
Imperial College of Science, Technology and Medicine
Department of Computing

A String of Ponies

Transparent Distributed Programming with Actors

Sebastian Blessing

Supervised by Prof. Sophia Drossopoulou and Sylvan Clebsch

Submitted in partial fulfilment of the requirements for the MSc Degree
in Computing Science (Software Engineering) of Imperial College London,

September 2013

Abstract

We develop an extension to a concurrent, actor-based language runtime called Pony with the

ability of transparent distributed programming, whereby programmers do not need to be aware of

the underlying distributed system. Thus, any Pony application can be executed in a concurrent

setting as well as in a distributed setting without any changes to the code being necessary.

A distributed cluster of Ponies, managed based on a tree network topology, is easy to maintain

and can be extended with slave nodes at runtime without any reconfiguration being necessary. We

propose a joining algorithm which guarantees that the underlying tree topology is almost balanced

at any point in time.

Distribution is reflected through actor mobility. We develop a hierarchical work stealing al-

gorithm with constant space complexity, specifically tailored for tree network topologies. Work

stealing is provably optimal for task and data parallelism. Furthermore, the implementation of

the proposed distributed work stealing algorithm is itself based on the actor programming model,

which allowed us to extend Pony without sacrificing the performance of single-node configurations.

Causal message delivery is a valuable property for message-passing systems, contributing to

efficiency and improved reasonability. Pony guarantees causality for both the concurrent and

distributed setting without any additional software overhead.

A property unique to Pony is fully concurrent garbage collection of actors. We present an

extended algorithm for concurrent garbage collection (including cycle detection) in distributed

actor-based applications. Concurrent Pony programs are terminated based on quiescence. In order

to retain that property in a distributed context, we propose a protocol for detecting quiescence in

distributed actor systems. Both schemes strongly depend on causal message delivery.

We evaluate our implementation based on a micro benchmark that allows us to simulate different

application characteristics. Pony achieves considerable speed-up for computation-bound scenarios.

i

ii

Acknowledgements

I would like to acknowledge the support and input from a number of people who helped me to

bring this thesis into being.

Firstly, my two supervisors, Prof. Sophia Drossopoulou and Sylvan Clebsch, deserve my thanks

for guiding me through this project, for investing more time than I could have ever expected and

for offering me the opportunity to work on a programming language runtime. I would also like to

thank them for changing my perspective on the importance of type systems for reasonability and

efficiency, as well as for influencing my view on what future programming languages could be like.

I would also like to thank Prof. Alexander Wolf for having increased my interest in distributed

systems and algorithms as well as for preparing me with the necessary knowledge for a project like

this, which helped me to identify and overcome the challenges that came up during the development

of Distributed Pony.

I owe a huge debt to my parents, Dieter and Monika, for having supported me in pursuing my

dreams. Thanks for introducing me to the world of computers at a very young age and for allowing

me the explore my interests. Without them, I would have never reached this point. I must also

thank my siblings, Alexander and Ann-Kathrin, for sharing their experiences, which made so many

things easier for me.

I thank Reuben Rowe for having mentored me throughout this Masters program. I would like

to extend my appreciation to the SLURP group of Imperial College London for the interesting

discussions on various research topics of computer science.

I thank Florian Oswald for his friendship and for joining me in founding a company. I am

looking forward to developing innovative software systems, solving interesting problems and seeing

our company evolve.

Finally, I would like to thank Prof. Dr. Werner Zorn for having provided me with advice

throughout my entire university career as well as Prof. Dr. h.c. Hasso Plattner for supervising my

undergraduate studies at HPI Potsdam and for supporting me in evolving as a software engineer.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Background 3

2.1 Programming Distributed Systems . 4

2.2 The Actor Programming Model . 5

2.3 Causality in Distributed Systems . 6

2.4 Failure Detection in Asynchronous Networks . 7

2.5 Scheduling of Tasks . 9

2.5.1 Preemptive and Cooperative Scheduling in Operating Systems 9

2.5.2 Priority-based Scheduling . 11

2.5.3 Operating System Scheduling vs. Actor Runtime Scheduling 11

2.5.4 Work Stealing . 12

2.6 Pony . 14

2.6.1 The Pony Actor . 15

2.6.2 Message Queues . 18

2.6.3 Work Stealing Queue . 20

2.6.4 The Scheduler . 22

2.6.5 Pool Allocator . 23

2.6.6 Garbage Collection . 23

2.6.7 Termination . 24

2.7 Available Actor Languages and Runtimes . 25

2.8 Conclusions . 26

3 Distributed Pony 27

3.1 Overview of Runtime Components . 28

3.2 Asynchronous I/O Multiplexing . 29

3.2.1 Epoll, KQueue and Kevent . 30

3.2.2 Select and Poll . 30

3.2.3 Scheduling I/O Events . 33

3.2.4 Framed Network Protocol . 34

v

3.3 The Distribution Actor . 36

3.3.1 Non-blocking Sockets . 37

3.3.2 Connecting Slave Nodes and Routing . 39

3.4 Serialization and Deserialization . 41

3.4.1 Stream Buffer and I/O Vector . 42

3.4.2 Pony Trace . 43

3.5 Distributed Work Stealing . 45

3.5.1 Migration and Actor Proxies . 46

3.5.2 Causality-aware Migration Protocol . 48

3.5.3 Handling Actor References and Actor Identity Comparison 50

3.5.4 Hierarchical Work Stealing . 52

3.5.5 Collapsing Actor Proxies . 54

3.6 Distributed Object Identity Comparison . 55

3.7 Distributed Garbage Collection . 57

3.7.1 Deferred Reference Counting and Passive Object Collection 57

3.7.2 Active Object or Actor Collection . 58

3.7.3 Centralized Cycle Detector . 60

3.7.4 Hierarchical Cycle Detection . 61

3.8 Termination . 63

4 Causality in Tree Network Topologies 66

4.1 Informal View . 66

4.2 Formal Argument . 67

5 Evaluation 68

5.1 Test Application . 69

5.2 Message-bound vs. Computation-bound . 70

5.3 Programming Example - Mandelbrot Fractals . 73

6 Conclusion 77

6.1 Contributions . 77

6.2 Future Work . 79

A Non-blocking reads 81

A.1 Pseudocode - socket read handler: collect() . 81

B Micro Benchmark 82

Bibliography 85

vi

Chapter 1

Introduction

In the last several years, the development of computer systems has come to an inflection point –
the “free lunch is over” [117]. Increasing demands on complex software applications integrating
multiple applications and various data sources for potentially massive amounts of users require
to utilize the underlying hardware resources as efficiently as possible. However, the amount of
computing power that can be put into a single machine is physically limited. As a consequence,
applications need to be able to utilize computation resources from multiple machines that are
(possibly) distributed over a large network.

Programming languages are the interface between software developers and the underlying hard-
ware resources. Not only is it important to develop languages that provide levels of abstraction for
easier development and improved maintainability but also to provide runtime systems that utilize
available hardware resources efficiently. This should be a property that holds also for a distributed
set of computers within a cluster and not only for locally available resources. High levels of ab-
straction and high performance must not necessarily be contradicting requirements for a language
runtime but it is difficult to achieve both goals. It is important in the design process of such a
language to balance design decisions along both goals which may require prioritization of features.
Thinking for the long term is extremely vital and therefore design decisions need to be evaluated in
terms of the impact they have on upcoming features in future versions. Furthermore, once decisions
have been made, the implementation is still a challenging task to accomplish.

Pony, developed at Imperial College London, is an actor-model [63, 2], object-oriented, strongly-
typed programming language for high performance computing. Concurrency is reflected through
sending asynchronous messages between actors and dynamically creating new actors [2]. Incoming
messages are buffered in an actors mailbox. One important property of Pony is causal message
delivery. Each message is an effect, and previously sent or received messages are a cause of that
effect [30]. Causal message delivery guarantees that the cause of a message is always enqueued in
an actors mailbox before its effect [30]. Besides being helpful for reasoning about programs, this
property is crucial for a feature unique to Pony : fully concurrent garbage collection of actors [30].

The motivation for programming based on message-passing is to encourage the decomposition of
applications into self-contained autonomous components. Components are independent from each
other and there is no need to care about data races within applications, which should ultimately aid
in ease of development and maintainability. At the same time, because low-level synchronization for
parallel applications is not required to be done by the programmer, efficiency can be significantly
improved depending on the underlying runtime implementation (and type system). The Actor
model is inherently well suited for distributed computing [2].

The goal of this project is to enable Pony for transparent distributed programming. We refer to
it as transparent programming, because the degree of distribution is not exposed to the programmer.
Any application written in Pony should scale in a distributed network of runtime process without
any changes to the code being necessary. This task is challenging, because we want to achieve
that any conceptual property given by Pony in the concurrent setting also holds in a distributed
context.

1

Our approach for transparent distributed programming builds upon actor mobility. We propose an
implementation of a distributed scheduler that allows to efficiently distribute actors in a network of
computers. It is desirable to utilize a computer cluster in a balanced manner, rather than having
unused resources running in idle state. The scheduling mechanism used for the Pony runtime is
known as work stealing [15, 37, 106, 101]. Local processor cores and (in the distributed setting) cores
from remote machines that run in idle state (“thieves”) steal work from busy nodes (“victims”)
[15].

The challenge is to extend Pony for distributed computing without sacrificing the concurrent
performance or trading off competing factors against each other between concurrency and distri-
bution. Preferably, both parts should be entirely independent from each other. This is difficult
because it is not sufficient to just implement a scheduler, we also need to guarantee that the lan-
guage semantics of Pony also hold in the distributed setting, such as garbage collection of actors
and passive objects, distributed termination, causal message delivery as well as object and actor
identity comparison.

This thesis provides the following contributions:

• An algorithm with constant space complexity for hierarchical work stealing in tree networks.

• A joining algorithm to add new slave nodes to a cluster of Ponies at runtime.

• Deferred reference counting in distributed systems.

• Distributed hierarchical garbage collection of actors.

• Causal message delivery in distributed systems with no software overhead.

• Termination of actor applications based on distributed quiescence.

Outline of the Thesis

This thesis is split up into three parts. Chapter 2 motivates the need for a new programming lan-
guage for concurrent and distributed computing, gives an overview of the actor model and discusses
the challenges of distributed programming. After having provided an overview on scheduling of
tasks, we discuss implementation details of the concurrent Pony runtime.

Chapter 3 describes the implementation of Distributed Pony. This includes a distributed sched-
uler (section 3.5), object identity comparison (section 3.6), garbage collection in section 3.7 and
a scheme for distributed termination of actor-based applications (section 3.8). Distributed Pony
guarantees causal message delivery with no software overhead. An informal view on the problem
of causality in distributed systems as well as a formal argument for Pony’s causality property is
provided in chapter 4.

We explicitly decided not to implement our own benchmark suite for Pony. Instead, chapter
5 evaluates the performance of Pony for computation-bound and message-bound scenarios. We
conclude and give an outlook for future work in chapter 6.

The algorithms and protocols discussed in this thesis have been developed in collaboration with
Sylvan Clebsch and Prof. Sophia Drossopoulou.

2

Chapter 2

Background

Distributed Computing focuses on the development of software systems where different components
are located on physically distinguishable machines that are connected to a network of computers
[34]. Communication is implemented by sending messages between components using a network
protocol such as TCP [22, 69, 71]. Components in this context does not only mean independent ap-
plications and services are integrated to a new system, but also parts of the same application which
run on different machines in the network, where each part is critical to the overall application or
is used as a replication factor. Thus, the motivation for developing distributed applications is scal-
ability and fault-tolerance. In this work, we focus on the programming of distributed applications
rather than on solving specific problems in an asynchronous network of processes (e.g. consensus
or asynchronous replication).

According to Coulouris et al, the main characteristics of such a system are concurrency of
components, the lack of a global notion of time, as well as independent and partial failure [34].
Technically, the main difference between a parallel system and a distributed system is that the
former consists of a set of processors that share the same virtual memory to exchange information,
whereas independent components running on different machines need to exchange information using
message passing, as there is no shared memory.

Evidently, programming languages are required to allow for the development of distributed pro-
grams. How distribution can be expressed within programs and to which extend the programmer is
exposed to the physical topology of a network of computers differs largely between languages and
also depends on the programming model used. Section 2.1 motivates the need for programming
language support for distributed systems. The Actor model is the basis of Pony and is therefore
covered in more detail in section 2.2.

To which extent the lack of global time in distributed systems is a problem and why causal-
ity might be desirable – and in fact is required in the context of Pony – is discussed in section
2.3. Asynchronicity through sending messages between components comes with the problem of
partial failure. As Distributed Pony, developed for this project, transparently migrates actors from
one machine to another, this problem also applies for the implementation of a programming lan-
guage runtime. Although failure detection is not the main topic of this work, it shall not remain
unmentioned in this thesis. Thus, section 2.4 gives an informal view on the problem.

The remainder of this chapter provides a short description of techniques for assigning CPU time
to entities of execution (i.e. scheduling) as well as a detailed overview of the single-node imple-
mentation of Pony, which is the basis of this work. Note that this project focuses on the runtime
implementation and therefore a description of the Pony syntax and the operational semantics is
not provided.

3

2.1 Programming Distributed Systems

Network technologies, the upcome of the Internet and scalability requirements of large software
systems brought about the need for distributed programming. Although distributed systems have
been a research topic for many years [78, 62, 105, 57], the “fallacies” [36] of these systems and their
programming are often underestimated [74].

Many approaches to support distributed programming have been proposed. Kendall et al ob-
served [74], that especially for object oriented programming, many of these approaches aimed in
integrating program distribution seamlessly, such that local and remote objects are treated (almost)
the same. A widely-used implementation of this idea is Java RMI (Remote Method Invocation) [68],
which is a high level and object-based implementation of remote procedure calls (RPCs) [123, 10].
However, the fact that methods of remote objects are called in the same way as methods of local
objects is problematic. It creates the illusion that invoking a method on a remote object compared
to a local object has no effect on a program’s correctness. Similar approaches prior to Java RMI,
such as CORBA [54], suffer the same weakness.

The problem is partial failure. For example, a remote invocation can fail before the call was
executed or it has been executed at the remote site but the response got lost. Whereas the former
can be handled with timeout mechanisms provided by the underlying network protocol, the latter
is more complicated, because the client side cannot detect whether the method was invoked or
not. The implementation of the remote interface would require to cater for that, which somehow
contradicts the idea of treating remote and local objects the same way. Furthermore, reasoning
about such programs is difficult [74].

Lamport proposes that the problem of partial failure – among others – can be solved based
on Paxos [77], a family of algorithms developed for various purposes in the context of distributed
systems. The idea is to implement a distributed state machine that caters for partial failure
by construction. Although it is a valid solution, this approach does not help in simplifying the
programming of such systems, or increasing the programmers productivity.

Evidently, language support (not just library support) for the development of reliable distributed
applications is indispensable. Prominent examples of languages that were specifically designed for
concurrent and distributed programming tend to be functional in nature (e.g. Erlang [38] or Mozart
[31]). However, functional programming is too restrictive and feels inconvenient. Erlang implements
the Actor programming model (but calls them processes). However, distributed applications are
built in way that the degree of distribution and participating nodes are actually visible to the
programmer. The fact that the distribution is directly embedded into the code makes it more
difficult to program applications that scale dynamically on any kind of computer cluster. Scala
[40], another object-based and functional language (at least syntactically), also implements the
Actor paradigm, but is not suitable for distributed computing without extensive use of external
libraries such as Apache Thrift [3].

Motivating the need for a new programming language is difficult. However, in the case of Pony
and compared to available languages based upon the Actor paradigm, we believe that developing a
new language is an exciting endeavor to undertake (for both concurrent and distributed program-
ming). Furthermore, our approach to first develop the runtime and then provide a language that
fits it, is radically different. Although future work, the design of a type system specifically tailored
for the developed runtime can aid in efficiency and programmer productivity to a large extent. At
the same time, next to the programming model chosen, a type system contributes to the way we
reason about programs. We believe that important contributions can be made to both the way we
program and how we reason about concurrent and distributed applications.

4

2.2 The Actor Programming Model

There are many different ways in designing a programming language. One important step is to
decide whether a language should be intrinsically connected to a programming model or should
be as generic and unbiased as possible to provide the maximum degree of flexibility. The choice
of the programming paradigm affects the style of programming and possible pitfalls in program
development (e.g. inefficient programming).

In the context of today’s requirement of high performance, we need to choose a paradigm that
supports parallelism. How programs are mapped to multi-core hardware resources is not only im-
portant for programming convenience but also vital for reasoning about programs and debugging.
It is questionable if using threads for concurrency directly within a language is an appropriate solu-
tion to these problems. The need for synchronization mechanisms to avoid races makes developing
applications fundamentally error prone and unnecessarily complex for the programmer and distract
from the actual problem to solve. Additionally, the fact that the provided degree of fine-grained
synchronization leads to the opportunity to reach a maximum degree of efficiency and concurrency
within a system is disputable. Parallelizing compilers or high level synchronization primitives (e.g.
monitors) are not satisfying due to the fact that they inherently do not reach a high degree of
concurrency [64, 58, 59, 20, 19, 13]. Type systems that guarantee race-free execution could be an
answer to many of the problems described, but require the programmer to understand and write
(possibly) complex type annotations [18, 29, 35, 43].

One of the goals set for the Pony programming language and this project is to show that
using a model that provides high levels of abstraction can be implemented in an efficient manner
whilst providing high performance and safety at the same time without sacrificing programming
convenience. Similar to the theoretical studies discussed in Tony Hoare’s book “Communicating
Sequential Processes” [65], the programming model used for Pony is based on an abstract interface
(called an Actor) for switching the state of objects by sending asynchronous messages (usually
point-to-point). This is called the Actor programming model, proposed by Hewitt et al in 1973
[63, 2].

Each actor maintains its own heap to which no other actor holds references to. This means
that the state itself is contained and protected within the actor and can only be manipulated
through messages. For this purpose, each actor has a unique identifier (address) and maintains
it’s own message queue to buffer incoming messages from other actors. Adding a message to this
queue must be an atomic operation. This approach entirely removes the need for shared memory
synchronization. The only point of synchronisation is an actor’s message queue, which can be
implemented efficiently with lock-free atomic memory operations such as k-word Compare-and-
Swap [55] or Test-and-Set [52]. Furthermore, from a language perspective, there is no difference
between an actor being located on the same machine or on a remote host. This makes the Actor
programming model inherently suitable for distributed computing. An actor consists of three
attributes/actions [63]:

• Send a finite number of asynchronous messages to other actors

• Receive messages from other actors and react based on the type of a message

• Create a finite number of new actors

As we intend to support the transparent sending of messages between spatially separated actors,
guaranteed delivery needs to be considered by the Distributed Pony runtime and the underlying
network stack. From a programming perspective, implementing parallel, concurrent and distributed
applications through sending messages between various components of the system (which are im-
plemented as actors) is a natural way of thinking and results in a modular software design with
loose coupling. Furthermore, as race conditions are not a matter in this context, and if causal
message delivery can be guaranteed (which is not a part of the actor model itself, see section 2.3),
debugging and reasoning about programs based on this model can be significantly improved [110].

Note that because communication is implemented through messages; values, variables or objects
could possibly be located in the heap of several actors at the same time which might result in

5

memory overhead. This is due to the nature of the message passing paradigm, where objects are
usually handled as value types instead of referenced objects that could be owned by another process.
Within this work, we will mainly focus on the implementation of actors in the runtime rather than
putting it into a context of theoretical foundations of message-passing, which are discussed in more
detail in [63, 65, 102, 103].

In Pony, actors are the structure that the runtime scheduler is operating on. It will be shown in
this work that employing the actor programming model does not only have positive effects from a
programmers perspective who uses the Pony language, but also on efficient scheduling of network
events as well as garbage collection.

2.3 Causality in Distributed Systems

The non-deterministic nature of distributed systems and the lack of global time and state make
development and debugging of distributed applications a challenging task. Reasoning about dis-
tributed programs and algorithms strongly depends on the ability of observing the causal order
of events that as a whole carry out a computation task [110, 108]. Besides failure detection and
reproducibility in the context of such systems [24, 97], causality is one of the most important issues
for developing reliable and efficient asynchronous distributed systems (e.g. debugging [110], global
state detection [25], efficient communication protocols [8, 9] as well as Pony’s concurrent garbage
collection mechanism [30]).

Distributed systems are commonly modeled as a set of n ∈ N (usually sequential) processes
p1, ...pn which are spatially separated and communicate only through messages [110, 76]. Generally,
Lamport classifies a system as distributed, if the message transmission delay from one process to
another is not negligible compared to the time between the occurrence of two events in a single
process [76]. Lamport introduced the notion of logical time [76] to obtain a time diagram of events
in a distributed system. The idea is that maintaining an order of events is possible without the
availability of perfectly synchronized clocks between all participants. Thus, time diagrams of events
that can be obtained with logical clocks are an equivalent representation of the events from the
perspective of distributed computation (i.e. a trace of the progress made within the system). A
precise time ordering is not necessary as it is biased by unnecessary effects like network delay
and relative speeds of independent processors. Hence, the causal order of events is sufficient for
reasoning about distributed programs.

For this purpose, Lamport introduced the causality relation “happens before” [76] to impose
a partial order on a set of events. Rather than implementing causality through physical clocks,
logical time is sufficient to check whether a given program meets the specification in terms of
events that can be observed during runtime [76]. Furthermore, using physical clocks would require
some synchronization mechanism, which is unnecessary overhead [76]. An event e1 happens-before
another event e2 (denoted as e1 → e2), iff [76]:

1. e1 and e2 belong to the same (sequential) process and e1 precedes e2 or,

2. e1 is the sending of a message in process p1 and e2 is the receipt of that message in process
p2.

3. e1 → e2 ∧ e2 → e3 ⇒ e1 → e3 (transitivity)

4. e1 6→ e1 (irreflexive)

Events that cannot be correlated to each other using the above rules are said to be concurrent
(i.e. neither causally effects the other) [76]. Logical clocks can be implemented through having
each process maintaining a local clock value (e.g. a simple integer). Thus, if e1 → e2, then the
corresponding clock values C should obey Ce1 < Ce2 . This is guaranteed if each process “ticks over”
[76] the local clock value at each occurrence of a local event. If an event is caused by the receipt
of a message from another process p′, then the clock value must be set to max(Clocal, Cp′ + 1).
This requires every message to contain the local clock value of the sending process. Note that

6

Ce1 < Ce2 does not imply e1 → e2, because local clock values are independent between processes
that never communicated. This is a problem, because it is not possible to determine events that are
causally independent by simply comparing their clock values. However, this problem can be solved
by using vector clocks [96, 41], where each process maintains a vector of clock values with as many
elements as processes in the system. This causes that clocks of processes that never communicate
get eventually “synchronized”. The rules mentioned above must simply be applied per element.
The negative impact of vector clocks on performance is self-evident, especially in systems with
many processes/nodes.

The garbage collection mechanism developed for Pony strongly depends on causal delivery of
messages. Furthermore, the examples mentioned above show that such a property is highly desirable
for a programming language that supports distributed computing. It seems complex and expensive
to provide a runtime implementation that enforces causal delivery. In fact, maintaining vector
clocks includes substantial computational overhead and even with properly maintained clocks,
reconstructing the causal relation of events is expensive [110, 27, 111].

It has been previously mentioned that designing a programming language with certain properties
(e.g. causality) and achieving high performance should not be contradicting requirements but can
be difficult to achieve at the same time. Guaranteeing message causality is key to providing a
language where distributed computation is transparent to the programmer, such that programs
running on a single machine can be executed on arbitrarily many nodes without any changes to the
code being necessary or that the programmer needs to be aware of the underlying hardware and
network topology. However, this degree of transparency is only sensible if Distributed Pony can
cope with failures appropriately, because distributing computation comes with the cost of partial
failure.

2.4 Failure Detection in Asynchronous Networks

A consequence of implementing the Actor programming model is that communication between pro-
gram components is reflected through asynchronous messages. Scheduling actors on remote nodes
also implies that nodes can fail independently from each other. The result given by Fisher, Lynch
and Patterson (FLP-result [42]) states that it is impossible to solve the distributed consensus prob-
lem in an asynchronous network if there is a single faulty process and failures cannot be detected.
This result can be generalized to almost any problem that one might solve in the distributed con-
text [17]. Hence, a discussion about the implications this result has on Distributed Pony is required
and to which extent partial failure needs to be addressed by the runtime implementation (beyond
guaranteed delivery of messages).

Chandra and Toueg [24, 23] show that a way out of this is to implement failure detectors (which
themselves can be unreliable) to implement reliable distributed systems. A failure detector is
essentially a software module that can be used by the program to detect failures. Since failures are
difficult to detect reliably (because a process could just be extremely slow), the terminology in use
is suspecting a process rather than detecting that it had failed. Applications are then built based
on the fact that there is no perfect knowledge about the current state of a process, but suspicions
are enough to keep operating. Conceptually, a failure detector allows each process to maintain a
set of suspected processes. Note that because a detector is local to each process, distinct detectors
might have different views and suspect different processes.

A function F : T → 2Π that assigns to any instance of time T a set of suspected processes is
called a failure pattern (Π = {p1, ..., pn}, n ∈ N) [24]. The failure detector as a module outputs
the set of processes that it currently suspects to have crashed. Note that T is not physical time
or visible to any of the processes, it is just a means of modeling the problem domain. In the
context of an asynchronous system, where network delay or the relative speeds of independent
processors are unknown and a Gaussian delay is possible, suspicions may differ from time to time
(i.e. a process might be suspected at time t1 but not suspected at any time instance after t1).
Thus, the set of all processes that have been suspected over time is formalized as a failure history
H : Π× T→ 2Π [24]. A process p suspects q at time t, if q ∈ H(p, t). The asynchronous nature of

7

the system in observation and the fact that each process has a local failure detector module causes
that suspicions can vary in quality. This means that if p 6= q,H(q, t) 6= H(p, t) is possible. Hence,
for reasoning purposes, the set of failure detectors is modeled as a non-deterministic detector D
that maps failure patterns to a collection of failure detector histories for that pattern [24]. A
concrete technical specification for a generic detector would be too complex as it needs to consider
many parameters (such as the network protocol in use, network delays etc.), which might not be
known in advance. However, the properties completeness and accuracy are sufficient to reason
about applications that use a specific failure detector. This also means that the knowledge of the
concrete detector in use is essentially “embedded” in the algorithm/program that depends on it.

Chandra and Toueg classify the following properties of detectors [24]:

• Let C(F) =
⋃

t∈T F (t) be the set of crashed processes and R(F) = Π−C(F) the set of correct
processes. Assume that crashed processes never recover.

• Completeness states that a detector will suspect crashed processes. The detector can suspect
correct processes, but does not miss any crashed ones. A detector is said to be strongly
complete if every crashed process is permanently suspected by every correct process:

∀F,∀H ∈ D(F),∃t ∈ T, ∀p ∈ C(F),∀q ∈ R(F), ∀t′ ≥ t : p ∈ H(q, t′)

• Accuracy ensures that correct processes are not suspected. There is no guarantee that the
detector suspects crashed processes, only that it does not suspect correct ones. Similar to
above, a detector is strongly accurate if a process is not suspected if it has never crashed:

∀F,∀H ∈ D(F), ∀t ∈ T,∀p, q ∈ Π− F (t) : p /∈ H(q, t)

Both properties also exist in a weak form, where a detector is weakly complete if all faulty
processes are suspected by some correct processes [24]. Similarly, a detector is weakly accurate
if there is some correct process that is never suspected [24]. Furthermore, both strong and weak
accuracy guarantee that there is at least one correct process that is never suspected. Technically,
this is difficult to achieve in an asynchronous system [24]. For this reason, both types of accuracy
are usually used in their temporal form, such that the corresponding property holds after some
point in time (but after that point in time it holds forever). This is also referred to as eventual
strong/weak accuracy [24].

It is self-evident that these properties alone are not sufficient. A complete failure detector can
simply suspect all processes (∀t ∈ T.H(q, t) = Π). Furthermore, a detector is still accurate if
it does not suspect any processes (∀t ∈ T.H(q, t) = ∅). Hence, a detector is only useful if it
combines completeness and accuracy in some form or another. From the six properties mentioned
above, Chandra and Toueg derive eight classes of failure detectors by simply picking one of the
completeness properties and one of the four discussed types of accuracy, as shown in table 2.1.
Each detector class can then be used as an assumption based on which an algorithm or application
is developed.

The combination of weak completeness and strong accuracy as well as the combination of the
corresponding temporal forms is left empty, because technically there would be no reason not to
use their perfect counterparts, as these types of failure detectors guarantee a subset of processes
whose local detector is perfect by construction.

From a programming point of view, a failure detector is then probed when a process is expecting
to receive messages from one or more processes (the number is depending on the algorithm/program
itself). One implementation could be to let a collect statement return false if the process from which
an incoming message becomes suspected, otherwise the message can be delivered to the process.
Failure detectors are software modules and local to each process (or in the case of Pony to each
actor or node). So, they can be implemented in Distributed Pony as part of the application in
order to solve problems in the distributed context. For this reason, the problem of failures from a
runtime point of view reduces to the problem of guaranteed message delivery. As a consequence,
failure detection is considered as future work and will be re-considered in section 6.2. Work on
concrete distributed algorithms using failure detectors has been published in [49, 114].

8

Table 2.1: Eight classes of failure detectors [24]

Completeness Accuracy
strong weak eventually strong eventually weak

strong Perfect Strong Eventually Perfect Eventually Strong
weak Weak Eventually Weak

2.5 Scheduling of Tasks

Scheduling is a well studied topic in Computer Science, especially in the context of process schedul-
ing for operating systems [112, 113, 56] and distributed systems [11, 21, 53, 121, 107, 109]. The field
of resource allocation problems is a vast subject and therefore we will mainly concentrate on the
basics and those mechanisms that are of importance for the runtime implementation of Pony. In
the following, a short overview of various scheduling mechanisms is given. It is worth studying the
concepts of operating system scheduling, because for a programming language runtime we pursue
similar goals.

In operating systems, the objective is to have some process running at every point in time,
such that the CPU spends as less time as possible in idle state. Observations [112] have shown,
that processes usually alternate between CPU-bursts and I/O-bursts. From the perspective of
a processor, I/O events can require many cycles for completion. During this time, the invoking
process has to wait. This obviously wastes CPU cycles, because the processor remains unoccupied
during that time. The purpose of a scheduler is to ensure that this time is used productively. Many
criteria for characterising different scheduling mechanisms have been proposed [112]:

• Maximize CPU utilization.

• Maximize throughput, i.e the number of processes that complete their task per time unit.

• Minimize turnaround time or latency, which is the time difference between the submission
of a process and its completion.

• Minimize the time that a process has to wait in a queue for ready processes.

• Minimize response time, which is the time from submission of a process until the first result
is displayed to the user.

The way how access to system resources is managed and which of the above criteria are chosen as
optimization goal largely depends on the characteristics of the environment a system is operating
in as well as application requirements. In the context of this work, we will only discuss dynamic
scheduling, where the schedule is determined at runtime as opposed to static scheduling, where it
is computed before execution (e.g. for predictable and time critical real-time systems).

2.5.1 Preemptive and Cooperative Scheduling in Operating Systems

Processes are commonly described as a state-machine with four states, as shown in Figure 2.11.
Dashed lines indicate that a process switches its state due to some system event that is not in the
control of the process. Continuous lines illustrate state transitions that are initiated by the process
itself.

Generally, scheduling needs to take place whenever a process transits from one state to another.
This happens when any of the following events occur [112]:

1. A process terminates.

2. A process actively waits for I/O events.

3. Requested I/O operations are completed.

1The diagrams for this thesis have been created using yed [124]

9

Figure 2.1: State Transitions of Processes

4. A process is preempted because it used up its quantum, or hardware interrupts need to
be handled.

5. Interrupts are handled or the process is chosen next.

In the context of operating systems, a scheduling mechanism is called cooperative, if it only takes
place when a process explicitly signals that there is no work to-do (in cases (1) and (2)) [112]. A
mechanism that triggers the scheduler additionally in response to the cases (3) and (4) is called
preemptive [112]. Note that case (3) is appointed to be preemptive because it leaves a choice to
the scheduler to preempt the current process if priorities are involved (see section 2.5.2), whereas
cases (1) and (2) simply cause the next process to be scheduled (the meaning of the term next is
further discussed in the remainder of this section).

Although there only seems to be a small difference between the two schemes, their effect on
the design of an operating system is quite dramatic. Cooperative scheduling can be the only
choice possible if the underlying hardware architecture does not support switching the context
between a running process and a ready process. Preemption comes with the cost of shared memory
synchronization [112]. Moreover, the operating system kernel has to cope with system calls that
return after a process has been preempted. The implications of scheduling mechanisms on the
design of an operating system kernel are further discussed in [112].

A simple example for a cooperative scheduling scheme is first-come, first-served (FCFS) [112].
All processes are appended to the tail of the same FIFO queue. Upon process termination or when
a process enters its I/O phase, the scheduler simply allocates the process at the head of the queue
to the CPU. In a system where processes are all of the same kind (in terms of their CPU- and
I/O-burst pattern) this scheme might suffice. However, the cooperative nature of this scheme might
cause the average waiting time to greatly differ if CPU intensive processes are scheduled prior to
relatively short ones in an alternating fashion. This effect can be cushioned using shortest-job-first
(SJF) scheduling [112]. As the name suggests, the idea is to schedule the process with the shortest
CPU-burst time first; ties are broken using FCFS scheduling. If minimizing the average waiting
time of a process is of highest priority, then this scheduling mechanism is provably optimal [112].
Intuitively, moving a process which is less CPU-intensive in front of comparatively long ones has less
of an effect on the waiting time of long processes as compared to the waiting time when moving long
processes in front of short ones. However, the time interval of CPU-bursts for each process needs
to be known or estimated a priori. This is unrealistic in a generic execution environment. We will
re-elaborate on this statement in the context of a language runtime scheduler in section 2.5.3. Note
that SJF scheduling can either be implemented in a cooperative or preemptive manner, depending
on whether it is desired to interrupt a process with a remaining CPU-burst time that is longer than
the interval of the process at the head of the queue (also referred to as shortest-remaining-time-first)
[112].

10

In the context of general purpose time sharing systems, responsiveness is very important. This raises
the need for mechanisms that allow important processes (e.g. those that handle UI events) to be
scheduled first, such that response time can be minimized. The notion of importance is reflected
through priorities (in fact SJF is a special case of priority scheduling [112]). For completeness, this
type of scheduling is described briefly. However, for the reasons discussed in section 2.5.3 it is not
further considered for the implementation of the Pony scheduler.

2.5.2 Priority-based Scheduling

Priority-based scheduling requires some quantifiable means of comparing two processes. This can
be implemented through associating an integer variable with each process, or by putting processes
in queues that have a priority associated with them. Especially in the context of systems on
which rather random types of processes that greatly differ in I/O and CPU intensity are executed,
priority-based scheduling proves useful [112]. The main idea is that the process of the highest
priority is allocated to the CPU. As a consequence, processes of low priority might wait indefinetly
if there is always a process of a higher priority to execute. This is usually avoided by increasing the
priority of long-waiting processes such that they eventually get scheduled (also called aging [112]).
How long a process waits is expressed in terms of time quanta it has not been scheduled.

Multilevel feedback queuing is a fairly complex and preemptive implementation of a scheduling
mechanism of this class, that aims to efficiently schedule workloads that are entirely unpredictable.
I/O-bound and interactive processes are appended to queues of high priority and others to queues
of low priority. The amount of available process queues is implementation dependent. Aging
may cause processes to diffuse from lower queues to higher ones to avoid starvation [112]. Some
implementations use different scheduling algorithms for queues of different priority (e.g. FCFS for
the queue of lowest priority) [112]. The intention is to use the optimal scheduling algorithm per type
of process. A process that is committed to a queue preempts a process that is currently running
but came from a queue of a lower priority. The result is a very flexible scheduling mechanism.
However, flexibility comes with the cost of being forced to find the right parameters for a specific
system using this scheme in order to perform as intended (principally because some systems are
not as unpredictable as they seem to be).

Priority-based scheduling is unnecessary overhead in the context of a language runtime. Al-
though we must support a broad set of generic applications, the set of entities on which a runtime
scheduler operates upon is (at least to some extent) homogeneous.

2.5.3 Operating System Scheduling vs. Actor Runtime Scheduling

There are various differences in the requirements and characteristics between operating system
scheduling and language runtime scheduling. While many ideas are similar or even the same, in
the context of a language runtime such as Pony we can implement a scheduler that is more specific
and fit for purpose, rather than providing a generic scheduler for any kind of processes.

The design of process schedulers for time sharing systems was mainly influenced by the fact that
these systems are used by people, such that minimizing response time becomes most important
due to usability concerns. Additionally, the kind of processes that are running on these systems is
in most cases unknown. The goal of minimizing the average response time of processes resulted in
the implementation of fairly complex, preemptive and priority-based mechanisms.

The Pony scheduler can be far more tailored to specific characteristics of the language. However,
the basics of operating system scheduling also apply in this context. The goal is to reduce the
turnaround time of an actor as well as to maximize CPU utilization. Figure 2.2 shows a similar
state machine as presented in section 2.5.1, in order to illustrate when scheduling has to happen in
the Pony runtime.

Evidently, the situation looks similar to the one discussed for processes. Upon actor creation, an
actor is blocked. Blocked actors are never scheduled, because there is no work to do. If a message
is put into an actors message queue which was previously empty, the actor becomes ready.
Ready actors that are at the head of the scheduling queue are allocated to the CPU for processing

11

Figure 2.2: State Transitions of Pony Actors

messages. An actor could technically always have messages to process, thus for avoiding starvation
we allow an actor to exactly process one message and then schedule the next ready actor. For
reasons of computational progress, we allow an actor to process two messages if the next message
to process is runtime control message (which are described in chapter 3). If the message processed
was the last message in the queue, the actor becomes blocked again.

Due to the nature of the actor programming model and due to appropriate programming prac-
tices, dispatching a message should not be a long running CPU-intensive task (and definitely
should not include an infinite loop). This means, we are not forced to implement a complex timing
mechanism that allocates a fixed quantum to each scheduling slot of an actor. Furthermore, the
CPU intensity of processing a single message should not vary greatly between actors. I/O events
are handled asynchronously (more detail in chapter 3), such that an actor does not wait for I/O
completion.

Consequently, we are not facing the problem that lead to the idea of shortest-job-first scheduling
as discussed above. An actor that has finished processing a message is put back to the tail of the
queue. Therefore, the Pony scheduler is (to some extent) preemptive, where the time quantum
for each actor is processing a single (application-) message. This is similar to the Round-Robin
mechanism used in early operating systems [112].

Scalability is not addressed by the above, because it does not attempt to uniformly distribute
workload among all available processor cores to maximize CPU utilization. For this reason, each
processor core in the system is associated with its own task queue. Each queue is owned by a
separate thread. Hence, the runtime forks as many threads as there are cores in the system. The
actual Pony scheduler is a mechanism, where the above algorithm is applied to each task queue
and additionally uses work stealing such that cores are used productively.

In the following, the basic concepts of work stealing are discussed. Technical details on how both
mechanisms can be combined to a single efficient scheduler implementation are given in section 2.6.
The actor state diagram will be reconsidered for the purpose of the implementation of a distributed
scheduler, which is presented in chapter 3.

2.5.4 Work Stealing

Work stealing is a passive (it only runs when it needs to), usually decentralized and dynamic
scheduling mechanism where idle nodes/processes steal queued work from busy nodes. This allows
for an implementation of a dynamic and adaptive scheduler which does not require prior knowledge

12

of task dependencies (which makes it inherently good for irregular and a broad set of applications).
Furthermore, it is inherently distributed and is therefore well suited for a highly-scalable imple-
mentation. It is surely possible to implement a centralized work stealing mechanism by employing
a central load balancing server, but in the context of a distributed language runtime we want to
avoid network configuration and single points of failures (if possible).

Work stealing algorithms have been implemented in many variations in languages like Cilk [48]
and X10 [104]. The differences between languages that implement work stealing mechanisms are
usually around the degree of flexibility that is given to the programmer when expressing dependen-
cies between tasks. Processors or nodes that have an empty task queue are usually referred to as
“thieves” [15] which will attempt to steal work from another busy node’s queue (“victims” [15]).

From a global perspective, work stealing does not necessarily need to be optimal, as it does not
guarantee to find the perfect schedule, which may result in (possibly) slow work distribution. This
concern is important for real time systems, but for a language runtime scalability is one of the
most important concerns – and not necessarily the optimal schedule. Furthermore, it might not be
optimal from an applications point of view if all concurrent entities are uniformly distributed over
a network – as computation steps may be extremely quick, such that migration overhead would
be too expensive. However, the execution time of work stealing based schedulers as well as the
number of stealing requests is theoretically bounded [106].

How (and when) work is stolen is an optimization problem, especially in the context of a pro-
gramming language runtime, where the set of executed applications is generic and all work may
be concentrated on a few nodes. Blumofe et al prove in [15] that randomly selecting a node to
steal from can be an efficient choice. However, as discussed later in the context of distributed
systems (and depending on the network topology), considering data locality when deciding from
which node to steal might be a good optimization [1]. Dependencies between tasks are usually
maintained as a (distributed) dependency graph. This information is vital for implementing an
algorithm that yields as least work stealing requests as possible in order to achieve a good work-
load distribution. However, the need for dependencies between tasks is dependent on the type of
structure the scheduler is operating on. As actors are essentially self-contained, we do not need
to worry about task dependencies as such. More important for a distributed version of Pony is to
carefully decide whether an actor should be migrated to a remote node or not. Similarly, it might
be worth migrating an actor on purpose, if most messages are received from an actor that is located
on a remote node. Scheduling tasks with work stealing is provably optimal [14] (within a constant
factor) for fully strict parallel computations, where all outgoing edges in the data dependency graph
of a thread go to an ancestor [12]. This is clearly the case in Pony (section 2.6.4)

Work Stealing Queues

The performance of a work stealing algorithm strongly depends on the underlying queue imple-
mentation in which computation tasks are stored [5]. Access to the queue itself is in the critical
path of the scheduling mechanism, so it is advisable to implement these queues with low cost syn-
chronization between threads. We cannot predict the level of multiprogramming that might be
incorporated in applications developed based on the Pony runtime. As a consequence, we do want
to avoid expensive queue overflow mechanisms [60] and therefore the work stealing queue of Pony is
of dynamic size (rather than fixed size as proposed in [5]). The work stealing queue implementation
of Pony is discussed in more detail in section 2.6.3.

A common approach on when to steal an item from another’s node dequeue is when the local
dequeue is empty [15]. This also means that only the owning runtime-thread of a queue can add
tasks to its queue but all other threads can remove tasks from any queue (usually reflected through
put, take and steal operations [101]). The emptiness of a queue only signals that we have to steal
work from somewhere (otherwise the node would stay idle). In a concurrent setting, the selection
of a victim may seem trivial, because the access to any other core’s memory bank or cache is
uniform from the perspective of a thief. However, the consideration of cache coherency protocols
and systems with multiple sockets (not only multiple cores) can make it more complex. In early
stages of concurrent Pony, randomly selecting a victim was sufficient. However, this changes as

13

soon as support for distributed computing is introduced, where network communication and the
topological distance between nodes may be taken into account.

Hierarchical Work Stealing

Hierarchical work stealing tries to avoid unnecessarily high communication costs caused by long
distance communications by taking data locality into account [120].

Data locality for work stealing in hierarchical implementations is reflected through maintaining
multiple levels of hierarchy. A prominent example of such a mechanism is called CRS (Cluster-
aware Random Stealing) [120], which maintains clusters of processors local to a node and processors
of remote nodes. Worker queues can be accessed concurrently in local clusters. A processor is then
able to send either asynchronous or synchronous stealing messages [120]. Asynchronous messages
are point-to-point such that they are restricted to one computer in another cluster. Synchronous
requests cause the thief to block and are restricted to nodes in the same cluster. As previously,
stealing requests are only sent if a worker’s queue is empty [120]. Note that one asynchronous steal
request and one synchronous steal can be sent out at the same time.

The main idea of hierarchical work stealing is to first attempt to steal work from nodes physically
closest to the thief node. Only if this request fails, requests are made to remote nodes in order
to reduce latency of work distribution. The effect of having a network of Ponies to be managed
based on a k-Tree topology is that the work stealing mechanism implemented for this project is
inherently hierarchical (see chapter 3).

Idempotent Work Stealing

As previously mentioned, the performance of work stealing largely depends on the underlying
dequeue implementation. Idempotent work stealing [101] is an optimization that allows a more
flexible approach. Conventional work stealing semantics guarantee that a task that is submitted to
a worker queue is executed exactly once. The motivation for idempotent work stealing is that a wide
class of applications allows for weaker guarantees, because either applications check that work is not
repeated or it can be tolerated (and are therefore idempotent operations) [101]. Thus, guarantees
are only given that a submitted task is executed at-least-once [101]. These relaxed semantics allow
for a more flexible implementation of a work stealing mechanism. Exactly-once semantics require
the use of atomic instructions (or memory ordering fence instructions) [28, 61, 48] in the critical
path of a dequeues owner-thread. These instructions are substantially slower than regular memory
instructions [101].

Note that the relaxation of the mechanisms semantics does not mean that the implementation
becomes trivial. It is still necessary to ensure that tasks are not lost and that consistent information
is kept without the use of expensive synchronization instructions in the corresponding put and take
operations of a dequeue [101]. A family of algorithms for mechanisms based on this paradigm is
discussed in [101].

For the implementation of Pony we will not consider relaxed work stealing semantics, principally
because we do not want the programmer to ensure that implemented actors handle messages in an
idempotent manner, which would have a negative effect on the code structure due to unnecessary
checks.

2.6 Pony

Prior to the start of this project, work has been carried out to implement a runtime for Pony that
supports highly efficient concurrent programming. The existing language runtime is the basis for
the implementation efforts carried out in this project. In order to give a better understanding
of what the current implementation provides and what has to be extended/adpated to allow for
scalable distributed programming, various parts of the existing code base are discussed. Note that
we are only focusing on the runtime itself, and not – except for the actor programming model –
on work that has been done on the language level (e.g. the type system etc.). Figure 2.3 shows

14

the structure of the runtime system in terms of the components involved and their relationship to
each other. Details such as the pool allocator for memory management or components for garbage
collection are omitted in this diagram.

Figure 2.3: Basic structure of the Pony runtime (some details omitted)

Each actor is associated with exactly one heap for private data as well as one local message queue
(actorq t) to buffer incoming messages from other actors. A message queue is a concurrent and
wait-free linked list, were each node holds a pointer to a structure of type message t, containing a
message identifier, the arguments provided for the message as well as a pointer to the next element
in the queue.

Upon runtime initialization, the scheduler forks as many threads as there are cores available,
where each thread is pinned to one of the available cores (uniformly; also called CPU affinity). Each
thread maintains a multiple producer, multiple consumer queue (as linked list), holding actors to
be scheduled. This queue is the central data structure for Pony’s work stealing mechanism. Each
node holds a pointer to one actor. Each of the threads (including the main scheduler thread) pop
one element at a time from the queue to execute an actor on the core the queue is associated with.
If no actor can be scheduled, the corresponding thread tries to steal one element from a randomly
picked scheduling queue. If the stealing request cannot be satisfied (see section 2.6.3), the thread
gives up its quantum and tries again. The main components are discussed in more detail in the
remainder of this section.

2.6.1 The Pony Actor

In Pony, actors are the central entity of execution. Listing 2.1 shows the external interface of the
actor implementation, providing functions for creating and destroying an actor structure as well as
for sending messages and running the actor.

Listing 2.1: External Interface of the Pony Actor

1 bool actor_run(actor_t* actor);
2 void actor_destroy(actor_t* actor, map_t* cycle);
3 void actor_sendv(actor_t* to, uint64_t id, int argc, arg_t* argv);
4 actor_t* actor_create(actor_type_t* type);
5 void pony_send(actor_t* to, uint64_t id);
6 void pony_sendv(actor_t* to, uint64_t id, int argc, arg_t* argv);
7 /* convenience functions are omitted */

15

The (runtime) programmer is not exposed to the internals of the actor data type (struct actor t) but
is instead provided the corresponding opaque type (actor t ; similar to the concept of information
hiding in object oriented languages). Hiding the details is sensible, because it allows the underlying
actor implementation to be changed and, as long as the interface is kept stable, without the need
of recompiling applications that depend on it.

The structure actor type t describes the representation of an actor (Listing 2.2).

Listing 2.2: Actor Descriptor

1 typedef const struct actor_type_t
2 {
3 trace_fn trace;
4 message_type_fn message_type;
5 dispatch_fn dispatch;
6 } actor_type_t;

The type of an actor is determined by a pointer to a conversion function that describes the kind of
messages to which the actor reacts to (Listing 2.4) as well as of a pointer to a dispatch function which
is used as message handler. The function of type trace fn will be used as a hook for serialization
and deserialization, as discussed in chapter 3. Furthermore, the field trace supports Pony’s trace
mechanism which is important for reference counting and garbage collection. For the purpose of
this example it shall be disregarded and is therefore a null pointer. This structure is potentially
shared among actors of the same type, and is therefore defined as const, such that it remains
unchanged up to the point the program terminates.

A message type (implemented as message type t, Listing 2.3) describes the number of arguments
that an actor is expecting for a given type of message as well as a set of trace functions for these
arguments. The mode (pony mode t) is used to identify certain properties of the corresponding
argument (e.g. actor, primitive or any type information in future versions).

Listing 2.3: Message Types

1 typedef const struct message_type_t
2 {
3 int argc;
4 trace_fn trace[PONY_MAX_ARG];
5 pony_mode_t mode[PONY_MAX_ARG];
6 } message_type_t;

The type of a message to be sent is identified by an ID (in the example the only message ID is
MSG RESPONSE, Listing 2.4). Note that these message IDs are dependent on the actor structure
and the contract it is providing to other actors. In the future, this mapping will be generated by
the Pony-Compiler.

Listing 2.4: Declare Messages

1 enum
2 {
3 MSG_REPSPONSE
4 };
5

6 static message_type_t m_response = {1, {pony_trace64}, {PONY_PRIMITIVE64}};
7

8 static message_type_t message_type(uint64_t id)
9 {

10 switch(id)
11 {
12 case MSG_RESPONSE: return &m_response;
13 }
14 return NULL;
15 };

16

Sending messages is simply done by providing the target actor, the message identifier, the number
of arguments and the arguments themselves, combined in a union type arg t. In the concurrent
setting, the target actor is determined by its memory address. However, this changes in the context
of distributed computing, because the destination might be located on a remote machine.

Listing 2.5: Union Type for Message Arguments

1 typedef union
2 {
3 void* p;
4 intptr_t i;
5 double d;
6 } arg_t;

A union type is a structure where each element starts at the same address. Hence, only one element
can be used at any one time. As a consequence, the size of a union type is the same as the size
of its largest element. This allows to provide a convenient way to handle message arguments of
different types (and provide a convenient way of sending primitive arguments) without wasting
memory space for unused elements within the structure.

As previously mentioned, the dispatch function is the main implementation of the state changes
an actor performs depending on incoming messages. Since we implement the runtime system prior
to formulating a complete language specification and a compiler, the examples given throughout
this report implement the dispatch function manually.

Listing 2.6: Dispatch Handler

1 static void dispatch(actor_t* this, void* p, uint64_t id,
2 int argc, arg_t* argv)
3 {
4 switch(id)
5 {
6 /* handle message according to ID */
7 }
8 }

Listing 2.7 shows how actors can be created within the Pony runtime. Note that actor creation
internally triggers allocating heap space and setting up any structure necessary for maintaining the
actor (message queue etc.). After creation, the actor can be used by the scheduler to be allocated
to the CPU, by simply calling actor run(actor) in the context of some thread. Once scheduled, the
actor pops a message of its mailbox (if any) and processes it according to the arguments provided.
Running an actor causes the dispatch function, which was given upon actor creation, to be invoked
only if the incoming message is an application message and not a runtime control message.

Listing 2.7: Creating Actors

1 static actor_type_t type =
2 {
3 NULL,
4 message_type,
5 dispatch
6 };
7

8 actor_t* actor = pony_create(&type);

Internally, the dispatch function is additionally provided a pointer to the corresponding actor’s
heap. Memory is not shared, so incoming messages are shallow -copied to the target actor’s address
space.

Shallow copies are possible due to guarantees given by the Pony type system, which is outside
of the scope of this project. However, it is a good example of the impact a type system can have on
efficiency, because only the arg_t structures from listing 2.5 need to be copied. This is called (safe)

17

zero-copy messaging, because the actual message arguments (except primitives) are not copied,
only pointers to them, the type system guarantees the absence of data races.

If the message queue was previously empty (before the incoming message was copied), the actor
is added to the tail of the scheduling queue owned by the thread which is currently active (i.e. to
the queue that belongs to the core on which the current actor is running on). We do not have to
care about finding the queue with the least elements, because the actor will eventually be stolen
by some other thread.
As a consequence of the message-passing paradigm, message queues are required to buffer any in-
coming messages from other actors, which may come in concurrently. Since computational progress
is expressed through the sending, receiving and processing of messages, the message queue is in the
critical path of an application and must therefore be implemented efficiently.

2.6.2 Message Queues

The underlying data structure of Pony message queues is a wait-free, multiple producer and single
consumer linked list (FIFO, actorq.c). The queue needs to support multiple producers, because
there could be as many actors as available cores trying to send a message to the same actor
concurrently. However, there is only one thread at a time that takes elements from the list, because
actors never consume messages from queues other than their own.

This dictates the design of the queue: the operation that adds an element to the head of the
list (actorq_push(...)) must be thread-safe, whereas removing a message (actorq_pop(...)) can
simply pop the tail of the list without any thread synchronization if the emptiness of the queue is
handled properly.

The structure of a linked list is trivial. We only need to maintain a pointer to the head and to
the tail of the list. In the case of Pony, the elements are of type message t (Listing 2.8). The head
of the queue is marked as volatile, because it may be modified by many threads. The tail however
is only modified by one thread at a time. Each element maintains a pointer to the next element
of the list. The ID of a message is equivalent to the one discussed previously. The modes of the
arguments and their trace functions do not need to be part of the message structure itself, because
they can be retrieved via the message conversion function provided by the type of the receiving
actor.

Listing 2.8: Structure of Message Queue

1 typedef struct message_t
2 {
3 uint64_t id;
4 arg_t argv[PONY_MAX_ARG];
5 volatile struct message_t* next;
6 } message_t;
7

8 typedef struct actorq_t
9 {

10 volatile message_t* head;
11 message_t* tail;
12 } actorq_t;

The challenge in the list implementation is to find an efficient way to signal the emptiness of a list
as well as the case when there is only one element available (i.e. tail and head point to the same
message). It is especially important to think about the latter, because there is a race condition
between adding an element to a list that currently has one element and removing the only element.
However, we want to leverage the special single consumer characteristic of an actor’s mailbox.

The solution implemented is closely connected to Pony’s pool allocator (section 2.6.5). A pool
for a specific type is always aligned up to the L1 cache line size (on today’s Intel processors, 64B).
This guarantees that the first five bit of a pool’s base address are always zero. As a result, we
are able to signal the emptiness of the list with a stub element that is identified by the first bit of
its address being set to one (because this bit doesn’t affect the semantic integrity of the pointer if

18

handled carefully).
Upon initialization of the list we allocate a new pool. Since the list is empty at the beginning,

we mark the first element as stub element. Listing 2.9 shows that this can be done by letting the
head of the list point to the newly allocated stub element with a one-bit offset. The tail points
to the actual stub base-address (| is the logical bit-wise OR operator). Note that the stub’s next
pointer is NULL.

Listing 2.9: Initialisation of Message Queue

1 void actorq_init(actorq_t* q)
2 {
3 message_t* stub = POOL_ALLOC(message_t);
4

5 q->head = (message_t*)((uintptr_t)stub | 1);
6 q->tail = stub;
7 }

This allows to test for emptiness by checking whether the expression ((uintptr_t)elem & 1))

equals zero (in which case the list is non-empty) or not. The important thing is to be cautious
when adding a new element, because the structure pointed to by head is now displaced by one
bit. Thus, we are required to undo the above operation when inserting a new element. It is not
problematic to reset the last bit whenever a new element is added, since there cannot be two
message t elements within a two-bit address boundary.

Listing 2.10 shows that adding an element is implemented with the compiler built-in operation
__sync_lock_test_and_set [52] that atomically assigns the value of msg to the variable that q->head
points to (by implicitly creating a memory barrier). The return value is a pointer to the memory
location where q->head had pointed to before it was exchanged. A lock or mutex is never acquired.
The operation actorq_push returns whether the list was empty or not in order to unblock the actor
if necessary.

Listing 2.10: Adding an element to the list

1 bool actorq_push(actorq_t* q, message_t* msg)
2 {
3 msg->next = NULL;
4 message_t* prev = (message_t*)__sync_lock_test_and_set(&q->head, msg);
5

6 bool was_empty = ((uintptr_t)prev & 1) != 0;
7 prev = (message_t*)((uintptr_t)prev & ˜(uintptr_t)1);
8

9 prev->next = msg;
10

11 return was_empty;
12 }

The benefit of the above is that this scheme allows to remove an element from the tail of the
list without using an atomic operation or any synchronization mechanism that caters for the race
condition discussed earlier. Hence, an actor consuming a message from its mailbox is not impeded
by other actors that send messages to it.

Remember that after initialization, the tail pointed to the stub element, and the stub’s next
pointer was NULL. The operation that takes a message from the queue (Listing 2.11) can safely
return q->tail->next in any case, because actorq_push does not remove the stub. Returning q->

tail->next instead of q->tail is the pinpoint of why consuming a message can be done without
any synchronization. Moving the tail to the former successor is valid at any time, because this
pointer is not modified by any of the threads that might append a message. The tail pointer
continuously follows the head pointer. A nice side-effect of this approach is that the returned list
item is deallocated after the next message was successfully retrieved and when it is returned. This is
required, because we need to ensure that the actor has processed the message before it is deallocated,
which must have happened when the actor comes back and probes for new messages. By doing so,
managing the memory for the message queue is concealed within the actorq_t implementation.

19

Listing 2.11: Removing an element from the list

1 message_t* actorq_pop(actorq_t* q)
2 {
3 message_t* tail = q->tail;
4 message_t* next = (message_t*)tail->next;
5

6 if(next != NULL)
7 {
8 q->tail = next;
9 POOL_FREE(message_t, tail);

10 }
11

12 return next;
13 }

The only problem that remains is that the tail pointer would be forwarded to the position where the
current head pointer points to if the element returned was the last in the list. This element needs to
be remarked as stub, because testing for emptiness was important for blocking and unblocking an
actor. There is a potential race condition between remarking the element as stub and adding a new
message to the queue, which can be eliminated efficiently using __sync_bool_compare_and_swap

[51]. This operation atomically exchanges a value by another if it is equal to a third. The return
value is boolean and indicates whether the values were equal and the atomic exchange was therefore
executed, or they were not equal and no operation was done.

A linked list is also the central data structure for the work stealing scheduler. Contrary to
the message queue described above, scheduling queues have to support multiple consumers, which
makes the implementation considerably more complex.

2.6.3 Work Stealing Queue

The data structure on which the work stealing queue (mpmcq.c) of each scheduler thread depends
is critical and needs to provide efficient push and pop operations, because the access to the queues
is on the critical path of assigning actors to cores and execute them.

The message queue discussed previously already supported multiple producers, so the imple-
mentation for adding a new node to any of the scheduling queues is almost identical (only the
stub is handled slightly differently). The main challenge of multiple consumer queues is the ABA
problem [99]. Consider the following example:

• Assume a singly-linked list q (FIFO) contains the following elements: A -> B -> C, where A
is at the head of the queue and C at the tail. Consuming a value deallocates the element.

• Two concurrent threads T1 and T2 access the list concurrently, trying to consume a value.

• T1 reads the tail of the queue and determines the predecessor. Assume the following assign-
ments are performed: node* t = C; node* prev = B. After doing so, T1 becomes preempted.

• T2 becomes scheduled and consumes a value. The result is q = A -> B. After that, thread T2

may pop another element, which leaves q = A.

• Another thread T3 may concurrently produce a value and because we are not using a garbage
collected language (for implementing the runtime), this value may very well be allocated at
the memory address that C had when T1 tried to consume it. We have q = A -> C.

• When resumed, T1 checks whether the tail of the list was concurrently changed and if not,
replaces the tail of the list with B (by using compare_and_swap). The atomic instruction would
succeed (because t = C), although the state changed in between. As a result, thread T1 causes
the new tail of the list to point to B which has been previously deallocated by T2.

This is obviously a memory violation.

20

In the programming language C, accessing freed memory results in undefined behavior, and will
likely cause the program to crash. If portability between 64-bit and 32-bit machines is important,
this problem can be solved using hazard pointers [100]. However, almost any of today’s processors
support 64-bit addressing, such that Pony can make use of a lightweight mechanism using tagging
and double-word compare-and-swap, proposed by IBM in 2003 [98]. As a result, the tail node of
Pony’s work stealing queue is defined to support double-word operations (Listing 2.12, alignments
are omitted).

Listing 2.12: mpmcq double-word type

1 typedef struct mpmcq_dwcas_t
2 {
3 union
4 {
5 struct
6 {
7 uint64_t aba;
8 mpmcq_node_t* node;
9 };

10

11 __int128_t dw;
12 };
13 } mpmcq_dwcas_t;

The idea is to associate a tag with a node and recheck that tag whenever it might have been
changed concurrently. The union type allows that both the tag and the memory address (which are
8 byte integers on 64-bit machines) of the actual node can be given to the atomic compare-and-swap
operation as shown in Listing 2.13.

Listing 2.13: Removing an element ABA-safe

1 void* mpmcq_pop(mpmcq_t* q)
2 {
3 mpmcq_dwcas_t cmp, xchg;
4 mpmcq_node_t* next;
5 void* data;
6

7 do
8 {
9 cmp = q->tail;

10 next = (mpmcq_node_t*)cmp.node->next;
11

12 if(next == NULL)
13 {
14 return NULL;
15 }
16

17 data = next->data;
18 xchg.node = next;
19 xchg.aba = cmp.aba + 1;
20 } while(!__sync_bool_compare_and_swap(&q->tail.dw, cmp.dw, xchg.dw));
21

22 mpmcq_free(cmp.node);
23 return data;
24 }

“Versioning” the tail nodes ensures that an element, once touched, can be uniquely identified
and compare-and-swap does the rest of the trick. The tail pointer is exchanged implicitly because
the union type guarantees that the memory address of the node is overwritten accordingly. If two
threads are fighting for the same element, one of the two will fail in completing the compare-and-
swap operation and therefore tries again. The same applies for ABA-detection. Contrary to the
message queue implementation described above, signaling the emptiness of the scheduler queue is

21

not of importance in this context, because the only thing that matters is whether we are able to
retrieve a value or not. If the list is empty, attempting to pop an element simply returns NULL.

The part of the scheduler responsible for work stealing makes use of the same pop operation.
For efficiency reasons (e.g. cache locality) it would be undesirable to allow that a queue is stolen
empty. Moreover, we need to avoid in the case of all other queues being empty, that the last actor
is “travelling” between queues continuously. Before extending Pony with distributed scheduling,
we will briefly discuss the design of the single-host scheduler.

2.6.4 The Scheduler

Pony’s scheduler is responsible of setting up, managing and assigning necessary threads to CPU
cores appropriately. Each scheduling queue is managed in a round-robin manner, with additional
work stealing capabilities.

The runtime system (and therefore the scheduler) is started with a call to the function pony_start

(int argc, char** argv, actor_t* actor), which is provided the command line arguments and
the main actor as entry point for a given application. By default, as many threads as there
are physical cores available are created. This can be changed by using the command line op-
tion --ponythreads <n>, which might result in logical cores being used as well. Determining the
number of threads to be forked and pinning them to physical or logical cores appropriately re-
quires to retrieve the processor’s properties from the operating system. On linux-based machines,
the logical core count can be retrieved via a system call to sysconf and providing the parameter
_SC_NPROCESSORS_ONLN [45]. Note that the result is not necessarily equal to the actual logical core
count, because the operating system may decide to turn off cores independently, and therefore
this call returns the number of cores that are currently online. The exact logical core count can
be retrieved with the parameter _SC_NPROCESSORS_CONF [45]. Deciding whether a core is physical
or logical is more complex on linux systems, because it requires to read the CPU topology from
the file system. MacOSX systems provide the same information through the system properties
hw.physicalcpu and hw.logicalcpu. Letting the operating system schedule a thread on a spe-
cific core can be configured using the system calls sched_setaffinity [91] on linux systems and
thread_policy_set [4] on MacOSX systems.

The thread library in use is based on pthread [66], a standard specification for creating and
manipulating threads. Upon creation, each thread is given a pointer to a function to execute
(run_thread, implemented in scheduler.c). This function is the main scheduling loop. The idea is
to implement an infinite loop where each thread tries to retrieve an actor to execute from its own
scheduling queue or steals work from any of the others. Work stealing is only performed when a
thread’s local queue is empty. Once an actor is scheduled, it is given a quantum of handling exactly
one application message. For the purpose of computational progress, an actor is not preempted
after having processed a runtime control message. This hides the effect of runtime management on
application execution.

For efficiency reasons, actor queues are prevented from being stolen empty. This does not mean
that another thread is unable to work steal the (currently) last actor in the queue, while the owning
thread is executing an actor. In this case, stealing the currently last actor is fine. However, we want
to avoid that when a queue is empty, and the currently executed actor does not become blocked
(and therefore has more messages to process), that this actor is stolen by another thread. This
would be inefficient due to cache locality. Hence, if a thread’s scheduling queue is empty when
trying to execute the next actor and the previously executed actor did not become blocked, then
we simply do not add it back to the queue and continue executing it. This is safe, because an actor
is re-added to some queue when becoming unblocked again.

The scheduler threads exit and can be joined using a termination scheme based on quiescence,
as described in section 2.6.7.

22

2.6.5 Pool Allocator

Implementing a memory allocation mechanism is complex and has a large influence on the per-
formance of an application. Generic heap allocators such as malloc [79] need to satisfy a large
number of different features. As a consequence, they are required to trade-off competing factors
against each other, some of which are re-using memory appropriately (which can cause the entire
heap to be scanned), speed of deallocating memory and merging blocks of freed memory to avoid
fragmentation. Merging free blocks causes that providing any bounds on the time required for
deallocating or allocating memory is not possible. This is problematic, because the performance
behavior is dependent on the workload of a given application, which can obviously largely differ in
the context of a programming language runtime and is practically unpredictable.

Since Pony is garbage collected and the programmer is not supposed to explicitly allocate
memory, we can provide an allocation mechanism that is less generic. This allows us to tune it
more aggressively. Pony’s allocation scheme (pool.c) partitions the memory into pools of the
same type (i.e. structures of type message_t are always allocated to the same pool). Hence,
finding free memory space and deallocating memory is possible in constant time and the problem
of fragmentation is avoided implicitly.

A pool for a specific type is always cache-line size aligned (on Intel platforms usually 64 B). This
ensures aligned memory access and good cache utilization. A pool of type t needs to be initialized
with POOL_CREATE(t). Retrieving a pointer to a memory region that allows to store a structure
of the corresponding type t can be done using POOL_ALLOC(t). Pools are essentially managed in a
linked list (similar to the scheduling queue discussed earlier). If no current pool can be retrieved,
a new pool of 64 KB is allocated using mmap [90]. The system call mmap is an efficient choice
for Pony’s pool allocator, because upon invocation it just maps the requested memory size to the
virtual address space of the runtime process. The necessary operating system work is done as soon
as some thread first writes to the pool. This avoids expensive work to be done upon each allocation.
Instead, the operating system management only comes into play once for each 64 KB pool. At
the same time, mmap guarantees that the requested virtual memory is page-aligned. Not only is
providing a pool allocator advantageous from the perspective of efficiency, but also from a software
engineering view. Memory management is encapsulated within the pool implementation. This
contributes to better debugging of memory-related bugs and provides confidence that the runtime
system is free of memory leaks.

Note that there is a difference between the runtime system managing memory internally (using
POOL_ALLOC) and heap allocation for actors, which is based on pony_alloc.

2.6.6 Garbage Collection

Available actor-based language runtimes either require the programmer to explicitly manage an
actors lifetime or implement garbage collection mechanisms which require thread synchronization,
preventing them from being fully concurrent. Pony however implements a fully concurrent garbage
collector which itself is based on message passing and is able to detect cycles between blocked
actors in a graph of actors (which itself may mutate concurrently).

Therefore, Pony provides a cycle detector, uses deferred direct reference counting and provides a
confirmation protocol to deal with concurrent mutation of the actor graph. Deferred direct reference
counting is a scheme that overestimates the set of outgoing references (also called external set) in
order to allow for lazy reference counting (the external set may differ from an actors heap). Garbage
collection of actors is problematic, because it is difficult to observe the global state of an actor-based
application.

Pony’s garbage collection protocol is fully based on the message passing paradigm of the actor
programming model. Whenever an actor receives a reference to another actor or object within a
message, it adds this reference to its external set. Once an actor performs a local garbage collection
cycle, an actor’s external set is eventually compacted. References removed from the set are dropped
and cause a decrement message to be sent to the corresponding actor or to the actor owning the
dropped object. Due to causal delivery of messages in Concurrent Pony, a blocked actor with a

23

reference count of zero is unreachable and can therefore be collected. Moreover, an actor is said to
be dead, if it is blocked and all actors that reference it are blocked, transitively [30].

The main challenge that garbage collection systems face is that of cyclic garbage, which cannot
be collected using reference counting alone. The cycle detector (which itself is implemented as
actor) keeps track of the actor topology (ingoing and outgoing references of every actor in the
system) and detects cycles between blocked actors. Whenever an actor becomes blocked (when
its message queue is empty), it sends its view of the topology to the cycle detector. An actor’s
topology consists of its reference count (ingoing graph edges) as well as a set of potentially reachable
actors (the external set). An actor becoming unblocked informs the cycle detector by sending it an
unblock message, invalidating the view on the topology of the sending actor. Combining all blocked
messages from actors in the system can be used to detect cycles between them. The challenge is
that the topology of a specific actor is not available directly, but distributed across many actors
in the system. Additionally, the topology does not only change when the actor itself mutates but
also when other actors mutate [30]. As a consequence, the view an actor has on its topology as
well as the view the cycle detector may have on an actors topology can be out of sync and there
is no way to track the true topology efficiently [30], because actors cannot directly mutate the
reference count of actors they reference. Hence, every actor’s view on the topology (including that
of the cycle detector) is only eventually consistent. Note that it would be possible to let actors
directly perform cycle detection just before blocking. However, for this to work would require
every actor to maintain a view of every other actors topology and also send block and unblock
messages to all other actors. This is obviously inefficient from both the perspective of the time and
space complexity. Introducing one level of indirection by using a central cycle detector reduces the
message complexity to exactly one unblock or block message per actor [30].

Any cycle which is not confirmed is therefore called a perceived cycle and must not be collected
immediately, because it is first necessary to ensure that the perceived cycle agrees with the true
topology. This problem is solved with a confirmation protocol that allows to check the validity of
the cycle detector’s view without any synchronization or heap inspection of actors being necessary
[30].

The cycle detector can determine whether a perceived cycle agrees with the true topology (and
if so is called a true cycle [30]), by sending a confirmation message to every actor in the cycle.
This message contains a unique token that identifies the cycle in question. Upon receipt of such a
message, every actor responds with an acknowledgment, regardless of the view on its own topol-
ogy. The beauty of Pony’s cycle detection mechanism comes from guaranteed causal delivery of
messages. If the cycle detector does not receive an unblock message before receiving the acknowl-
edgment, then the decision based on which the cycle was detected must have been a topology that
agrees with that of the confirming actor (because it did not unblock in between). If all actors in
the perceived cycle can be confirmed, a true cycle is detected and all participating actors can be
collected. However, if one of the actors unblocks before sending a confirmation message, the cycle
detector needs to cancel all perceived cycles of which the unconfirmed actor is part of.

Since we intend to use Pony’s garbage collector in the distributed context, causality must also be
guaranteed when sending messages between nodes in a network of Ponies. We will bring this topic
back to attention in chapter 3. Having provided a fully concurrent garbage collection mechanism
releases the programmer of thinking about the lifetime of actors (besides increasing efficiency).
This enables the runtime system to automatically terminate an application.

2.6.7 Termination

Contrary to other implementations of the actor programming model, such as Scala [40], Pony does
not require the programmer to explicitly terminate all actors participating in an application. This
requires language level support and a runtime check to distinguish between live and terminated
actors [30]. In Pony, termination is based upon the characteristics of actor-based applications that
computational progress can only happen as long as actors send messages.

The idea is to terminate a program based on quiescence. For this purpose, the scheduler main-
tains knowledge about threads having signalled that they failed in stealing from any of the other

24

work stealing queues. If every scheduler thread has reported that there is no actor available to be
executed (by atomically incrementing a counter), there can not be any messages left. In this case,
all available actors must be blocked. Hence, we can safely join all scheduler threads and terminate
the application.

We have to reassess this approach for the distributed context, especially because it interferes
with the scheduling of network events. The problem is that there might always be a message to be
delivered from a remote node. Section 3.8 provides an extended termination algorithm to address
this issue.

2.7 Available Actor Languages and Runtimes

There are other actor-based runtimes available, each of which have different characteristics and
attempt to be optimized for different purposes. Erlang [38] is a functional language based on the
actor paradigm, where actors are called processes. The main focus of Erlang is the development of
concurrent and failure tolerant distributed applications. Contrary to Distributed Pony, developed
for this project, Erlang requires to explicitly spawn processes on nodes of a distributed system.
Furthermore, processes cannot migrate to another machine. However, Erlang provides built-in fail-
over capability, where a process which is suspected to have failed can be dynamically exchanged
at runtime with a copy of it. Zero-copy-messaging semantics compatible with multi-processing are
not available [72].

Scala [40], a JVM-based programming language, does not provide type system support for
message-passing. Contrary to Pony, Scala either spawns a separate thread per actor or executes
actors on a thread pool. Both concerns have an impact on Scala’s efficiency, especially because
creating threads is a non-trivial task for the operating system and incurs substantial context-
switching overhead for scheduling actors. Although Scala supports zero-copy messaging semantics,
type system support to avoid data races is not provided. As a result, programmers are required to
implement synchronization mechanisms to protect mutable types from being modified concurrently.
Therefore, Scala combines two different concepts of concurrency. Furthermore, it is not enabled
for distributed computing without extensive use of libraries. Using available libraries, distribution
is explicit to the programmer and a distributed scheduler is not provided [3].

Similar to Scala, SALSA [122] is another JVM-based implementation of the actor programming
model. SALSA allows for actors to migrate, but the programmer is required to explicitly move
actors from one host to another. Contrary to Distributed Pony, a scheduler to automate this process
is not provided. Furthermore, in a concurrent setting, messages are copied independently of the
type of the arguments.

There are many other framework -based implementations of the actor programming model that
do not attempt to provide a programming language as such, but rather a runtime library. Im-
plementations with increasing popularity include Akka [16], Kilim [115], Theron [95] and libcppa
[26].

Akka provides a JVM-based implementation for concurrent and distributed computing with
actors. Moreover, distribution is (to some extent) not exposed to the programmer. However,
instead of providing a scheduler for actor migration, distribution and therefore scalability is driven
by configuration. This allows to create actors of a certain type on a specific node. As a result, the
distribution scheme is static and not reacting to free resources in a cluster.

Both Theron (C++) and Kilim (Java) are actor implementations for concurrent computing.
Contrary to Scala, both Theron and Kilim use a thread pool to execute actor code. The Theron
scheduler is non-preemptive and based on a simple FIFO queue holding unblocked actors. Work
stealing capability is not provided. Contrary to that, Kilim provides a user level scheduler that
allows a programmer to pick the thread pool an actor should be allocated to. The optimality of
such a scheduling scheme is questionable.

25

Another concurrent runtime written in C++ is libcppa, which was designed with distribution in
mind. As for any of the implementations above, a distributed scheduler is not provided. Distribu-
tion is therefore exposed to the programmer and uses a mechanism similar to that of asynchronous
remote procedure calls. The programmer is explicitly required to connect to remote actors, which
causes a stub/proxy to be created on both nodes for message delegation.

Note that none of the implementations above provide fully concurrent garbage collection of
actors. Pony, both in the concurrent and distributed setting, does.

2.8 Conclusions

Designing a programming language is a long and challenging process. The programming model
chosen affects various parts of the runtime implementation and dictates the way programmers
express their thoughts to develop an application. This is especially true for Pony, where the actor
programming model as well as causal message delivery enables the runtime system to provide fully
concurrent garbage collection of actors. It becomes clear in the remainder of this thesis, that the
runtime implementation for Distributed Pony also benefits from causal message delivery to a large
extent.

Expressing concurrency through asynchronous messaging can beat any form of thread synchro-
nization whilst being expressively equivalent. However, type system support is critical for an
efficient message passing system. For example, Pony is able to implement zero-copy messaging due
to guarantees given by the type system.

The scheduling of actors is important for using the underlying resources to their capacity. Many
aspects can be learned from the research field of operating systems for this purpose. Work stealing
is provably optimal for task and data parallelism [14, 12]. Next to the programming model, the
implementation of the scheduler is key for developing a programming language for high performance
computing whilst providing high levels of abstraction. This is even more the case in the context of
programming distributed systems.

A language based on the actor model is well-suited to be extended for transparent distributed
programming. Similar to hiding the complexity that comes with explicit concurrent programming,
we believe that it should be possible to program actor-based applications uniformly, such that
applications scale in a concurrent as well as in a distributed context without changes to the code
being necessary.

The challenges of distributed programming are partial failure and causality. Guaranteed causality
is not a common property among programming languages. We believe that it is an important tool to
aid in reasonability about programs. Although handling partial failure is important and may even
influence the design of a language (both syntactically and semantically), we first decided to pursue
a distributed runtime implementation that guarantees causal message delivery. The semantics of
a language runtime scheduler are not only important for the performance of applications, but also
for program termination. Since actors are loosely coupled and send asynchronous messages, many
actor-based runtimes require that the programmer explicitly manages the lifetime of all actors.
Pony attempts to release the programmer from this responsibility.

26

Chapter 3

Distributed Pony

In this chapter, we describe the design choices made for extending the Pony runtime for distributed
computing and provide a brief motivation, summary of possible alternatives, their analysis and
evaluation in order to illustrate the design process carried out for this project.

Distributing computation tasks requires to provide I/O capability for network communication
between runtimes. The implementation and scheduling of read and write operations to network
sockets and accepting incoming connections is absolutely critical for the overall performance. After
having presented an architectural overview in section 3.1, section 3.2 provides a detailed discussion
on how I/O events are multiplexed and when these events are handled by the language runtime
scheduler of Pony. Interestingly, a characteristic that is intrinsic for the Pony runtime due to
the programming model is also an important factor for scheduling I/O events efficiently: the
Distribution Actor.

Section 3.2.4 explains the underlying network stack implementation based on Berkeley sockets.
This part is important for the asynchronous networking capability and its performance as the
underlying socket implementation used by the Distribution-Actor should be non-blocking. We
designed a framed communication protocol for two types of Pony control messages (additionally to
application messages): scheduler messages and cycle detector messages. The same protocol is also
used to dispatch messages between actors located on different sites.

Delivering messages to remote actors and migrating actors from one node to another requires a
serialization and deserialization mechanism (section 3.4). The process of flattening object structures
before posting messages to the networking layer or satisfying remote work stealing requests does not
directly contribute to computational progress and must therefore be designed carefully and with
efficiency in mind. In order to improve reasonability about application performance, serialization
and deserialization should not be a dominant factor. Note that the need for such a mechanism
may also have an effect on actor migration, as pinning actors to a node if most messages are local
to that node (i.e. come from and are delivered to actors on the same node) might be a winning
strategy (section 5).

Section 3.5 and 3.7 focus on the adaptation of Pony’s work stealing scheduler as well as the cycle
detector used for fully concurrent garbage collection of actors. As previously mentioned, the cycle
detector depends on the causal order of messages. A formal argument that causality is guaranteed
in tree network topologies is given in chapter 4.

At the language level, object identity comparison is supported. This is more complex in a dis-
tributed setting. A possible implementation of distributed object identity comparison is discussed
in section 3.6. We conclude with termination in distributed and actor-based systems in section 3.8.

27

3.1 Overview of Runtime Components

The following overview – illustrated in Figure 3.1 – provides a summary of the main components
which enable Pony for distributed computing and gives a discussion about their responsibilities as
well as the dependencies between them.

Figure 3.1: Overview of Runtime Components

The main component is the Distribution Actor (distribution.c, existent on every node partici-
pating in a cluster of Ponies), which is the only entity (together with the network layer) in the
system that explicitly maintains knowledge about the network and any concerns related to dis-
tributed scheduling of application actors. This knowledge is never exposed to any other parts of
the system. Application actors never communicate with the Distribution Actor directly. Instead,
they communicate with so called actor proxies created by the Distribution Actor for scheduling
purposes. Proxies are actors that delegate application messages to the Distribution Actor, which in
turn cares about sending these messages to a remote node for which they are intended. Any data
structures required for managing a network of Ponies are only accessed by the Distribution Actor.
Although concurrency is involved, the implementation of Distributed Pony is free of any locks for
thread synchronisation.

Moreover, the Distribution Actor has access to functions implemented by the local scheduler
(scheduler.c), because we might be required to steal work from any of the local scheduling queues
to migrate actors to remote nodes. The implementation of the local scheduler is responsible for
triggering the remote work stealing mechanism if there are local cores in idle state.

The Distribution Actor depends on the network layer (network.c), which implements all low-
level primitives for network communication including a non-blocking implementation for sending
and receiving data to and from remote nodes as well as a framed network protocol. The network
layer manages any topological information, and therefore knows about any directly connected nodes.
A global view of the entire network is not maintained. The combination of the network layer and
the Distribution Actor implements the work stealing heuristics as they are described in section 3.5.
Furthermore, the Distribution Actor is responsible for routing messages from source to destination
as well as for distributed termination, serialization, deserialization and plays an important role for
distributed garbage collection.

Sending messages and migrating actors from one node to another requires serialization and
deserialization of actors, references and objects. As a consequence, we have implemented a stream
buffer (streambuf.c) for outbound data. The stream buffer is important for the performance of

28

serialization as well as for reducing the amount (and therefore overhead) of system calls necessary for
network communication. An additional buffer for inbound data is not required, because messages
are either stored in the network-socket buffer managed by the operating system or are immediately
delegated to some actor’s mailbox.

A network of Pony runtimes is maintained in a tree network topology. The reasons for that
topology are presented in chapter 4. A Pony node can either be the master (i.e. the root of the
tree network) or a slave node that is connected to its parent node and holds connections to up to
k ∈ N children. The master node is responsible for invoking the main actor of an application. Any
new node attempting to join a Pony cluster requests access to the network via the master node. In
order to ease configuration and setting up a network of Ponies, the joining process of Distributed
Pony delegates the new slave to its parent node and guarantees that the tree topology is eventually
balanced (section 3.3.2). As a result, no information about the structure of a Pony cluster is
required in order to add new nodes. The network topology is important for the implementation of
the work stealing heuristics and their data locality.

The following sections discuss the details for each of these components and provide pseudo-code
of those parts that are of particular interest.

3.2 Asynchronous I/O Multiplexing

The complexity of implementing high performance networking applications is easily underestimated.
Suppose we have a Pony node maintaining several incoming connections from other nodes of the
system. Once a message is delivered through any of the connections, the receiving node should
react to that message by either copying it to a target actor’s message queue (which can also be the
cycle detector) or by processing work stealing requests. There is no indication on which node sends
a message first and when, such that the mechanism for receiving messages must be generic. The
blocking nature of the socket receive function of the BSD Socket API [44, 81, 82, 84, 86] (which is
used for any kind of network tasks in the Distributed Pony runtime) does not allow for handling
requests that may come in on any of the other connections while waiting for incoming data on a
specific socket. This is also referred to as the C10K problem [73]. For that reason, asynchronous
I/O multiplexing is required.

Blocking on one socket or busy waiting in a loop and checking the sockets for available data is
obviously not an option. To avoid that blocking on one socket affects data arrivals on other con-
nections, one possible solution could be to spawn a separate thread for each connection. However,
spawning and maintaining threads is a non-trivial and costly operation for the operating system
kernel. Furthermore, maintaining a dedicated stack for each connection increases the memory foot-
print of the runtime system and therefore degrades cache locality. The goal is to efficiently listen
on one or multiple sockets without wasting too many CPU resources but also with a short latency
between a stream of data having arrived at a socket and it being read and processed. Preferably,
we only want to process I/O when there is work to do; otherwise we want to assign the available
resources to any other tasks that have to be executed. Thus, we want to have a mechanism that
signals the readiness of a socket. A socket is said to be ready if the corresponding operation on it
(i.e. read or write) will not block. This allows for quickly polling the states of available sockets
and then perform non-blocking operations on them.

In order to implement this mechanism efficiently, OS kernel support1 is required. In the following,
several system calls that are available are discussed. Various characteristics of these APIs and how
I/O events should be scheduled will be used in order to motivate the design choices made for the
implementation of Pony’s Distribution Actor.

1The implementation tasks of this project are carried out on UNIX based operating systems

29

3.2.1 Epoll, KQueue and Kevent

Applications that have to handle a vast amount of connections concurrently are supported by op-
erating systems through various system calls that allow to implement asynchronous I/O efficiently.
BSD-based systems such as FreeBSD or MacOSX implement a kernel event notification system
called kqueue [80]. The Linux equivalent (which is technically inferior compared to kqueue) is
called epoll [88]. Both are effectively based on the work carried out by Banga et al. in [7], with
the addition of some improvements. Windows implementations are I/O completion ports [33] or
asynchronous procedure calls (APCs) [32].

Contrary to select and poll, which are discussed in the next section, the idea of complex notifica-
tion systems like the above is to implement stateful interest sets. An interest set is a data structure
that holds information about which connection should be monitored for which event (e.g. reads or
writes). These interest sets are said to be stateful because they are maintained by the operating
system kernel, which allows them to be incrementally updated, rather than copied from the user
application to the kernel for each system call. This approach is motivated by the observation [7],
that the readiness of network connections or other kernel objects is often relatively sparse. As a
result, stateless implementations waste CPU cycles on copying and scanning the entire interest sets
for no reason. This is obviously problematic in the context of an application which has to maintain
many thousand connections (particularly the need of copying for each subsequent call).

Instead, Banga et al propose a stateful protocol, where interest sets can be declared and updated
incrementally via the function declare_interest [7]. User applications can retrieve signaled events
via get_next_event [7], which effectively dequeues items from an internally maintained kernel
queue. The operating system kernel registers asynchronous event handlers for each connection, such
that resources are only used when some event occurs that matches any of the declared interests.
As a result, available stateful notification systems perform in O(1) as opposed to their stateless
counterparts, which are of linear complexity. The epoll equivalent to the two functions mentioned
above is epoll_ctl for registering events and epoll_wait for event retrieval, which additionally
provides a timeout mechanism. The difference between epoll and Banga’s proposal is that epoll
works on descriptor granularity (i.e. the kernel event structure can be identified via a file descriptor)
[88], whereas the solution proposed in [7] works per-process. Hence, epoll allows an application to
handle multiple distinct event queues (via epoll_create(int size)), which is useful for priority-
based I/O scheduling.

A weakness of epoll is its interface to incrementally update interest sets, epoll ctl, because it
only allows to update the event filters for one connection at a time. Hence, updates to all registered
connections need to be performed with multiple calls to epoll ctl, which is a system call and therefore
expensive. Kqueue solves this problem by combining epoll wait and epoll ctl to a single function
named kevent [80]. This allows to update an array of event filters and retrieve a set of signaled events
in the same kernel call. Moreover, kqueue is designed to be a more generic notification mechanism,
and therefore allows to monitor nearly any kind of kernel objects (e.g. timers), whereas epoll only
works for kernel objects that can be identified via file descriptors [80, 88].

A network of Pony nodes is not managed in a star topology. The number of nodes to which a
runtime process maintains connections to is bounded and relatively small. Hence, the complexity
of using event notification mechanisms like above is not justified. Instead, we can meet the perfor-
mance requirements with simpler mechanisms. Since we only have to manage few connections per
node, stateless approaches are sufficient.

3.2.2 Select and Poll

As previously mentioned, the motivation for using complex event notification systems like epoll and
kqueue/kevent is that I/O performance is a problem if many connections need to be maintained. In
this case select and poll are inappropriate. However, as we enforce a network of Ponies based on a
k-Tree topology, the sockets that each node has to maintain is bounded (one socket for the parent
node and k ∈ N sockets for its children). In such a case select or poll are sufficient to satisfy our
performance requirements. Maintainability and ease of use as well as reduction of code complexity

30

becomes more important. Hence, the decision for the Distribution Actor implementation had to
be made only between select and poll.

Similar to the notification systems described above, both select and poll work on the granularity
of file descriptors. A file descriptor is a means of identifying the corresponding network connection.
Listing 3.1 shows the API of the select system call [87], expecting five input parameters. Only
the first nfds file descriptors are checked. Thus, the value of the first parameter can either be the
highest file descriptor plus one or the size of the corresponding file descriptor set (provided with the
macro FD SETSIZE) if all sockets in the set should be considered for event multiplexing. At this
point it also becomes clear why applications with many connections need to use other mechanisms
than select (besides algorithmic complexity). Not only is it a matter of performance but also the
fact that the file descriptor sets are of fixed size (on many implementations FD SETSIZE is 1024).
Using sets larger than the maximum value results in undefined behavior [87]. In fact, because
fd sets are realized as bitmaps, it is not possible to monitor file descriptors with a value larger
than FD SETSIZE without additional effort. This limitation can be circumvented by allocating an
array of interest sets and pick the corresponding set for the select call based on FD mod FD_SETSIZE

. However, this would require multiple select calls to cover the entire range of registered file
descriptors.

The application registers interest sets of type fd_set (file descriptor sets) [87] for read, write
and exception events. Thus, if a socket should be monitored for read events, it has to be added
to the read interest set. Appropriate macros for working with fd sets are provided (initializing,
setting and reading). Note that passing file descriptors to the macros must be side-effect free, as
the parameter is evaluated multiple times [87]. If no timeout (i.e. NULL) is supplied, the select call
is blocking until one or more file descriptors in the interest set become ready. Effecting a poll that
returns immediately is supported by supplying a zero-initialized timeval struct. Upon return, the
kernel overwrites the interest sets to indicate which of the monitored file descriptors are ready. This
also means that for each subsequent call of select, the interest sets need to be refilled. It shall be
mentioned at this point that a socket monitored for read events also becomes ready on end-of-file
(i.e. when a remote node closes the connection) [87].

Listing 3.1: Signal readiness of sockets per interest set: select()

1 int select(int nfds,
2 fd_set *readfds,
3 fd_set *writefds,
4 fd_set *exceptfds,
5 struct timeval *timeout);

Additionally to the fact that the size of the interest sets is fixed and implementation dependent
as well as bitmaps are shared for all sockets, scalability and performance is not optimal as the
kernel (as well was the using application) scans the entire bitmaps to check which file descriptors
are ready for each call. This is inefficient in a context with many connections, because the set of
ready sockets may be relatively sparse in a sense that only a small subset is ready for operation.
However, the relative impact of stateless mechanisms and their linear complexity is negligible if the
set of connections to be monitored is small. Note that we are not required to execute more system
calls compared to the protocols described in section 3.2.1.

Although this performance issue still remains for the system call poll (at least similarly) [85],
the number of sockets that can be monitored is theoretically unbounded. Furthermore, its usage
is less verbose. At the same time, the list of registered events does not need to be refilled for each
subsequent system call. As code complexity and maintainability was deemed important for the
first prototype if performance requirements can be met, we decided to implement the Distribution
Actor based on poll.

Contrary to the select API, poll allows to pass an array of structures of type pollfd rather than
maintaining all descriptors using the same bitmap for each event [85]. Each structure contains
the file descriptor of the corresponding socket along with a bitmap of registered events. Resetting
the information on which events to listen to is not necessary for each call (if the array is properly
re-used), because registered events and signaled events are split up into two separate fields - events

31

and revents. The timeout has the same effect as in the previous call but only provides a granularity
of milliseconds instead of microseconds [85]. However, since we want to effect a poll that returns
immediately (even if no sockets are ready), this is not an issue.

Listing 3.2: Retrieve signaled sockets: poll()

1 struct pollfd {
2 int fd; /* file descriptor */
3 short events; /* requested events */
4 short revents; /* returned events */
5 };
6

7 int poll(struct pollfd *fds, nfds_t nfds, int timeout);

In the following, only the mechanism for handling I/O events on sockets in Pony is discussed. The
“entity” responsible for any node-to-node dispatching as a whole is explained in later sections of
this chapter.

Each Pony node listens on a re-usable port which can either be passed in as command line
argument or can be configured in the operating system’s services file (in UNIX based systems
this file is located at /etc/services). If none of this information is provided, the implementation
picks some free port. All sockets maintained by the runtime system are stored in an array of
pollfd structures. This includes the listener socket at index 0, which is responsible for accepting
incoming connections. The size of the array (and therefore the maximum amount of children) can
be configured. The handler invoked for connection requests causes a new socket to be created to
the requesting remote node. The network topology is based on a k-Tree, which is not visible to any
node. Instead, each node only knows about its parent and its children, stored in the same array
(i.e. the parent node is stored at index one and so on). The listener socket is configured to be
non-blocking, which means that read or write operations will never block, but signal that there is
no more data to read or write. Any socket that is newly created for a connection that came in via
the listener socket inherits this configuration. The listener socket does not react to any network
traffic different from connection requests. If the array storing the sockets is full, new incoming
connections are rejected.

Since we are storing every socket within a pollfd structure, we can register the corresponding
events for which a socket should be monitored. The readiness of a socket for write events is
implicitly reflected through a message in the Distribution Actor’s mailbox, as described in section
3.3. Hence, a socket is never monitored for write events, except for connection completion. The non-
blocking configuration of the network sockets might cause a call to connect to return immediately,
if the connection cannot be established without blocking (caused by waiting for the three-way TCP
handshake to complete [22]). If so, the socket used for establishing a connection is monitored for
writability by setting the events-variable of the corresponding pollfd structure to POLLOUT. After the
socket being signaled as writable, we can check whether the connection was established successfully
or not (using getsockopt [83]).

The listener socket and every other socket created upon successful connection establishment is
monitored for read events by setting the corresponding bitmap to POLLIN. The states of the sockets
can be retrieved using the poll system call shown in Listing 3.2, providing the array of pollfd
structures mentioned earlier. Poll returns the number of fired events (or -1 if an error occurred).
There is no indication on which of the sockets are ready, so it is necessary to loop over the entire
array independently of how many events are indicated. The revents bitmap of a non-ready socket is
guaranteed to be 0 [85]. Listing 3.3 shows how the corresponding message handler can be invoked
for a given event. Note that a connection request causes a socket to be ready for readability.

32

Listing 3.3: Invoke handler for filter

1 int ret = poll(&sock_array, sock_count, 0);
2 pollfd* ev;
3

4 if(ret > 0)
5 {
6 for(int i = 0; i <= sock_count, i++)
7 {
8 if(sock_array[i].revents == 0)
9 continue;

10

11 ev = &sock_array[i];
12

13 if((ev->revents & POLLIN) != 0)
14 handle_read(ev);
15 else if((ev->revents & POLLOUT) != 0)
16 handle_connection_compl(ev);
17 }
18 }

The poll system call sets the corresponding bit for each signaled event and writes the result to
revents. Thus, revents can be checked using the bit-wise AND operator &. Once able to invoke
a network handler, it is guaranteed that the corresponding socket operation will not block. It is
important to remember that a socket is ready as soon as one TCP packet arrives. Using the poll
system call, we do not implicitly know how much data is available to read (in the case of kqueue
this is possible [80]). The consequence is that the read handler is more complex than one might
expect, because we do not want to waste CPU cycles desperately trying to read a Pony message
which might not have arrived in its entirety yet. A solution to this problem is given in section 3.3.1.

A mechanism that allows us to to handle network I/O when necessary is worth nothing if we do
not find an appropriate way to decide when we need to actively invoke the described system call.
This being a scheduling problem, we need to discuss the challenges of asynchronous I/O multiplex-
ing. An important insight towards a solution is that using any of the system calls mentioned above
do not prevent us from checking for I/O unnecessarily, such that the resulting I/O schedule is not
optimal. However, in the context of an actor-based language runtime in combination with Pony’s
work stealing heuristics, having no events to handle should be sufficiently rare until the program
terminates.

3.2.3 Scheduling I/O Events

In the first design iteration we intended to implement a separate I/O network library for han-
dling network events (reads and writes) from and to remote nodes asynchronously. This API was
supposed to include all necessary buffer management, appropriate event handlers as well as a dis-
patcher to process received messages accordingly. This allows for an autonomous and re-usable
component of the runtime system that is highly optimized for networking operations. A single call
could then be utilized to check for pending I/O events and to process them, respectively. This
approach requires to instantiate an I/O service upon node startup and maintaining a reference
to it. A straight-forward implementation would be to let the main scheduler thread maintain the
service for network events.

However, this approach makes the problem on when and on which core to schedule and trigger
the handling of such events relatively complex (and possibly inefficient). If only the main thread
holds a reference to the I/O service, then we can only handle events if this thread is not busy
and before it steals work from other cores. That could cause a relatively high latency between the
arrival and processing of a message. Although Pony schedules an actor to handle one message per
quantum, the I/O service may suffer starvation, because the main thread may theoretically always
have actors to execute. A possible way out of this could be to provide a reference to the I/O service
for each thread. However, this requires to make the implementation of the asynchronous network
library thread-safe, which is unnecessarily complex. At the same time, such a solution can cause

33

actors that need to send messages to remote nodes to wait due to synchronization mechanisms
used for a thread-safe network library (even in the case of a lock-free implementation, because the
network layer may be subject to high contention). Especially for a programming language runtime,
where executing application actors is of highest priority, this argument makes the implementation
of a network library as described undesirable.

The idea is to implement the I/O service as an actor that can receive I/O messages that are
supposed to be delivered to remote nodes and dispatches I/O events when sockets become ready.
This allows for the I/O service to be scheduled just like any other actor in the system. The fact that
the I/O actor may be stolen and scheduled on a different core on each invocation is not an issue,
because the probability that the L1 cache is evicted between two invocations should be relatively
high, such that we do not degrade performance due to cache misses. Since Pony only schedules
actors that have messages in their mailbox, the only problem that remains is that the I/O actor
may never get scheduled even though sockets are ready to being read (i.e. remote messages have
been received) as the event of a message having arrived does not automatically put a message into
the I/O actor’s mailbox. This can be solved by implicitly sending a “check-for-events” message
upon I/O actor creation as well as always sending the same message within the corresponding
handler function again. With this approach, the I/O actor will always be scheduled. To avoid
busy-waiting, we call a zero-valued nanosleep after all necessary I/O work is done.

Having provided a basic solution for I/O scheduling, the responsibilities for the mentioned actor
are more than just dispatching of network messages. More importantly, the very same actor is
primarily responsible for distributed work stealing. For this reason, we will refer to it as Distribution
Actor. There is more to network programming than just non-blocking sockets, asynchronous I/O
and its scheduling. Efficient mechanisms for determining the type of a message are required. The
goal is to avoid that the Distribution Actor becomes the bottleneck. The following sections illustrate
that achieving this goal is dependent on many different parts of the runtime implementation.

3.2.4 Framed Network Protocol

A common pitfall of programming network applications that TCP is stream-based as opposed to
packet-based [22, 69, 71]. Although transferred data is split up into packets, there is no guarantee
that a single write operation to a socket corresponds to exactly one TCP packet. This means that a
single call to write can cause many packets to be sent in which case it might correspond to multiple
reads at the receiver side. Furthermore, the standard of TCP as described in [71] allows that many
distinct messages could be transferred using the same packet. As a consequence, the receiver of a
message has no indication on how much data to read from a socket, not even after the full message
has been transmitted, because the network buffer could contain mulitiple messages that came in
concurrently. The underlying network stack implementation of TCP only cares about the splitting
of messages into packets, and their correct composition at the receiver side (besides some error
handling).

This motivates the need for a framed network protocol, where each message is preceded with
a header that contains appropriate information about the message content in order to determine
message boundaries. At the same time, such a protocol allows to efficiently determine the type of
a message, which makes the implementation of a message parser easier and more convenient.

Listing 3.4: Pony Message Frames

1 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- *
2 * | header | length | variable length body | *
3 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- *
4 1 byte 4 byte max. 4 GB

A Pony message frame consists of three fields. The message header is one byte in size and is used
to efficiently check the type of a message. The length field indicates the size of the variable length
message body. Both are combined within a structure called message_frame. The message protocol
needs to support several different types:

• Application messages that are sent from a local actor to a remote actor.

34

• Runtime control messages for scheduling, which are required to implement our work stealing
heuristics (section 3.5). Additionally, distributed garbage collection and Pony’s mechanism
to connect new peers require their own set of messages.

The goal is to encode the message type within the header and combine it with a flag that allows
us to identify a message as being sent from another Pony runtime process. Hence, the mechanism
that forms the header field of a message frame is based on three components:

• PONY_MASK is a bit-mask used to check the integrity of a frame header. The mask is not sent
across the network and is used to determine the significant bits of the Pony’s magic flag.
Integrity in this context does not mean to match the header against a check sum, but rather
to ensure that the incoming message is supported by the receiver.

• PONY_H is a magic flag, which is used to identify Pony messages.

• The message type is used to determine the purpose of a message. The number of message
types to be supported dictates the minimum size of the header field.

These three components are combined to a single bit string and written to every frame’s header
before sending messages over the network. The actual values chosen for these components depend
on each other, because we need to be able to extract every one of them from the frame header on
the receiver side.

Assume we decide on a magic flag PONY_H with a value of 0x81, which corresponds to 10000001 in
binary representation. We can combine the value of PONY_H with the type of the message by using
the unset bits of the magic flag, in this case any bit within [1, 8). The value for a message type can
now be chosen appropriately. For example, we could decide to define the ID of actor application
messages to be PONY_ACTOR_M = 0x83 and so on.

When sending a message, the frame header can be set to the result of the bit-wise OR between
both components, i.e (PONY_H | PONY_ACTOR_M). The value of PONY_MASK is used to limit the set
of possible input headers as well as to check for the magic flag, independently of the type of a
message. An incoming message can be checked to be a Pony message using (header & PONY_MASK

)== PONY_H. If the check fails, the message can be ignored. The same applies for determining the
type of a message. Depending on the number of messages to be supported, we could decide to set
the mask to 0xe1 (11100001, which supports 16 messages).

It is important to distinguish between the mask and the magic flag, because checking (header

& PONY_H)== PONY_H) succeeds in every case where all bits that are set in PONY_H are also set in the
header. The result would be a much more fragile network implementation, which could be made
to crash easily by injecting corrupt messages. For example, a message header with the value 0xff

would pass the test with using the magic flag only, but not the test using the mask. The application
of PONY_MASK implicitly rejects message headers that are not supported.

The length field in a message frame is used to indicate the number of bytes to be read until the
end of a message is reached (i.e. the size of the variable length message body). For the first running
prototype, this field is a 4-byte integer, which bounds the maximum size of messages to 4GB. Note
that we cannot use a compiler optimization in later version to generate the size of the field, because
we also need to support data structures that are of a size which cannot be determined statically
(e.g. linked lists). Limiting the size of network messages to some upper bound is fine, because we
can schedule actors accordingly if the size of a message exceeds a certain threshold, and therefore
it is not a limitation at the language level.

One important aspect of the design of message frames is that we could have also decided to
provide more fields that contain information about the type of a message, which would allow to
support messages with no message body (and therefore only a single read from a socket). However,
in the case of Pony, the two discussed fields are the only ones shared between messages of all
types, such that we would have ended up with a message frame where most fields are unused for a
particular message. This is unnecessary overhead.

Deciding on a particular size of a message frame header or any of the fields involved does not
provide a problem for future versions. The implementation is kept within its own component, such

35

that other parts of the system do not need to be changed when the size of the fields needs to be
changed (e.g. for more message types to be supported). Issues with compatibility would only arise
if changed the actual shape of the message frame, which is another argument for keeping as little
information as possible in the part that precedes the message body.

The communication protocol allows us to dispatch messages between runtime processes on a
conceptual level, but there is still some way to go in order to actually achieve efficient message
passing between runtime processes. Designing and implementing the distribution part of the run-
time is challenging, because it interferes with and depends on many parts of the runtime system
whilst being critical for performance. Superficially, some of the solutions seem easier than expected.
However, those are the ones that are usually hard to figure out in the first place. Implementing the
Distribution Actor requires to trade off competing factors against each other. The important part
is not only to understand the complexity of the implementation itself, but also that getting to the
proposed solutions requires constant improvement and evaluation.

3.3 The Distribution Actor

A Pony program that is executed and expected to scale on a computer cluster needs to be started
with the command line argument --ponydistrib. By doing so, an actor will be created that is
in charge of anything necessary for distributed scheduling. This actor is called the Distribution
Actor and is locally available to each machine in the Pony network and is pinned to the host it
was created on (i.e. it is never scheduled to another machine). Within this section, we describe
the overall structure of the Distribution Actor, its external and internal interface as well as some
of the data structures used for managing messages and a network of Ponies.

We refer to the external interface when we talk about the set of message types the actor reacts
to and to the internal interface when talking about the functions it uses to fulfill its tasks, without
exposing them to other parts of the runtime. Although work stealing and the scheduling of actors to
other nodes is effectively implemented using this actor, scheduling concerns are described separately
in section 3.5. The Distribution Actor provides the following external interface:

• DISTRIBUTION_INIT is the constructor message used for allocating the necessary heap space
and initializing the necessary data structures. This message is implicitly sent to the Distri-
bution Actor when it is created upon runtime startup and therefore only sent exactly once
per node.

• DISTRIBUTION_CONNECT is used to establish a connection to a parent node. A connection is only
established if the node is not the Pony Master (i.e. not the root node in the tree network).
The master node must be provided as command line argument in order to initiate the joining
process (see section 3.3.2): --ponyconnect <hostname> <port>.

• DISTRIBUTION_PROBE is used for checking whether there is inbound I/O work to do for any of
the sockets that a node maintains to other participating computers. In order to prevent the
actor from becoming blocked, the Distribution Actor sends this message to itself at the end
of each invocation of the message handler for scheduling purposes. No other actor sends this
message to the Distribution Actor. This message interferes with the termination mechanism
discussed earlier (because it is never really “quiet”) and will therefore be reconsidered in the
remainder of this chapter. Upon receipt of this message, the Distribution Actor invokes the
poll mechanism described in section 3.2.2.

• DISTRIBUTION_PULL is sent to the Distribution Actor when the local scheduler detects that
local cores become available. Following an observation made during development that the
free core count may oscillate frequently, in order to avoid flooding the system with messages,
this message is sent using an asynchronous timer instead of every time the core count changes.

• DISTRIBUTION_POST is used for delegating messages to actors that are located on a remote
node. This message is only sent from actor proxies.

36

• DISTRIBUTION_CLOSE terminates the Distribution Actor. This causes all remote connections
to be closed and all data structures maintained for scheduling to be deallocated. After
having received and processed this message, the Distribution Actor becomes blocked. Hence,
the corresponding runtime process can terminate based on the quiescence scheme described
earlier. A Distribution Actor is terminated based on the scheme described in section 3.8.

In order to avoid unnecessary code repetition and provide a clear interface, other components (such
as actors and the local scheduler) use a set of convenience functions, which encapsulate the sending
of the above messages to the Distribution Actor.

Various data structures are maintained in order to manage a network of Pony runtime processes.
This includes two instances of a hash map to keep track of objects received from remote nodes (which
is called the identity map) as well as a map to store all necessary information for dispatching remote
messages to the correct destination actor (called the proxy map). A node’s ID is stored in a simple
integer variable. The advanced work stealing heuristics presented in section 3.5.4 require that each
node maintains the free core count of all its descendants (where descendant is the transitive closure
of the children relation). As previously mentioned, directly connected nodes are maintained in an
array of pollfd structures, which at the same time is used to poll for asynchronous I/O events. The
first element of this array is the listener socket for incoming connections.

The internal interface of the Distribution Actor (of which parts are implemented in network.c)
consists of the necessary event handlers for asynchronous I/O as well as functions to determine the
next hop for a network message (if necessary). The read handler for network I/O (handle_read) is
invoked for every socket that was signaled for read events. The write handler (handle_write) is only
invoked to check for connection completion but not for DISTRIBUTION_POST or DISTRIBUTION_PULL

messages, because the Distribution Actor attempts to write any data resulting from these two
messages to the corresponding network socket without giving up (i.e. during the quantum at which
either of the two control messages is dispatched). If the listener socket is signaled for readability,
then the handler responsible is handle_accept, which is used to accept new connections or to trigger
delegation of a joining slave node (section 3.3.2). Furthermore, a handler function for each type of
Pony runtime control message is provided. Whenever a remote message is received, the type of the
message is determined based on the frame header discussed earlier and the corresponding function
is picked to process the message.

Whenever the Distribution Actor decides to migrate actors to another node (or in fact to another
part of the network), it attempts to steal as many actors as necessary from the local scheduling
queues. Note that we might be not be able to steal any actors. The Distribution Actor has no
possibility to determine whether an attempt to steal work is going to be successful or not, because
we cannot efficiently inspect all available scheduling queues. However, the CPU time invested in
attempting to steal work is entirely wasted, because we have updated the free core count of at least
one child node, which is important for termination. We will come back to the relationship between
free core counts, actor migration and termination in section 3.5.4 and 3.8

One important fundament for the performance of Distributed Pony is the underlying networking
implementation. In the context of a programming language runtime, there might always be work
to do. Wasting CPU time through waiting for I/O is therefore undesirable. Pony’s non-blocking
network API – discussed in the following – is designed to reduce the overhead involved with net-
working I/O and ensures that the amount of time spent executing system calls for network socket
operations is kept to a minimum.

3.3.1 Non-blocking Sockets

We have previously mentioned that one requirement for Pony’s network I/O capability is that
we should spend as few cycles as possible reading or writing to the network. An important part
of this is to use non-blocking sockets. This guarantees that no socket operation will ever block,
independently of the amount of data we attempt to read from it. For example, upon every network
message we first need to read the part that precedes the message body, which is five bytes in size.
Theoretically, a system call to any socket reading the frame header could return anywhere within
the five byte boundary. Note that it cannot return having read nothing from the socket, because

37

in this case the socket would not have been signaled that it was ready (due to the poll mechanism
in use), except when a remote node closes the connection. The same applies to write operations,
because the outgoing buffer of a socket may be full. At the same time, we need to minimize the
amount of system calls, because switching to kernel mode is expensive. As a result, the read and
write handlers of the networking API (network.c) become considerably more complex. We need to
be able to give up reading and continue at that point when more data is available, for all sockets
maintained by a node at the same time. This allows reading as much as we can get from all sockets
whenever the Distribution Actor is scheduled, and give up the quantum once all ready sockets
haven been visited. Of course, this also means that we cannot read all of the data that might be
available in total, because a socket may have become ready again after we moved on to the next
network connection. From a scheduling perspective this is fine, because we do not want to extend
the quantum of the Distribution Actor indefinitely. Hence, the maximum time spent on reading
from a socket is equivalent to the time it takes to read an entire inbound buffer from each socket.
The size of the inbound buffers is fixed and can be configured. The tree network topology bounds
the number of connections each node has to maintain and therefore – at least to some extent
– the worst-case time complexity of the networking handlers can be influenced. Note that this
property only holds if a socket’s inbound buffer is capable of holding the largest message of a given
application. For this reason, it can be worth tuning an application by changing the corresponding
buffer sizes. However, in most cases, the default settings (which are implementation dependent)
should be sufficient.

For each socket, we maintain a separate inbound buffer (Listing 3.5). Once a socket becomes
ready for reading, we keep track of the number of bytes to be read for a specific part of a message
as well as an offset pointer to the location within the buffer that we are writing to for a given
message. Depending on the value of collect_started, this pointer either points within a structure
of type message_frame or within the allocated buffer for the message body (msg_body). Remember
that reading a message requires at least two read operations, because we first need to acquire the
frame header (where the size is statically known), before reading the message body. For convenient
use of pointer arithmetic, the offset pointer is chosen to be of type char*.

Listing 3.5: Network Message Buffer

1 typedef struct message_buf
2 {
3 size_t bytes_left;
4 char* offset;
5 bool collect_started;
6 bool header_complete;
7 message_frame* frame;
8 void* msg_body;
9 remoting_fn dispatch;

10 } message_buf;

The corresponding read-handler function (collect(...) of network.c) is recursive and reads as
much data as possible from each ready socket. Pseudo-code is provided in Appendix A. If a given
message buffer is not indicated to be involved in a current collection (collect_started), we know
that the next bytes to read need to be a frame header.

After the frame header has been read successfully, we check for the magic flag of the message
and decide whether to ignore the message or not. If accepted, the length of the message body can
be determined using the length field. The function gives up when the read call blocks and returns
zero, which causes the Distribution Actor to continue with the next ready socket (or to give up
its quantum if no more socket needs to be visited). Once a message has been read completely,
the collection function sets the dispatch handler remoting_fn to be invoked. This handler depends
on the type of the message (scheduling message, application message etc). The return value is a
pointer to the receiving actor. How the receiving actor is determined varies depending on the type
of the message, and is discussed in section 3.4 and 3.5.

Minimizing the number of write system calls for sending messages to remote nodes follows a
similar approach, but is largely dependent on the implemented stream buffer used for serialization.

38

We postpone the discussion of the write-handler function to the next section. The difference
between reading and writing is that we do not give up writing when the call blocks. Instead, we
keep running in a loop until the entire message was written to the target socket’s output buffer. The
right setting of the output buffer sizes determines whether we have to attempt writing multiple
times or not. Otherwise, we would be required to maintain a separate buffer to store outgoing
messages until they have been successfully flushed.

Depending on the amount of actors running on a node, it might take some time until the distri-
bution actor is scheduled again, which would degrade the throughput of the distributed application
unnecessarily. The occurrence of a situation where we need to retry writing to a socket should
be rare, because the operating system has a time window to flush a socket’s output buffer until
the Distribution Actor becomes scheduled again. This window can essentially be influenced by the
scheduler if using a timer to probe for network I/O (instead of a message).

3.3.2 Connecting Slave Nodes and Routing

Before scheduling actors on a set of distributed machines, we need to be able to join nodes to an
existing network of Ponies as well as a scheme to route messages from source to destination. The
mechanism to join new nodes is especially important, because it has a large impact on the amount
of configuration and administration required to set up a Pony cluster. Similar to the philosophy we
follow for developing the language specification (abstracting from topological and technical details),
we want a Pony cluster to be easy to configure and to maintain. Setting up a distributed network
of Ponies is possible without detailed knowledge about the underlying computing resources. The
runtime system imposes as few constraints as possible on the underlying hardware infrastructure.

There are many different approaches to solve these problems. In fact, the first discussions about
the desired feature set for Distributed Pony did not consider these concerns in great detail. Why
this was the case becomes clear when discussing the problem of work stealing actors in a distributed
context (section 3.5). Only after having fully understood what it takes to implement a distributed
scheduler for actors, it became clear that nearly none of the problems that came up can be solved
in isolation. For example, as discussed in the remainder of this chapter, it is not self-evident that
(besides configuration convenience) the joining mechanism and routing of messages is inseparable
from object identity comparison, garbage collection and causality.

We will reflect on possible alternatives when discussing the distributed scheduler implementation
and point out why they had to be ruled out. Also, the first prototype does not take any node-to-
node latency into account. In order to improve data locality, future versions of Pony might use
an adapted scheme, such that a parent is picked based on the network delay or some comparable
measurement (“Who can ping the joining node fastest?”). In the following, we will discuss a solution
on how slave nodes can be connected to a cluster of Ponies (which shall suffice for the purpose of
this project) as well as how messages are routed within the system.

Every cluster of Ponies requires one of the runtime processes to be determined as master node,
which is the root within the tree network topology. The runtime system should be able to construct
the tree network automatically. Therefore, every new slave node connects to the master and is either
accepted as a direct child, or delegated to some node further down the tree. Once a node with a
free slot for a child node is found, the joining node chooses this node as its parent and the initial
connection that was established to the master for joining the network is closed. Hence, provided
that the tree is balanced, the joining algorithm of Distributed Pony has a worst-case time and space
complexity of O(log n), where n is the number of currently participating nodes.

The difficult part is to decide at each node via which path a joining runtime process should be
delegated to a parent node. This is important, because we want that the tree of runtime processes
is almost balanced. We refer to it as almost balanced, because each time a new level is added to
the tree hierarchy, the tree becomes balanced once all nodes have a fully utilized child-set. This
property is important for the performance of the work stealing heuristics, which are discussed in
section 3.5. The master node assigns an ID to each new participant by simply incrementing a
counter. The ID of the root node is 0. Once the maximum number of child nodes for the root is
reached, delegation is decided using a scheme that allows us to fill up the tree in a breadth-first

39

fashion, whilst guaranteeing our desired almost balanced property. Thus, we need to develop a
recursive algorithm that, given a node ID n, returns the path to that node ID, in a tree where each
node has up to k children.

First, we develop a formula that computes the number of non-root nodes in a k-Tree of depth
d:

All(d) =
d∑

i=1,i∈N
ki (3.1)

For delegating a node from the root to an appropriate parent node, we need to be able to derive
the path from the root to a nodes location within the tree from its ordinal number. First, consider
the following formula, which computes the ordinal number of a node based on the path via which
it is reachable from the root node:

Ord : N∗ → N
Ord(a1...ad) = All(d− 1) + (((a1 ∗ k + a2) ∗ k + a3)) ∗ k + ... + ad−1) ∗ k + ad + 1

(3.2)

For example in a tree with k = 2, the ordinal number of a node located at path 0.0 is Ord(0.0) =
2 + 1 = 3. Similarly, the ordinal number at path 0.1 is Ord(0.1) = 2 + 1 + 1 = 4. For joining a
new node to a Pony cluster, we want to compute the path to a new node’s parent based on the
new slave nodes ordinal number, i.e. the inverse of the above formula:

Ord−1 : N∗ → N
∀m ∈ N+ : Ord−1(m) = a1...an such that ∀i ∈ N+ : 0 < ai ≤ k ∧Ord(a1...an) = m

(3.3)

We need to develop an algorithm that computes Ord−1. Hence, the objective is to find a number
p such that All(p− 1) < m ≤ All(p), and compute:

bp = m−All(p− 1)− 1

for i in range(p, 1):

ai := bi mod k

bi−1 :=
(bi − ai)

k

(3.4)

Given a binary tree, following this algorithm, a new slave node with an ordinal number (node ID)
of 5 would be delegated to a parent node via the path a1.a2 = 1.0, i.e node 5 becomes a child
of a node with ID 2, as shown in Figure 3.2. Note that the path for joining a new node can be
computed efficiently if k is a power of 2, because then the modulo operation and division can be
implemented using a bit mask in combination with bit shift operators. For this reason, it might be
sensible to require from the programmer that k needs to be a power of 2.

The actual assignment to a parent for a node joining a Pony cluster depends on the number of
children a node is allowed to maintain, and can be dynamically configured for the master node using
the command line argument --childcount <n> (which is increased until n is a power of 2). Slave
nodes inherit this configuration. Not only does this approach allow to easily set up a Distributed
Pony cluster, but also provides the basis for a routing scheme. Figure 3.2 illustrates this process
for a binary tree.
The master node accepts new connections until the maximum number of children is reached (in
the case of a binary tree k = 2). A new slave node is told its ID independently of whether the
master accepts the connection or delegates the slave further down the tree. If the node that the
new runtime process attempts to pick as parent is fully occupied, it sends a delegate message to the
requester, containing all necessary host information about the next possible parent. For example
in Figure 3.2, the fully occupied master node – knowing that the new peer must be of ID 3 –
would reject the connection request, and delegate the new node to its child with ID 1. Node 1
has no children yet and therefore accepts the connection. Following the same approach, the next
slave node with ID 4 would also become a child of 1. Figure 3.2 shows the result after six nodes

40

Figure 3.2: Joining new Slave Nodes

Master fully occupied Joined Node 3 Joined 6 Nodes

have joined the network. Evidently, the next node to accept a new connection would be node 3.
Note that there will always be some tuning necessary by the Pony programmer setting up the
cluster, because depth (i.e. latency) might be more harmful than breadth (i.e message forwarding
per node), in which case the number of maximum children per node should be increased.

The same delegation scheme can be used for routing. Every node can compute the path to a
node from the root. If a sending or intermediate node finds itself on that path, it delegates the
message towards a path down the tree. Otherwise, a message is delegated to a parent node.

A limitation of this approach is the tree structure itself, because it fails in utilizing all (possibly)
available network channels. The network throughput is lower than what might be technically
available. For example, a message from node 0 to node 5 would be routed using the path in the
tree, instead of a channel that might directly exist between the two nodes. More importantly, the
worst-case time and space complexity for routing messages is in O(n), because routing from node 6
to 3 requires n steps and messages, even if there were a direct channel between the two. Although
there is a tree labeling algorithm to cushion this effect [119], we will stick to the labeling scheme
described above. This may be a tough call, but we are interested in a tree network topology for
a specific purpose, as described in chapter 4. Furthermore, the proposed algorithm may cause
paths to be used in an imbalanced manner (due to its breadth-first nature). We might change the
algorithm in future version of Distributed Pony, such that tree is filled up in “gaps” (i.e. node 4
would become a child of 2 and so on).

Future work will require to determine whether this type of network topology is a major limitation
for Pony’s distributed computing performance. However, we are convinced that it is possible to
make up for the flaw described above with fine-tuned scheduling heuristics. An outlook on how
these may look like is provided in chapter 6. How partial failure can be handled using this scheme
without reconstructing the entire labeling is discussed in section 6.2.

A slave node, after having joined a Pony cluster, should receive work to process as soon as
possible. However, before getting to that, it is required to provide serialization and deserialization
of any structure that might be sent over the network.

3.4 Serialization and Deserialization

Serialization and deserialization of actors, actor references, arbitrary objects and primitive types is
an important part of the runtime implementation, because it considerably influences the overhead
introduced by distributing an application. Having this in mind, we were convinced that it is
important to avoid that the Pony serializer becomes the bottleneck. It seemed obvious that it
should be possible to serialize as well as deserialize actors and messages in parallel. Whereas in
many cases this approach would simplify various aspects of deserialization (such as allocating the
necessary heap space for actors), there are several problems, which are illuminated in the remainder
of this chapter.

Also, because we develop the runtime system prior to a compiler and a complete language
specification, the implementation described is more complex than necessary, because we have no

41

type system support to automatically generate the necessary functions. For this reason, we have
developed a recursive trace mechanism that scans a given structure and executes the necessary write
operations, as described in section 3.4.2. Another aspect is that we cannot efficiently determine
the size of a data structure prior to serialization. Hence, a buffer type that can be written to while
scanning a data structure is required, without the need of pre-allocating memory space for the
entire structure. This class of buffer types is also referred to as stream buffers.

3.4.1 Stream Buffer and I/O Vector

Not only is the buffer implementation vital for efficient serialization, but also for writing the data
to a network socket. The fact that we do not know the size of a structure a priori (and therefore
cannot pre-allocate memory), causes that the buffer might be required to chain-up multiple chunks
of data. Additionally, we cannot align the chunks of the stream buffer in advance, which can result
in a structure (e.g. a primitive type) to be written across chunk boundaries (i.e. the value has been
partially written to one chunk and ends in another chunk). However, for efficiency reasons, we do
not want to be required to care about any type alignment, because we want to have stream chunks
of static size, such that we can make use of Pony’s pool allocator.

As system calls are expensive, it would be undesirable to execute multiple calls to the socket-
write function. Preferably, we want to invoke the write system call exactly once, independently
from the size and number of chunks of the stream buffer. We cannot absolutely guarantee that the
write call only needs to be called once, because the number of bytes that can be written without
blocking also depends on the filling level of a socket’s output buffer. However, we can ensure that
the write is performed with as few write-calls as possible. Moreover, by appropriate scheduling and
tuning of the socket-buffer sizes, requiring multiple calls should be the exceptional case.

Pony’s stream buffer (provided in streambuf.c) is initialized for a specific type of message and
is therefore given a one byte message header. This allows to precede the buffer with an appropriate
message_frame before writing to a socket. By default, the stream buffer implementation allocates
chunks of 1KB in size (one at a time). In order to be able to stream values, it is necessary to
maintain a pointer that moves forward as we go along and serialize a structure. Once a chunk is
fully utilized, a new chunk is allocated and appended to a singly-linked list. Each chunk is contained
within a structure of type iovec (I/O Vector), containing a base pointer and a length field, as shown
in Listing 3.6. This structure is provided by the operating system for scatter-gather I/O, which is
a mechanism to write multiple buffers to a socket (or file descriptor) that are separated in memory
using the system call writev [89].

Listing 3.6: Structure iovec as defined in sys/uio.h

1 struct iovec {
2 void *iov_base; /* Base Pointer */
3 size_t iov_len; /* Number of bytes */
4 };

The base pointer points to one chunk of data. The length field indicates the number of bytes that
have been written to the corresponding chunk (and has therefore a maximum value of 1024). It is
then possible to materialize the stream buffer to an array of iovec elements, and write the entire
array to a socket with a single call to writev, instead of being required to trigger a system call for
each chunk. This strategy obviously pays off for structures that span across multiple chunks, as
the overhead associated with system calls can be considerably reduced.

Note that materializing a linked-list of iovec structures does not require to additionally allocate
heap space. Since we know how many chunks (and therefore how many iovecs) have been used,
we can simply copy the vector to a variable-length array on the stack of the corresponding function
that writes the buffer to some socket. Once the vector is written successfully, the buffer structure
can be destroyed. Memory management is contained within the stream buffer implementation and
only uses the pool allocator discussed earlier.

The buffer itself does not need to be thread-safe if parallel serialization is desired. We could
simply maintain a thread-local variable that holds a pointer to a buffer structure, such that every

42

thread would manipulate a different stream buffer. The C-runtime guarantees that a variable
annotated with __thread is allocated per extant thread [46]. Note that this type specifier can only
be used alone, or with the storage classes static or extern [46].

The first running prototype of Distributed Pony – which did not support object identity com-
parison nor garbage collection – supported parallel serialization and deserialization of actors and
messages in order to keep the time spent executing the Distribution Actor as short as possible.
Each actor was responsible to serialize outgoing and deserialize incoming messages on its own. We
will come back to this issue in section 3.5 and 3.6 and explain why we cannot support parallelism
outside the context of Distribution Actors.

We do not consider this as a major limitation to the performance of Distributed Pony, because
we could imagine a more complex scheme of multiplexing I/O events, where each node schedules
multiple Distribution Actors instead of just one. By doing so, we would be able to serialize and
deserialize in parallel safely. However, this requires major implementation efforts on the scheduler
and on a synchronization scheme between Distribution Actors. Before embracing these challenges,
we should attempt to master the complexity of transparent distributed scheduling whilst maintain-
ing desired language properties (such as causality). Hence, a more complex I/O scheme is subject
to future work.

Deserialization does not require to make use of a stream buffer, because we can allocate space
on the Distribution Actor’s heap. The length field of a message frame is always an overestimation,
because every network message contains management information. Instead, memory is allocated as
we go along. The scanning of a structure to be serialized or deserialized is implemented by Pony’s
trace mechanism.

3.4.2 Pony Trace

Implementing a recursive trace mechanism for serialization and deserialization is necessary, because
we have not implemented a compiler yet. Thus, type system support is not available, which would
allow us to generate the required procedures. At the same time, this mechanism can be used to
update the reference counts for garbage collection when sending and receiving messages. Therefore,
Pony Trace supports several trace modes, as shown in the definition of trace_t in Listing 3.7.

Listing 3.7: Pony Trace Modes

1 typedef enum
2 {
3 TRACE_MARK,
4 TRACE_SEND,
5 TRACE_RECEIVE,
6 TRACE_SERIALIZE,
7 TRACE_DESERIALIZE
8 } trace_t;

TRACE_MARK, TRACE_SEND and TRACE_RECEIVE are used for reference counting purposes and the re-
maining two for serialization and deserialization. The behavior of the trace implementation (trace
.c) can be influenced by setting the mode accordingly. A full trace of a structure can be started
by calling pony_trace, as shown in Listing 3.8.

Listing 3.8: Start a Pony Trace

1 void pony_trace(void* p, trace_fn f, pony_mode_t mode);

For serialisation, p points to the location to read from and for deserialization to the location to write
to, respectively. The argument f is a pointer to the (top-level) trace function that corresponds to
the type indicated by pony_mode_t (implemented as enum). The mode is important for determining
how a structure has to be handled (primitive type, actor or complex type). The following example
illustrates the use of pony_trace for a message with primitive arguments as well as for an actor
structure.

43

Remember that an application message is described by the number of arguments, a set of trace
functions as well as the corresponding type mode per argument. A message with a 64-bit integer as
argument can therefore be defined as shown in Listing 3.9. Assuming that arg is a pointer to the
argument of the corresponding message, we can serialize it by invoking pony_trace(arg, m_64prim.

trace[0], m_64prim.mode[0]). Of course, in the case of deserialization, arg would need to point to
some destination to which we want to write the message argument. Serialization however, implicitly
knows the target to write to, using the stream buffer discussed earlier.

Listing 3.9: Message with 64-bit integer argument

1 static message_type_t m_64prim = {1, {pony_trace64}, {PONY_PRIMITIVE64}};

Primitive types are easy to handle and no recursive calls to any subsequent trace functions are
necessary. An actor structure however can be of any shape, containing multiple data members
(which themselves are eventually primitive), pointers to complex types or references to other actors.
Similar to message types, the type (actor_type_t) of an actor is also given a pointer to a trace
function. This function is the top-level trace entry point, which is given to a call to pony_trace upon
serialization or deserialization. An example for such a function and an actor holding a primitive
type as well as a reference to another actor is shown in Listing 3.10.

Listing 3.10: Top Level Trace Function for Actor

1 typedef struct some_actor
2 {
3 uint64_t prim_type;
4 actor_t* actor_ref;
5 } some_actor;
6

7 void trace(void* p)
8 {
9 actor_type_desc* d = p;

10 pony_trace64(&d->prim_type);
11

12 /* trace function is NULL because references
13 * to actors are never materialized */
14 pony_trace(&d->actor_ref, NULL, PONY_ACTOR);
15 }

A full trace of the actor structure above can be triggered using pony_trace providing the corre-
sponding top-level function as argument, which itself invokes a trace function for each data member.
Note that pony_trace64 is a convenience function, such that it is not necessary to switch-case on
the mode of a primitive type. In order to stick to the interface of Pony’s trace module, we should
invoke pony_trace(&d->prim_type, pony_trace_primitive, PONY_PRIMITIVE64). An actor could
also hold a reference to objects of any kind. Each complex type requires to define its own trace
function which can be given to pony_trace. Actor references are never provided a trace function,
because we need to forbid that pointers to actors are flattened. Since actors are “entities” of exe-
cution, they contain a part of the state of the overall application and therefore we cannot just copy
it to some other machine. Actors are only serialized when they are subject for being scheduled
remotely.

References to actors instead are more difficult to handle, because we need to ensure that remote
actors, which may receive an actor reference in a message, can use this pointer to send messages to
the referenced actor. The same applies to an actor which becomes scheduled to another machine.
This is a non-trivial problem, because we need to be able to deliver any messages which are sent
using references contained within remote messages (or actor data members) to the same actor
located on the machine where the received reference is valid.

A similar challenge comes up for handling object references. The problem in this case is not
around serialization or deserialization, but comparing the identity of two objects. Objects are
identical if their location in memory is identical. However, once an object is serialized and sent
over the network, it technically becomes a new identity on the remote machine after deserialization.

44

Note that this problem is particularly difficult, because a remote actor might receive the same
object within a message from multiple actors which themselves are scheduled on different machines.
Moreover, an actor might have received the identical object in a previous message, so overwriting
the previously received object with an object of the same identity in subsequent messages would
not be correct. For efficiency reasons, we cannot flood the system with messages in order to find
the original object of a remote copy. Preferably, we do not want to send any messages at all, such
that identity comparison does not become considerably slower in a distributed context. We will
come back to this issue in section 3.6.

The procedure for serializing or deserializing arbitrary complex types is equivalent to the one
described for actors (in fact, an actor is essentially a complex type). The actual data that is written
and read while tracing any (complex) type is not just the data contained within the structure, but
also management information required by the runtime system. This information is important for
the proposed scheduling implementation as well as for object identity comparison. Therefore, we
defer the discussion of their semantics to the corresponding sections in the remainder of this chapter.

3.5 Distributed Work Stealing

The discussion on implementing a work stealing scheduler for Concurrent Pony (section 2.6.3)
demonstrated that implementing a powerful scheme to distribute the workload on a single machine
is hard. This is even more the case in the context of Distributed Pony, because messaging over a
(comparatively slow) network is involved. The design of a distributed scheduler should keep in mind
that the performance of the entire system also depends largely on how the underlying networking
resources are managed. In fact, it is not guaranteed that applications will run faster, just because
more resources are available. Scheduling parts of an application on different machines can make an
application slower compared to a single-host environment if most time is wasted for network I/O.
On account for this, the scheduler for Distributed Pony was developed with certain characteristics
in mind:

• Transparent migration of actors: No actor should be required to maintain any topological
information. If referenced actors are migrated, the behavior of the referencing actor(s) should
not change. Thus, it should be possible to treat migrated actors just like local actors whilst
maintaining the consistency of the application.

• If a message is sent to a remote node via multiple intermediate hops, it should not be required
to serialize and deserialize more than once.

• Leverage data locality: Nodes should first attempt to steal work from machines that are
closest in the network (in terms of latency). Note that this depends on an optimized version
of Pony’s join mechanism. As for now, we assume nodes are closest if they are a child or
parent to the node attempting to steal work.

• Distribute workload in a balanced manner. This is the trickiest part, because it may be
required to migrate actors to a node which may not have attempted to steal work. We need
to provide a scheme to find nodes in the tree that are less occupied. The scheduler should be
optimized for throughput (which in the long run also optimizes for latency).

• Maintain causality: We have previously mentioned that we attempt to guarantee causality
within Distributed Pony by construction and with no software overhead. During development
of Pony’s distributed scheduler, it became evident that transparent actor migration has to be
designed carefully. We will come back to this point in section 3.5.1 and why causality must
be considered for migration.

First, we discuss very basic distributed work stealing heuristics, which we have implemented for a
first running showcase in early stages of this project. Many of the implementation efforts carried
out for the scheduler largely benefit from guaranteed causality in the concurrent version of Pony.

45

Hence, the following sections should also be understood as an example to show how important and
valuable causality for developing concurrent and distributed software systems can be.

The main challenges are not detecting when to steal work from remote nodes or how to pick a
possible victim, but complexity arises when thinking of a scheduling scheme that allows to uniformly
distribute actors in a network, such that the throughput of the system can be maximized. Also,
handling references to actors, which can be contained within a message or be a data member of
an actor that is subject for migration, is a non-trivial task. The following sections attempt to
incrementally discuss the proposed distributed work stealing scheduler, because this seems the
only way to understand that implementing an efficient distributed runtime requires to tune little
details and understand the consequences of different approaches in order to pick the least-worst
compromise (if necessary).

3.5.1 Migration and Actor Proxies

In order to extend a programming language runtime based on actors for (transparent) distributed
computing, it is necessary to be able to migrate actors from one machine to another. Figure 3.3
shows a simple example of a network including three nodes, each of which have the same core count.
Assume that the master node invokes a test application which forks as many actors as there are
cores available in the entire network. Evidently, the scheduler should migrate four actors each to
node 1 and 2 in order to achieve an optimal workload distribution.

Figure 3.3: Pony Network - Three Nodes, 12 cores and 12 actors

A basic approach could be for each node to register its parent node as possible victim. Once an
idle core is detected, a node can simply send a work stealing request message to its victim node,
containing the free core count in the message body. Upon receipt of such a message, a node attempts
to steal as many actors from the local scheduling queues as requested (if possible), serialize the
actor(s) and send the corresponding data to the requesting node.

Since there are possibly other actors referencing one of the actors to be migrated, we need
to ensure that these references stay valid and that messages are delegated to the corresponding
remote site once migration is completed. The key idea is that an actor becomes a proxy once it has
been picked for migration. This is reflected through circumventing the actor’s message dispatch
handler (by simply setting a boolean flag). If an actor proxy is scheduled, a delegation primitive is
called which hands over the message to the Distribution Actor discussed earlier. For this to work,
the Distribution Actor needs to maintain information to which node an actor was migrated to.
Additionally, a receiving remote node must be able to determine the corresponding target actor.
The memory address the migrated actor had on the origin node is not sufficient, because it may be
ambiguous between multiple nodes. Moreover, upon receipt of an actor structure, a remote node
needs to know the type of the actor received, such that the corresponding data structure can be
initialized. For this reason, we introduce Pony global IDs in order to determine the identity of an
actor.

Remember that each node joining a Pony cluster was given a node identifier. We can uniquely
identify an actor by combining the node ID with the memory address the actor has on the corre-
sponding node. This information can be encoded in a single 64-bit integer. The memory subsystem
actually only uses 48-bits for main-memory addressing. Also, Pony’s pool allocator aligns any al-

46

location on a 64B boundary. Hence, the lower 5 bits of any memory address are always zero. This
allows us to store the memory address of an actor in the lower 43-bits of a 64-bit integer. The
remaining 21 upper bits are reserved for the node ID. Note that this combination limits a Pony
Cluster to manage a maximum number of about two million peers, where each peer may have
an arbitrary number of cores. The Distribution Actor simply maintains a hash map (provided in
hash.c) that maps the local memory address of an actor proxy to the corresponding global ID
(which contains the destination node). To find the correct target actor for a message, a receiving
node maintains the reverse mapping. The encoding is shown in Listing 3.11, where memory_addr is
the address of some structure (e.g. an actor) and node the ID a node had received from the master
when joining the network. The node ID is sufficient to determine the next hop a message needs to
be delegated to.

Listing 3.11: Encoding of Pony Global IDs

1 /* bit-wise operators: *
2 * | logical or; & logical and; >>, << right and left bit shift */
3

4 uint64_t glob_id = (memory_addr >> 5) | (node << 43);
5

6 uint64_t memory_addr = glob_id << 5 & ((1 << 48)-1);
7 uint32_t node = glob_id >> 43;

Each byte stream of a serialized actor is preceded with the global ID mentioned above and a type
ID. The type ID is used to retrieve the corresponding actor_type_t structure, which was used for
pony_create.

The runtime system needs to guarantee that delegated messages arrive at the remote side af-
ter migration is completed. The causality property of Concurrent Pony together with the TCP
network protocol in use enable us not to actively care about this problem. An actor becomes a
proxy by setting a boolean flag. During serialization, an actor is removed from the scheduling
queues. Therefore, there cannot be any concurrent state changes while serializing the actor. The
Distribution Actor writes the serialized actor structure to a network socket before putting the actor
(which is now a proxy) back on one of the scheduling queues. Hence, any delegate messages will
arrive in the Distribution Actor’s mailbox after the actor has been sent to some remote node. As
a result, the byte stream of the serialized actor is sent to the target node before any of the mes-
sages delegated via the proxy. TCP guarantees that messages sent over the same channel arrive
in order at the remote site [22, 69]. Hence, migration is completed before any messages need to be
dispatched, because the remote node first handles the migration message and then anything else.

If all 12 actors shown in the example above are not blocked upon the receipt of the two work
stealing requests, the described basic scheme works perfectly fine, and results in an optimal workload
distribution. Figure 3.4 shows a more realistic example, which we use to discuss the limitations of
the simple approach described above. A network of Ponies does not need to be homogeneous in the
sense that the number of available processor cores can vary between participating nodes. Moreover,
a Pony network (most likely) consists of multiple levels in the tree hierarchy instead of just one.
The basic scheme does not cater for any transitive actor migration. In the example provided, node
1 will attempt to steal four actors from the master. Node 3 however will never receive work from
1. This is obviously problematic, because we would have unused resources. Therefore, a scheme
where each node attempts to steal work just for its own is not sufficient.
Most importantly, although the master node starts the application and slave nodes have no im-
plicit main actor, migrated actors may create new actors. Consequently, it is possible that for
example node 2 might have many more actors to process than available cores. If the master node
is always busy, node 2 would remain overloaded, independent of how many cores may be idle in
the entire network. The scheduler should be able to detect such imbalances and redistribute actors
appropriately. Hence, migration should both be implicit, where some machine requests work, and
explicit, where a machine is actively given work without having asked (i.e. some form of push and
pull scheme).

However, there is a problem with this scheme that came up during development. Although we

47

Figure 3.4: Pony Network - Deeper Tree Structure

can guarantee causal message delivery in a distributed setting (see chapter 4), migration can break
causality. In the following, we provide an example scenario were this is the case and based on that
develop an extended migration protocol that maintains the desired causality property.

3.5.2 Causality-aware Migration Protocol

Figures 3.5 and 3.6 illustrate an example scenario where actor migration would break the causality
property of Pony. Consider two actors A1, B1 located on Node A and a third actor A2 located on
Node B. A1 sends a message m1 to A2 via the local proxy A2p. After that, the same actor sends
a message m2 to B. In response to message m2, actor B sends a message m3 to A2 via the same
local proxy A2p. Causal message delivery requires that we guarantee that message m1 is enqueued
in the mailbox of A2 before m3. In the scenario shown in Figure 3.5 causal delivery is guaranteed,
because delivery at Node A is causal and messages arrive in order at the Distribution Actor Db. In
fact, causality remains guaranteed even if A2 is migrated to another node where a proxy for A2 is
not present.

Figure 3.5: Causal Message Delivery - Guaranteed

However, there is a special case if an actor is supposed to be migrated to a node where a proxy for
the same actor already exists. Consider the same messages being sent as in the previous example.
Before A2 is able to process m1, Db might decide to migrate A2 to Node A, which already contains
a proxy A2p for the same actor. Note that the migration process does not serialize the message
queue of an actor. Instead, messages are eventually delegated to a migrated actor’s new location.
Once A2 arrives at Node A, the proxy becomes a local true actor. The problem is that there is no
guarantee that m1 is delegated to the new location of A2, before m3 of B is enqueued in the message
queue of A2, which is now not a proxy anymore and will not delegate messages to Node B. As a

48

consequence, we need to extend the migration protocol such that we can ensure that an actor has
processed messages that might be subject to break the desired causality relation.

Figure 3.6: Causal Message Delivery - Broken

The protocol proposed in the following is not required to be executed for every case of migration, it
is only necessary if migrated actors cause proxies to become local on the destination node. However,
before migrating an actor, we cannot determine without sending any messages to the Distribution
Actor of the destination node whether migration would cause proxies to become true actors.

The idea is to introduce a confirmation-acknowledgment round-trip to the migration mechanism
in order to enforce that A2 on Node B has processed m2 before being migrated. Before the Distri-
bution Actor Db migrates actor A2 to Node A, it sends confirmation message containing the global
IDs of the actors to be migrated to the destination node. The Distribution Actor Da receives this
message and determines whether any of the global IDs match a proxy that exists on the node it
manages. For each detected proxy, Da delegates the confirmation message (without any arguments)
to the corresponding proxy. If a global ID cannot be matched to any proxy on that node, Da

responds immediately with an acknowledgment message to Node B. If there is no proxy, then there
cannot be any messages that have to be delegated to the actor which we plan to migrate. Hence,
causal message delivery remains guaranteed without any extra efforts.

Actors for which a proxy exists on the destination node are not migrated until acknowledged.
Once the confirmation message is processed by a proxy, it sends an acknowledgment message
containing its own global ID to Node B. Furthermore, we prevent the proxy from delegating any
messages to remote nodes from this point onwards. The Distribution Actor Db eventually receives
the acknowledgment message and sends it (without any arguments) to the corresponding true actor
of the same global ID. Once the true actor processes this acknowledgment message, it signals Db

that it is ready for migration. Since messages are causal between the nodes, A2 will have processed
message m1 before being migrated. At the same time, A2p will not have delegated any messages to
Node B. Messages continue being processed once A2 arrives at Node A and the local proxy becomes
a true actor. Causal message delivery is guaranteed, as shown in Equation 3.5.

We do not have to consider B1 sending m3 to the proxy or to the true actor after migration.
The important part of the protocol is to ensure that A2 executed the state transition resulting from
having processed m2. Once the migrated actor is deserialized at the destination node, the proxy
will have the same state as A2 had on Node B at the time of migration. The fact whether B1 sends
m3 to the proxy A2p or to the migrated true actor is not relevant for causality.

49

A2 must have received m1 before migration.

A1, NA − (m1)→ A2, NB

A1, NA − (m2)→ B1, NA

NB − (conf(A2))→ NA;B1, NA − (m3)→ A2, NA

Da, NA − (conf)→ A2p,NA

A2p,NA − (ack(A2))→ A2, NB

– migrate A2 to NA when ack received –

(3.5)

Causality is not only a concern for actor migration but also for deserializing references to actors
contained within remote messages. Hence, before discussing a more elaborate scheduler imple-
mentation, we will address the problem of handling actor references, provide a discussion on how
serialization and deserialization is invoked and whether we can allow multiple actors or messages
to be serialized and deserialized in parallel.

3.5.3 Handling Actor References and Actor Identity Comparison

Any actor may hold references to other actors as data members. Moreover, actors could also be
referenced within any application message. Since a programmer using Pony is not aware of any
topological information or the degree of distribution, it is necessary to provide a mechanism that
is able to handle references to actors in the distributed context. The problem is that a receiving
actor might be scheduled on a machine where references contained within any application message
are not valid. In a concurrent setting, a reference is valid on a node, if it (the reference) points to
an actor structure that has not been garbage collected. The same applies for migrating an actor
which holds references to other actors as data members.

Migrating referenced actors to a the node of the actor containing the references is not always
possible, because a single actor might be referenced by many other actors on different nodes.
Furthermore, this approach would interfere adversely with the workload distribution scheme. The
goal is to provide a mechanism that ensures consistency and delivers messages to the correct
destinations.

The reader is encouraged to stop here for a while and think about the complexity of this problem.
Not only is it a matter of handling references correctly, but also that the solution needs to consider
issues related to routing, serialization and deserialization, causality and garbage collection.

In the following we will discuss how the Distribution Actor serializes and deserializes actor
references. Furthermore, handling actor references needs to be designed with causality in mind.
We first discuss the basic mechanism and then give an example that there is more to it in order to
maintain causal message delivery.

Whenever a reference to an actor is sent to a remote node, we cannot be sure whether the
reference is valid on the target machine or not. Note that the meaning of a valid reference changes
in the context of Distributed Pony. We consider a reference to be valid on a node, if the same
actor to which the reference on the origin node pointed to is located on the receiving node (which
is possible due to Pony’s proxy mechanism).

Encountering a reference to an actor during serialization and deserialization poses several chal-
lenges to the runtime system. Pointers to actors are serialized similar to the approach used for
migrating actor structures, but ignoring the data part of the referenced actor. Instead, it is only
required to send the type ID as well as the global ID of an actor to a remote node. Figure 3.7
illustrates the process of actor reference deserialization. A1, A2 and B1 are application actors, A1p
and B1p actor proxies. Da and Db are Distribution Actors.
Upon deserialization, a proxy of the same type is created and the message (or actor structure) is
given a reference to the created proxy. The Distribution Actor uses the global ID to send messages
delegated via that proxy to the correct origin node, where the corresponding true actor is located.
The Distribution Actor on the origin node is not required to maintain any information about having

50

Figure 3.7: Serialization and Deserialization of Actor References

handed out references (except for garbage collection). The corresponding target actor for delegate
messages can be found using the memory address contained within the global ID with which the
remote proxy was associated upon deserialization. This is different from migration, where the
memory address of the migrated actor on the new node is unknown at the time of serialization.

The use of global IDs is necessary to determine the identity of an actor, because a receiving node
needs to check whether a proxy for a specific actor already exists. We must not ever have multiple
proxies on the same machine for the same destination actor, because this would break the causality
property of Pony, as shown in Figure 3.8 (distribution actors are omitted). Consider two actors
A and B, both holding a reference to the same remote actor, but using different proxies. Actor A

sends a message to C (via the proxy P1) before sending a message to B. In response to the message
from A, B sends a message to C (via P2). Since message 1 precedes 2, which causally effects 3, we
need to ensure that C receives 1 before 3.

Figure 3.8: Multiple Proxies break Causality

Causality does not hold if multiple proxies for the same actor are located on the same node. The
reason for this is that causality is not only broken in the distributed context, but also on Node

A itself. There is no guarantee that the Distribution Actor on Node A receives message 1 before
message 3, because the order in which the two proxies delegate the message is unknown. As a
consequence, the order in which the Distribution Actor writes the two messages to the network
channel is arbitrary. Hence, the global ID of an actor is used to determine whether a proxy is
already available. Instead of creating a new proxy, references are simply replaced with the existent
proxy upon deserialization.

From a language level perspective, the mechanism described above implicitly supports condi-
tional code for actor identity comparison, because the runtime system guarantees that a node either
inhabits a true actor or exactly one proxy for any migrated actor. By the time the Distribution
Actor has deserialized an incoming actor reference, the actual pointer within the received structure
is replaced with the corresponding proxy. Independently from which node actor references are
received, pointers to the same actor are always replaced with pointers to the corresponding proxy.
Since an application actor is not aware of any distribution, identity comparison of actors does not
need to be handled separately. An equivalent approach allows to compare the identity of objects,
which we discuss in section 3.6.

The extent of this problem and repercussions on other parts of the distributed runtime was
not fully captured at the beginning of this project. It was tempting to provide a serialization

51

implementation that allows to serialize and deserialize messages and actors in parallel (by simply
sending messages like ”Deserialize yourself!”). The problem described above requires to maintain
an identity map to correctly delegate messages and track existent proxies on a specific node. The
parallel approach depends on a thread-safe hash map implementation, which itself is not a problem.
However, depending on the application, this map is subject to high contention and in the critical
path of remote message passing. Thread synchronization is therefore undesirable. As a result, we
decided that the Distribution Actor will have exclusive access to that map and therefore no thread
synchronization is needed.

In later stages of the project it also became evident that other parts of the runtime system also
depend on the serialization and serialization to be done by the Distribution Actor. For example, a
similar approach as discussed above is also the basis for solving the problem of distributed object
identity comparison, which we discuss in section 3.6. The importance of this decision also becomes
clear when discussing an implementation of distributed garbage collection, which is optimized for
keeping the messages to be sent over the network to a minimum (section 3.7).

Some questions still remained unanswered. For example, actors might get migrated multiple
times, which would build up a chain of proxies. Although this is an interesting property, a chain
of proxies is undesirable. Furthermore, actors holding a reference to a proxy could be migrated
to a node to which the corresponding proxy points to. Hence, we need to break ”loops” of proxy
delegation. Both issues are discussed in section 3.5.5.

However, the knowledge built up until this point is sufficient to discuss the advanced work
stealing heuristics of Distributed Pony.

3.5.4 Hierarchical Work Stealing

We have established that the problem of distributed actor scheduling cannot be solved satisfactorily
if only considering nodes attempting to steal work actively for themselves. A mechanism is required
that detects to which part of the tree network actors should be migrated to. It is not sufficient to
just delegate actors from the master node to participating Pony runtime processes down the tree.
The scheme must be more adaptive, because arbitrarily many actors could be created and destroyed
on any node during the lifetime of an application. Scheduling actors depends on the number of
cores that idle in the entire system, not just a single machine. The fatal flaw of the basic scheme
described earlier was that fully occupied intermediate nodes “partitioned” the network to some
extent and caused nodes in subtrees to either starve from work or to be continuously overloaded.
The distributed runtime scheduler for Pony however should be able to migrate actors from any
node to any node when necessary.

Figure 3.9 illustrates a distributed work stealing scheme based on push and pull, where nodes
actively advertise available cores and decide to delegate actors to other participants. The numbers
in the nodes represent the total local core count, labels on the graph edges represent the reported
free core count. Assume that the Pony cluster in the example has been running for a while. The
proposed algorithm does not require to maintain a global view of the network.
The idea is to have each node to publish its free core count to its parent node. Thus, the knowledge
of the amount of idle cores in the system propagates up the tree and eventually reaches the master
node. Hence, each node in the system knows its own free core count and that of its children,
transitively. The local free core count value of a node may oscillate frequently. In order to avoid
that the system is flooded with core count messages, informing the parent node is triggered by a
configurable kernel timer or by the receipt of an update message from any child node. Note that
we do not propagate the free core count down the tree, because we would not know to which part
of the tree we are publishing. This propagation is considered to be the pull part of the scheduling
scheme, because advertising available cores is essentially equivalent to sending a request for actors
to execute.

Whenever the master receives a free core count update message, it informs the other children
about the number of idle cores available in the rest of the tree (i.e. via some path through the
master and any of the other children). This is possible, because every node knows the core count
of its children and any other nodes further down the (sub-) tree. For example, if the master node is

52

Figure 3.9: Advanced Work Stealing Heuristics

Pony Cluster - 132 cores Report Free Cores Propagate Global Counts

told from its right child that there are 4 cores idling in the right sub tree, it would inform the left
child node (which is the parent of the left sub tree) that there are 6 cores available in a path via
the master node (because the master itself has two unoccupied cores). Hence, the propagation of
free core counts down the tree follows the calculation rule below, where i is the i-th child of node n
and k the number of childes per node. The function FreeCores returns the reported free core count
of a node.

FreeCores : N→ N

CoreCount(n, i) = FreeCores(n) +
∑

a∈{b|0≤b≤k}−{i}

FreeCores(a);n, i, k ∈ N

This process is repeated at every node except the leaf nodes. Hence, every Pony node maintains a
triple consisting of the local free core count, the sum of the free core counts of all the descendants,
as well as the idle cores in the rest of the tree reachable via some path through its parent node.
Figure 3.10 shows the view each node maintains corresponding to the state of the system described
in Figure 3.9.

Figure 3.10: Core Count Configuration at each Node

Whenever a node propagates its free core count up the tree, it determines whether it might be
necessary to send work to other nodes. If the children of a node reported idle cores, then their
parent node actively migrates actors down the tree (if possible). This is the push part of Distributed
Pony’s scheduling mechanism.

Note that each node is able to determine whether it might have work to delegate by simply
inspecting its own free core counter. We cannot entirely avoid unnecessary attempts to steal work,
because there could be exactly one actor on each of the local queues. Incoming migrated actors
are either deserialized and enqueued for processing or – if the free core count is zero – delegated

53

to some other node. In this case, the only overhead is re-transmission and not serialization or
deserialization. How many actors are stolen depends on the node (actually: the path) chosen for
delegation. Actors are only migrated up the tree if all child nodes (if any) report that they are fully
occupied. This is sensible because of data locality. Remember that the proposed joining algorithm
guarantees that a tree of Ponies is eventually balanced. As a consequence, the number of hops
necessary in order to reach a node through a parent which is not used to capacity is potentially
larger than a path via one of the child nodes.

One might come to the conclusion that a limitation of this scheme is that the workload distribu-
tion is not guaranteed to be uniform. If all nodes of a Pony cluster are used to capacity, no actors
are migrated. Hence, the scheduler seems not to be optimized to deliver the shortest latency. The
turn-around time of an actor might be higher than necessary, because a node might have substan-
tially more actors to execute than others. However, the important point is that work stealing is
about stealing work and not stealing actors. As a result, we do not need a solution to this problem,
which could be to keep track of the number of live actors per node. Using this information, nodes
could propagate their load factor additionally to the free core count. This enables each node to
determine the occupancy of the sub trees through their children and the rest of the tree through
their parent node. Migration could then also be based on detecting that the load factor of nodes
within the tree is imbalanced.

The problem however is that no node knows the core count of every other node in the system,
which makes it difficult to determine how many actors should be migrated, because the impact
of migrating a single actor on the occupancy factor of a node is unknown. The relative speeds
of the available processors might vary greatly, which also influences the turn-around time of an
actor. Migrating actors from a fast machine to a slower machine based on the occupancy factor
may therefore be exactly the wrong thing to do. For this reason, we believe that the proposed
scheduling algorithm is a good approximation, because it is optimized for throughput and therefore
also latency).

Migrating actors from one node to another causes the creation of a proxy to delegate messages.
Since migration may happen multiple times, this process could build up a chain of proxies. Also,
actors could be migrated back to nodes on which they have previously been or to nodes where a
referenced actor is scheduled. In order to avoid unnecessary message delegation or serialization and
deserialization overhead, these issues need to be considered by the migration mechanism. Solutions
to these problems are discussed in the following.

3.5.5 Collapsing Actor Proxies

Technically, a distributed programming language runtime such as Pony does not necessarily require
a prefix-based scheme to route messages from source to destination. In fact, the first prototype
of Distributed Pony routed messages implicitly through building up chains of proxies. Assuming
no failures of nodes, the migration mechanism described in section 3.5.1 is sound, such that the
destination actor is eventually reached. A migrated actor might be scheduled to another machine
again, such that a new proxy would be created that delegates messages to the new target and so
on. Although sufficient for an initial showcase, this approach violates one of the desired properties
we set ourselves for Distributed Pony, namely, that serialising and deserialising a message or actor
should only happen once.

Not testing for a target actor to be a proxy would result in unnecessary overhead due to se-
rialization and deserialization. The Distribution Actor would read the remote message from the
socket buffer and simply delegate the message to the target actor (which might be a proxy). The
message is deserialized but not evaluated. A target actor being a proxy would cause the message
to be serialized again and sent to the node where the actor was migrated to next. This process
could be repeated several times until the destination is reached.

In order to reduce the overhead to that of simply re-transmitting a message to the next hop,
the Distribution Actor checks whether a target actor for a remote message is a proxy or not. This
is achieved by checking the hash map maintained for delegation. If an entry is available, the node
ID of the machine to which the actor was migrated to is extracted. The Distribution Actor sends

54

a re-targeting message to the origin from which the delegated message was received. This message
contains the global ID of the corresponding proxy on the origin node as well as the new node
ID. Using this information, the Distribution Actor at the origin node will update the hash map
maintained for proxy delegation accordingly. Note that this does not mean that subsequent delegate
message will not be routed via the node which sent the re-targeting message, but intermediate
Distribution Actors can detect that the message is meant for another node, and would therefore
forward it towards the destination without reading the message content, as explained in section
3.3.2. Also, one node might receive multiple re-targeting messages for the same proxy. The overhead
of sending messages to remote actors is reduced to that of simply re-transmitting the message,
instead of deserializing and serializing the message at each intermediate node.

The runtime system takes also care of unnecessary “loops” of message delegation. Consider an
actor holding a reference to a proxy. If this actor is migrated to another node on which the actual
counterpart of the referenced proxy is scheduled, it would be unnecessary to create a proxy for that
reference and let it point back to the origin node. This would cause messages to be delegated in
a loop. Instead, the Distribution Actor detects (using the global ID) that the referenced actor is
actually on the same node and therefore replaces the reference with a pointer to the actual actor
during deserialization accordingly.

Intermediate actor proxies can not be destroyed immediately after a re-targeting message has
been sent, because there might be local actors holding a reference to any of the intermediate prox-
ies. However, proxies are garbage collected just like any other actor in the system, and therefore
destroyed when possible. Hence, collapsing proxies only avoids unnecessary evaluation of applica-
tion messages, but does not necessarily reduce the number of proxies for a specific actor. There
is no invariant that an actor has only one corresponding proxy from the perspective of the entire
Pony Cluster. However, it is guaranteed that there is no more than one proxy for a any actor on
each node and that a remote message is serialized and deserialized exactly once.

Interestingly, collapsing actor proxies and reducing the remote delegation overhead to that of
re-transmission is exactly the reason why we had to implement a routing scheme. Building up a
chain of proxies would guarantee that the destination is eventually reached, without maintaining any
(explicit) routing information. However, serialisation and deserialisation is too expensive compared
to determining the next hop towards a destination.

The ability to collapse proxies depends on the availability of the knowledge about which proxies
exist on a particular node and to which original actor each of them corresponds to. Thus, the
identity of an actor must be known in order to determine corresponding proxies. A similar form of
identity is required due to a programming language feature of Pony (object identity comparison).
The challenge in this context is not how to avoid unnecessary serialization or deserialization, but
to provide a mechanism that is not massively slower compared to the concurrent setting. Hence,
sending messages over the network is not an option in this case. The following section discusses a
scheme to compare the identity of objects in a distributed context without sending any messages
or changing the storage layout of Pony objects.

3.6 Distributed Object Identity Comparison

Object identity comparison is a very common feature among object-oriented programming lan-
guages like C++ [116] or Java [67]. The idea is to test whether two different variables point to
the same memory location and, depending on the type, whether the two variables point to the
same object. Pony supports identity comparison, too. In a concurrent context, this feature is easy
to implement, because only the values of the memory addresses need to be compared. The type
system guarantees that compared variables are of the same type. Contrary to a single machine,
memory addresses are not unique across a network of computers. So, checking for identity using
these addresses is ambiguous. Not only is this feature important for Distributed Pony on a language
level, but also important for serialization and deserialization (in combination with the type system
to be developed for Pony).

The proposed actor proxy mechanism together with handling references to actors, which we

55

discussed in section 3.5, required identity comparison for actors. Neglecting the ability to send and
receive messages and maintaining a local heap, actors are quite similar compared to objects. It
stands to reason that we can therefore re-use the hash map implementation in combination with
the concept of Pony global IDs for distributed object identity comparison.

For efficiency reasons, we want to provide a mechanism without changing the layout of objects,
because this would lead to substantial overhead if many objects exist during the lifetime of an
application. Not only would this affect the performance of Concurrent Pony, but also negatively
influence serialization, deserialization and transmission of remote messages.

Hence, whenever a complex type is serialized, we do not only write the actual data, but also
the corresponding global ID, which consists of the node ID and the memory address of the object.
Upon deserialization, a Distribution Actor allocates the necessary memory space for the object
and maintains a mapping of the object’s memory location on the receiving node and the extracted
global ID. Therefore, in Distributed Pony, two objects are identical if their global IDs (maintained
by the Distribution Actor) are the same.

The main requirement for Distributed Pony’s identity comparison mechanism is that there should
be no performance difference compared to the concurrent setting. Since this issue is technically sim-
ilar to the one discussed for handling actor references, efficiently comparing the identity of objects
requires to implement deserialization within the Distribution Actor. Allowing parallel deserializa-
tion would require to synchronize the access to the hash map data structure, which is undesirable
and in this case worse than deserializing on a single core [6]. Figure 3.11 shows an example situa-
tion to explain distributed identity comparison. For simplicity, proxies are omitted in the diagram
provided below:

Figure 3.11: Pony Identity Comparison

Consider a remote message, which contain a reference to an object O1, sent from Node A and actor
A1 to an actor B1 which is located on Node B. The Distribution Actor Da serializes the message
containing O1 as {globID_A_O1, O1}. Similar to the global ID discussed for actors, globID_A_O1

contains the memory address O1 has on A as well as the node ID of A. A is the node where the object
O1 was created. Distribution Actors on other nodes re-use globID_A_O1 when serialsing a structure
that holds a reference to O1. Upon receipt of such a message, Node B’s actor Db deserializes the
message and allocates the necessary space for O1 at address O2. Moreover, Db maintains a mapping
in its identity map of globID_A_O1 -> O2.

Whenever O1 is sent within a remote message from some actor to any actor on Node B again,
the Distribution Actor at B replaces O1 in the message with a reference to O2. Identity comparison
on Node B can then safely be done using the memory location of O2 (like in a concurrent setting).
Remarkably, we have a mechanism that allows for comparing the identity of objects in a distributed
context using the same binary code as in the concurrent setting, because the code within an
actor does not have to be touched. There is no overhead or compiler code generation involved.
Furthermore, providing thread-safe access to the identity map is not required, because this data
structure is private to the Distribution Actor.

It is a consequence of the actor paradigm that the implementation of Concurrent Pony re-

56

mains unchanged to a large extent. Distribution is basically concealed within the discussed actor.
Hence, tuning the performance of Distributed Pony is equivalent to tuning the implementation and
scheduling of the Distribution Actor. As a result, there is no need to trade off competing factors
between the implementation of concurrent and distributed Pony, because both concerns are loosely
coupled.

A variation of the discussed identity map is also useful for distributed garbage collection. The
goal is to keep the number of messages to be sent over the network for garbage collection to a
minimum. The following sections discuss Pony’s distributed garbage collection mechanism, which
– independently of how often an object is sent to a node or to how many remote actors – requires
exactly one network message to signal the origin node that all actors on the corresponding remote
node have released their interest in a specific object. Garbage collection is not only about reference
counting, but also about detecting reference cycles. Hence, section 3.7.3 and 3.7.4 discuss a basic
centralized and a more sophisticated distributed implementation for cycle detection.

3.7 Distributed Garbage Collection

A feature unique to Pony, compared to other actor-based language runtimes, is fully concurrent
garbage collection of actors [30]. Pony’s garbage collector needs to be aware of actor references
handed out to remote nodes as well as actors that have been migrated. This is necessary because
we need to avoid that blocked actors are collected although there might still be references remotely.
We have given a short overview of Pony’s concurrent garbage collection scheme in chapter 2. In the
following, we propose an algorithm for fully concurrent garbage collection of actors in a distributed
context. Note that we could technically enable the already available garbage collector to work in a
distributed context without much effort, but for the reasons discussed in section 3.7.3 we decided
to develop a more elaborate scheme.

Pony implements both passive object and active object collection. We refer to passive object
collection when talking about any type which is not primitive nor an actor (i.e. normal objects
as you can find them in object-oriented languages) and to active object (or actor) collection when
talking about collecting actors.

3.7.1 Deferred Reference Counting and Passive Object Collection

Pony implements deferred reference counting, which means that the reference counts of object
and actors are only updated when messages are sent and received or when an actor executes a
local garbage collection cycle, as opposed to updating reference counts upon operations like pointer
assignment and so on.

For garbage collection purposes, every actor maintains two maps, an external reference map and
a foreign reference count map. The external reference map contains every other actor or object
(which is allocated on another actors heap) to which an actor may hold a reference to. At the
same time, this map contains information about the owner of every referenced object, such that
we are able to find the actor on whose heap the referenced object was allocated. Note that it is
possible that actors hold direct references to other actors’ heap due to the safe zero-copy messaging
semantics we have mentioned in chapter 2.

The purpose of this map is to maintain references received within a message. Actors being
created by other actors are also added to this map. An actor’s external set is eventually compacted,
and unreachable references are removed as soon as an actors heap becomes swept during execution
of a local garbage collection cycle.

A second data structure is necessary to maintain a map of objects allocated on an actors heap
which are accessible to other actors. We refer to it as the foreign reference count map. This data
structure maps a local object to its foreign reference count. This means, that an objects reference
count applies to references that many other actors may hold on their heap. The reference count is
said to be deferred, because we do not increment it upon pointer assignment or similar operations,
but instead manage reference counts more lazily when sending and receiving messages or executing
local garbage collection cycles.

57

Whenever a local object is sent in a message, we increment its reference count immediately.
This is a consequence of the asynchronous nature of the message-passing paradigm. Actors may
execute garbage collection cycles while messages are pending in their mailbox. We need to ensure
that an object is protected from being garbage collected if contained within possibly unprocessed
messages.

Actors can also hand out references to objects that are allocated on another actor’s heap. Instead
of synchronizing the access to the externally owned object, we send a reference count increment
message to the owning actor. Actors add received objects to their external set. If a received object
is already present in this set, we send a reference count decrement message in order to correct
the “protective” increment of the sending actor. This is a good approach, because an actor is not
required to maintain a global view of the actors and objects a receiving actor holds references to.

An actor executing a local garbage collection cycle causes every reference in the external set to
be marked as reachable or not. This is implemented by using the discussed trace mechanism in
mode TRACE_MARK. Unreachable references can be removed from the external set and decrement
messages are sent to the owning actors. There is no invariant that a reference count is equivalent
to the number of referrers, because there might always be unprocessed increment or decrement
messages. However, it is only necessary to ensure that a reference count value is greater than zero
when an object is reachable by some actor. An object can be deallocated if its reference count
value is zero, in which case it not reachable by any actor and there are no messages pending in any
message queue containing that object.

Since reference counting in Pony is based on message-passing, we can re-use the same mechanism
in a distributed context. The mechanism discussed for garbage collecting passive objects is the basic
mechanism for actor collection. Therefore, we give a detailed example of distributed reference
counting for both cases in the next section.

3.7.2 Active Object or Actor Collection

In the context of reference counting only, actors and objects are treated in the same way. However,
in the distributed context, our goal is to keep the number of increment and decrement messages sent
across the network to a minimum. The proposed actor proxy mechanism discussed in section 3.5.1
allows us to do this conveniently. Figure 3.12 shows an example scenario of an actor A1 sending a
reference to itself to an actor B2 which is located on another node. Assume that Node B has never
heard of actor A1 through previous messages or migration. Also, A1 holds a valid reference to a
proxy for B2.

Figure 3.12: Distributed Actor Reference Counting

A1 increments its own reference count before sending the message to B2. The message is eventually
delivered to the remote node via the local proxy B2p and the Distribution Actor Da. Db deserial-

58

izes the message and exchanges the reference with a pointer to a newly created proxy A1p. The
Distribution Actor on Node B sends a reference count increment message to A1p when delegating
the message to B2. Also, Db maintains a mapping of the proxy to the number of references that
have been received for a particular true actor (in this example A1->1). References to A1 might
be received many times (and from different remote actors and nodes), which causes the reference
count of A1p to be incremented as well as the counter held by the Db to be updated. The proxy A1p

is eventually garbage collected. The Db needs to be informed about the proxy being deallocated
and in response sends a decrement message to the node where the true actor A1 is present. This
decrement message contains the number references to A1 the Db has deserialized (e.g. DEC(20)). By
doing so, we can decrement the reference count of A1 accordingly, releasing all references held by a
particular remote node with a single message. Again, the global ID is used to determine the target
actor of the decrement message.

A similar approach can be used for distributed reference counting of objects, as shown in Fig-
ure 3.13. The two approaches are equivalent except for the fact that for object reference counting
no actor proxies are involved. The important part is that a Distribution Actor takes over the
ownership for objects received from remote nodes. The role of ownership from the perspective of
other actors on the same node is ensured implicitly because the Distribution Actor deserializes any
received objects and allocates them on its own heap. This is necessary, because we need to be
able to have a recipient of decrement messages from other actors. A proxy for the actual owner of
an object may not be present on a every remote node. The owning Distribution Actor of remote
copies of the object (in the example below Db), can sent the decrement message to Node A as soon
as the remote copy was garbage collected locally.

In order to deliver the decrement message from a Distribution Actor of a remote node for an
object, we need to be able to determine the owning actor. This is possible without requiring
Distribution Actors to maintain an additional data structure. The owner of an object can be
determined based on its memory address (included in the global ID). The base address can be used
to lookup the owning actor in a page map, which is available for garbage collection purposes.

Figure 3.13: Distributed Object Reference Counting

The benefit of this scheme is that independent of the amount of references that have been sent out
to a remote node, we are only required to send exactly one decrement message for each object or
actor which was referenced remotely instead of flooding the system with reference count messages.

Actors may reference other actors. Cyclic garbage cannot be collected using reference counting
alone, because the reference count values of actors forming a cycle never reaches zero. We have
previously mentioned that Pony implements cycle detection based on an actor that is able to
determine true cycles based on the topology reported from blocked actors. Once ensured that the
perceived cycle is a true cycle and that the information reported is in sync with that of all other
actors in the system, the cycle detector allows to collect dead actors involved in a cycle. In a

59

distributed context, detecting cycles seems a bit more complex, because there is not necessarily
a global view of the entire actor topology locally available at every node. Although local actors
technically reference the local proxy of every actor that is located remotely, we do not know the
state of the true actor on a remote machine. Furthermore, we have no information about the set of
remote actors that might have references to actors participating in a local cycle. This also means
that a cycle can consist of actors that are all located on a different node. Detecting cyclic garbage
reliably in actor-based systems is difficult, because the view of actors participating in a cycle as
well as that of the cycle detector itself may be out of sync.

Note that cycle detection for object references is not necessary in the context of Pony, be-
cause actors (and not objects) are responsible for sending reference count increment and decrement
messages for both object and actor references.

In the following, we present a basic approach and an optimized algorithm for detecting cyclic
garbage in distributed and actor-based systems. Our motivation for a more advanced approach
was to leverage the characteristics of the underlying network topology as well as to reduce the
message overhead to a minimum. At the same time, we want to avoid that a particular node (or
cycle detector) becomes a bottleneck, which is important for the performance of Distributed Pony
running on large-scale computer clusters.

3.7.3 Centralized Cycle Detector

In order to be able to collect cyclic garbage, Pony introduced a detection mechanism implemented
through an actor (the cycle detector) which requires causal message delivery, as we discussed briefly
in chapter 2. An actor is said to be dead if it is blocked an all actors that reference it are blocked,
transitively [30]. Whenever an actor becomes blocked it sends a message to the cycle detector
containing itself, its current reference count and the set of actors it references (taken from its
external reference map). This information is called the perceived actor state based on which the
cycle detector establishes perceived cycles by building sets of blocked actors that form a cycle. The
difficult part is that, once the cycle detector receives a message containing the view an actor has
on its own topology, this information may be already out of sync, because the sending actor may
have become unblocked again.

Consequently, we need to inform the cycle detector about this view change. Hence, when an
actor becomes unblocked it sends a message to the cycle detector containing itself, such that we can
remove this actor from the set of blocked actors. A perceived cycle containing an unblocked actor
cannot be a true cycle and therefore should not be garbage collected. As a result, upon receipt of
an unblock message, the cycle detector cancels any perceived cycle containing the unblocked actor.

The cycle detector having detected a perceived cycle must ensure that its view on the actor
topology is in sync with the view of all actors forming that cycle. This is where causal message
delivery comes into play. The cycle detector sends a confirmation message (including a token that
identifies the perceived cycle) to all actors of the cycle. Actors receiving that message always
acknowledge it - independent of their own state. If the cycle detector does not receive an unblock
message before receiving the acknowledgment, then the decision based on which the cycle was
detected must have been a topology that agrees with that of the confirming actor (because it
did not unblock in between and messages are causal). If all actors in the perceived cycle can be
confirmed, a true cycle is detected and all participating actors can be collected.

In a distributed setting, detecting cycles is more complex, because actors forming a cycle could
be located on different nodes. This means that the information necessary for determining a true
cycle is distributed. One solution to this problem could be to have a central cycle detector scheduled
on the master node. All nodes delegate any of the messages discussed above to the master node.
By doing so, the central cycle detector obtains a global view on the actor topology across all nodes
can therefore detect true cycles. The only change necessary is to tell the cycle detector the global
ID of an actor, such that confirmation message and deallocation can be delegated to the correct
actor and node on which it is located.

The problem with a centralized approach is that many messages are send across the network and
a single cycle detector may become a bottleneck, especially when running on a large-scale computer

60

cluster. In fact, sending information up the tree to the root node is unnecessary in many cases.
In the following, we propose a hierarchical cycle detection algorithm that minimizes the amount
of messages to be sent and attempts to avoid that information is not delegated to nodes up the
tree hierarchy unnecessarily. Furthermore, we want to have fully concurrent garbage collection of
actors in a distributed setting, i.e. cycles that are detected locally and only contain actors on the
same machine should be collected using only the cycle detector on that node.

3.7.4 Hierarchical Cycle Detection

Instead of employing a central cycle detector on the master node, we want to have a cycle detector
available on every node in a cluster of Ponies. We shall illustrate our hierarchical cycle detection
algorithm based on three examples as shown in Figure 3.14.

Figure 3.14: Distributed Cycle Detection

Local Cycle Reference to Child Node Actors reachable via Parent

If all dead actors participating in a cycle are local to a node and none of these actors are referenced
from other actors located on a remote node, we can safely collect the cycle locally without sending
any messages across the network. This is the equivalent situation as we have discussed for a single-
node environment. Hence, collecting local cycles is possible with no overhead in Distributed Pony
compared to the concurrent setting. Note that a centralized cycle detector would have required to
send messages up to the root node.

A more complicated situation comes up when actors in a perceived cycle hold references to
actors reachable via a child node. In the example given above, we may not allow the cycle in the
right leaf node to be collected before the cycle containing the remote actor B that holds a reference
to D and the proxy for D at the node of B is collected. So, the local cycle detector running on the
right leaf node needs to hold on to that cycle. The necessary information is implicitly available due
to our reference count implementation. Every actor in a perceived cycle is possibly blocked, which
means that the reference count of every actor in the perceived cycle is equivalent to the number
of referees. Hence, we can use this reference count invariant to determine whether there are any
remote references. In the example above, the reference count of D is higher than the number of
referees that the cycle detector can be aware of, in which case there must be unreleased references
from other nodes.

Actor B technically holds a reference to a proxy Dp for actor D. Eventually, the perceived
cycle of which B is part of is verified to be a true cycle and can be collected. The proxy is also
eventually collected, and in response to that the Distribution Actor of the corresponding node
sends a reference count decrement message to the node of D. Once the decrement message is
processed by the Distribution Actor of the right leaf node, the cycle detector is able to establish
that there are no pending remote references. From point onwards the local cycle detection protocol
is used. Confirmation messages are sent to the participating actors and once all acknowledgments
are received, the cycle can be collected. Only one reference count decrement message was necessary
to collect both cycles.

61

The most difficult situation is when actors forming a cycle are located on different nodes, in which
case local actors are uncollectable. However, we can provide an efficient algorithm that leverages
properties of the underlying tree network topology. Remember that when an actor becomes blocked,
it sends a message to the (local) cycle detector containing itself and the set of actors it references.
This enables the cycle detector to check whether any of the reported outgoing references are pointing
to an actor proxy. In a tree network topology, a cycle can only exist between actors located on
different nodes, if at least one actor (of a possible cycle) holds a reference to a proxy for an actor
that is reachable via a parent node. In the example above, this is the case for the actors C, D and
E. We consider an actor to be reachable via a parent node, if sending a message to it requires to
route through a parent node of the node where the sender is located.

In such a case, the local cycle detector promotes the collected information to the parent node,
including the global IDs of the participating actors, as shown in Figure 3.15. Eventually, the
collected information can be merged at the earliest common ancestor of all nodes holding actors
participating in a possible cycle. In the given example, the earliest common ancestor of the nodes
in observation is the root node of the shown (sub-) tree. Actor A holds a reference to actor E.
Hence, we promote the local cycle detectors view of the topology of A to the parent node. This
allows the cycle detector of the node containing E to extend its view on the topology. D holds a
reference to A, which causes D → A to be reported to the parent node. E holds a reference to D,
so the cycle detector reports its (already extended) view of the topology up the tree. Eventually,
the partial actor graphs can be merged to a graph where all contained actors are either located on
the current node or are reachable via some of the child nodes. Note that any unblock messages
for actors contained within partial graphs that have been promoted up the tree also need to be
delegated to the “overseeing” cycle detector.

Figure 3.15: Hierarchical Cycle Detection

A→ B → C D → A A→ B → C → E → D

The cycle detector which has obtained the merged view of a perceived cycle executes exactly
the same protocol as the one previously discussed. A confirmation message is sent to the actors
contained with the perceived cycle. Note that we can determine the destination node for each of
the actors based on their global ID. As previously, actors acknowledge the confirmation message.
Since message delivery is causal (see chapter 4), a true cycle is determined if no unblock message
has been delegated to the “overseeing” cycle detector between its confirmation message and all
acknowledgments from actors contained within the perceived cycle. If the perceived cycle can be
confirmed, the “overseeing” cycle detector sends messages to the local cycle detectors that the
actors located on their node which are part of the distributed cycle can be collected safely. The set
of actors to be collected can be determined using a token identifier.

If the perceived cycle cannot be verified as true cycle, because an unblock message from any
of the contained actors was received before the acknowledge, we need to be careful about what
information to discard at the “overseeing” detector and what information to keep. We want to
avoid that local cycle detectors have to report their view on the topology again, even if their part
of the graph has not changed. Hence, the “overseeing” detector only removes those actors from the

62

perceived cycle that sent an unblock message. For example, if an unblock message of D is delegated
to its parent node, we only remove D from the perceived cycle instead of canceling the entire cycle.
We keep the rest of the information, because the remaining actors are located on different nodes
and the view the “overseeing” detector maintains has nothing to do with the topology of actors
on its node. As a consequence, if D becomes blocked again, we need to be able to reconstruct
the merged view on the topology again. In a distributed setting, we would be required to ask for
the view of the local cycle detectors again, which is unnecessary message overhead. Instead, if D

becomes blocked again, we simply restart the confirmation protocol.
We have presented an algorithm for distributed cycle detection that avoids a single cycle detector

to become a bottleneck. Instead, our algorithm detects cycles as far down in the tree topology
as possible. Furthermore, local cycles can still be detected and collected on every node fully
concurrently. Network messages are only sent if an actors hold references to remote actors reachable
via a parent node as well as for the confirmation protocol necessary for synchronizing different views
on the topology. Furthermore, the algorithm guarantees that the paths for sending the messages
necessary for the garbage collection protocol are as short as possible, which reduces retransmission
overhead. In future work, a soundness and completeness proof for the proposed distributed cycle
detection algorithm shall be provided.

Two language features available in Concurrent Pony are left to be discussed in the distributed
context, termination and causality. In a single-node configuration, termination can be detected
based on quiescence. If all actors in a system are blocked, then there cannot be any messages left
to be sent. However, detecting that all actors are blocked in distributed system is more complex.

3.8 Termination

We have no real notion of quiescence in a distributed context, because a local node may just have
run out of work and needs to steal actors from remote machines (which themselves may have no
work to provide). At the same time, there may theoretically always be a message to be delivered
from a remote node. Hence, we need to “redefine” what quiescence means in a distributed network
of Ponies. The solution for distributed termination was more difficult than anticipated. Our initial
solution was soon found to be broken. To illustrate the development process of the termination
algorithm, we will explain our approach incrementally, and first discuss the broken mechanism in
order to motivate a more complex but correct algorithm.

For our first attempt, we have slightly changed the algorithm from section 3.3.2 for joining a new
slave node to the system. Whenever a node connects to the master attempting to join a network
of Ponies, it includes its local core count within the join request message. By doing so, the master
node can keep track of the total core count available within the Pony cluster it is part of. We can
use this knowledge in order to determine whether there are any cores left that are occupied or not.
As shown in Figure 3.16, each node (except the master) in the system reports the free core count
to its parent. This information is delegated in an aggregated manner, such that every node reports
the free core count of itself and its children, transitively. Eventually, these notification messages
will “bubble” up to the master node. The idea was to use the total free core count to detect
whether all cores have starved from work. If so, there cannot be any messages left - because all
actors must be blocked. The master could respond with a termination message (DIST_TERM). Every
node – including the master – can safely terminate immediately after a message of type DIST_TERM

has been received and delegated to all children. The result would be a distributed termination
algorithm with a complexity of O(log n) (time and space).

However, the sampling rate at which nodes report their free core count is not necessarily equiv-
alent to the rate at which busy cores become idle. Since we want to avoid flooding the network
with messages, we set a simple kernel-timer to report core counts and only send notifications if the
value changed compared to last time. The latency involved with this approach is not problematic,
because termination is not performance critical. Note that the mechanism we chose for scheduling
the Distribution Actor interferes with counting the number of free cores, because the Distribution
Actor keeps on polling for network I/O. As a result, a node is never entirely free of work. This

63

Figure 3.16: Distributed Termination (Broken)

All nodes starved Report free core count Signal Termination

would break the termination algorithm described above, because the entire set of processor cores
of a Pony Cluster would never be reported as idle. Therefore, it is necessary to detect whether
the Distribution Actor is the only actor being unblocked on a node. This is difficult, because we
cannot efficiently walk through the scheduling queues and check their state. Even if were able to
determine that the Distribution Actor is the only actor remaining on the last non-idle core of a
machine, there could technically always be a message in the network I/O buffer which has not been
processed at the time of detecting free cores. The problem is, that the view a node had on its free
core count may be out of sync at the time all messages have bubbled up to the master node. We
had encountered a similar problem when discussing cycle detection for actor garbage collection.
The key to the solution in the context of garbage collection was causality. We attempt to develop
a solution for distributed termination based on the same protocol.

The idea is to establish a central termination actor – called the termination detector – at the
master node. Whenever a node in the network detects that it has starved from work, it sends
a “starvation” message to the central termination detector. Similarly, if a node gets work to do
again (some actor becomes unblocked), it sends a “busy” message to the termination detector. If
the termination detector has received starvation messages from all nodes, it sends a confirmation
message including a unique token identifying the current termination attempt to all nodes within
a Pony cluster. In fact, it only sends this message to its direct children, which in turn delegate
this message to their children and so on. Any node (or technically Distribution Actor) receiving
this confirmation message responds with an acknowledgment message including the same token,
independently of whether the machine is busy or not. Assuming that message delivery is causal in a
tree network topology (see chapter 4) and the central termination detector receives acknowledgment
messages from all nodes for the corresponding termination attempt, without having received any
“busy” messages in between (in which case the views of all nodes must be in sync), it can safely
send the previously mentioned DIST_TERM message to its children. Any child node receiving this
message delegates it further down the tree and then terminates. Eventually, the entire system
terminates. Note that terminating a single Pony runtime process is trivial, because we only need
to destroy the Distribution Actor, which must have been the last remaining unblocked actor on
the system. Once destroyed, each runtime process is terminated using the quiescence scheme as
discussed for Concurrent Pony.

This algorithm can be optimized at various points. For example, always sending a message to the
central termination detector in any case is unnecessary. Instead, it is sensible to only send starvation
messages to the parent node. If the receiving parent is busy it may hold on to that message up to
the point it receives a busy message from the node having sent the previous starvation message.
If the parent node becomes idle, it may delegate an extended starvation message including itself
and all children having reported to be starved to its parent. In large computer clusters this can be
sensible, because we can reduce the number of network I/O system calls. Furthermore, no node
needs to process information which is not relevant to termination at that point in time.

64

At this stage, we have presented an implementation of a language runtime for concurrent and
distributed programming. We have repeatedly mentioned that causality is important for both
the concurrent and the distributed setting. On many-core machines, causality is easy to achieve,
because sending a message to an actor can be implemented using a single atomic operation [30].
Hence, causality in concurrent systems is a natural consequence of lock-free FIFO queues [30],
because processors issue load and store instructions in order. However, guaranteeing causality in a
distributed system is non-trivial, because messages may take arbitrary routes with varying latency
to a destination. Due to performance concerns, we do want to avoid synchronizing clocks between
runtime processes or to implement expensive vector clocks.

Inspired by why causality can be guaranteed with no overhead on many-core machines, we
present a scheme that also guarantees causality in a distributed setting by construction. This
scheme does not introduce “software overhead” of any kind, in a sense that we are not required
to send messages, synchronize physical clocks or built partial event orderings within each runtime
process by using vector clocks. However, we impose certain restrictions on the network topology.
The following chapter provides a formal argument for message causality in networks that are based
on a tree topology.

65

Chapter 4

Causality in Tree Network Topologies

Causal message delivery is a valuable property for concurrent and distributed programming. Fur-
thermore, Pony’s garbage collection scheme as well as the proposed distributed termination protocol
strongly depend on causality. Distributed Pony enforces causality by the underlying tree network
topology in combination with properties of TCP.

In the following, we give an informal view on the problem. A formal argument is provided to
build the basis for a fully developed proof, which is subject to future work.

4.1 Informal View

In a distributed context, causal messaging requires to guarantee the property illustrated in Fig-
ure 4.1.

Figure 4.1: Causal Message Delivery in Tree Networks

If a Node A sends a message m1 to another Node C before sending m2 to Node B, which responds to
the receipt of m2 with a message m3 to Node C, then C must receive m1 before m3. This property
holds in the topology shown in Figure 4.1, because the path via which m1 is send to C and the
path via which m3 is delivered to C share a common suffix (for this particular example). This is
helpful, because the TCP protocol guarantees that messages written to the same channel arrive at
the destination in the same order in which they were sent [22, 69, 71].

Hence, the important point is that m1 arrives at the common ancestor of A and B (AC) before
m3. For the topology shown, this is clearly the case. A sends m1 before m2 and by TCP both
messages arrive in that order at AC. Since m3 is a cause of m2, it must arrive at AC after m2. The
happens before relationship is transitive, in which case m1 must have happened before m3 at AC.
From this point onwards both messages share the same path. TCP guarantees that m1 is delivered
to a process running on Node C before m3. We can generalize this example to any constellation of
A, B and C with an appropriate definition of “paths” within tree networks.

66

4.2 Formal Argument

An initial step towards a fully developed proof is to give an appropriate definition of paths and
routes within tree network topologies. A path p can be formalized as a sequence of node identifiers,
i.e.:

Path = (NodeID)∗ (4.1)

where p = p1 · n1 · n2 · p3 ⇒ n1, n2 are adjacent.

We define a route as a function that takes two node identifiers and returns the shortest path between
the two nodes:

route : Tree×NodeID×NodeID→ Path (4.2)

In a tree, a shortest path ps does not form any “loops” (i.e. every node ID within ps appears
exactly once) and therefore routes are unique. Inspired by our initial thoughts given in example
4.1, we define a function ◦ that concatenates two routes and returns a path from the start of the
first route to the destination of the second route:

◦ : route× route→ path (4.3)

Note that the resulting path may not necessarily be the shortest path. Hence, for any given tree T
and node identifiers A, B and C:

route(T,A,C) ≤ route(T,A,B) ◦ route(T,B,C) (4.4)

As illustrated in Figure 4.2, the idea is that the causal dependency between m2 and m3 can
be modeled as a single message mc which is routed from A to C via B. If route(T,A,C) =
route(T,A,B)◦ route(T,B,C), then causal message delivery between A, B and C is guaranteed by
TCP. We are interested in the case, where a path from A to C is different from that of via B to C.

Figure 4.2: Routes from Source to Destination

A proof needs to show that m1 precedes mc at every point where mc “returns” to the path shared
with route(T,A,C). Looking at Figure 4.2, we can establish the following relations:

• t1 < t′1, because the sending of m1 precedes that of mc and both messages traveled via a
common prefix towards C. Furthermore, t′1 < t′2, because message delivery is not immediate.
As a result, we can establish t1 < t′1 < t′2 < t′3 < ...

• t1 < t3 ∧ t3 < t′3

Hence, tn < t′n and we can prove by induction over n that tn+1 < t′n+1. Furthermore, we can
establish that t′n < t′′n. Combining these two properties with that of in-order delivery of TCP
on common paths forms a convincing argument that causality is guaranteed in any kind of tree
network topology. A fully developed proof is left for future work.

67

Chapter 5

Evaluation

Designing a benchmark suite for any kind of software application is enormously complex. Not
only is it difficult to stress the interesting and critical parts of an application, but also to test an
application based on realistic input data. For example, database management systems respond
sensitively on the kind of queries to process and data value distribution they operate on [118].
This makes it difficult to reach a concluding result that can be used to predict an application’s
performance in a real-world scenario.

Another, probably more significant, challenge is cognitive bias. If a benchmark suite is developed
by the same group of people as the system under test, it is likely that mostly those parts of an appli-
cation that are expected (or even known) to perform well mainly influence the implementation of a
corresponding benchmark. As a consequence, benchmark results would not be very representative.
Thus, a benchmark must be fit for purpose (i.e. testing scenarios that are present in a productive
environment) and at the same time as generic as possible. It is important to both benchmark the
best case scenarios (those cases where the system is expected to perform well) as well as worst-case
scenarios in a balanced manner. The knowledge gained from a benchmark should be that a system
performs reasonably well in those cases for which it was built and that the worst-case scenarios
do not cause a system to behave disastrously (quantified over some measurement). However, the
development of Pony is still in a very early stage, because only an initial runtime system has
been developed. Hence, we defer comparing Pony to other comparable programming languages
to later stages. Besides being fundamentally error prone, developing a concise benchmark is time-
consuming. For the purpose of this project and for the very first prototypes of Concurrent and
Distributed Pony (where directions can still be changed) we are mostly interested understanding
and evaluating the characteristics of the proposed mechanisms and algorithms. Hence, instead of
developing our own generic benchmark suite, it is sensible to evaluate the system with simple test
applications. We believe this is a good approach, because we can gain knowledge about how our
implementation performs for a specific scenario.

For that reason, we have implemented a simple test application that allows us to test two
different workload characteristics, computation boundedness and message boundedness. Compared
to a single-node setting, we expect the runtime system of Distributed Pony to perform well for
computation bound applications and to be slower for message bound applications. Before discussing
the benchmark results of the runtime system, we give a brief overview of the test application, which
we implemented from a specification available at [39]. Note that within this thesis, we evaluate
the performance of the distributed part of the Pony runtime. However, we can implement a test
program as for a concurrent setting and execute it (without any changes) on a network of computers.

Section 5.3 provides a showcase for computing the Mandelbrot set, illustrating the convenience
of programming distributed applications based on the Pony runtime.

68

5.1 Test Application

We want our test application to produce two different kinds of workloads based on input parameters.
On the one hand, we want to test the case where the dominant part of the application is the sending
of messages between actors. On the other hand we want to put numerical workload on the available
CPU resources but reduce the number of messages sent between actors to a minimum. Our test
application is derived from a micro-benchmark published for another (concurrent) actor-based
runtime called libcppa [39]. The source code is provided in Appendix B.

The test application creates a set of actors forming a ring. Each actor holds a pointer to its
right-hand neighbor. The application accepts the following three input parameters:

• --count <c> determines the number of rings consisting of actors to be created

• --size <s> configures the number of actors in each ring

• --pass <p> sets an initial token value that is passed from actor to actor within each ring
and decremented each time until it is zero. Once zero is reached, all actors within a ring
terminate.

Each ring consists of c− 1 “chain-link” [39] actors and one master producing numerical workload,
which is simulated using a brute-force approach for prime factorization of a large number. The main
actor of the application creates c-many master (or factorization) actors and sends an initialization
message to each of them. Upon receipt of such a message, a master enters its computation bound
phase and factorizes a large number. This large number is a constant, therefore each master actor
produces the same numerical workload 1. Once it has completed the factorization, the master
actor creates s-many actors to form a ring. This is the part where the application may enter its
(potentially) message-bound phase depending on the given parameters. Figure 5.1 illustrates the
micro-benchmark described above.

Figure 5.1: Micro-Benchmark

We expect Distributed Pony to perform well for a large number of rings (and therefore master actors)
with a low value for passing the token. The network overhead of distributing the application should
be substantial for a single ring and a high token value. For such a scenario, we expect Distributed
Pony to be slower compared to the concurrent setting. The results are presented in the next section.

1The number is 28.350.160.440.309.881 = 86.028.157 ∗ 329.545.133

69

5.2 Message-bound vs. Computation-bound

The benchmarks have been carried out on a network consisting of three nodes, each equipped with
the same hardware components:

• 1x Intel Core i7-2600 @ 3.40 GHz, Quad-Core (Hyper-Threaded) [70]

• 8 GB DDR3-1066 Main-Memory

• 1 Gbps Ethernet Connection

First, we discuss the performance results for the computation-bound scenario. Each run for a given
set of parameters was executed 100 times. The execution time shown in the graphs is the average of
these runs, based on the time of termination of the last node. Hence, the results presented include
the latency of our proposed termination protocol.

Computation-bound Scenario

Our objective is to make the numerical workload the dominant part of the application. This can
be achieved by choosing a large number of rings to be created, whilst keeping all other parameters
to a minimum. In fact, the best case for the distributed setting should be when no application
messages need to be sent over the network (except for the initialization messages). Hence, for the
computation-bound benchmark, we set all message related parameters to zero and measured the
execution time for a variable amount of factorization actors, i.e.:

--size 0 --count <var> --pass 0

Figure 5.2 and 5.3 show the performance results for up to 100 master actors. We have executed
the benchmarks with and without utilizing logical cores (i.e hyper-threading).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Factorisation Actors

1 node - 4 cores
2 nodes - 8 cores

3 nodes - 12 cores

Figure 5.2: Using Physical Cores

 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Factorisation Actors

1 node - 8 cores (HT)
2 nodes - 16 cores (HT)
3 nodes - 24 cores (HT)

Figure 5.3: Using Logial Cores

The first observation is that, for this particular micro benchmark, Distributed Pony does not become
slower with an increasing amount of available resources. The performance measurements for the
single node configuration prove the characteristics of the test application. The additional execution
time required with an increasing amount of factorization actors is (almost) linear, which speaks for
the fact that the application is computation-bound, and not memory or network I/O bound.

The performance results show that the speedup achieved for a very small number of factorization
actors is minimal. This is expected and is a logical consequence of our scheme for setting up a cluster
of Ponies. Instead of having a static configuration and synchronizing the start of an application
between participating peers, we start the test application on the master node and then connect
new slave nodes. As a result, we do not benefit in the case of very small numbers of factorization
actors, because all cores of the master node are occupied with executing numerical workload at

70

the beginning. Once the Distribution Actor of the master node is scheduled for the first time after
slave nodes have been connected, most factorization actors have terminated. We can see this effect
when comparing the two graphs. The benefit for 10 factorization actors is even smaller when using
hyper threading. If we are unlucky and slave nodes establish their connection to the master node
after it has started scheduling the prime factorization actors, 8 out of 10 computation-bound tasks
are finished by the time the distributed work stealing scheduler has a chance to react for the first
time. This is not a problem of the scheme for setting up a cluster of Ponies nor the scheduler,
because most applications in the context of high performance computing and scalable applications
are either long running or never terminate.

The application starts to benefit from distribution once a threshold of between 30 to 50 factor-
ization actors is reached. This threshold is higher for the hyper-threaded environment, because the
single node itself has more resources available, such that the amount of actors that can potentially
be stolen is smaller from the beginning. In order to see whether the trend persists, we have executed
the same benchmark with 1000 factorization actors. The results are shown in table 5.2.

Hyper-threading allows us to asses and reason about the performance of Distributed Pony more
precisely, because we can compare the execution time of using 8 logical cores in a single-node
environment with that of using 8 physical cores in a distributed environment. The speed up achieved
using two nodes is about 50% of the benefit achieved through hyper-threading on a single machine
(77.94s vs. 156.98s). Considering that running on two nodes includes network communication,
deserialization and serialization, migration and the instantiation of remote actors (including heap,
message queues etc.), the result seems satisfying. Furthermore, we have to keep in mind that these
benchmarks have not been executed in a low-latency and isolated network.

The average scale factor achieved for three times the resources is about 1.5 for both the hyper-
threaded and the physical core configuration. Note that the scale factor may vary greatly between
benchmark runs for this particular test application, because the timing of when slave nodes establish
their connection impacts how early they will be considered by the scheduler. For example, one run
resulted in a scale factor of 2.19 for three times the resources. This fact leaves room for the
assumption that Distributed Pony may perform excellent for real world scenario-type applications.

Table 5.1: Scale Factors - 100 factorization actors

Configuration Physical Hyper-Threading Speedup Physical Speedup Logical combined

1 node 40.16s 25.03s – 1.60 –
2 nodes 31.64s 19.33s 1.27 1.30 2.0
3 nodes 26.37s 16.76s 1.52 1.50 2.4

Table 5.2: Trend Analysis - 1000 factorization actors

Configuration Physical Hyper-Threading

1 node 399.84s 242.86s
2 nodes 321.90s 184.98s
3 nodes 276.37s 157.22s
Speed-up (1→ 3) 1.44 1.54

Most importantly, we can observe a similar pattern in the increase of execution times for all
configurations (with few exceptions, which may be due to statistical errors). This speaks for the
efficiency of the scheduling and network implementation. Considering that Distributed Pony is a
very first prototype, the performance results are encouraging. We expect that Distributed Pony also
performs well on extremely large computer clusters due to the constant space complexity scheduling
algorithm we have developed for this project and the optimality property of work-stealing. Future

71

work should attempt to execute benchmarks on a large cluster or super computer to verify our
expectations.

We do not want to give the impression that distributing an application always ends up in
performance benefits. In fact, a certain class of actor-based applications does not perform well
in a distributed context. If sending messages is the dominant part of an application, distributed
computing may not be a winning strategy. The network overhead involved for sending messages
between nodes causes that message-bound applications involve higher latency compared to a single-
node environment. We examine this scenario in the following.

Message-bound Scenario

We can make our test application message-bound by adopting the inverse approach to the one used
for the previous benchmarks. However, in order to achieve true message-boundedness we need to
be careful in choosing the right parameters and consider various characteristics of our implemented
runtime system. Remember that Distributed Pony does not provide a user-level scheduler (and we
do not want it to). Hence, we have no control over which actors are migrated to which node and
when.

However, it is also not enough to just spawn a single ring. Due to the token-ring type of message
passing, there is always only one actor of each ring at a time that is unblocked. Therefore, our
distributed scheduler might never migrate an actor if there were only a single ring. Consequently,
our test application is guaranteed to be message-bound if we spawn more rings as there are local
cores available and provide it with a high token value.

Note that the size of each ring is important. Large rings would cause fewer messages to be sent
over the network. Since only one actor of each ring is unblocked at a time (and therefore on any
of the work stealing queues), the scheduler might end up migrating only a single actor of a ring
to another node. Since the token value is decremented each time, most of the message workload
would remain local (depending on the token value). Consequently, we want the size of the ring to
be exactly 2, such that network communication must happen each time the token is passed on to
the next neighbor. Message-boundedness is difficult to test in combination with a distributed work
stealing scheduler, because those applications may have many actors, but mostly no work to steal.
Note that it is more difficult to compare the results based on an increasing amount of available
resources, because we need to spawn more rings depending on the amount of cores available in the
entire system:

--size 2 --count <total_core_count> --pass <var>

As previously, we measure the average execution time of 100 runs. The results are shown in
Figure 5.5. Since for this particular scenario and application more nodes do not deliver any more
insights, we only execute this benchmark on two nodes and do not utilize logical cores.

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Token Value (mio.)

1 node - 4 cores
2 nodes - 8 cores

Figure 5.4: Message-Bound Test Scenario

 10 20 30 40 50 60
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Token Value (mio.)

1 node - 4 cores
2 nodes - 8 cores

Figure 5.5: Constant number of rings

72

There is evidence to see that network communication introduces a substantial overhead. The
results may look disastrous, but we also have to consider that in order to stimulate the work
stealing scheduler, for this particular application, we are required to send double the amount of
application messages, caused by spawning double the amount of rings. Furthermore, each migrated
actor causes two delegation messages to be sent for one application message. The important point is
that this discussion emphasizes that work stealing is about stealing work and not actors. Hence, at
least to some extent, a scheduler based on work stealing avoids unnecessary migration for message-
bound applications by construction. We can see this effect in Figure 5.4, where we have executed
the benchmark on two nodes with the same amount of rings as compared to the concurrent setting.
There is basically no difference between the two, because the work stealing scheduler does not
migrate many actors. Even though using as many rings as cores on one machine are available,
there might still be some actors migrated, because the Distribution Actor may steal an unblocked
actor that is on the same scheduling queue as the Distribution Actor itself.

The analysis of the message-bound performance results is vague, because contrary to the previous
benchmark, the key to interpret the results correctly is to know which actors haven been migrated.
This information is not available. For the computation-bound scenario this was not important,
because there were only factorization actors to be migrated. Furthermore, factorization actors did
not send messages. Consequently there is no dependency between actors that might influence the
performance results.

The discussion on the subtleties of the behavior of the test application and the work stealing
scheduler of Distributed Pony shows that it might not be enough to steal work on a random basis.
Instead, it might be necessary to look at the communication patterns of actor-based applications.
This topic is subject for future work. We believe that this may yield an interesting discussion on
programming best-practices for the actor programming model.

5.3 Programming Example - Mandelbrot Fractals

Evaluating an implementation is not only about discussing its performance. In the context of
programming languages and runtimes, we also have to consider the benefits it delivers to the
programmer. Since the Pony syntax, type system and compiler is not fully developed yet, we
provide a simple example of how an actor-based concurrent and distributed application can be
programmed in C using the runtime extended for this project. The example shall be to compute
the Mandelbrot set on arbitrarily many cores and nodes.

We have previously discussed in chapter 2, that each Pony-actor is given a type, a set of
message conversion functions, a top-level trace function as well as a message dispatch handler. For
simplicity and because this is just a show case, we decide to spawn an actor for each pixel of a
400 × 400 Mandelbrot image. This is not optimal from a performance point of view, because the
resulting application is message-bound and causes many actors to be created. However, we would
be required to provide a top-level trace function for variable length byte-arrays if we wanted each
actor to process a chunk of the overall image.

Each application requires a main actor, which is sent a PONY_MAIN message by the runtime system
including any command line arguments in order to start the application. The main actor of our
sample application is responsible for managing a 400 × 400 matrix of color values and spawns an
actor for each element. We provide three types of application messages, as defined in listing 5.1:

• MSG_COMPUTE_PIXEL is sent to each spawned worker actor. The arguments are a reference to
the main actor and the coordinates of the pixel for which the color value should be computed.

• MSG_COLLECT_RESULT is the response of each worker to the main actor containing the computed
color value as well as the pixel coordinates for that value. We need to provide the coordinates,
because worker actors may respond in any order.

We limit this application to a resulting Mandelbrot image that is black and white. Hence, a
single 8-bit integer is sufficient for the result.

73

• MSG_FINISH is sent to the main actor by itself once all worker actors have responded. The
resulting matrix is written to stdout.

Our test application could be extended to allow for arbitrarily large Mandelbrot images to be
computed and to be able to adjust the resolution and zoom factor. For the purpose of this example,
we disregard such features.

Listing 5.1: Message Types for Mandelbrot Application

1 static message_type_t m_compute_pixel = {3, {NULL}, {0}, {PONY_ACTOR,
PONY_PRIMITIVE16, PONY_PRIMITIVE16}};

2

3 static message_type_t m_collect_result = {3, {NULL}, {0}, {PONY_PRIMITIVE16,
PONY_PRIMITIVE16, PONY_PRIMITIVE8}};

4

5 static message_type_t m_finish = {0, {NULL}, {0}, {PONY_NONE}};
6

7 static message_type_t* message_type(uint64_t id)
8 {
9 switch(id)

10 {
11 case MSG_COMPUTE_PIXEL: return &m_compute_pixel;
12 case MSG_COLLECT_RESULT: return &m_collect_result;
13 case MSG_FINISH: return &m_finish;
14 }
15 return NULL;
16 }

Worker actors do not need to maintain any data and therefore we are not required to provide a
top level trace function, because there is no data to serialize or deserialize for migration. The type
descriptor of a worker actor is provided in listing 5.2.

Listing 5.2: Type descriptor for Mandelbrot actor

1 static actor_type_t worker =
2 {
3 0,
4 NULL,
5 message_type, /* message type conversion function from listing 5.1 */
6 dispatch /* pointer to message dispatch handler */
7 };

The message handler for PONY_MAIN creates 400 × 400 workers and sends a message to start com-
puting a pixel value to each of those actors. The runtime function pony_sendv allows to send a
vector of arguments in a message:

Listing 5.3: Spawning actors and sending a vector of arguments

1 arg_t args[3];
2

3 for(uint16_t j = 0; j < 400; j++)
4 {
5 for(uint16_t i = 0; i < 400; i++)
6 {
7 args[0].p = this;
8 args[1].i = j;
9 args[2].i = i;

10

11 pony_sendv(pony_create(&worker), MSG_COMPUTE_PIXEL, 3, args);
12 }
13 }

74

A given pixel coordinate c (expressed as complex number) belongs to the Mandelbrot set, if the
absolute value of zn is bounded for n→∞ [94]:

zn+1 = z2
n + c (5.1)

Hence, the computed result is an approximation and we exit if the number of iterations exceeds a
certain threshold (in this example 28 − 1) or if zn is determined not to be part of the Mandelbrot
set (i.e. if either of its real or imaginary part is larger than 2). This is also known as the escape
time algorithm. The value that each worker reports to the main actor is the number of executed
iterations. Note that the equation above can be implemented efficiently with C99’s implementation
of complex numbers. The interested reader is referred to [47] for additional information. Listing
5.4 shows the source code for computing the color value of a pixel at position (x, y).

Listing 5.4: Compute color value

1 case MSG_COMPUTE_PIXEL:
2 {
3 actor_t* collector = (actor_t*)argv[0].p;
4 uint16_t x = (uint16_t)argv[1].i;
5 uint16_t y = (uint16_t)argv[2].i;
6

7 double complex c, z;
8 uint8_t n;
9

10 /* center the image and zoom out */
11 c = -0.3+(x-400/2)*0.007 + I * ((y-400/2)*0.007);
12 z = 0.0;
13 n = 0;
14

15 while((cabs(z) < 2.0) && (n != 255))
16 {
17 z = z*z + c;
18 n++;
19 }
20

21 arg_t res[3];
22 res[0].i = x;
23 res[1].i = y;
24 res[2].i = n;
25

26 pony_sendv(collector, MSG_COLLECT_RESULT, 3, res);
27

28 break;
29 }

As for any other C application, we need to provide a main function that starts the runtime in order
to invoke the main actor. For this purpose, Pony provides a function called pony_start, as shown
in listing 5.5. Since the main actor executes I/O operations by writing the resulting color values
to stdout, we need to avoid that the scheduler migrates this actor to another node. This can be
achieved by using the function pony_pin_actor.

In future versions of Pony, pinning an actor explicitly is not required, because we can determine
whether an actor implementation has dependencies to I/O related system calls.

Listing 5.5: A Pony program’s main function

1 int main(int argc, char** argv)
2 {
3 actor_t* main_actor = pony_create(&worker);
4 pony_pin_actor(main_actor);
5

6 pony_start(argc, argv, main_actor);
7 }

75

The application can be executed in a concurrent setting just like any other C application. Com-
puting the Mandelbrot set on a cluster of Ponies requires to start the application on a master node
with the following parameters, without the need for changing the code or recompilation:

./mandelbrot --ponydistrib --ponymaster > output.data

Slave nodes can be connected at any point in time (before the master terminates) like the following:

./mandelbrot --ponydistrib --ponyconnect <host_master> <port>

Runtime processes on slave nodes do not spawn a main actor, instead they just stay idle until their
parent node migrates actors to execute. The image produced is shown in Figure 5.6. Note that
because the application returns a file of bytes representing color values, we need to convert the
result to jpeg format or similar. On UNIX based systems, this can be achieved using a program
called “convert” [92], which is a member of the ImageMagick -suite tools [93]:

convert -depth 8 -size 400x400 gray:output.data output.jpg

Figure 5.6: Back-and-White colored cut-out of Mandelbrot-Set

76

Chapter 6

Conclusion

6.1 Contributions

This thesis builds on the observation that the Actor programming model is inherently well suited
for distributed computing [2]. We proposed an implementation of a programming language run-
time called Pony that seamlessly binds the two aspects of concurrent and distributed computing,
without exposing the programmer to anything related to the underlying resource topology. Any
program written based on our runtime can be executed in a concurrent setting or on arbitrarily
large computer clusters without changing the code or recompilation.

In the following we summarize the contributions of this work. The first item is asynchronous
I/O multiplexing, which required low-level socket programming and consideration of best practices.
The remaining items required the development of novel algorithms and protocols.

Asynchronous Network I/O Multiplexing

We have implemented an efficient network layer for asynchronous I/O multiplexing based on poll.
Messages between nodes are dispatched efficiently using a framed message protocol without expen-
sive delimiter parsing. Serialization and deserialization of any structure and message is supported
through a trace mechanism in combination with a stream buffer data type. Any message, indepen-
dent of its size, is written to the network with as least system calls as possible. I/O operations are
implemented in a non-blocking fashion, which avoids unnecessary waiting for messages.

Any network communication, such as remote actor application messages, is implemented by a
Distribution Actor, which is responsible for any tasks related to distribution. The Distribution Actor
is scheduled by repeatedly sending a message to it. Busy waiting is avoided using a zero-valued
nano sleep after each invocation of the Distribution Actor.

Joining Nodes to a Cluster of Ponies (section 3.3.2)

A cluster of Ponies is based on a k-Tree network topology, is easy to set up and nodes can be added
at runtime without any reconfiguration. We proposed a joining algorithm for adding slave nodes to
an existing cluster that guarantees that the tree network is almost balanced at any point in time.
This means that the imbalance factor is either ±1 or the tree is perfectly balanced and therefore a
complete k-Tree.

The same algorithm is used to route messages from source to destination within a Pony network.
The next hop towards a destination can be calculated efficiently if the maximum number of children
per node is a power of 2.

Distributed Work Stealing Scheduler (section 3.5.4)

The centerpiece of the runtime developed in the context of this thesis is a distributed work stealing
scheduler, which allows to live-migrate actors at runtime. We developed a hierarchical scheduling
algorithm specifically tailored for tree network topologies with constant space complexity, indepen-

77

dent of the size of a Pony cluster. Our approach is based on a push and pull scheme, where nodes
report the free core count of themselves and their children transitively to their parent node. We
prioritize sending work down the tree over sending work up the tree. This decision is based on a
statistical argument, namely that the path to reach a node which is not used to capacity is longer
via a parent node than via a child node. Furthermore, the proposed algorithm guarantees that
busy intermediate nodes do not cause nodes further down the tree to suffer from starvation.

Work stealing is provably optimal (within some constant factor) for task and data parallelism.
Note that a distributed work stealing scheduler for actor-based applications is not about stealing
actors, but about stealing work to be executed by actors. Hence, our algorithm does not attempt
to distribute all actors in a system uniformly among a set of nodes in a distributed setting. The
scheduler is optimized for throughput, which in the long term also optimizes for latency.

Causal Message Delivery in Distributed Systems (chapter 4)

Pony guarantees causal message delivery for both the concurrent and the distributed setting with-
out any additional software overhead. In a single-node configuration, causality is a natural conse-
quence of atomic memory operations [30] used to synchronize adding messages to an actors mailbox.

Instead of using logical or vector clocks to impose a partial order on a set of events, we enforce
causality in a distributed system through a tree network topology in combination with character-
istics of the TCP protocol. A formal argument is provided in section 4.2.

We believe that causal messaging is a valuable property for programming actor-based concurrent
and distributed applications. A good example for this is the Pony runtime itself, where efficient and
fully concurrent garbage collection of actors as well as distributed termination is possible because
of causality. Not only is it a matter of efficiency, but also important for how we reason about
concurrent and distributed programs.

Distributed Garbage Collection of Actors (section 3.7)

The concurrent version of Pony, developed prior to this project, implements fully concurrent
garbage collection of actors [30]. In this thesis, we proposed an extension to this scheme for
the distributed context, optimized for tree network topologies.

Reference counting alone is not sufficient. Actors may reference other actors and therefore
produce cyclic garbage, which is uncollectable using reference counting alone. In a concurrent
setting, Pony employs an actor as cycle detector to cater for cyclic garbage. Our extended scheme
for distributed systems provides a cycle detector on every node of a system, and therefore allows to
collect local cyclic garbage with no overhead compared to the concurrent setting. If a cycle consists
of actors located on different nodes, our algorithm guarantees that the decision to collect such a
cycle can be made at the earliest common ancestor of the nodes holding actors that participate in
that cycle. Thus, we avoid unnecessary sending of information up the tree. Causality allows us to
avoid a complicated communication protocol between all nodes we need to consider for collecting
a cycle.

Distributed Termination (section 3.8)

A consequence of garbage collection for actors is that a Pony programmer is not required to
maintain the lifetime of an actor. We proposed a protocol for fully automatic termination of
distributed and actor-based applications. The causality property of Pony in combination with
a conf-ack protocol allows us to implement a central termination actor that detects distributed
quiescence and coordinates the termination of all nodes participating in a cluster of Ponies.

78

Benchmarks (chapter 5)

We have implemented a micro-benchmark to give an initial evaluation of our implementation. The
results show that we achieve considerable speedup for computation-bound scenarios. We discussed
that scaling actor-based applications on a distributed network of computers is largely dependent on
the communication pattern of a particular application. If the sending of messages is the dominant
part of an application, distribution may not be a winning strategy.

6.2 Future Work

The implemented runtime is a first step towards a complete programming language. Furthermore,
the wide scope of the topics discussed within this thesis leaves room for many directions of future
continuation of this research.

Improvement of I/O Multiplexing

Scheduling the Distribution Actor by sending a message to it after each invocation is problematic
for computation-bound scenarios, where the Distribution Actor is not busy most of the time. The
current approach generates unnecessary polling for I/O events and schedules the Distribution Actor
independently of the utilization level of the node it is running on. Although we cannot entirely
avoid to probe for I/O without reading data from network sockets, it may be sensible to introduce
one layer of indirection. We can imagine to add another asynchronous mechanism as kernel timer
to send a probe message to the Distribution Actor.

The interval within which probing for I/O is scheduled could be set dynamically based on
application characteristics and CPU utilization. For example, if every core on a machine is used to
its capacity we could increase the interval of I/O scheduling. If an application is message-bound,
the interval may be shortened.

Furthermore, future work should provide a discussion on whether a single Distribution Actor
might become a bottleneck. Note that this discussion is not important because of message-bound
applications, which might not scale well in a distributed setting anyway, but because of applica-
tions that yield large amounts of actors. More extensive benchmarking may evaluate whether a
single Distribution Actor might involve unacceptably high latency for migration for these type of
applications.

Failure Detection and Dynamic Tree Topology

We have not addressed the problem of partial failure in distributed systems. The question is,
whether failure can be handled in a transparent manner, similar to the scheduling of actors presented
in this work, such that the programmer is not exposed to any of these issues.

A possible idea could be to introduce a Failure Detector-Actor on every node. A node being
suspected could cause a leader election [50, 75] to be triggered between the children of the crashed
node. The elected leader could be used as the new parent node. Implementing such a feature is
difficult, because we dynamically change the topology of the network but at the same time need to
maintain the causality property of Pony.

If nodes can fail, we need to ensure that messages are handled appropriately if a destination
becomes suspected. Note that not only a destination might have crashed, but potentially any
intermediate node on a path from source to destination. This might require a cache for outgoing
remote messages and a conf-ack protocol to ensure message delivery.

We consider failure detection to be one of the most important challenges to be addressed by
future versions of Pony.

Locality-aware Tree Network Topology

The proposed joining algorithm can be improved in various ways. Instead of solely deciding the
location of a new slave node based on its ordinal number, we could also take the network latency

79

between nodes into account. In order to improve data locality of Pony’s hierarchical work stealing
scheduler, we could determine the delegation path of a new slave node based on which node can
ping the new slave node fastest (and then decide its node ID), whilst guaranteeing that the tree
is almost balanced. Of course, locality and balancing the tree may be conflicting requirements.
Hence, it may be sensible to provide a mechanism that enables the user to prioritize properties of
the underlying tree topology. Also, it might be desirable to allow for dynamic re-arrangement of
the tree. For example, the number of children per node might be changed at runtime for reducing
latency. Again, the main challenge of a dynamic topology is maintaining causality.

Work Stealing and Actor Migration

The proposed hierarchical work stealing mechanism in combination with live-migration of actors
requires fine tuning. It might be advantageous to migrate actors on purpose, rather than only
for work stealing. This may be sensible for remote messages with a size that is above a certain
threshold. Instead of transferring the message, it might be more efficient to migrate the receiving
actor to the same node as the sender.

Our proxy mechanism could be extended for this purpose. Instead of delegating large messages,
a proxy could signal the Distribution Actor to migrate the recipient (which might conflict with
other concurrent migration requests). Provided we can maintain causality, the proxy itself could
hold on to the message until the true actor arrives. Eventually, the proxy becomes a local true
actor and processes the large message.

Work stealing on its own may not be sufficient. It might be sensible to also consider the
communication patterns of an application in order to avoid work stealing the message-bound part of
an application. We believe that a discussion on communication patterns of actor-based applications
could lead to interesting insights for programming best-practices for the actor programming model.

Compiler, Type System and Formal Models

The development of the Pony runtime has advanced to a stage at which we should start to develop a
compiler for the Pony language. Furthermore, especially in the context of message-passing systems,
the development of a type system is of great importance and has a large impact on the efficiency
of a runtime system.

Most importantly, formal models should be provided for the mechanisms proposed in this thesis
to allow for soundness proofs. In later stages, this also applies for developing the operational
semantics of the Pony language.

Generalization

Throughout the time of this project, we have experienced that some solutions proposed were ap-
plicable to various problems we faced, such as the acknowledgment protocol for cycle detection.
Consequently, future research should investigate to which extent the work carried out in this project
may go beyond the context of Pony in order to solve problems in a distributed context.

Publications

This thesis provides material for several publications:

• A Pony Paper

• Hierarchical Garbage Collection of Actors and Objects in Distributed Systems

• Causality in Distributed Systems by Construction

• Hierarchical Work Stealing of Actors in Distributed Systems

80

Appendix A

Non-blocking reads

A.1 Pseudocode - socket read handler: collect()

Listing A.1: Pseudocode of collect() - handling EOF is omitted

1 static actor_t* collect(message_buf* msg_buf, const int sockfd)
2 {
3 ssize_t ret;
4

5 if(!msg_buf->collect_started)
6 msg_buf_prepare();
7 do
8 {
9 ret = read(sockfd, msg_buf->offset, msg_buf->bytes_left);

10

11 if(ret > 0)
12 {
13 msg_buf->offset += ret;
14 msg_buf->bytes_left -= ret;
15 }
16 } while(errno != EWOULDBLOCK && msg_buf->bytes_left > 0);
17

18 give_up_if_blocked();
19

20 if(msg_buf->header_complete == false)
21 check_and_prepare_for_body();
22

23 /* read message body */
24 if(msg_buf->bytes_left > 0)
25 return collect(msg_buf, sockfd);
26

27 set_handler();
28 return receiving_actor();
29 }
30

31 static void handle_read(message_buf* msg_buf, const int sockfd)
32 {
33 actor_t* recv = 0;
34

35 if((recv = collect(msg_buf, sockfd)) != 0)
36 msg_buf->dispatch(recv, msg_buf->msg_body);
37 }

81

Appendix B

Micro Benchmark

Listing B.1: Micro Benchmark to simulate workloads

1 #define __STDC_FORMAT_MACROS
2 #include <pony/pony.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <string.h>
6 #include <inttypes.h>
7 #include <assert.h>
8

9 typedef struct ring_t
10 {
11 actor_t* worker;
12 actor_t* next;
13 int size;
14 int pass;
15 int repeat;
16 } ring_t;
17

18 enum
19 {
20 MSG_INIT,
21 MSG_NEXT,
22 MSG_PASS,
23 MSG_WORK
24 };
25

26 static void trace(void* p);
27 static message_type_t* message_type(uint64_t id);
28 static void dispatch(actor_t* this, void* p, uint64_t id, int argc, arg_t* argv);
29

30 static actor_type_t type =
31 {
32 sizeof(ring_t),
33 trace,
34 message_type,
35 dispatch
36 };
37

38 static message_type_t m_init = {3, {NULL}, {0}, {PONY_PRIMITIVE64, PONY_PRIMITIVE64
, PONY_PRIMITIVE64}};

39 static message_type_t m_next = {1, {NULL}, {0}, {PONY_ACTOR}};
40 static message_type_t m_pass = {1, {NULL}, {0}, {PONY_PRIMITIVE64}};
41 static message_type_t m_work = {0, {NULL}, {0}, {PONY_NONE}};
42

43 static void trace(void* p)
44 {
45 ring_t* d = p;
46 pony_traceactor(&d->worker);
47 pony_traceactor(&d->next);

82

48 pony_trace32(&d->size);
49 pony_trace32(&d->pass);
50 pony_trace32(&d->repeat);
51 }
52

53 static message_type_t* message_type(uint64_t id)
54 {
55 switch(id)
56 {
57 case MSG_INIT: return &m_init;
58 case MSG_NEXT: return &m_next;
59 case MSG_PASS: return &m_pass;
60 case MSG_WORK: return &m_work;
61 }
62

63 return NULL;
64 }
65

66 static uint64_t factorize(uint64_t n, uint64_t count, uint64_t* list)
67 {
68 if(n <= 3)
69 {
70 list[0] = n;
71 return 1;
72 }
73

74 uint64_t d = 2;
75 uint64_t i = 0;
76

77 while(d < n)
78 {
79 if((n % d) == 0)
80 {
81 list[i++] = d;
82 n /= d;
83 } else {
84 d = (d == 2) ? 3 : (d + 2);
85 }
86 }
87

88 list[i++] = d;
89 return i;
90 }
91

92 static void test_factorize()
93 {
94 uint64_t list[2];
95 uint64_t count = factorize(86028157UL * 329545133UL, 2, list);
96

97 if((count != 2) || (list[0] != 86028157) || (list[1] != 329545133))
98 {
99 printf("factorization error");

100 }
101 }
102

103 static actor_t* spawn_ring(actor_t* first, int size, int pass)
104 {
105 actor_t* next = first;
106

107 for(int i = 0; i < (size - 1); i++)
108 {
109 actor_t* actor = pony_create(&type);
110 pony_sendp(actor, MSG_NEXT, next);
111 next = actor;
112 }
113

83

114 if(pass > 0) pony_sendi(first, MSG_PASS, pass * size);
115 return next;
116 }
117

118 static void dispatch(actor_t* this, void* p, uint64_t id, int argc, arg_t* argv)
119 {
120 ring_t* d = p;
121

122 switch(id)
123 {
124 case PONY_MAIN:
125 {
126 int margc = argv[0].i;
127 char** margv = argv[1].p;
128 int size = 50;
129 int count = 20;
130 int pass = 10000;
131 int repeat = 5;
132

133 for(int i = 1; i < margc; i++)
134 {
135 if(!strcmp(margv[i], "--size"))
136 {
137 if(margc <= (i + 1))
138 {
139 return;
140 }
141

142 size = atoi(margv[++i]);
143 } else if(!strcmp(margv[i], "--count")) {
144 if(margc <= (i + 1))
145 {
146 return;
147 }
148

149 count = atoi(margv[++i]);
150 } else if(!strcmp(margv[i], "--pass")) {
151 if(margc <= (i + 1))
152 {
153 return;
154 }
155

156 pass = atoi(margv[++i]);
157 } else if(!strcmp(margv[i], "--repeat")) {
158 if(margc <= (i + 1))
159 {
160 return;
161 }
162

163 repeat = atoi(margv[++i]);
164 } else {
165 return;
166 }
167 }
168

169 argv[0].i = size;
170 argv[1].i = pass;
171 argv[2].i = repeat;
172

173 for(int i = 0; i < count; i++)
174 {
175 pony_sendv(pony_create(&type), MSG_INIT, 3, argv);
176 }
177 break;
178 }
179

84

180 case MSG_INIT:
181 {
182 d = pony_alloc(sizeof(ring_t));
183 pony_set(d);
184

185 d->worker = pony_create(&type);
186 d->size = argv[0].i;
187 d->pass = argv[1].i;
188 d->repeat = argv[2].i;
189

190 pony_send(d->worker, MSG_WORK);
191 d->next = spawn_ring(this, d->size, d->pass);
192 break;
193 }
194

195 case MSG_NEXT:
196 {
197 d = pony_alloc(sizeof(ring_t));
198 pony_set(d);
199

200 d->worker = NULL;
201 d->next = argv[0].p;
202 d->size = 0;
203 d->pass = 0;
204 d->repeat = 0;
205 break;
206 }
207

208 case MSG_PASS:
209 {
210 if(argv[0].i > 0)
211 {
212 pony_sendi(d->next, MSG_PASS, argv[0].i - 1);
213 } else {
214 assert(d->repeat > 0);
215 assert(d->worker != NULL);
216 d->repeat--;
217

218 if(d->repeat > 0)
219 {
220 pony_send(d->worker, MSG_WORK);
221 d->next = spawn_ring(this, d->size, d->pass);
222 }
223 }
224 break;
225 }
226

227 case MSG_WORK:
228 {
229 test_factorize();
230 break;
231 }
232 }
233 }
234

235 int main(int argc, char** argv)
236 {
237 actor_types[0] = &type;
238

239 return pony_start(argc, argv, pony_create(&type));
240 }

85

Bibliography

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In
Proceedings of the twelfth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’00, pages 1–12, New York, NY, USA, 2000. ACM.

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA, 1986.

[3] Apache. Thrift. http://thrift.apache.org. Accessed: 27/07/2013.

[4] Apple. thread policy set(). http://developer.apple.com/library/mac/
#releasenotes/Performance/RN-AffinityAPI/index.html. Accessed:
31/07/2013.

[5] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’98, pages 119–129, New York, NY, USA, 1998. ACM.

[6] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and
Martin Vechev. Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’11, pages 487–498, New York, NY, USA, 2011.
ACM.

[7] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A scalable and explicit event delivery
mechanism for unix. In Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC ’99, pages 19–19, Berkeley, CA, USA, 1999. USENIX Association.

[8] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314, August 1991.

[9] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed
systems. Technical report, Cornell University, Ithaca, NY, USA, 1987.

[10] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Trans.
Comput. Syst., 2(1):39–59, February 1984.

[11] Ben A. Blake. Assignment of independent tasks to minimize completion time. Software,
Practice and Experience, 22(9):723–734, 1992.

[12] Wolfgang Blochinger and Wolfgang Kchlin. The design of an api for strict multithreading in
c++. Lecture Notes in Computer Science, pages 722–731. Springer.

[13] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the perfect
benchmarks programs. IEEE Transactions on Parallel and Distributed Systems, 3(6):643–656,
1992.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In
Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP ’95, pages 207–216, New York, NY, USA, 1995. ACM.

86

http://thrift.apache.org
http://developer.apple.com/library/mac/#releasenotes/Performance/RN-AffinityAPI/index.html
http://developer.apple.com/library/mac/#releasenotes/Performance/RN-AffinityAPI/index.html

[15] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720–748, September 1999.

[16] Jonas Bonér. Akka - Building Concurrent and Distributed Applications based on the JVM.
http://www.akka.io. Accessed: 3/09/2013.

[17] Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM.

[18] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: preventing data races and deadlocks. In Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, OOPSLA
’02, pages 211–230, New York, NY, USA, 2002. ACM.

[19] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor classification. ACM Comput.
Surv., 27(1):63–107, March 1995.

[20] Peter A. Buhr and Ashif S. Harji. Implicit-signal monitors. ACM Trans. Program. Lang.
Syst., 27(6):1270–1343, November 2005.

[21] Thomas L. Casavant, Jon, and G. Kuhl. A taxonomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Transactions on Software Engineering, 14:141–154, 1988.

[22] Vinton G. Cerf and Robert E. Icahn. A protocol for packet network intercommunication.
SIGCOMM Comput. Commun. Rev., 35(2):71–82, April 2005.

[23] Tushar D Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Technical report, Ithaca, NY, USA, 1994.

[24] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996.

[25] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

[26] Dominik Charousset. libcppa - An implementation of the Actor Model for C++. http:
//libcppa.blogspot.co.uk. Accessed: 3/09/2013.

[27] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett., 39(1):11–16, July 1991.

[28] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the
seventeenth annual ACM symposium on Parallelism in algorithms and architectures, SPAA
’05, pages 21–28, New York, NY, USA, 2005. ACM.

[29] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias protec-
tion. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’98, pages 48–64, New York, NY, USA, 1998.
ACM.

[30] Sylvan Clebsch and Sophia Drossopoulou. Fully Concurrency Garbage Collection of Actors
on Many-Core Machines. To appear, OOPSLA, 2013.

[31] Mozart Consortium. The Mozart Programming Language. http://http://www.
mozart-oz.org. Accessed: 11/07/2013.

[32] Microsoft Corp. Windows Asynchronous Procedure Calls. http://msdn.microsoft.
com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx. Accessed:
29/07/2013.

87

http://www.akka.io
http://libcppa.blogspot.co.uk
http://libcppa.blogspot.co.uk
http://http://www.mozart-oz.org
http://http://www.mozart-oz.org
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

[33] Microsoft Corp. Windows I/O Completion Ports. http://msdn.microsoft.com/
en-us/library/aa365198(VS.85).aspx. Accessed: 29/07/2013.

[34] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems:
Concepts and Design. Addison-Wesley Publishing Company, USA, 5th edition, 2011.

[35] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe Types for Race
Safety. In VAMP 07, pages 20–51, August 2007.

[36] Peter Deutsch. The Eight Fallacies of Distributed Computing. https://blogs.oracle.
com/jag/resource/Fallacies.html. Accessed: 10/07/2013.

[37] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. Scalable work stealing. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 53:1–53:11, New York, NY, USA,
2009. ACM.

[38] Erricson. The Erlang Programming Language. http://www.erlang.org. Accessed:
11/07/2013.

[39] Dominik Charousset et. al. libcppa vs. Erlang vs. Scala Perfor-
mance (Mixed Scenario). http://libcppa.blogspot.co.uk/2012/02/
libcppa-vs-erlang-vs-scala-performance.html. Accessed: 1/09/2013.

[40] Martin Odersky et al. The Scala Programming Language. http://www.scala-lang.org.
Accessed: 11/07/2013.

[41] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
Proc. of the 11th Australian Computer Science Conference (ACSC’88), pages 56–66, February
1988.

[42] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. In Proceedings of the 2nd ACM SIGACT-SIGMOD sym-
posium on Principles of database systems, PODS ’83, pages 1–7, New York, NY, USA, 1983.
ACM.

[43] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for atomicity:
Static checking and inference for java. ACM Trans. Program. Lang. Syst., 30(4):20:1–20:53,
August 2008.

[44] The Free Software Foundation. BSD Socket API - socket(). http://man7.org/linux/
man-pages/man2/socket.2.html. Accessed: 5/08/2013.

[45] Inc. Free Software Foundation. The GNU Standard C Library. http://www.gnu.
org/software/libc/manual/html_node/Processor-Resources.html. Accessed:
31/07/2013.

[46] Inc. Free Software Foundation. Thread-local variables. http://gcc.gnu.org/
onlinedocs/gcc-4.8.1/gcc/Thread_002dLocal.html. Accessed: 7/08/2013.

[47] The Free Software Foundation. C99 standard - complex.h. http://www.
gnu.org/software/libc/manual/html_node/Complex-Numbers.html#
Complex-Numbers. Accessed: 5/09/2013.

[48] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN 1998 conference on Program-
ming language design and implementation, PLDI ’98, pages 212–223, New York, NY, USA,
1998. ACM.

88

http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
https://blogs.oracle.com/jag/resource/Fallacies.html
https://blogs.oracle.com/jag/resource/Fallacies.html
http://www.erlang.org
http://libcppa.blogspot.co.uk/2012/02/libcppa-vs-erlang-vs-scala-performance.html
http://libcppa.blogspot.co.uk/2012/02/libcppa-vs-erlang-vs-scala-performance.html
http://www.scala-lang.org
http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html
http://www.gnu.org/software/libc/manual/html_node/Processor-Resources.html
http://www.gnu.org/software/libc/manual/html_node/Processor-Resources.html
http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Thread_002dLocal.html
http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Thread_002dLocal.html
http://www.gnu.org/software/libc/manual/html_node/Complex-Numbers.html#Complex-Numbers
http://www.gnu.org/software/libc/manual/html_node/Complex-Numbers.html#Complex-Numbers
http://www.gnu.org/software/libc/manual/html_node/Complex-Numbers.html#Complex-Numbers

[49] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, January 1983.

[50] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, January 1983.

[51] GCC GNU and Intel. Atomic builtins - sync bool compare and swap. http://gcc.gnu.
org/onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins.
Accessed: 29/07/2013.

[52] GCC GNU and Intel. Atomic builtins - sync lock test and set. http://gcc.gnu.org/
onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins. Ac-
cessed: 29/07/2013.

[53] A. Ghafoor and I. Ahmad. An efficient model of dynamic task scheduling for distributed
systems. In Computer Software and Applications Conference, 1990. COMPSAC 90. Proceed-
ings., Fourteenth Annual International, pages 442–447, 1990.

[54] The Object Management Group. The CORBA Standard. http://www.corba.org. Ac-
cessed: 10/07/2013.

[55] P. H. Gum. System/370 extended architecture: facilities for virtual machines. IBM J. Res.
Dev., 27(6):530–544, November 1983.

[56] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system
scheduling policies and synchronization methods of performance of parallel applications. In
Proceedings of the 1991 ACM SIGMETRICS conference on Measurement and modeling of
computer systems, SIGMETRICS ’91, pages 120–132, New York, NY, USA, 1991. ACM.

[57] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, July 1990.

[58] P.B. Hansen. The programming language concurrent pascal. Software Engineering, IEEE
Transactions on, SE-1(2):199 –207, june 1975.

[59] Per Brinch Hansen. Monitors and concurrent pascal: a personal history. SIGPLAN Not.,
28(3):1–35, March 1993.

[60] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized nonblocking work
stealing deque. Technical report, Mountain View, CA, USA, 2005.

[61] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues. In Proceedings of
the twenty-first annual symposium on Principles of distributed computing, PODC ’02, pages
280–289, New York, NY, USA, 2002. ACM.

[62] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, November 1999.

[63] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for
artificial intelligence. In Proceedings of the 3rd international joint conference on Artificial
intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[64] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM,
17(10):549–557, October 1974.

[65] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1985.

89

http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Atomic-Builtins.html#Atomic-Builtins
http://www.corba.org

[66] The IEEE and The Open Group. POSIX Threads - IEEE Std 1003.1, The Open Group
Base Specifications Issue 6. http://pubs.opengroup.org/onlinepubs/007904975/
basedefs/pthread.h.html. Accessed: 31/07/2013.

[67] Oracle Inc. The Java Programming Language. http://www.java.com. Accessed:
10/08/2013.

[68] Oracle Inc. Java RMI. http://docs.oracle.com/javase/6/docs/technotes/
guides/rmi/index.html. Accessed: 10/07/2013.

[69] Information Sciences Institute University of Southern California. Transmission Control Pro-
tocol. http://tools.ietf.org/html/rfc793. Accessed: 2/07/2013.

[70] Intel. Core i7-2600 Product Page. http://ark.intel.com/products/52213. Accessed:
3/09/2013.

[71] Borman Jacobson, Braden. TCP Extensions for High Performance. http://tools.ietf.
org/html/rfc1323. Accessed: 2/07/2013.

[72] Erik Johansson, Konstantinos Sagonas, and Jesper Wilhelmsson. Heap architectures for con-
current languages using message passing. In Proceedings of the 3rd international symposium
on Memory management, ISMM ’02, pages 88–99, New York, NY, USA, 2002. ACM.

[73] Dan Kegel. The C10K Problem. http://www.kegel.com/c10k.html. Accessed:
26/06/2013.

[74] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. A note on distributed
computing. Technical report, Mountain View, CA, USA, 1994.

[75] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of efficient dis-
tributed leader finding algorithms. ACM Trans. Program. Lang. Syst., 12(1):84–101, January
1990.

[76] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[77] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

[78] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[79] Doug Lea. malloc - A Memory Allocator. http://g.oswego.edu/dl/html/malloc.
html. Accessed: 01/08/2013.

[80] Jonathan Lemon. Kqueue - a generic and scalable event notification facility. In Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference, pages 141–153, Berkeley,
CA, USA, 2001. USENIX Association.

[81] The Linux man-pages project. BSD Socket API - accept(). http://man7.org/linux/
man-pages/man2/accept.2.html. Accessed: 26/06/2013.

[82] The Linux man-pages project. BSD Socket API - bind(). http://man7.org/linux/
man-pages/man2/bind.2.html. Accessed: 26/06/2013.

[83] The Linux man-pages project. BSD Socket API - connect(). http://man7.org/linux/
man-pages/man2/connect.2.html. Accessed: 2/08/2013.

[84] The Linux man-pages project. BSD Socket API - listen(). http://man7.org/linux/
man-pages/man2/listen.2.html. Accessed: 26/06/2013.

90

http://pubs.opengroup.org/onlinepubs/007904975/basedefs/pthread.h.html
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/pthread.h.html
http://www.java.com
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://tools.ietf.org/html/rfc793
http://ark.intel.com/products/52213
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://www.kegel.com/c10k.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://man7.org/linux/man-pages/man2/accept.2.html
http://man7.org/linux/man-pages/man2/accept.2.html
http://man7.org/linux/man-pages/man2/bind.2.html
http://man7.org/linux/man-pages/man2/bind.2.html
http://man7.org/linux/man-pages/man2/connect.2.html
http://man7.org/linux/man-pages/man2/connect.2.html
http://man7.org/linux/man-pages/man2/listen.2.html
http://man7.org/linux/man-pages/man2/listen.2.html

[85] The Linux man-pages project. BSD Socket API - poll(). http://man7.org/linux/
man-pages/man2/poll.2.html. Accessed: 26/06/2013.

[86] The Linux man-pages project. BSD Socket API - recv(). http://man7.org/linux/
man-pages/man2/recv.2.html. Accessed: 26/06/2013.

[87] The Linux man-pages project. BSD Socket API - select(). http://man7.org/linux/
man-pages/man2/select.2.html. Accessed: 26/06/2013.

[88] The Linux man-pages project. epoll. http://man7.org/linux/man-pages/man7/
epoll.7.html. Accessed: 29/07/2013.

[89] The Linux man-pages project. Fast Scatter-Gather I/O - readv(), writev()
and iovec. http://www.gnu.org/software/libc/manual/html_node/Scatter_
002dGather.html. Accessed: 26/06/2013.

[90] The Linux man-pages project. mmap. http://man7.org/linux/man-pages/man2/
mmap.2.html. Accessed: 01/08/2013.

[91] The Linux man-pages project. sched setaffinity(). http://man7.org/linux/
man-pages/man2/sched_setaffinity.2.html. Accessed: 29/07/2013.

[92] Linux man pages. convert(1). http://linux.die.net/man/1/convert. Accessed:
4/09/2013.

[93] Linux man pages. imagemagick(1). http://linux.die.net/man/1/imagemagick. Ac-
cessed: 4/09/2013.

[94] B.B. Mandelbrot. The Fractal Geometry of Nature. Henry Holt and Company, 1983.

[95] Ashton Mason. The Theron Library - Lightweight Concurrency with Actors in C++. http:
//www.theron-library.com. Accessed: 3/09/2013.

[96] Friedemann Mattern. Virtual time and global states in distributed systems. In Proc. Int.
Workshop on Parallel and Distributed Algorithms, pages 215–226, Gers, France, 1988. North-
Holland.

[97] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs. ACM Com-
put. Surv., 21(4):593–622, December 1989.

[98] Maged M. Michael. Cas-based lock-free algorithm for shared deques. In Harald Kosch,
Lszl Bszrmnyi, and Hermann Hellwagner, editors, Euro-Par 2003. Parallel Processing, 9th
International Euro-Par Conference, Klagenfurt, Austria, August 26-29, 2003. Proceedings,
volume 2790 of Lecture Notes in Computer Science, pages 651–660. Springer, 2003.

[99] Maged M. Michael. ABA Prevention Using Single-Word Instructions. http://www.
research.ibm.com/people/m/michael/RC23089.pdf, 2004. Accessed: 04/04/2013.

[100] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6):491–504, June 2004.

[101] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing.
In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’09, pages 45–54, New York, NY, USA, 2009. ACM.

[102] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, September 1992.

[103] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Inf.
Comput., 100(1):41–77, September 1992.

91

http://man7.org/linux/man-pages/man2/poll.2.html
http://man7.org/linux/man-pages/man2/poll.2.html
http://man7.org/linux/man-pages/man2/recv.2.html
http://man7.org/linux/man-pages/man2/recv.2.html
http://man7.org/linux/man-pages/man2/select.2.html
http://man7.org/linux/man-pages/man2/select.2.html
http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html
http://www.gnu.org/software/libc/manual/html_node/Scatter_002dGather.html
http://www.gnu.org/software/libc/manual/html_node/Scatter_002dGather.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://linux.die.net/man/1/convert
http://linux.die.net/man/1/imagemagick
http://www.theron-library.com
http://www.theron-library.com
http://www.research.ibm.com/people/m/michael/RC23089.pdf
http://www.research.ibm.com/people/m/michael/RC23089.pdf

[104] Jens Palsberg. Featherweight x10: a core calculus for async-finish parallelism. In Proceedings
of the 14th Workshop on Formal Techniques for Java-like Programs, FTfJP ’12, pages 1–1,
New York, NY, USA, 2012. ACM.

[105] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, April 1980.

[106] Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In Proceedings of the
16th international Euro-Par conference on Parallel processing: Part I, EuroPar’10, pages
217–229, Berlin, Heidelberg, 2010. Springer-Verlag.

[107] Sub Ramakrishnan, I.-H. Cho, and L.A. Dunning. A close look at task assignment in dis-
tributed systems. In INFOCOM ’91. Proceedings. Tenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking in the 90s., IEEE, pages 806–
812 vol.2, 1991.

[108] Michel Raynal and Mukesh Singhal. Logical Time: Capturing Causality in Distributed Sys-
tems. Computer, 29(2):49–56, February 1996.

[109] Jennifer M. Schopf and Francine Berman. Stochastic scheduling. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), Supercomputing ’99, New York, NY,
USA, 1999. ACM.

[110] Reinhard Schwarz. Causality in Distributed Systems. In Proceedings of the 5th workshop on
ACM SIGOPS European workshop: Models and paradigms for distributed systems structuring,
EW 5, pages 1–5, New York, NY, USA, 1992. ACM.

[111] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: in search of the holy grail. Distrib. Comput., 7(3):149–174, March 1994.

[112] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Principles, 7TH Edition.
Wiley student edition. Wiley India Pvt. Limited, 2006.

[113] Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating Systems.
McGraw-Hill, Inc., New York, NY, USA, 1994.

[114] D. Skeen and Michael Stonebraker. A formal model of crash recovery in a distributed system.
Software Engineering, IEEE Transactions on, SE-9(3):219–228, 1983.

[115] Sriram Srinivasan. Kilim. http://www.malhar.net/sriram/kilim/. Accessed:
3/09/2013.

[116] The C++ Standard Committee. C++. http://www.open-std.org/jtc1/sc22/
wg21/. Accessed: 10/08/2013.

[117] Herb Sutter. The free lunch is over. http://www.gotw.ca/publications/
concurrency-ddj.htm. Accessed: 25/02/2013.

[118] The Transaction Processing Council. Industry Database Benchmarks. http://www.tpc.
org/default.asp. Accessed: 10/08/2013.

[119] Jan van Leeuwen and Richard B. Tan. Interval routing. Comput. J., 30(4):298–307, 1987.

[120] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Efficient load balancing for
wide-area divide-and-conquer applications. SIGPLAN Not., 36(7):34–43, June 2001.

[121] A. M. Van Tilborg and L. D. Wittie. Wave scheduling decentralized scheduling of task forces
in multicomputers. IEEE Trans. Comput., 33(9):835–844, September 1984.

92

http://www.malhar.net/sriram/kilim/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.tpc.org/default.asp
http://www.tpc.org/default.asp

[122] Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with
SALSA. SIGPLAN Not., 36(12):20–34, December 2001.

[123] James E. White. Remote Procedure Calls - Initial Proposition 1976. http://tools.ietf.
org/html/rfc707. Accessed: 10/07/2013.

[124] yWorks. The yEd Graph Editor. http://www.yworks.com/en/products_yed_
about.html. Accessed: 5/09/2013.

93

http://tools.ietf.org/html/rfc707
http://tools.ietf.org/html/rfc707
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html

	Abstract
	Acknowledgements
	Introduction
	Background
	Programming Distributed Systems
	The Actor Programming Model
	Causality in Distributed Systems
	Failure Detection in Asynchronous Networks
	Scheduling of Tasks
	Preemptive and Cooperative Scheduling in Operating Systems
	Priority-based Scheduling
	Operating System Scheduling vs. Actor Runtime Scheduling
	Work Stealing

	Pony
	The Pony Actor
	Message Queues
	Work Stealing Queue
	The Scheduler
	Pool Allocator
	Garbage Collection
	Termination

	Available Actor Languages and Runtimes
	Conclusions

	Distributed Pony
	Overview of Runtime Components
	Asynchronous I/O Multiplexing
	Epoll, KQueue and Kevent
	Select and Poll
	Scheduling I/O Events
	Framed Network Protocol

	The Distribution Actor
	Non-blocking Sockets
	Connecting Slave Nodes and Routing

	Serialization and Deserialization
	Stream Buffer and I/O Vector
	Pony Trace

	Distributed Work Stealing
	Migration and Actor Proxies
	Causality-aware Migration Protocol
	Handling Actor References and Actor Identity Comparison
	Hierarchical Work Stealing
	Collapsing Actor Proxies

	Distributed Object Identity Comparison
	Distributed Garbage Collection
	Deferred Reference Counting and Passive Object Collection
	Active Object or Actor Collection
	Centralized Cycle Detector
	Hierarchical Cycle Detection

	Termination

	Causality in Tree Network Topologies
	Informal View
	Formal Argument

	Evaluation
	Test Application
	Message-bound vs. Computation-bound
	Programming Example - Mandelbrot Fractals

	Conclusion
	Contributions
	Future Work

	Non-blocking reads
	Pseudocode - socket read handler: collect()

	Micro Benchmark
	Bibliography

