have Python3.7+ installed

• To install the DeeID WS server, clone the repository: https://github.com/deeid/websocket_
server

• Run command python main_server.py

D.6 Setting up Ganache (Private Ethereum network)

• Install Ganache and Truffle from https://truffleframework.com/ganache

• Run Ganache

• Setup a workspace by following the instructions on screen.

• The Ganache should setup a private blockchain, and a screen resembling Figure D.1 should
appear

• Go to settings by clicking the cog button on top right corner. Then navigate to Server,
and make sure the server is running on http://127.0.0.1:8545

Figure D.1: Ganache Home screen

D.7 Setting up Metamask

• Make sure to have the Metamask plugin installed (currently only working for Chrome and
Firefox. Link: https://metamask.io/

• Follow the setup instructions for Metamask

• Open the Metamask plugin

• Click on the network button (it usually says ”Ropsten test network”)

• Click on ”custom RPC”

60

https://github.com/deeid/websocket_server
https://github.com/deeid/websocket_server
https://truffleframework.com/ganache
https://metamask.io/

• A screen resembling Figure D.2 should appear.

• Fill the details with the details from Ganache. (URL: ”http://127.0.0.1:8545”, Network/Chain
ID: 5777) and click ’Save’.

• Metamask should now be connected to Ganache Ethereum network

Figure D.2: Metamask Custom RPC setup Screen

D.8 Topping up the server Ethereum account

• Go to Metmask, and import the server account by importing the server_sample_eth_key

file into Metmask.

• Go to Ganache, and pick any account (address), and click the key button on the right.
This should reveal the private key.

• Import the Ganache account into Metamask using the private key (these account are usually
pre topped up with 100 ETH).

• Perform a transaction, by sending some Ether from the Ganache Ethereum account to the
server Ethereum account.

• The server Ethereum account should now have some Ether, which the servers can use to
perform transactions.

61

E Documents

E.1 Project Plan

See next page

62

Name: Shubham Bakshi

Project Title: Application of Blockchain in Multidisciplinary team meetings in NHS (GOSH)

Supervisor’s Name: Graham Roberts

External Supervisor’s Name: Prof. Neil Sebire, Sirvan Almasi

Aims:

Investigate the practicality of blockchain for the purposes of monitoring, recording and auditing

Multidisciplinary Team meetings (MDT meetings) in NHS (Great Ormond St. Hospital).

Objectives:

1. Review blockchain and how it is currently used for identity.

2. Review how current MDT meetings are held and formalize the format, as well as look into

current standards in NHS for data sharing, such as FHIR API, Epic EHR etc.

3. Develop software tools that will aid in the recording of meetings, for e.g. app to record

votes, attendance, agenda etc.

4. Extend/Modify OMNEE (a decentralised system for identity using blockchain developed by

another UCL/Imperial student) for MDT meetings.

5. Investigate and create new crypto systems for the purposes of voting, with privacy as well as

auditability in mind.

6. Evaluate how useful these tools are, and whether such systems can be used in real life

without a change in current legislation.

Deliverables (in order of importance):

• A back-end system and an architecture for storing meeting metadata in a way that can be

audited later, with privacy and integrity in mind.

• A front-end system (e.g. web app/ mobile app) for recording MDT meetings.

• A literature survey of current systems and technologies that attempt to solve the problem of

decentralised identity and privacy, especially using blockchain.

• Evaluation of the entire system and its usefulness, by conducting surveys, and performing

scenarios where candidates lie.

Timeline:

• Now until end of November: Literature review; having a deep understanding of OMNEE,

Ethereum and their accompanying crypto systems. Also, understanding MDT meetings and

the requirements from the client.

• End of November – mid December: Designing the architecture of the system from bottom

up, for store meeting meta data and enable auditing.

• Mid-December – mid-January: Implementation of all major components of the back-end

system.

• Mid-January – mid-February: Front-end app that enables users to interact with the system

and record their meetings.

• Mid-February – mid-March: Testing and evaluation; performing surveys and tests on the

effectiveness of the system.

• March – mid-April: Final Report

E.2 Interim report

See next page

64

Interim Report
Name: Shubham Bakshi
Project Title: Application of Blockchain in Multidisciplinary team meetings in NHS (GOSH)
Supervisor’s Name: Graham Roberts
External Supervisor’s Name: Prof. Neil Sebire, Sirvan Almasi

Progress made to date

1. Literature survey of existing technologies
Understood blockchain and cryptocurrency thoroughly from transaction layer, to consensus

layer and finally the network layer. Understood decentralised identities and the current

state of the art (e.g. uPort). Sirvan helped me understand deeID (formerly OMNEE), which he

developed last year. Researched voting systems that can be used for patient voting in MDT

meetings, for e.g. there are many self-tallying voting protocols which do not require a

centralised authority. The write up for the literature survey is still being worked on, and it

currently exists as a set of bullet points, this will be finished at the end.

2. User stories and Moscow specification
At the end of November, I created a requirement list using the MoSCoW method to

understand what features need to be prioritised. One of the must haves was having an

ability to record attendance of people who were in the room. The should haves were voting

system, as well as storing meeting data and finally a could have was recording what was

shown in the meeting. At the start of Term 2, I was invited into an actual MDT meeting to

understand what happens, how they operate, what is discussed and how consensus is

reached on each patient. Based on the notes taken in the meeting, I created user stories to

have a clear idea on what roles would exist within the system, and how they will interact

with it.

3. UI Flow of the entire system
Following from the user stories, I also created a sketch of how the UI would look and what

the flow will be for users with different roles. While developing this, we realised that we

would need two apps, one for the participant, which would be a mobile app used for voting

and leaving comments, and one for the host of the meeting which would be a desktop/web

app – used for creating polls and editing patient data for that meeting (e.g. outcome,

diagnosis etc). Although this means more work, I’m confident I will be able to finish on time.

4. Implementation of the server
I’ve started implementing the server which will be responsible for managing meetings, users,

and posting signed data to blockchain. Interaction with the server will be through a REST

API. The design of the REST API has been finalised, and I have implemented it using a Flask

server. I’m using a no-SQL database (MongoDB) to store the meeting data. The server can

now be used to do CRUD operations on meetings, as well as fetch patient and staff data.

5. Implementation of the Web/Desktop app
In tandem with the server, I’ve also started creating the web app (which is mainly UI). The

web app is being created using Angular and Bootstrap (for CSS stylesheets). It can currently

be used to create meetings.

Remaining work to be done
• Server – By end of February

o Integration with Infoflex database – Currently I’m using a mock database for

patients. This will need to be replaced by Infoflex which is used by GOSH for storing

patient data.

o Storing meeting meta data in smart contracts – The attendance, polls and patient

data changes that take place in MDT meeting won’t be stored in the blockchain as

they are too big and will bloat up the blockchain. Instead a hash of them will be

stored. However, this creates questions about whether we should prioritise privacy

over accountability. This needs to be further discussed and researched. I aim to

finish this by end of February.

o Push notification using web sockets – When meetings are created, staff who are in

the meeting roster will need to be notified, this will be done using push notification

(via web sockets). I aim to finish this by mid-February.

o Login system and permissions to only allow people to access only their own

meetings – Login system will be done using DeeId (formerly OMNEE), which uses

zero-knowledge proofs to authenticate. Objects will need to be sent to DeeID for

signing using the user’s private key which will be stored securely in the DeeID app.

The DeeID app is currently in development (by Sirvan). I aim to finish this by end of

February.

o Implementation of auditing

o Implementation of OTP codes for the purposes of attendance – An OTP code will be

shown to users physically present in the room, which will be used to join the

meeting.

• Web App – by end of February

o Implementation of Login system

o Implementation of meeting page

o Implementation of creating poll page

o Implementation of viewing results of polls

• Mobile App – mid February to mid-March

o Implementation of new meeting notifications

o Implementation of joining a meeting

o Implementation of voting and leaving comments

o Implementation of viewing results of polls

• Testing and trailing the system – mid-March to end of March

• Finish write up – By mid-April

F Code Listing

Please note that the full source code is very big, thus I have only included the parts that are
interesting. The full source code can be obtained from the GitHub link provided in the System
Manual.

F.1 JSON Schema

F.1.1 Events Schema

1 {

2 "definitions": {},

3 "$schema": "http ://json -schema.org/draft -07/ schema#",

4 "$id": "http ://ucl.ac.uk/gosh/event_schema.json",

5 "type": "object",

6 "title": "Meeting Event Schema",

7 "required": [

8 "by",

9 "meetingId",

10 "_id",

11 "timestamp",

12 "type",

13 "content"

14],

15 "properties": {

16 "by": {

17 "$id": "#/ properties/by",

18 "type": "string",

19 "title": "By",

20 "description": "Public key of sender"

21 },

22 "meetingId": {

23 "$id": "#/ properties/meetingId",

24 "type": "string",

25 "title": "Meeting Id"

26 },

27 "_id": {

28 "$id": "#/ properties/_id",

29 "type": "string",

30 "title": "Event ID",

31 "description": "Signature of the event by the sender"

32 },

33 "timestamp": {

34 "$id": "#/ properties/timestamp",

35 "type": "number",

36 "title": "Timestamp",

37 "description": "The Unix Timestamp of the event",

38 "default": 0,

39 "examples": [

40 "1552875911"

41]

42 },

43 "type": {

44 "$id": "#/ properties/type",

45 "type": "string",

46 "enum": [

47 "start",

48 "join",

49 "leave",

67

50 "poll",

51 "pollEnd",

52 "vote",

53 "comment",

54 "reply",

55 "discussion",

56 "disagreement",

57 "patientDataChange",

58 "ack",

59 "joinAck",

60 "pollEndAck",

61 "ackError",

62 "ackEnd",

63 "end"

64],

65 "title": "EventType",

66 "description": "The type of event",

67 "examples": [

68 "start"

69]

70 },

71 "refEvent": {

72 "$id": "#/ properties/refEvent",

73 "type": "string",

74 "title": "The Reference Event",

75 "description": "All events apart from start must refer a previous event"

76 },

77 "content": {

78 "$id": "#/ properties/content",

79 "type": "object",

80 "title": "The Content"

81 }

82 }

83 }

F.1.2 Comment content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_comment_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_comment_schema.json",

5 "type": "object",

6 "title": "The Comment Content Schema",

7 "properties": {

8 "patient": {

9 "$id": "#/ properties/patient",

10 "type": "string",

11 "title": "The Patient ID",

12 "description": "The patient for which this comment applies [optional]"

13 },

14 "comment": {

15 "$id": "#/ properties/comment",

16 "type": "string",

17 "title": "The Comment"

18 }

19 },

20 "required": [

21 "comment"

22]

23 }

68

F.1.3 Discussion content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_discussion_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_discussion_schema.json",

5 "type": "object",

6 "title": "The Discussion Content Schema",

7 "properties": {

8 "patient": {

9 "$id": "#/ properties/patient",

10 "type": "string",

11 "title": "The Patient ID",

12 "description": "The ID of the patient being discussed"

13 }

14 },

15 "required": [

16 "patient"

17]

18 }

F.1.4 Join content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_join_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_join_schema.json",

5 "type": "object",

6 "title": "The Join Content Schema",

7 "required": [

8 "otp"

9],

10 "properties": {

11 "otp": {

12 "$id": "#/ properties/otp",

13 "type": "string",

14 "title": "OTP",

15 "examples": [

16 "4256"

17]

18 }

19 }

20 }

F.1.5 Poll content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_poll_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_poll_schema.json",

5 "type": "object",

6 "title": "The Poll Content Schema",

7 "required": [

8 "question",

9 "options"

10],

11 "properties": {

12 "patient": {

13 "$id": "#/ properties/patient",

14 "type": "string",

69

15 "title": "Patient ID"

16 },

17 "question": {

18 "$id": "#/ properties/question",

19 "type": "string",

20 "title": "The Question",

21 "description": "The question of the poll"

22 },

23 "options": {

24 "$id": "#/ properties/options",

25 "type": "array",

26 "title": "Options for the poll",

27 "default": null ,

28 "minItems": 2

29 }

30 }

31 }

F.1.6 Reply content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_reply_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_reply_schema.json",

5 "type": "object",

6 "title": "The Reply Content Schema",

7 "properties": {

8 "reply": {

9 "$id": "#/ properties/reply",

10 "type": "string",

11 "title": "The Reply to a comment"

12 }

13 },

14 "required": [

15 "reply"

16]

17 }

F.1.7 Start content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_start_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_start_schema.json",

5 "type": "object",

6 "title": "The Start Content Schema",

7 "default": null ,

8 "required": [

9 "otp",

10 "meeting"

11],

12 "properties": {

13 "otp": {

14 "$id": "#/ properties/otp",

15 "type": "string",

16 "title": "OTP",

17 "examples": [

18 "4256"

19]

20 },

21 "meeting": {

70

22 "$id": "#/ properties/meeting",

23 "type": "object",

24 "title": "The Content"

25 }

26 }

27 }

F.1.8 Vote content Schema

1 {

2 "definitions": {},

3 "$schema": "http ://ucl.ac.uk/gosh/event_content_vote_schema #",

4 "$id": "http ://ucl.ac.uk/gosh/event_content_vote_schema.json",

5 "type": "object",

6 "title": "The Vote Content Schema",

7 "required": [

8 "vote"

9],

10 "properties": {

11 "vote": {

12 "$id": "#/ properties/vote",

13 "type": "string",

14 "title": "Vote",

15 "description": "The vote that is being casted"

16 }

17 }

18 }

F.2 Meeting contract

1 pragma solidity ^0.5.0;

2
3
4 contract MeetingContract {

5 struct Meeting {

6 string id;

7 mapping (address => bool) participants;

8 string eventStartHash;

9 string eventEndHash;

10 mapping (address => bool) approvals;

11 }

12
13 address owner;

14 bool eventsPopulated = false;

15
16 Meeting public meeting;

17
18 constructor (string memory id , address [] memory participants) public {

19 meeting.id = id;

20 for (uint i=0; i< participants.length; i++) {

21 meeting.participants[participants[i]] = true;

22 }

23 owner = msg.sender;

24 }

25
26 modifier onlyOwner (){

27 require(msg.sender == owner);

28 _;

29 }

30

71

31 modifier onlyParticipant (){

32 require(meeting.participants[msg.sender]);

33 _;

34 }

35
36 modifier eventsNotPopulated (){

37 require (! eventsPopulated);

38 _;

39 }

40
41 function getOwner () view public returns(address) {

42 return owner;

43 }

44
45 function getMeetingId () view public returns(string memory) {

46 return (meeting.id);

47 }

48
49 function getEvents () view public returns(string memory , string memory) {

50 return (meeting.eventStartHash , meeting.eventEndHash);

51 }

52
53 function setEvents(string memory start , string memory end) public onlyOwner

eventsNotPopulated {

54 meeting.eventStartHash = start;

55 meeting.eventEndHash = end;

56 eventsPopulated = true;

57 }

58
59 function approve () public onlyParticipant{

60 meeting.approvals[msg.sender] = true;

61 }

62
63 function isApproved () view public returns(bool){

64 return meeting.approvals[msg.sender];

65 }

66 }

F.3 Meeting Server

1 import json

2 import time

3 from flask_socketio import close_room

4 from flask_socketio import emit as emit_ws

5 from flask_socketio import join_room , leave_room

6 from flask import Flask

7 from flask_cors import CORS

8 from flask_socketio import SocketIO

9 from enum import Enum

10 import traceback

11
12 import meeting_contract_helper

13 from db import Database

14 import config

15 from authorization import Role , get_role

16 import authentication

17 import copy

18 import event_schema_validator

19 import log as logger

20 import logging

72

21 from model import Event , Staff , Meeting , AckErrorContent , EventError , JoinContent ,

DeeIdLoginSigSigned , \

22 MeetingEventType , \

23 StartContent , AckJoinContent , AckEndContent , PollContent , VoteContent ,

PDCContent , AckPollEndContent

24
25 app = Flask(__name__)

26
27 app.config[’SECRET_KEY ’] = ’TVBam9S&W7IbTC8W ’

28 socketio = SocketIO(app)

29 CORS(app)

30 config = config.get_config ()

31 db = Database(config["database"]["db_name"], config["database"]["ip"], config["

database"]["port"])

32 log = logger.get_logger(’web_server_socketio ’)

33 timestamp_tolerance = 10 # seconds

34 ongoing_meetings = {}

35 auth = authentication.Auth(config)

36 smart_contract = meeting_contract_helper.MeetingContractHelper(config)

37
38
39 class OngoingMeeting:

40 def __init__(self):

41 self.otp = ’’

42 self.host = ’’

43 self.start_event = None

44 self.events = {} # type: dict[str , Event]

45 self.polls = {} # type: dict[str , Poll]

46 self.unref_events = {} # type: dict[str , Event]

47 self.session_keys = {} # type: dict[str , str]

48 self.latest_join_events = {} # type: dict[str , Event]

49
50
51 class Poll:

52 def __init__(self):

53 self.votes = {} # type: dict[str , Event]

54
55
56 def start(event , staff , meeting , roles) -> (bool , dict):

57 """

58 Handles the START event

59 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

60 dict returns the error event in case the execution failed

61 """

62 log.debug("Processing Start event")

63 # Check if the user is allowed to start

64 if Role.HOST not in roles:

65 return False , get_error_ack(event.id, event.meeting_id ,

66 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

67 details=’’))

68
69 # Check if meeting has already started , if it has send the otp , in case the

host has forgotten

70 started , _ = validate_meeting_started(event , meeting)

71 if started:

72 otp = ongoing_meetings[meeting.id].otp

73 return False , get_error_ack(event.id, event.meeting_id ,

74 content=AckErrorContent(error_code=EventError.

MEETING_ALREADY_STARTED ,

75 details=’Meeting

73

already started ,

otp : ’ + otp))

76
77 # Parse the content of event as StartContent

78 try:

79 sc = StartContent.parse(event.content)

80 dee_id_login_sig = DeeIdLoginSigSigned.parse(sc.deeid_login_sig_signed)

81 new_key = sc.key

82 uid = dee_id_login_sig.uid

83 expiry = dee_id_login_sig.expiry_time

84 sig = dee_id_login_sig.signature

85 except KeyError as ke:

86 log.error(ke)

87 traceback.print_tb(ke.__traceback__)

88 return False , get_error_ack(event.id, event.meeting_id ,

89 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

90 details="Content

doesnt have

sufficient values"

))

91
92 # Authenticate new key

93 msg = uid + staff.id + expiry + new_key

94 addr = auth.get_sig_address_from_signature(msg=msg , signature=sig)

95 ok = auth.ethkey_in_deeid_contract(addr , staff.id)

96 if not ok:

97 return False , get_error_ack(event.id, event.meeting_id ,

98 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

99 details="New pubKey

cannot be

authenticated"))

100 print("OTP: ", sc.otp)

101 # Create new meeting session

102 om = OngoingMeeting ()

103 om.otp = sc.otp

104 om.host = staff.id

105 om.start_event = event

106 om.events = {event.id: event}

107 om.polls = {}

108 om.unref_events = {}

109 om.session_keys = {

110 staff.id: new_key

111 }

112 om.latest_join_events = []

113
114 # Create smart contract for the meeting - COSTS MONEY

115 log.debug("Deploying Smart Contract ...")

116 try:

117 meeting.contract_id = smart_contract.new_meeting_contract(meeting)

118 except Exception as e: # We catch all exceptions as there are too many

119 log.error("FAILED deploying smart contract")

120 log.error(e)

121 traceback.print_tb(e.__traceback__)

122 return False , get_error_ack(event.id, event.meeting_id ,

123 content=AckErrorContent(error_code=EventError.

INTERNAL_ERROR ,

124 details=’Smart

Contract could not

be deployed ’))

74

125
126 log.debug("Deployed smart contract!")

127 log.debug(meeting.contract_id)

128 ongoing_meetings[meeting.id] = om

129
130 meeting.started = True # Set the meeting as started in the db

131 meeting.start_event_id = event.id # Set the start event

132 db.update_meeting(meeting.id, meeting.to_json_dict ())

133
134 # ACK

135 ack = get_ack(event.id , event.meeting_id)

136 return True , ack

137
138
139 def join(event , staff , meeting , roles) -> (bool , dict):

140 """

141 Handles the JOIN event

142 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

143 dict returns the error event in case the execution failed

144 """

145 log.debug("Processing Join event")

146 # Check if the user is allowed to join

147 if Role.PARTICIPANT not in roles:

148 return False , get_error_ack(event.id, event.meeting_id ,

149 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

150 details=’’))

151
152 # Check if meeting has started

153 ok, err_ack = validate_meeting_started(event , meeting)

154 if not ok:

155 return False , err_ack

156
157 # Get Meeting session details

158 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

159
160 # Check if ref event is a start event

161 if event.ref_event != meeting_session_details.start_event.id:

162 return False , get_error_ack(event.id, event.meeting_id ,

163 content=AckErrorContent(error_code=EventError.

INVALID_REF_EVENT ,

164 details=’Ref Event

must be the Start

event’))

165
166 # Parse the content of event as JoinContent

167 try:

168 jc = JoinContent.parse(event.content)

169 dee_id_login_sig = DeeIdLoginSigSigned.parse(jc.deeid_login_sig_signed)

170 new_key = jc.key

171 uid = dee_id_login_sig.uid

172 expiry = dee_id_login_sig.expiry_time

173 sig = dee_id_login_sig.signature

174 except KeyError as ke:

175 log.error(ke)

176 traceback.print_tb(ke.__traceback__)

177 return False , get_error_ack(event.id, event.meeting_id ,

178 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

179 details="Content

75

doesnt have

sufficient values"

))

180
181 # Check OTP

182 if not jc.otp == meeting_session_details.otp:

183 return False , get_error_ack(event.id, event.meeting_id ,

184 content=AckErrorContent(error_code=EventError.

BAD_OTP ,

185 details=’’))

186
187 # Authenticate new key

188 msg = uid + staff.id + expiry + new_key

189 addr = auth.get_sig_address_from_signature(msg=msg , signature=sig)

190 ok = auth.ethkey_in_deeid_contract(addr , staff.id)

191
192 if not ok:

193 return False , get_error_ack(event.id, event.meeting_id ,

194 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

195 details="New pubKey

cannot be

authenticated"))

196
197 meeting_session_details.session_keys[staff.id] = new_key

198
199 # Add them to the list of staff that have joined the meeting

200 update_attended_staff(meeting , staff)

201
202 # Join the socketio room using the sessison_id

203 join_room(meeting.id)

204
205 start_event = meeting_session_details.start_event

206 latest_join_events = meeting_session_details.latest_join_events

207
208 # ACK

209 jac = AckJoinContent(start_event , latest_join_events)

210 ack = get_ack(event.id , event.meeting_id , type=MeetingEventType.ACK_JOIN ,

content=jac)

211 return True , ack

212
213
214 def leave(event , staff , meeting):

215 """

216 Handles the LEAVE event

217 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

218 dict returns the error event in case the execution failed

219 """

220 log.debug("Processing Leave event")

221 # Check if meeting actually started

222 ok, err_ack = validate_meeting_started(event , meeting)

223 if not ok:

224 return False , err_ack

225
226 # Check if they have actually joined

227 ok, err_ack = validate_join(event , staff , meeting)

228 if not ok:

229 return False , err_ack

230
231 # Check of ref event is correct

232 ok, err_ack = validate_ref_event(event , meeting)

76

233 if not ok:

234 return False , err_ack

235
236 leave_room(meeting.id)

237
238 # ACK

239 ack = get_ack(event.id , event.meeting_id)

240 return True , ack

241
242
243 def end(event , staff , meeting , roles):

244 """

245 Handles the END event

246 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

247 dict returns the error event in case the execution failed

248 """

249 log.debug("Processing End event")

250 # Check whether they should be allowed to end

251 if Role.HOST not in roles:

252 return False , get_error_ack(event.id, event.meeting_id ,

253 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

254 details=’’))

255
256 # Check if meeting actually started

257 ok, err_ack = validate_meeting_started(event , meeting)

258 if not ok:

259 return False , err_ack

260
261 # Check if they have actually joined

262 ok, err_ack = validate_join(event , staff , meeting)

263 if not ok:

264 return False , err_ack

265
266 # Check if ref event is correct

267 ok, err_ack = validate_ref_event(event , meeting)

268 if not ok:

269 return False , err_ack

270
271 # Get Meeting session details

272 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

273
274 # ACK -- WE get ACK early as we need the signature for smart contract later ,

and there could be errors with that

275 eac = AckEndContent(list(meeting_session_details.unref_events.keys()))

276 ack = get_ack(event.id , event.meeting_id , type=MeetingEventType.ACK_END ,

content=eac)

277 return True , ack

278
279
280 def poll(event , staff , meeting , roles):

281 """

282 Handles the POLL event

283 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

284 dict returns the error event in case the execution failed

285 """

286 log.debug("Processing Poll event")

287 # Check whether they should be allowed to start a poll

288 if Role.HOST not in roles:

289 return False , get_error_ack(event.id, event.meeting_id ,

77

290 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

291 details=’’))

292
293 # Check if meeting actually started

294 ok, err_ack = validate_meeting_started(event , meeting)

295 if not ok:

296 return False , err_ack

297
298 # Check if they have actually joined

299 ok, err_ack = validate_join(event , staff , meeting)

300 if not ok:

301 return False , err_ack

302
303 # Check of ref event is correct

304 ok, err_ack = validate_ref_event(event , meeting)

305 if not ok:

306 return False , err_ack

307
308 # Get Meeting session details

309 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

310
311 # Parsing content as PollContent

312 try:

313 pc = PollContent.parse(event.content)

314 except KeyError as ke:

315 log.error(ke)

316 traceback.print_tb(ke.__traceback__)

317 return False , get_error_ack(event.id, event.meeting_id ,

318 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

319 details="Content

doesnt have

sufficient values"

))

320
321 new_poll = Poll()

322 poll.votes = {}

323
324 meeting_session_details.polls[event.id] = new_poll

325
326 # ACK

327 ack = get_ack(event.id , event.meeting_id)

328 return True , ack

329
330
331 def vote(event , staff , meeting , roles):

332 """

333 Handles the VOTE event

334 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

335 dict returns the error event in case the execution failed

336 """

337 log.debug("Processing Vote Event")

338 # Check whether they should be allowed to vote

339 if Role.PARTICIPANT not in roles:

340 return False , get_error_ack(event.id, event.meeting_id ,

341 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

342 details=’’))

343

78

344 # Check if meeting actually started

345 ok, err_ack = validate_meeting_started(event , meeting)

346 if not ok:

347 return False , err_ack

348
349 # Check if they have actually joined

350 ok, err_ack = validate_join(event , staff , meeting)

351 if not ok:

352 return False , err_ack

353
354 # Get Meeting session details

355 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

356
357 # Check if refEvent is a poll

358 poll = meeting_session_details.polls.get(event.ref_event , None)

359 if poll is None:

360 return False , get_error_ack(event.id, event.meeting_id ,

361 content=AckErrorContent(error_code=EventError.

POLL_NOT_FOUND ,

362 details=’’))

363
364 # Parsing content as VoteContent

365 try:

366 vc = VoteContent.parse(event.content)

367 except KeyError as ke:

368 traceback.print_tb(ke.__traceback__)

369 log.error(ke)

370 return False , get_error_ack(event.id, event.meeting_id ,

371 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

372 details="Content

doesnt have

sufficient values"

))

373
374 # Check if already voted

375 if event.by in poll.votes:

376 return False , get_error_ack(event.id, event.meeting_id ,

377 content=AckErrorContent(error_code=EventError.

ALREADY_VOTED ,

378 details=’’))

379
380 log.debug("Adding the vote to votes")

381 poll.votes[staff.id] = event

382
383 # ACK

384 ack = get_ack(event.id , event.meeting_id)

385 return True , ack

386
387
388 def end_poll(event , staff , meeting , roles):

389 """

390 Handles END_POLL event

391 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

392 dict returns the error event in case the execution failed

393 """

394 log.debug("Processing End Poll event")

395 # Check whether they should be allowed to end poll

396 if Role.HOST not in roles:

397 return False , get_error_ack(event.id, event.meeting_id ,

79

398 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

399 details=’’))

400
401 # Check if meeting actually started

402 ok, err_ack = validate_meeting_started(event , meeting)

403 if not ok:

404 return False , err_ack

405
406 # Check if they have actually joined

407 ok, err_ack = validate_join(event , staff , meeting)

408 if not ok:

409 return False , err_ack

410
411 # Get Meeting session details

412 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

413
414 # Check if refEvent is a poll

415 poll = meeting_session_details.polls.get(event.ref_event , None)

416 if poll is None:

417 return False , get_error_ack(event.id, event.meeting_id ,

418 content=AckErrorContent(error_code=EventError.

POLL_NOT_FOUND ,

419 details=’’))

420
421 vote_event_ids = [event.id for event in list(poll.votes.values ())]

422 poll_end_ack_event = AckPollEndContent(votes=vote_event_ids)

423
424 # ACK

425 ack = get_ack(event.id , meeting.id ,

426 type=MeetingEventType.ACK_POLL_END , content=poll_end_ack_event)

427
428 # Delete poll

429 meeting_session_details.polls.pop(event.ref_event)

430
431 return True , ack

432
433
434 def comment_reply_disagreement(event , staff , meeting , roles):

435 """

436 Handles COMMENT and REPLY and DISAGREEMENT event as they have the same

protocol

437 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

438 dict returns the error event in case the execution failed

439 """

440 log.debug("Processing Comment/Reply/Disagreement event")

441 # Check whether they should be allowed to vote

442 if Role.PARTICIPANT not in roles:

443 return False , get_error_ack(event.id, event.meeting_id ,

444 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

445 details=’’))

446
447 # Check if meeting actually started

448 ok, err_ack = validate_meeting_started(event , meeting)

449 if not ok:

450 return False , err_ack

451
452 # Check if they have actually joined

453 ok, err_ack = validate_join(event , staff , meeting)

80

454 if not ok:

455 return False , err_ack

456
457 # Check of ref event is correct

458 ok, err_ack = validate_ref_event(event , meeting)

459 if not ok:

460 return False , err_ack

461
462 # ACK

463 ack = get_ack(event.id , meeting.id)

464 return True , ack

465
466
467 def discussion(event , staff , meeting , roles):

468 """

469 Handles the DISCUSSION event

470 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

471 dict returns the error event in case the execution failed

472 """

473 log.debug("Processing Discussion event")

474 # Check whether they should be allowed to start discussion

475 if Role.HOST not in roles:

476 return False , get_error_ack(event.id, event.meeting_id ,

477 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

478 details=’’))

479
480 # Check if meeting actually started

481 ok, err_ack = validate_meeting_started(event , meeting)

482 if not ok:

483 return False , err_ack

484
485 # Check if they have actually joined

486 ok, err_ack = validate_join(event , staff , meeting)

487 if not ok:

488 return False , err_ack

489
490 # Check of ref event is correct

491 ok, err_ack = validate_ref_event(event , meeting)

492 if not ok:

493 return False , err_ack

494
495 # ACK

496 ack = get_ack(event.id , meeting.id)

497 return True , ack

498
499
500 def patient_data_change(event , staff , meeting , roles):

501 """

502 Handles PATIENT_DATA_CHANGE event

503 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

504 dict returns the error event in case the execution failed

505 """

506 log.debug("Processing PDC event")

507 # Check whether they should be allowed to start discussion

508 if Role.HOST not in roles:

509 return False , get_error_ack(event.id, event.meeting_id ,

510 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

511 details=’’))

512

81

513 # Check if meeting actually started

514 ok, err_ack = validate_meeting_started(event , meeting)

515 if not ok:

516 return False , err_ack

517
518 # Check if they have actually joined

519 ok, err_ack = validate_join(event , staff , meeting)

520 if not ok:

521 return False , err_ack

522
523 # Check of ref event is correct

524 ok, err_ack = validate_ref_event(event , meeting)

525 if not ok:

526 return False , err_ack

527
528 # Parsing content as VoteContent

529 try:

530 pdc = PDCContent.parse(event.content)

531 except KeyError as ke:

532 traceback.print_tb(ke.__traceback__)

533 log.error(ke)

534 return False , get_error_ack(event.id, event.meeting_id ,

535 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

536 details="Content

doesnt have

sufficient values"

))

537
538 # Check if patient actually exists

539 patient_id = pdc.patient

540 patient = db.get_patient(patient_id)

541 if patient is None:

542 return False , get_error_ack(event.id, event.meeting_id ,

543 content=AckErrorContent(error_code=EventError.

PATIENT_NOT_FOUND ,

544 details=’’))

545
546 # ACK

547 ack = get_ack(event.id , meeting.id)

548 return True , ack

549
550
551 def sign(event: Event):

552 """

553 signs an event

554 :return: signed Event

555 """

556 signed_event = auth.sign_event(event.to_json_dict ())

557 return Event.parse(signed_event)

558
559
560 def send(signed_event , broadcast_room=None):

561 """

562 Broadcasts an event on a room

563 """

564 if broadcast_room is None:

565 emit_ws(’room -message ’, signed_event)

566 else:

567 emit_ws(’room -message ’, signed_event , room=broadcast_room)

568

82

569
570 def update_attended_staff(meeting: Meeting , staff: Staff):

571 """

572 Updates the Database with staff members who have attended the meeting

573 """

574 if staff.id not in meeting.attended_staff:

575 meeting.attended_staff.append(staff.id)

576 db.update_meeting(meeting.id, meeting.to_json_dict ())

577
578
579 def record(event: Event , meeting: Meeting):

580 """

581 Records an event into the database

582 """

583 log.debug("Storing: " + event.id)

584 log.debug(event)

585 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

586 meeting_session_details.events[event.id] = event

587 db.insert_event(event.to_json_dict ())

588
589
590 def get_error_ack(ref_event , meeting_id , content=None):

591 """

592 Helper function to get a pre populated ACK_ERR Event

593 :return: an Event with type as ACK_ERR

594 """

595 ack_event = Event()

596 ack_event.type = MeetingEventType.ACK_ERR

597 ack_event.meeting_id = meeting_id

598 ack_event.ref_event = ref_event

599 ack_event.timestamp = int(time.time())

600
601 if content is None:

602 content = {}

603 ack_event.content = content

604 return ack_event

605
606
607 def get_ack(ref_event , meeting_id , type=MeetingEventType.ACK , content=None):

608 """

609 Helper function to get a pre populated ACK Event

610 :return: an Event with type as ACK

611 """

612 ack_event = Event()

613 ack_event.type = type

614 ack_event.meeting_id = meeting_id

615 ack_event.ref_event = ref_event

616 ack_event.timestamp = int(time.time())

617
618 if content is None:

619 content = {}

620 ack_event.content = content

621 return ack_event

622
623
624 def add_event_as_unref(meeting: Meeting , event: Event):

625 """

626 Appends the set of unreferenced events

627 """

628 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

83

OngoingMeeting

629 meeting_session_details.unref_events[event.id] = None

630
631
632 def check_and_remove_ref_event(meeting , ref_event):

633 """

634 Checks if the event exists , and removes it from the set of unreferenced events

635 """

636 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

637 meeting_session_details.unref_events.pop(ref_event , None)

638
639
640 def validate_ref_event(event , meeting) -> (bool , dict):

641 """

642 Validates a reference event (checks if it exists)

643 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

644 dict returns the error event in case the execution failed

645 """

646 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

647 ref_valid = event.ref_event in meeting_session_details.events

648
649 if not ref_valid:

650 err_ack = get_error_ack(event.id , event.meeting_id ,

651 content=AckErrorContent(error_code=EventError.

INVALID_REF_EVENT ,

652 details=’’))

653 return False , err_ack

654 return True , None

655
656
657 def validate_meeting_started(event: Event , meeting: Meeting) -> (bool , dict):

658 """

659 Validates if a meeting has started or not

660 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

661 dict returns the error event in case the execution failed

662 """

663 meeting_started = meeting.id in ongoing_meetings

664 if not meeting_started:

665 err_ack = get_error_ack(event.id , event.meeting_id ,

666 content=AckErrorContent(error_code=EventError.

MEETING_NOT_STARTED ,

667 details=’’))

668 return False , err_ack

669
670 return True , None

671
672
673 def validate_join(event , staff , meeting) -> (bool , dict):

674 """

675 Validates if a staff has joined the meeting or not

676 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

677 dict returns the error event in case the execution failed

678 """

679 joined = staff.id in meeting.attended_staff

680 if not joined:

681 err_ack = get_error_ack(event.id , event.meeting_id ,

682 content=AckErrorContent(error_code=EventError.

MEETING_NOT_JOINED ,

683 details=’’))

84

684 return False , err_ack

685
686 return True , None

687
688
689 def validate_timestamp(event) -> (bool , dict):

690 """

691 Validates the timestamp of an event

692 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

693 dict returns the error event in case the execution failed

694 """

695 current_time = int(time.time())

696 if not (current_time - timestamp_tolerance <= event.timestamp <= current_time

+ timestamp_tolerance):

697 err_event = get_error_ack(event.id, event.meeting_id ,

698 content=AckErrorContent(error_code=EventError.

TIMESTAMP_NOT_SYNC ,

699 details=’Server

Timestamp : ’ + str(

current_time)))

700
701 return False , err_event

702
703 return True , None

704
705
706 def validate_schema(event_dict) -> (bool , dict):

707 """

708 Validates the schema using JSON Schema

709 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

710 dict returns the error event in case the execution failed

711 """

712 ok, err = event_schema_validator.validate(event_dict)

713 if not ok:

714 err_event = get_error_ack("unknown", "unknown",

715 content=AckErrorContent(error_code=EventError.

MALFORMED_EVENT ,

716 details=err))

717
718 return False , err_event

719
720 return True , None

721
722
723 def validate_signature(event , staff , meeting , check_contract=False) -> (bool , dict

):

724 """

725 Validates the signature of an event

726 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

727 dict returns the error event in case the execution failed

728 """

729 log.debug(’Validating Signature ...’)

730
731 sig_addr = str(auth.get_sig_address_from_event(event.to_json_dict ()))

732
733 # Check session key , or if it doesnt exist , check with actual public key in

smart contract

734 ok = False

735 if check_contract:

736 log.debug(’Checking DeeId Contract ’)

737 ok = auth.ethkey_in_deeid_contract(sig_addr , staff.id)

85

738 log.debug(’Eth key in contract? ’ + str(ok))

739 else:

740 # Get Meeting session details to get the session key

741 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

742 meeting_session_key = None

743 if meeting_session_details is not None:

744 meeting_session_key = meeting_session_details.session_keys.get(staff.

id, None)

745
746 if meeting_session_key is None:

747 err_event = get_error_ack(event.id, event.meeting_id ,

748 content=AckErrorContent(error_code=

EventError.BAD_SESSION_KEY_SIGNATURE ,

749 details=’’))

750 return False , err_event

751
752 ok = sig_addr.lower () == meeting_session_key.lower()

753 log.debug(’Sig Addr ’ + sig_addr)

754 log.debug(’Session key ’ + meeting_session_key)

755 log.debug(’Session key matches up? ’ + str(ok))

756
757 if not ok:

758 err_event = get_error_ack(event.id, event.meeting_id ,

759 content=AckErrorContent(error_code=EventError.

BAD_SIGNATURE ,

760 details=’’))

761
762 return False , err_event

763
764 return True , None

765
766
767 def validate_preliminary_authority(event , roles) -> (bool , dict):

768 """

769 Does preliminary checks to see if the user is authorised to post the event

770 :return: returns a tuple of (bool , dict). The bool is if the execution was ok ,

771 dict returns the error event in case the execution failed

772 """

773 if not roles:

774 err_event = get_error_ack(event.id, event.meeting_id ,

775 content=AckErrorContent(error_code=EventError.

UNAUTHORISED ,

776 details=’’))

777
778 return False , err_event

779 return True , None

780
781
782 def end_meeting_session(meeting , event , signed_ack_event):

783 """

784 Gracefully ends a meeting by populating smart contract and the database

785 """

786 # Write the event hash of the meeting to smart contract - COSTS MONEY

787 meeting_session_details = ongoing_meetings.get(meeting.id, None) # type:

OngoingMeeting

788 try:

789 start_hash = meeting_session_details.start_event.id

790 end_hash = signed_ack_event.id

791 smart_contract.set_event_hash(meeting , start_hash , end_hash)

792 except Exception as e: # We catch all exceptions as there are too many

86

793 log.error(e)

794 traceback.print_tb(e.__traceback__)

795 return False , get_error_ack(event.id, event.meeting_id ,

796 content=AckErrorContent(error_code=EventError.

INTERNAL_ERROR ,

797 details=’’))

798
799 # Mark meeting as ended

800 meeting.ended = True

801 db.update_meeting(meeting.id, meeting.to_json_dict ())

802
803 print(’============= MEETING END ============= ’)

804 print(ongoing_meetings[meeting.id])

805 print(signed_ack_event)

806 ongoing_meetings.pop(meeting.id)

807 close_room(meeting.id)

808
809
810 @socketio.on(’room -message ’)

811 def room_message(event_string):

812 """

813 Main function that handles all events that enter through the web socket

814 """

815 # Parse json as dict

816 try:

817 event_json = json.loads(event_string)

818 except ValueError as ve:

819 log.error("Error Parsing room -message as JSON!")

820 log.error(ve)

821 traceback.print_tb(ve.__traceback__)

822 return json.dumps(sign(get_error_ack("unknown", "unknown",

823 content=AckErrorContent(error_code=

EventError.MALFORMED_EVENT ,

824 details=’Cant

parse

message

as JSON’)

)).

to_json_dict

())

825
826 # Validate JSON dict using schema

827 ok, err_event = validate_schema(event_json)

828 if not ok:

829 log.error("Sending error msg")

830 errormsg = json.dumps(sign(err_event).to_json_dict ())

831 log.error("======== error_msg: " + errormsg)

832 return errormsg

833
834 # Parse dict as event object

835 try:

836 event = Event.parse(event_json)

837 except KeyError as ve:

838 log.error("Error Parsing room -message!")

839 log.error(ve)

840 traceback.print_tb(ve.__traceback__)

841 return json.dumps(sign(get_error_ack("unknown", "unknown",

842 content=AckErrorContent(error_code=

EventError.MALFORMED_EVENT ,

843 details=’Cant

parse

87

message

as Event’

))).

to_json_dict

())

844
845 # Check timestamp

846 ok, err_event = validate_timestamp(event)

847 if not ok:

848 return json.dumps(sign(err_event).to_json_dict ())

849
850 # Get the staff

851 try:

852 staff = Staff.parse(db.get_staff(event.by))

853 except KeyError as ke:

854 log.error(ke)

855 traceback.print_tb(ke.__traceback__)

856 return json.dumps(sign(get_error_ack(event.id, event.meeting_id ,

857 content=AckErrorContent(error_code=

EventError.STAFF_NOT_FOUND ,

858 details=’’)))

.

to_json_dict

())

859 except TypeError as te:

860 log.error(te)

861 traceback.print_tb(te.__traceback__)

862 return json.dumps(sign(get_error_ack(event.id, event.meeting_id ,

863 content=AckErrorContent(error_code=

EventError.STAFF_NOT_FOUND ,

864 details=’’)))

.

to_json_dict

())

865
866 # Get the meeting

867 try:

868 meeting = Meeting.parse(db.get_meeting(event.meeting_id))

869 except KeyError as ke:

870 log.error(ke)

871 traceback.print_tb(ke.__traceback__)

872 return json.dumps(sign(get_error_ack(event.id, event.meeting_id ,

873 content=AckErrorContent(error_code=

EventError.MEETING_NOT_FOUND ,

874 details=’’)))

.

to_json_dict

())

875
876 except TypeError as te:

877 log.error(te)

878 traceback.print_tb(te.__traceback__)

879 return json.dumps(sign(get_error_ack(event.id, event.meeting_id ,

880 content=AckErrorContent(error_code=

EventError.MEETING_NOT_FOUND ,

881 details=’’)))

.

to_json_dict

())

882
883 # Check signature , before trusting anything it says

88

884
885 if event.type in [MeetingEventType.JOIN , MeetingEventType.START]: # We check

contract for join and start

886 ok, err_event = validate_signature(event , staff , meeting , check_contract=

True)

887 if not ok:

888 return json.dumps(sign(err_event).to_json_dict ())

889 else:

890 ok, err_event = validate_signature(event , staff , meeting)

891 if not ok:

892 return json.dumps(sign(err_event).to_json_dict ())

893
894 # Get the roles

895 roles = get_role(staff , meeting)

896
897 # A preliminary authority check to see if the user can make any statements

about the meeting

898 ok, err_event = validate_preliminary_authority(event , roles)

899 if not ok:

900 return json.dumps(sign(err_event).to_json_dict ())

901
902 # Get the event type

903 event_type = MeetingEventType(event.type)

904 ack_event = None

905 ok = False

906 end_meeting = False

907 send_privately = False

908
909 if event_type == MeetingEventType.START:

910 ok, ack_event = start(event , staff , meeting , roles)

911
912 if event_type == MeetingEventType.JOIN:

913 ok, ack_event = join(event , staff , meeting , roles)

914
915 if event_type == MeetingEventType.LEAVE:

916 ok, ack_event = leave(event , staff , meeting)

917
918 if event_type == MeetingEventType.POLL:

919 ok, ack_event = poll(event , staff , meeting , roles)

920
921 if event_type == MeetingEventType.VOTE:

922 ok, ack_event = vote(event , staff , meeting , roles)

923
924 if event_type == MeetingEventType.POLL_END:

925 ok, ack_event = end_poll(event , staff , meeting , roles)

926
927 if event_type == MeetingEventType.COMMENT or event_type == MeetingEventType.

REPLY or event_type == MeetingEventType.DISAGREEMENT:

928 ok, ack_event = comment_reply_disagreement(event , staff , meeting , roles)

929
930 if event_type == MeetingEventType.DISCUSSION:

931 ok, ack_event = discussion(event , staff , meeting , roles)

932
933 if event_type == MeetingEventType.PATIENT_DATA_CHANGE:

934 ok, ack_event = patient_data_change(event , staff , meeting , roles)

935
936 if event_type == MeetingEventType.END:

937 ok, ack_event = end(event , staff , meeting , roles)

938 if ok:

939 end_meeting = True

940

89

941 if not ok: # If not ok we send the error ack event privately

942 return json.dumps(sign(ack_event).to_json_dict ())

943 else:

944 # If an event has been referenced

945 check_and_remove_ref_event(meeting , event.ref_event)

946
947 # Add ack and event to unreferenced events

948 add_event_as_unref(meeting , event)

949 add_event_as_unref(meeting , ack_event)

950
951 # Sign the ack

952 signed_ack_event = sign(ack_event)

953
954 if not send_privately: # Only Broadcast if the send_privately is set to

False

955 # Broadcast event

956 send(json.dumps(event.to_json_dict ()), broadcast_room=meeting.id)

957 send(json.dumps(signed_ack_event.to_json_dict ()), broadcast_room=

meeting.id)

958
959 record(event , meeting)

960 record(signed_ack_event , meeting)

961
962 if end_meeting:

963 end_meeting_session(meeting , event , signed_ack_event)

964
965 # Send the ack event to the user privately as well

966 return json.dumps(signed_ack_event.to_json_dict ())

967
968
969 if __name__ == ’__main__ ’:

970 socketio.run(app , host="localhost", port =51235)

F.4 Meeting Contract Helper

1 from web3.auto import w3, Web3

2 import json

3
4 from model import Meeting

5 import log as logpy

6
7 log = logpy.get_logger(’contract_helper ’)

8
9

10 class MeetingContractHelper:

11 """

12 Helper class to interface with the Meeting Contract

13 """

14 def __init__(self , config):

15 self.config = config

16
17 # Get the ETH Key

18 self.auth_key_path = config["auth"]["key_path"]

19
20 # Get Smart contract params

21 self.block_chain_provider_url = config["smart_contract"]["bc_provider_url"

]

22 self.compiled_contract_path = config["smart_contract"]["

meeting_contract_path"]

23 self.chain_id = config["smart_contract"]["chain_id"]

24 self.max_gas = config["smart_contract"]["max_gas"]

90

25
26 # Get the private key from the keyfile

27 with open(self.auth_key_path) as keyfile:

28 encrypted_key = keyfile.read()

29 keyfilejson = json.loads(encrypted_key)

30 self.server_private_key = w3.eth.account.decrypt(encrypted_key , "leet"

) # TODO: Ask user for passphrase

31 self.server_eth_address = keyfilejson[’address ’]

32
33 # Get the Meeting contract ABI from the ABI file

34 with open(self.compiled_contract_path) as contract_file:

35 contract_file_data = contract_file.read()

36 contract_json = json.loads(contract_file_data)

37 self.contract_abi = contract_json[’abi’]

38 self.contract_bytecode = contract_json[’bytecode ’]

39
40 self.w3 = Web3(Web3.HTTPProvider(self.block_chain_provider_url))

41
42
43 def new_meeting_contract(self , meeting : Meeting):

44 """

45 Deploys a new meeting contract

46 :param meeting: the meeting object associated with contract

47 :return: Ethereum address of the contract

48 """

49 contract = w3.eth.contract(abi=self.contract_abi , bytecode=self.

contract_bytecode)

50 nonce = w3.eth.getTransactionCount(w3.toChecksumAddress(’0x’ + self.

server_eth_address))

51 log.debug(’Nonce: ’ + str(nonce))

52 staff_dee_ids = [Web3.toChecksumAddress(staff_dee_id) for staff_dee_id in

meeting.staff]

53 print(staff_dee_ids)

54 contract_txn = contract.constructor(meeting.id , staff_dee_ids).

buildTransaction ({

55 ’nonce’: nonce ,

56 ’chainId ’: self.chain_id ,

57 ’gas’: 2000000

58 })

59 signed = w3.eth.account.signTransaction(contract_txn , private_key=self.

server_private_key)

60 contract_txn_hash = w3.eth.sendRawTransaction(signed.rawTransaction)

61 log.debug(’Waiting for contract to be mined ...’)

62 tx_receipt = w3.eth.waitForTransactionReceipt(contract_txn_hash)

63 return str(tx_receipt.contractAddress)

64
65
66 def set_event_hash(self , meeting : Meeting , start_event_hash : str ,

end_event_hash : str):

67 """

68 Sets the Event Hash in the Meeting Contract

69 :param meeting: the Meeting object associated with the contract

70 :param start_event_hash: the id of START event

71 :param end_event_hash: the id of ACK_END event

72 :return: the TX reciept

73 """

74 mdt_meeting = w3.eth.contract(

75 address=meeting.contract_id ,

76 abi=self.contract_abi ,

77)

78 nonce = w3.eth.getTransactionCount(w3.toChecksumAddress(’0x’ + self.

91

server_eth_address))

79 f_call_txn = mdt_meeting.functions.setEvents(start_event_hash ,

end_event_hash).buildTransaction ({

80 ’nonce’: nonce ,

81 ’chainId ’: self.chain_id ,

82 ’gas’: 2000000

83 })

84 signed = w3.eth.account.signTransaction(f_call_txn , private_key=self.

server_private_key)

85 contract_txn_hash = w3.eth.sendRawTransaction(signed.rawTransaction)

86 print(’Waiting for TX to be mined ...’)

87 tx_receipt = w3.eth.waitForTransactionReceipt(contract_txn_hash)

88 return tx_receipt

92

	Introduction
	Motivation and Problem Description
	Aims and Objectives
	Goals and Deliverables
	Report Outline

	Context
	Blockchain
	Bitcoin
	Ethereum and dApps
	Quorum

	Identity
	DeeID

	Problem Research
	MDT meeting

	Development Research
	Truffle Suite
	Web3.js and Metamask
	Angular Framework
	Flask

	Requirement Analysis
	Definitions
	Functional Requirements
	Security, Integrity and Transparency Requirements
	Non functional requirements
	Stakeholders
	Use Cases

	Design and Implementation
	Overview
	C-meet components
	DeeID components
	Ethereum Node

	Login with DeeID
	Web App
	MVC Architecture
	RxJS
	Metamask

	Servers
	Meeting Server (Websocket Server)
	REST API Server

	Attendance
	The Events Protocol
	Starting and Joining a meeting
	Polls and Voting
	Comment and Reply
	Discussion
	Disagreement
	Patient Data Change
	Ending a meeting
	Data Integrity and Proof of Inclusion

	Blockchain and Meeting Contract
	Implementation Choices
	JSON and JSON Schema
	Session Keys and Signature Scheme
	Websockets vs Peer to Peer (WebRTC)

	Testing
	Meeting Server
	Unit Tests
	Integration Testing

	REST API Server
	 Mock Data Generation

	UI Testing
	Smart Contract Testing
	End to End Testing
	Testing Summary

	Evaluation
	Goals Evaluation
	Requirements Evaluation
	Cost Evaluation
	Data generated by the Events Protocol
	Cost of interacting with the smart contract

	Limitations
	Summary

	Conclusions and Future Work
	Future Work
	Mobile client for participants
	Integration with InfoFlex system
	Improving the Voting system
	Investigation into Private/Hybrid Blockchain
	Further tests

	Conclusion

	Miscellaneous
	Size of events

	Test Listings
	End to End Test Descriptions

	Use Cases
	Use Case Documents

	System Manual
	Setting up the database
	Setting up the servers
	Setting up the web app
	Setting up DeeID app
	Setting up DeeID WS server
	Setting up Ganache (Private Ethereum network)
	Setting up Metamask
	Topping up the server Ethereum account

	Documents
	Project Plan
	Interim report

	Code Listing
	JSON Schema
	Events Schema
	Comment content Schema
	Discussion content Schema
	Join content Schema
	Poll content Schema
	Reply content Schema
	Start content Schema
	Vote content Schema

	Meeting contract
	Meeting Server
	Meeting Contract Helper

