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Abstract
Causal message delivery, i.e. the requirement that messages

are delivered in an order respecting their causal (logical) de-

pendencies, is often mandated in the distributed setting. So

far, causal message delivery has been implemented by aug-

menting messages with meta data information that allows

the receiver (or the platform) to re-order, and if necessary

hold back, messages upon receipt before processing.

We propose that causal message delivery can be achieved

by construction, simply by organizing the nodes of the dis-

tributed application into a tree topology, and without the

need for any meta data in the messages.

We present our ideas informally through an example ap-

plication and then develop a formal model and prove that

causal message delivery is preserved in tree-based networks.

CCS Concepts • Computer systems organization →

Distributed architectures; • Theory of computation→

Operational semantics;
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1 Introduction
The ordering of events in distributed applications is an impor-

tant artifact. The ability to observe it requires a relationship

between messages that induces the idea of “happens before”

[16]. This ordering can be either total [16] or partial. Partial
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orderings can be categorized in causal dependencies [7] or
explicitly stated relationships [5].

In the context of causal messaging, we say that each mes-

sage is an effect and every message that was received or sent

prior to that message is a cause of that effect. Causal order-
ing is preserved if every cause is enqueued before its effect

and is therefore less restrictive than a total order, cheaper

to achieve but strong enough for most applications [22]. A

substantial amount of the research in the field of distributed

systems focused on detecting [16, 20] causality violations

or enforcing [6, 22] ordered message delivery. Merely being

able to detect causality violations puts more complexity into

the application and eventually requires recovery protocols

to continue processing. Hence, there is a case for preferring

enforcement over detection.

Motivation In current practice, programmers are required

to design an application to tolerate uncoordinated and in-

consistent orderings of messages or need to implement a

distributed algorithm to explicitly prevent such re-orderings

from ever occurring. These techniques, however, either come

with linear (or even quadratic) space complexity over the set

of involved processes/nodes or employ some central coor-

dinator that, depending on the application, may be highly

contended and performance critical. That is, there is a trade

off between tracking causal dependencies and achieving high

availability and/or scalability.

Since enforcing causal message delivery is potentially ex-

pensive, and increasingly so in large distributed systems,

reducing the overhead that comes with it can have a substan-

tial impact on scalability, without being forced to give up as

much on availability as traditional approaches. Central to our

work is a discussion on to which extend messages need to

be augmented with meta data (if at all) and whether running

a distributed algorithm to ensure causality is a necessity.

Background Observing the order of events in distributed

systems is a complex and powerful concept that forms the

basis for a wide range of applications, such as distributed

snapshots [4, 17], version vectors and conflict detection in

distributed databases [12, 27], causal consistency [1, 2] as

well as causal broadcast [6]. Causality is a generalization

of FIFO ordering [29]. The subtle difference between FIFO

and causal ordering is that the former only applies to mes-

sages having the same sender, whereas causality applies to
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messages from any process or node [16]. Besides having pro-

vided a definition of the “happens-before” [16] relationship

and being able to observe it, one of the most important find-

ings of Lamport’s work on ordering events in distributed

systems [16] is that reasoning about “happens before” does

not require synchronous coordination between processes.

Moreover, one of the most interesting properties is that once

causal ordering is established, many other concepts and their

implementation become much simpler [8].

Causality means that processes must decide whether a

message can be received or if it needs to be held back as

there might be dependent messages in flight but out of or-

der. Detecting that receiving a message is safe is a complex

task. This decision and collecting the required meta data

can be space and time consuming [5, 9, 14, 23]. Moreover,

inspecting physical timestamps is not enough, since time is

not necessarily moving forward uniformly on all nodes in a

distributed system.

A classic approach to this problem is to implement a mes-

sage service based on Lamport clocks, using logical time

to order messages on every node [16, 20]. Lamport clocks

record causal dependencies by tagging every message sent

with a single increasing integer value. As a result, Lamport

clocks have a linear space requirement (over all involved

processes) and do not allow for completely independent mes-

sages. The mechanism described in [16] induces a total order

over all messages by making sure that every site of the sys-

tem has received at least one message from every other site

before progressing. That is, O (n) acknowledgment messages.

This is immensely expensive and implies more dependencies

than truly exist. Moreover, a total ordering is too strict for

certain applications [12], where detecting that some message

cannot possibly be preceded by another message is key for

application correctness. This issue can be addressed by vec-

tor clocks [13, 16], where every process maintains an integer

value for every other process of the system. However, the

price to pay is quadratic space complexity and the amount of

nodes involved in a system is static and needs to be known

a priori. Dynamic topologies are addressed by interval tree

clocks in [3].

Charron-Bost provided a surprising result and theoretical

argument [9], saying that the amount of space required for

the necessary meta data to detect causal dependencies in

distributed systems is at least linear. That is, there is no

better time stamping algorithm based on time vectors smaller

than O (n) that “truly characterizes causality” [9, 14, 23].

The fundamental concepts have been developed in the late

1970s, and from then on research has mainly focused on

developing protocols to tackle the amount of (global) space

required as well as decoupling the effects causal ordering has

on unrelated messages in terms of messaging performance.

There is no free lunch and there are only a few strategies to

reduce these overheads.

The most intuitive idea would be to restrict the num-

ber of participants. This is exactly the strategy distributed

databases use in the context of version vectors [12] by intel-

ligently picking the items for which causal dependencies are

tracked, e.g. data item replicas instead of all servers. Since

the number of replicas is usually substantially smaller than

the number of involved machines in a distributed system,

this is a powerful optimization in practice [18, 19].

Inducing full causality assumes that all messages matter

equally. Generally, for most types of applications, this is not

the case. Hence, another optimization would be to explicitly

specify relationships between items [5]. In the best case, this

can reduce the local space required to O (1). In the context of

applications where a total order of events is not paramount,

such as Twitter, this is an effective and powerful trade off

between performance and the non deterministic order of

messages. The advantage of these approaches is that they

have no negative impact on availability and only give up on

causal dependencies that are not significant to the specific

application [25, 26].

Reducing the number of concurrent participants in a vec-

tor clock based system [13] is possible and saves space, but

sacrifices some amount of availability. A system with only

one concurrent participant implies a total order of events

[15]. This is even the case in data race free multi-core envi-

ronments [10].

Some eventually consistent applications may drop “hap-

pens before” ordering entirely. Systems belonging to this

application domain are not subject to the ideas presented in

this work.

Contributions Our technique enforces (rather than detect-
ing) causal message delivery by arranging the nodes in a

tree topology, resulting in a mechanism that eliminates the

need to collect meta data for detecting causal relationships

entirely, and that can enforce causal order rather than merely

detecting violations after the fact. We either physically con-

nect individual nodes to a tree network or put a networking

service in place to arrange sockets accordingly. During run-

time of the system, no main memory or CPU time is occupied

with the task of deciding whether or not a message can be

delivered. Instead, they can be processed immediately upon

receipt. However, structured networks, such as trees, do limit

the choices that can be made between network configura-

tions. Moreover, for the mechanism presented in this paper

to work, we do assume that sendingmessages between actors

on a single node respects causal order.

We expect that substantial code reductions are possible

when developing distributed applications, as software sys-

tems can implicitly rely on causally ordered events. In other

words, in tree networks, causality is an invariant and an

inherent property of a systems behavior.

2



Tree Topologies for Causal Message Delivery AGERE’17, October 23, 2017, Vancouver, Canada

The key contribution of this paper are:

• A Zero-space mechanism to enforce causal ordering

by topological arrangement.

• A formal model to describe message passing in tree

networks, described through an operational semantics.

• A sketch of the proof that causality is preserved.

Outline We present an informal view of Tree-based causal-

ity in section 2, formalize it in section 3, and provide a sketch

for a correctness proof in section 4. We conclude and discuss

further work in section 5.

2 Tree-Based Causality
In this section we describe what we mean by causality, by

causal message delivery, and the TCP/IP delivery, and ex-

plain informally how a Tree-based topology ensures causal

message delivery.

Preliminaries We say that a message causes another mes-

sage, if one of the following three rules applies:

1. If an actor (or process) receives a message and later

on sends another message, then the first message is a

cause of the second message.

2. If an actor (or process) sends a message and later on

sends another message, then the first message is a

cause of the second message.

3. Causality is transitive.

Causal message delivery mandates that if two messages

are in a causal relationship and have the same recipient, then

the causing message will be delivered before the other one.

In Lamport’s terminology, [16], if two messages are in a

causal relationship, the message that logically precedes some

other messages is to be delivered before the message it is

related to. We expect that the actors are placed on nodes

in a tree. The tree topology does not restrict which actors

may communicate with each other – in fact, actor references

can form an arbitrary graph. But it means that messages to

actors in different nodes must travel via the node which is

the most common ancestor of the nodes holding the two

actors. In this work we are not concerned with how the tree

is built, nor with how the actors are placed on the nodes

– an algorithm to arrange nodes in a tree topology with a

networking service is presented in [8].

We assume that communication across nodes is consis-

tent with TCP/IP: Packages (or messages) sent across one

network connection arrive in the order they were sent – i.e.
there is no overtaking of messages between adjacent nodes.

Example Consider three actors (or processes): A Customer,
a Shop and a Bank: The Customer intends to buy an item from

the Shop by electronic cash. She makes sure that the balance

on the bank account is high enough by sending a "credit"

message to the Bank, and then informs the Shop, by sending

it a "buy" message. Upon receipt of the "buy" message, the

Shop sends a "debit" message to the Bank. Obviously, it is
crucial that the Bank receives the "credit" message before it

receives the "debit" message.

Causal message delivery guarantees exactly that! Namely,

"credit" causes "buy" (rule 2), "buy" causes "debit" (rule 1),

and thus "credit" causes "debit" (rule 3). Since "credit" and

"debit" have the same recipient, causality guarantees that

"credit" will arrive first! On the other hand, even though

"credit" causes "buy" there is no guarantee as to whether

"credit" will arrive at the Bank before "buy" arrives at the

Shop.
In this paper we argue that in a distributed system, a

tree topology of the nodes on which the actors are running

implicitly guarantees causal message delivery.

To continue with our example, consider a system con-

sisting of four nodes, ι1, ι2, ι3, and ι4, arranged in a tree as

shown in figure 1, and where Customer, Shop and Bank, are
scheduled on nodes ι1, ι3, and ι4 respectively.

In figure 1 we show four snapshots from one possible

scenario. In the first snapshot, Customer sends "credit" to the
Bank: Since ι1 has no direct connection to ι3, the message is

first sent to ι2. In the second snapshot, ι2 forwards "credit" to
ι3, andCustomer sends "buy" through ι2. Note that, a scenario
where ι2 first sends "buy" and then "credit" is impossible,

because ι2 will forward the messages in the order they arrive,

and because TCP/IP guarantees that the message do not

overtake each other on the wire. In the third snapshot, "buy"

has been forwarded from ι2 to ι3, and from ι3 to ι4. In the last

snapshot, Shop has received "buy", and as a result it sends

"debit" to the Bank. In this scenario, causal message delivery

is respected!

But there are more possible scenarios on the same topol-

ogy: Other messages may be sent interleaved with the mes-

sages from our example, and "buy" may be sent only after
"credit" has been received. Nevertheless, even though the

timing of a message may vary, its route is always the same.

In this topology, the route of "credit" is a prefix of the rote of

"buy", and because "credit" starts its journey before "buy", we

have the guarantee, by TCP-IP, that "buy" cannot overtake

"credit". Therefore, "credit" will arrive at the Bank before

"buy" arrives at the Shop. And because "buy" caused "debit",

we also have that "credit" will arrive at the Bank before

"debit".

But will causal message delivery be guaranteed on other

topologies? In figure 2 we see two further topologies. We

can see that causal message delivery for our example is guar-

anteed for these topologies too, but for slightly different

reasons:

In the left topology in figure 2, "buy" may arrive at the

Shop before "credit" arrives at the Bank, even though "credit"

causes "buy" – remember that causal message delivery is

agnostic about delivery on different nodes. Nevertheless,

"debit"’s route has "credit"’s route as a suffix, and as "debit"
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Figure 1. One possible scenario on one tree topology

Figure 2. Two further topologies

will start after "credit", it cannot overtake "credit". Thus,

"debit" will be delivered after "credit" has been delivered.

In the right topology in figure 2, we also have that "buy"

may arrive at the Shop before "credit" arrives at the Bank.
However, "credit" is guaranteed to arrive at ι4 before "buy".

Therefore, "debit" will be placed on ι1’s queue after "credit",
and will arrive at Bank after "credit".

So far, we considered three different topologies with four

nodes, and in these topologies, for three actors and three

messages, causal message delivery is guaranteed. We used

the argument that the route taken by the “causing”message is

included in some way in the route of the combined messages

it “caused”.

But does this argument apply over any topologies with any

number of nodes, any number of actors, and any number of

messages involved in a causal relationship, and any number

of messages unrelated to the causal chain?

The answer is yes. However, even though at an intuitive

level the guarantee that a tree topology guarantees causal

message delivery seemed convincing, it became less so when

considering more cases. For this reason, we developed a

formal model and a proof, which we will present in the next

section.

3 Formal Model
In this section we develop a formal model, expressed as an

operational semantics for sending and receiving messages in

a Tree-based network. The runtime configuration T , Σ does

not reflect the causal relationship of messages. This can only

be deduced from the "history" ghost state ∆. The core of our
argument is the "arrives before" relation between messages,

<, which is defined so that if m < m′ can be observed in

the current snapshot T , Σ, then m will arrive ι before m′

arrives at ι, where ι is m’s destination. Interestingly, the

relation is not transitive, and even allows in some cases that

m < m′ as well asm′ < m. We prove that causality, which

can be observed in ∆, implies the arrives before relation. We

were surprised that we were able to prove our result without

needing to reflect time – or even logical time – in the model.

3.1 Runtime Entities and Operational Semantics
Figure 3 presents the runtime entities and shows the oper-

ational semantics describing the behavior of a Tree-based

distributed system.

Runtime entities Both node and message identifiers, re-

ferred to as ι and µ, are (uniquely) picked out of the set of

natural numbers. A message m consists of an ID and its

origin node. At any point in time during execution of the

system a message is contained in exactly one message queue

until it was received. That is, message delivery is immediate.

We model a message queue q as an unbounded sequence

of messages. The tree topology T is modeled as a mapping

from node identifier to node identifier. Every node within

the tree holds a pointer to its parent. The root node points

to itself. Every node n holds separate in- and out-queues

for each of its children and its parent node. In-queues con-

tain messages being received from the node related to that

neighbor, and out-queues contain messages that need to be

delivered to the next hop towards the destination of a mes-

sage, respectively. We separated sender from receiver queues

in order to model unbounded point-to-point delay, result-

ing in ordered but arbitrarily delayed distributed network

semantics. The state of every node, i.e. the contents of its

message queues, can be observed in Σ. Furthermore, events

are defined as either sending or receiving a message m at

some node ι, and are recorded as shadow state in the history

∆. Paths are sequences of node identifiers.
Note that we are not modeling actors and their state as part

of the system, since sending messages between actors on a

single distributed participant is causal [10] and therefore we

are only interested in inter-node communication. Auxiliary

helper functions to mutate runtime entities such as queues

and the history to allow for a succinct presentation of the
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operational semantics are briefly discussed in section A and

shown in figure 9 and 11.

Notation In this paper, we make use of some additional

notation for convenience.

• We use set operations on the domains of mappings:

– x ∈map ⇐⇒ x ∈dom(map)
• We use set operations on sequences:

– e ∈ seq ⇐⇒ seq = _ · e · _
• Weuse set operations to express the existence of queues

and messages:

– q ∈Σ ⇐⇒ ∃ι, ι′.In(Σ, ι, ι′) = q ∨ Out(Σ, ι, ι′) = q
– m ∈Σ ⇐⇒ ∃q ∈Σ.m ∈Σ
– m ∈n ⇐⇒ ∃ι.[m ∈n(ι) ↓1 ∨m ∈n(ι) ↓2]

– m ∈q ⇐⇒ ∃q′∈Σ.q′ = _ ·m · _ ∧ q = q′

• We use index operations to examine sequences:

– Seq[k] is the k th item in Seq

Operational semantics In a distributed system, execution

progresses by sending and receiving messages. For any mes-

sage to reach a node from its origin within a tree network, a

routing and forwarding scheme is required. Our operational

semantics consist of four rules, discussed in more detail in

the following.

M-Send Sending a new message. The newly created mes-

sage at node ι1 with a previously unknown identifier µ is

pushed to the out-queue towards its destination node ι2.
Sending this message is recorded in ∆.

M-Route Routing a message to the next node. A message

m is at the top of the in-queue at node ι1 and was forwarded

from node ι2. However, ι1 is not the final destination ofm.

Consequently, the message is dispatched from that in-queue

to an out-queue towards a node closer to Dest(m).

M-Forward Forwarding a message to the next node. The

messagem has been newly created or routed at node ι1 and
was pushed to the out-queue for ι2. Messages on out-queues

are always delivered to the next node on the path from ι1 to
the destination ofm. Note that both routing and forwarding

are not recorded within the history ∆.

M-Receive Receiving a message. The messagem meant for

node ι1 has reached the head of some in-queue at ι1. There-
fore, execution for deliveringm is finished. The message is

consumed by popping it from the respective queue and its

receipt is recorded in ∆.
To illustrate introduced runtime entities, we refer to the

example application discussed in section 2, figure 1. The ini-

tial configuration, before forwarding “credit” (m0) looks like

the following:

T = [ι1 → ι2, ι2 → ι3, ι3 → ι3, ι4 → ι3]

n1 = [ι2 → (ϵ,m0 · ϵ )]
n2 = [ι1 → (ϵ, ϵ ), ι3 → (ϵ, ϵ ))]

n3 = [ι2 → (ϵ, ϵ ), ι4 → (ϵ, ϵ )]
n4 = [ι3 → (ϵ, ϵ )]
Σ = [ι1 → n1, ι2 → n2, ι3 → n3, ι4 → n4]

∆ = Snd(m0, ι1)

Assuming the messages “buy” and “debit” are given the iden-

tifiersm1 andm2, a (possible) configuration right before the

Shop asks the Bank for money is:

T = [ι1 → ι2, ι2 → ι3, ι3 → ι3, ι4 → ι3]

n1 = [ι2 → (ϵ, ϵ )]
n2 = [ι1 → (ϵ, ϵ ), ι3 → (ϵ, ϵ ))]
n3 = [ι2 → (ϵ, ϵ ), ι4 → (ϵ, ϵ )]
n4 = [ι3 → (ϵ,m2 · ϵ )]
Σ = [ι1 → n1, ι2 → n2, ι3 → n3, ι4 → n4]

∆ = Snd(m0, ι1) ·Snd(m1, ι1) ·Rec(m0) ·Rec(m1) ·Snd(m2, ι4)

We can observe for this instance of the applications exe-

cution that both m0 and m1 were already received before

m2 was sent at ι4. Moreoverm0 was received beforem1 was.

Consequently, it is impossible form2 to arrive at ι3 after the
next configuration that would follow from the application of

the operational semantics. That is, causal message delivery

is preserved. Note that the delay between sending messages

can be arbitrary. Messagem0 could also have been received

beforem1 was even sent. In fact, for this particular example

scenario, there are two possible instances of ∆:

∆1 = Snd(m0, ι1) ·Rec(m0) ·Snd(m1, ι1) ·Rec(m1) ·Snd(m2, ι4) ·
Rec(m2)
∆2 = Snd(m0, ι1) ·Snd(m1, ι1) ·Rec(m0) ·Rec(m1) ·Snd(m2, ι4) ·
Rec(m2)

The only difference between the two histories is the point in

time at whichm0 is received, asm0 is sent asynchronously

and there is no upper bound on when to sendm1 afterm0

has been put on the out-queue towards ι1. However, the or-
der of Snd(m0, ι1) and Snd(m1, ι1) cannot be different, asm0

causesm1. The same applies to the order of receivingm1 and

sendingm2. This leaves us with only ∆1 and ∆2 as possible

histories for the scenario illustrated in figure 1.

We now introduce several definitions to form the basis of

our formal argument. We show that the order of messages

delivery in our example application is causal in any well

formed tree, state and configuration and can be observed in

any possible recording of ∆.

3.2 Well-Formed Trees, Paths and Next Hops
In this section we introduce several definitions we will be

using throughout the discussion of the formal system and

proofs. At first, we discuss the basics of children and descen-

dants as well as our definition of paths and next hops in tree

networks.
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ι ∈ NodeId ::= N
µ ∈ MessageId ::= N
m ∈ Message ::= MessageId × NodeId

q ∈ Queue ::= Message∗

T ∈ Tree ::= NodeId→ NodeId

n ∈ Node ::= NodeId→ Queue × Queue

Σ ∈ State ::= NodeId→ Node

e ∈ Event ::= Snd(m, ι)
| Rec(m)

∆ ∈ History ::= Event∗

p ∈ Path ::= ι · p

M-Send

Snd((µ, _), _) < ∆

T ⊢ ∆, Σ ; ∆ · Snd((µ, ι2), ι1), Σ[ι1 7→ PushOut(Σ,T , ι1, (µ, ι2))]

M-Route

TopIn(Σ, ι1, ι2) =m

T ⊢ ∆, Σ ; ∆, Σ[ι1 7→ PopIn(Σ, ι1, ι2)], [ι2 7→ PushOut(Σ,T , ι1,m)]

M-Forward

TopOut(Σ, ι1, ι2) =m

T ⊢ ∆, Σ ; ∆, Σ[ι1 7→ PopOut(Σ, ι1, ι2), ι2 7→ PushIn(Σ, ι1, ι2,m)]

M-Receive

TopIn(Σ, ι1, ι2) = (µ, ι1)

T ⊢ ∆, Σ ; ∆ · Rec((µ, ι1)), Σ[ι1 7→ PopIn(Σ, ι1, ι2)]

Figure 3. Runtime entities and operational semantics

Definition 3.1. (Children and descendants). Given c f д =
(T , Σ), we define:

• The children of ι in T is the set of nodes which are in

the range of T (ι), except ι itself:
– children(ι,T ) = {ι′ |T (ι′) = ι ∧ ι′ , ι}
• The descendants of a node ι in T are described as the

transitive closure of the child set:

– descendants(ι,T ) = {ι′ |∃ι′′.ι′′∈ children(ι,T )∧ι′∈
descendants(ι′′,T )} ∪ children(ι,T )

Figure 4 shows how to compute the next hop towards a node

ι2 from ι1. The next hop is trivial to decide if ι2 is in the child

set of ι1. Similarly, if ι2 is the root node, the next hop is the

parent of ι1. In the general case, the next node can be decided

by determining the next hop from ι1to the parent of ι2.
The concatenation of next hops from ι1 to ι2 is called the

path from ι1 to ι2, as defined in figure 5. As mentioned in

section 2, path inclusion is one of the important pieces to

solve the puzzle why message delivery in tree networks is

causal. Formalized in figure 6, throughout the discussion of

this paper, we refer to it as a path p is totally included in a

path p ′ if p is the suffix of the non-empty sequence p ′.

3.3 Well-Formed Configuration
Definition 3.2. (A well-formed tree). We say that a tree T

is well-formed, formally |= T , if there are no cycles and if

there is exactly one root node:

• ∀ι ∈dom(T ).ι < descendants(ι,T )
• ∃!ι ∈dom(T ).T (ι) = ι

next ::= NodeId × NodeId × T → NodeId

next(ι1, ι2,T ) =




ι2 if ι2 ∈ children(ι1,T )

T (ι1) if ι2 = T (ι2)

next(ι1,T (ι2),T ) otherwise

Figure 4. Next hop towards a destination node

path ::= NodeId × NodeId × T → NodeId∗

path(ι1, ι2,T ) =



ι1 · path(next(ι1, ι2,T ), ι2,T ) if ι1 , ι2

ι1 if ι1 = ι2

Figure 5. Paths in a tree

ῑ , ϵ

p < ῑ · p
P-INCL

Figure 6. Path inclusion

Definition 3.3. (A well-formed state). We say that the state

Σ is well formed, formally |= Σ, if a message only ever ap-

pears in exactly one message queue and if the destination of

every message is a valid node in Σ:

• ∀m ∈Σ.∃!q ∈Σ.m ∈q

6
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≺∆ ⊆ Event × Event <∆ ⊆ Message ×Message ≪∆ ⊆ Message ×Message

e ≺∆ e ′

iff

∆ = _ · e · _ · e ′ · _

m <∆ m′

iff

Rec(m) ≺∆ Snd(m′,Dest(m))
∨

∃ι. Snd(m, ι) ≺∆ Snd(m′, ι)

m ≪∆ m′

iff

m <∆ m′

∨

∃m′′. (m ≪∆ m′′ ∧m′′ <∆ m′ )

Figure 7. Causally dependent events and messages

T ,∆, Σ ⊢m < m′ iff

1. ∃q ∈Σ. q = _ ·m · _ ·m′ · _
∨

2. ∃ι, ι1, ι2 ∈Σ.[m ∈Out(Σ, ι, ι1) ∧m
′∈ In(Σ, ι, ι2)]

∨

3. ∃ι1, ι2 ∈Σ [m ∈Σ(ι1) ∧m
′∈Σ(ι2) ∧ ι1 , ι2 ∧ path(ι1,m,T ) < path(ι2,Dest(m),T )]

∨

4. Dest(m) , Dest(m′) ∧ [ Rec(m) ∈∆ ∨ Rec(m′) ∈∆ ]

∨

5. Dest(m) = Dest(m′) ∧ [ Rec(m′) ∈∆ → Rec(m) ≺∆ Rec(m′) ]

Figure 8. Message arrives at its destination before another message

• ∀µ, ι [(µ, ι) ∈Σ→ ι ∈dom(Σ)]

Definition 3.4. (A well-formed state for a given tree). We

say that the state Σ is well formedwith respect toT , formally

T |= Σ, if all queues point to valid nodes, and if the state

only contains valid nodes. All messages reside in a queue

which is on a node along the route a message has to travel

in order to reach its destination (figures 4 and 5). That is,

formally:

• dom(Σ) = dom(T )
• ∀ι, ι′∈Σ.[Σ(ι, ι′) is defined
→ ι′∈ (children(ι,T ) ∪ children(ι′,T ))]
• ∀ι1, ι2 ∈Σ.∀m[m ∈Out(Σ, ι1, ι2)
→ next(ι1,Dest(m),T ) = ι2]

• ∀ι1, ι2 ∈Σ.∀m[m ∈ In(Σ, ι1, ι2)
→ next(ι2,Dest(m),T ) = ι1]

Definition 3.5. (A well formed history). We say that the

history∆ is well formed, formally |= ∆, if a message is exactly

sent and received once:

• ∀µ [#{k |∆[k] = Rec(µ, _)} ≤ 1 ∧

#{k |∆[k] = Snd(µ, _), _)} ≤ 1]

Causally dependentmessages. Wenow introduce a formal

counterpart, the relation <∆, to express that m caused m′.
With ≺∆ of figure 7 we apply an order on the events in ∆ and

combine all three relations to give a transitive version of <∆,
namely ≪∆ (figure 7). Hence, a messagem causes another
messagem′ if any of the three cases apply:

• m was received prior tom′ being sent from the node

wherem was received.

• m andm′ have been sent from the same node, in that

order. That is, the sending ofm preceded the sending

ofm′.
• There exists a messagem′′ such that <∆ can be estab-

lished transtively usingm′′.

Definition 3.6. (A well formed state and path for a given

history). We say that the state Σ is well formed for a given

history ∆, formally ∆ |= Σ, if for every message in the state

there exists a Snd event recorded in the history, and, if a

message was received, the corresponding Snd event must

have been observed in ∆ earlier with respect to ≺∆. Also,

messages can still be in transit:

• ∀m [m ∈Σ→ ∃ι′ Snd(m, ι′) ∈∆]

• ∀m ∈Σ [Rec(m) ∈∆→ Snd(m, _) ≺∆ Rec(m)]
• ∀m ∈Σ [Snd(m, _) ∈∆ ∧ Rec(m) < ∆]

The path of a message is well formed, formally T ,∆, Σ |=
m, if it does not take any unnecessary detours towards its

destination, with respect to path inclusion (figure 6 and 5):

• ∀ι, ι′. [m ∈Σ(ι) ∧ Snd(m, ι′) ∈∆
→ path(ι,Dest(m),T ) < path(ι′,Dest(m),T )]

Definition 3.7. (A well-formed configuration). We say that

a configuration cfg = (T ,∆, Σ) is well formed, formally

WF(cfg), if the properties described in definitions 3.2 to 3.6

hold:

1. |= T

2. |= Σ
3. |= ∆
4. T |= Σ

7
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5. ∆ |= Σ
6. ∀m ∈Σ.T ,∆, Σ |=m

3.4 Cause and Arrival
We now define what it means for a message to be a cause of

another message (figure 7), and what it means for a message

to arrive before another one (figure 8).

We define the relation ≪∆ in figure 7, wherem ≪∆ m′

means that messagem is a cause of messagem′. The defi-
nition reflects the informal description of causality given

at the beginning of section 2. It is easy to see that ≪∆

is transitive and that m ≪∆ m never holds. In a ∆0 de-

scribing the example from section 2, we would have that

Credit ≪∆0
Buy ≪∆0

Debit .
We then define a relation to express when a messagem

is guaranteed to “arrive at its destination before” another
messagem′, formallym < m′. The relation depends on the

tree topology T , the history ∆ and state Σ. As described in

in figure 8, the relation T ,∆, Σ ⊢m < m′ holds if any of the

following cases apply:

1. m andm′ are in the same queue, andm precedesm′ in
that queue.

2. The two messages are on the same node, butm already

resides on an out-queue towards the destination ofm′,
whereas m′ is still in an in-queue from some child

node.

3. The two messages are on two different nodes, but the

path ofm is fully included in the path ofm′ towards
their, potentially individual, destinations.

4. The two messages have different destinations, and one

of them has already been received.

5. The two messages have the same destination, and if

m′ has been received, thenm was received before it.

To be precise,m1 < m2 means thatm1 is guaranteed to arrive

at its destination before m2 will arrive atm1’s destination.

Therefore, the relation is applicable even if the two messages

do not have the same destination, even if the second message

will never visit the first message’s destination, even if they

should not share any part of the route. For example, assum-

ing the topology of figure 2, and that the ”Credit“ message

was in the out-queue of ι2, and the “Buy” message was at

the in-queue of ι4. Then we would have that ”Credit“ and

”Buy“ have different destinations, and their routes have noth-

ing in common – nevertheless, we have that Credit < Buy.
Interestingly, we here also have that Buy < Credit .

Notice that whilem < m is never possible, the relation <
is neither symmetric, nor antisymmetric, nor transitive. To

see an example for the latter, consider the topology on figure

2, and messagesmsд_A,msд_B, andmsд_C , wheremsд_A
has destination ι3 and is on the out-queue of node ι2 towards
ι3, whilemsд_B has destination ι1 and is on the out-queue

of node ι2 towards ι1, whilemsд_C has destination ι2 and is

on the out-queue of node ι4 towards ι3. Then, we have that

msд_A < msд_B andmsд_B < msд_C , but we do not have

thatmsд_A < msд_C .
We require that causality implies an earlier arrival – c.f.,

the definition of consistent configurations in the next para-

graph.

Consistent configurations We say that a configuration

(T ,∆, Σ) is consistent if it is well-formed (definition 3.7), and

for any causally related messagesm andm′m is guaranteed

to arrive at its destination beforem′ arrives at the destination
of the former.

Definition 3.8.
Consistent(T ,∆, Σ) iff

− WF(T ,∆, Σ)∧
− ∀m,m′. [m ≪∆ m′ → T ,∆, Σ ⊢m < m′]

4 Consistency Implies Causality
Theorem 4.1 expresses the key property of our system: It

guarantees that indeed in a tree topology messages are de-

livered in causal order. Namely, in a consistent runtime con-

figuration, if after a number of execution steps, a messagem
is a cause of another messagem′, andm′ has already been

delivered, and the two messages have the same destination,

thenm′ will also have been delivered.

Theorem 4.1 (Message delivery is causal).
Consistent(T ,∆, Σ) ∧

T ⊢ ∆, Σ
∗; ∆′, Σ′ ∧

m≪∆′m
′ ∧

Dest(m) = Dest(m′) ∧
Rec(m) ∈ ∆′

→

Rec(m) ≺∆′ Rec(m′)

Proof sketch Theorem 4.1 follows directly from lemma

4.2, which guarnantees that in a consistent configuration,

messages which have the same destination will be delivered

in causal order, and from lemma 4.6, which guatantees that

execution preserves consistency. Both lemmas are stated

below. In a companion technical report in preparation we

have longer proofs – here we give proof sketches.

Lemma 4.2. Consistency implies Causality
Consistent(T ,∆, Σ) ∧

Dest(m) = Dest(m′) ∧
m ≪∆ m′ ∧

Rec(m) ∈ ∆
→

Rec(m) ≺∆ Rec(m′)

Proof. By application of definition Consistent(T ,∆, Σ), and
becausem ≪∆ m′, we know that T ,∆, Σ ⊢m < m′. Because
Rec(m) ∈ ∆, only case 5 of the definition ofT ,∆, Σ ⊢m < m′

is applicable, and this gives that Rec(m) ≺∆ Rec(m′)
□

8
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We will now prove that execution preserves consistency

of configurations. Lemma 4.3 guarantees that execution start-

ing from a well-formed configuration leads to another well-

formed configuration. Lemma 4.4 guarantees that execution

starting from a well-formed configuration preserves the or-

dering of messages.

Lemma 4.3 (Execution preserves well-formedness).
WF(T ,∆, Σ) ∧ T ⊢ ∆, Σ ; ∆′, Σ′

→

WF(T ,∆′, Σ′)

Proof. By case analysis over T ⊢ ∆, Σ ; ∆′, Σ′ and applica-

tion of the definition of WF(T ,∆, Σ) □

Lemma 4.4 (Message order is preserved).
WF(T ,∆, Σ) ∧ T ⊢ ∆, Σ ; ∆′, Σ′ ∧ T ,∆, Σ ⊢m < m′

→

T ,∆′, Σ′ ⊢m < m′

Proof. By case analysis over T ⊢ ∆, Σ ; ∆′, Σ′. □

Lemma 4.5 characterises the causal dependencies which

can be derived from ∆ · e but not from ∆.

Lemma 4.5 (Extending causal dependencies).
¬(m ≪∆ m′) ∧

m ≪∆′ m
′ ∧

∆′ = ∆ · e ∧

→

[e = Snd (m′, ι) ∨ e = Rec (m′)] ∧

[m <∆ m′ ∨ ∃m′′.m ≪∆ m′′ ∧m′′ <∆′ m
′
]

Lemma 4.6 guarantees that any number of execution steps

preserves consistency.

Lemma 4.6 (Mulitple step execution preserves consistency).
Consistent(T ,∆, Σ) ∧ T ⊢ ∆, Σ ∗;∆′, Σ′

→

Consistent(T ,∆′, Σ′)

Proof. By induction on the number of steps in
∗;. For 0 steps

it is trivial, for 1 step by application of lemmas 4.3, 4.4, and 4.5,

and for more than 1 step by straightforward induction. □

5 Conclusion and Future Work
We have shown that distributed systems arranged in a tree

topology are causal by construction. Specifically, we:

• Provided a mechanism to enforce causal ordering with-

out the need for augmenting messages or storing meta

data,

• Proposed a formal model to capture message passing

in tree networks,

• Outlined proof sketch that causality is ensured.

In recent years we have worked on the development of an

actor-based programming language called Pony [8, 10, 11, 28].
In the current distribution, Pony is concurrent, but our aim

is to develop it so as to provide transparent distributed pro-

gramming: so that the notion of distribution is not exposed

to the programmer. The result of this paper is central to the

development of Distributed Pony: arranging the nodes into

a tree topology,

In further work we want to study more dynamic dis-

tributed systems, which support actor migration, the ad-

dition (and potentially exchange) of nodes at runtime, as

well as distributed snapshotting. A preliminary outlook on

such mechanisms appeared in [8].

We believe that causal message delivery simplifies pro-

gramming considerably, and thus our result is of wider im-

portance. For instance, causal message delivery (along with

types) has been leveraged for fully concurrent Garbage Col-

lection [21].

On the other hand, enforcing causality by a topological

arrangement of nodes is, at least for some applications, a case

of trading space for time [24]. Therefore, we plan to also in-

vestigate the negative effects and runtime/space complexity

tree topologies might have on messaging and routing per-

formance, what possible optimizations are and how partial

trees can be used to explicitly specify causal relationships to

reduce the routing overhead on totally unrelated messages.

A significant open question is the handling of failures.

What will recovery look like in a tree network? What pro-

tocols can be put in place to allow for topology changes?

How does the ability to enforce causality without the ability

to determine causal relations (as in our system), affect fail-

ure recovery? We plan to draw inspiration from distributed

snapshots [4, 17].

A Auxiliary Functions

Dest ::= Message→NodeId

In ::= State × NodeId × NodeId→Message

Out ::= State × NodeId × NodeId→ Message

path ::= NodeId ×Message × T→NodeId∗

next ::= NodeId ×Message × T→NodeId

Dest(m) = m ↓2

In(Σ, ι1, ι2) = Σ(ι1) (ι2) ↓1

Out(Σ, ι1, ι2) = Σ(ι1) (ι2) ↓2

path(ι,m,T ) = path(ι,Dest(m),T )
next(ι,m,T ) = next(ι,Dest(m),T )

Figure 9. Shorthands

TopIn ::= State × NodeId × NodeId→ Message

TopOut ::= State × NodeId × NodeId→ Message

PushIn ::= State × NodeId × NodeId ×Message→ Node

PushOut ::= State × Tree × NodeId ×Message→ Node

PopIn ::= State × NodeId × NodeId→ Node

PopOut ::= State × NodeId × NodeId→ Node

Figure 10. Auxiliary functions - declarations

9
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TopIn(Σ, ι1, ι2) = m if In(Σ, ι1, ι2) =m · _
TopOut(Σ, ι1, ι2) = m if Out(Σ, ι1, ι2) =m · _
PushIn(Σ, ι1, ι2,m) = Σ(ι1)[ι2 7→ In(Σ, ι1, ι2) ·m,Out(Σ, ι1, ι2)]
PushOut(Σ,T , ι,m) = Σ(ι)[ι′ → In(Σ, ι, ι′),Out(Σ, ι, ι′) ·m]

where ι′ = next(ι,m,T )
PopIn(Σ, ι1, ι2) = Σ(ι1)[ι2 7→ (q,Out(Σ, ι1, ι2)]

where In(Σ, ι1, ι2) =m · q
PopOut(Σ, ι1, ι2) = Σ(ι1)[ι2 7→ (In(Σ, ι1, ι2),q]

where Out(Σ, ι1, ι2) =m · q

Figure 11. Auxiliary functions - definitions
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