
Holistic Specifications  
 characterization of robustness  

 1

Sophia Drossopoulou 
and  

James Noble (VU Wellington),  
Mark Miller (Agorics),  

Toby Murray (Uni Melbourne) 
Shupeng Loh and Emil Klasan (Imperial)

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

Functional

 2

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

Functional vs

 2

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

Functional Robust vs

 2

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 2

• Functional ≠ Robustness

• Robustness in terms of the Bank/Account Example

• Holistic Specification:  
 “Classical assertions” 
 + Time  
 + Space 
 + Access 
 + Authority  
 “in an open world”

• Examples

Today

 3

 4

Bank/Account

 [Miller et al, Financial Crypto 2000]

Banks and Accounts
Accounts hold money
Money can be transferred between Accounts
A banks’ currency = sum of balances of accounts held by bank

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

robustnessfunctional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

robustnessfunctional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

robustnessfunctional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

robustnessfunctional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

robustnessfunctional

 5

Pol_1: With two accounts of same bank one can transfer money
between them.
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not
have.
Pol_5: Balances are always non-negative.
Pol_6: A reported successful deposit can be trusted as much as
one trusts the account one is depositing to.

 [Miller et al, Financial Crypto 2000]

Bank/Account - 2

 6

 6

1:Ban

2:Acc 3:Acc 4:Acc

? ?
?

?

 6

1:Ban 10 : … 11 : …

2:Acc 3:Acc 4:Acc 21 : …20 : …

? ?
?

?

 6

1:Ban 10 : … 11 : …

2:Acc 3:Acc 4:Acc 21 : …20 : …

Should the following be possible?
 21 takes money from 4.
 21 takes money from 2.
10 affects the currency.
10 takes money from 4.
 21 finds out 2’s balance.

? ?
?

?

 6

1:Ban 10 : … 11 : …

2:Acc 3:Acc 4:Acc 21 : …20 : …

Should the following be possible?
 21 takes money from 4.
 21 takes money from 2.
10 affects the currency.
10 takes money from 4.
 21 finds out 2’s balance.

Pol_2: Only someone with the Bank of a given
currency can violate conservation of that currency
Pol_4: No one can affect the balance of an
account they do not have.

? ?
?

?

 6

1:Ban 10 : … 11 : …

2:Acc 3:Acc 4:Acc 21 : …20 : …

Should the following be possible?
 21 takes money from 4.
 21 takes money from 2.
10 affects the currency.
10 takes money from 4.
 21 finds out 2’s balance.

Pol_2: Only someone with the Bank of a given
currency can violate conservation of that currency
Pol_4: No one can affect the balance of an
account they do not have.

✅

✅

❌

❌

?

? ?
?

?

 7

class Bank {  
  
}  

MBA1: Code

class Account {  
 fld myBank // a Bank  
 fld balance // a number  
 Account(aBank,amt){ myBank=aBank; balance=amt }
 fun deposit(destination,amt)  
 { if myBank==destination.myBank then  
 { this.balance-=amt;  
 destination.balance+=amt } }  
}

 7

class Bank {  
  
}  

MBA1: Code

class Account {  
 fld myBank // a Bank  
 fld balance // a number  
 Account(aBank,amt){ myBank=aBank; balance=amt }
 fun deposit(destination,amt)  
 { if myBank==destination.myBank then  
 { this.balance-=amt;  
 destination.balance+=amt } }  
}

Note: bank.currency is a model field

 8

MBA1: Objects

 8

1:Bank

MBA1: Objects

class Bank{ }  

 8

1:Bank

2:Acc 3:Acc 4:Acc

MBA1: Objects

class Bank{ }  

class Account {  
 fld myBank  
 fld balance  
 ….  
 }

 8

1:Bank
10 : … 11 : …

2:Acc 3:Acc 4:Acc 21 : …20 : …

MBA1: Objects

class Bank{ }  

class Account {  
 fld myBank  
 fld balance  
 ….  
 }

class Unknown1 {  
 fld …  
 ….  
 } class Unknown2 {  

 fld …  
 ….  
 }

 9

MBA1: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

 9

MBA1: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

✅

 9

MBA1: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

❌

✅

 9

MBA1: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

❌

✅

✅

 9

MBA1: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

 MBA1 ⊨ Pol_1

 MBA1 ⊭ Pol_2

 MBA1 ⊨ Pol_4

❌

✅

✅

 10

class Bank {  
  
}  

MBA1s - safe
class Account {  
 class private fld myBank // a Bank  
 class private fld balance // a number  
 Account(aBank,amt){ myBank=aBank; balance=amt }
 fun deposit(destination,amt)  
 { if myBank==destination.myBank then  
 { this.balance-=amt;  
 destination.balance+=amt } }  
}

 11

MBA1s: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

🔐 🔐🔐

🔐 indicates a private field

 11

MBA1s: Adherence to Policies

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

 MBA1s ⊨ Pol_1

 MBA1s ⊨ Pol_2

 MBA1s ⊨ Pol_4

✅

✅

✅

🔐 🔐🔐

🔐 indicates a private field

 12

class Bank {  
 fld book // a Node  
 Bank(){ book=null }  
 fun makeAccount(amt){ … }  
 fun deposit(src,dest,amt){  
 srce=book.get(src);  
 destn=book.get(dest);  
 if srce.balance>amt then  
 { srce.balance-=amt;  
 destn.balance+=amt } }  
}  

MBA2: Code

class Account {  
 fld myBank // a Bank  
 Account(aBank){ myBank=aBank }  
 fun deposit(destination,amt)  
 { myBank.deposit(this,destination,amt) } 
}

class Node {  
 fld balance // a number  
 fld next // a Node  
 fld theAccount // an Account  
 fun get(acc){
 if theAccount==acc
 then{ this; }
 else{ … next.get(acc) … }  
 }

 12

class Bank {  
 fld book // a Node  
 Bank(){ book=null }  
 fun makeAccount(amt){ … }  
 fun deposit(src,dest,amt){  
 srce=book.get(src);  
 destn=book.get(dest);  
 if srce.balance>amt then  
 { srce.balance-=amt;  
 destn.balance+=amt } }  
}  

MBA2: Code

class Account {  
 fld myBank // a Bank  
 Account(aBank){ myBank=aBank }  
 fun deposit(destination,amt)  
 { myBank.deposit(this,destination,amt) } 
}

class Node {  
 fld balance // a number  
 fld next // a Node  
 fld theAccount // an Account  
 fun get(acc){
 if theAccount==acc
 then{ this; }
 else{ … next.get(acc) … }  
 }

bank.currency is model field

account.balance is model field

 13

MBA2: Objects

 13

1:Bank

class Bank {  
 fld book
 …  
}  

MBA2: Objects

 13

1:Bank

5:Node 6:Node 7:Node

class Bank {  
 fld book
 …  
}   class Node {  

 fld balance  
 fld next  
 fld theAccount  
 …  
}

MBA2: Objects

 13

1:Bank

2:Acc 3:Acc 4:Acc

5:Node 6:Node 7:Node

class Bank {  
 fld book
 …  
}   class Node {  

 fld balance  
 fld next  
 fld theAccount  
 …  
}

class Account {  
 fld myBank  
 ….  
 }

MBA2: Objects

 13

1:Bank
10 : … 11 : …

2:Acc 3:Acc 4:Acc

5:Node 6:Node 7:Node

21 : …20 : …

class Bank {  
 fld book
 …  
}   class Node {  

 fld balance  
 fld next  
 fld theAccount  
 …  
}

class Account {  
 fld myBank  
 ….  
 }

class Unknown1 {  
 fld …  
 ….  
 } class Unknown1 {  

 fld …  
 ….  
 }

MBA2: Objects

 14

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA2: Adherence to Policies

 14

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

✅

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA2: Adherence to Policies

 14

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

❌

✅

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA2: Adherence to Policies

 14

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

❌

❌

✅

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA2: Adherence to Policies

 14

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

 MBA2 ⊨ Pol_1

 MBA2 ⊭ Pol_2

 MBA2 ⊭ Pol_4

❌

❌

✅

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA2: Adherence to Policies

 15

class Bank {  
 instance private fld book // a Node  
 Bank(){ book=null }  
 fun makeAccount(amt){ … }  
 fun deposit(src,dest,amt){  
 srce=book.get(source);  
 destn=book.get(dest);  
 if srce.balance>amt then  
 { srce.balance-=amt;  
 destn.balance+=amt } }  
}  

MBA2s: safe Code

class Account {  
 instance private fld myBank // a Bank  
 Account(aBank){ myBank=aBank }  
 fun deposit(destination,amt)  
 { myBank.deposit(this,destination,amt) } 
}

class Node {  
 fld balance // a number  
 fld next // a Node  
 fld theAccount // an Account  
 fun get(acc){
 if theAccount==acc
 then{ this; }
 else{ … next.get(acc) … }  
}

 16

MBA2s: Adherence to Policies

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20
🔐 🔐 🔐

🔐

 16

MBA2s: Adherence to Policies

Pol_1: With two accounts of same bank one can transfer
money between them.
Pol_2: Only someone with the Bank of a given currency
can violate conservation of that currency
Pol_4: No one can affect the balance of an account they
do not have.

 MBA2 ⊨ Pol_1

 MBA2 ⊨ Pol_2

 MBA2 ⊨ Pol_4

✅

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

✅

✅

🔐 🔐 🔐

🔐

 17

 17

Research Questions:  

 Formalize policies such as Pol_1,… Pol_5  

 Meaning of Mx ⊨ Pol_v

• Functional ≠ Robustness

• Robustness in terms of the Bank/Account Example

• Holistic Specification:  
 “Classical assertions” + Time  
 + Space  
 + Permission  
 + Authority  
 + “in an open world”

• Examples

Today

 18

Assertions

 19

Assertions

e ::= this | x | e.fld | func(e1,…en) | …

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
e ::= this | x | e.fld | func(e1,…en) | …

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 | •A | ◦A

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 | •A | ◦A

 | A @ S

 19

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 | •A | ◦A

 | x.Call(y,m,z1,..zn)

 | A @ S

 19

 space

 call

 time

 authority

 permission

Assertions

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 | •A | ◦A

 | x.Call(y,m,z1,..zn)

 | A @ S

 19

Formalizing Pol_1
Pol_1: With two accounts of same bank one can transfer money
between them.

 20

Formalizing Pol_1

Pol_1 ≡ a1:Account ∧ a2:Account ∧ a1 ≠ a2 ∧ 
 a1.myBank = a2.myBank ∧ 
 …………………………. ∧ 
 …………………………. ∧ 
 ………………………….. ∧ 

 → 
  
  

Pol_1: With two accounts of same bank one can transfer money
between them.

 20

Formalizing Pol_1

Pol_1 ≡ a1:Account ∧ a2:Account ∧ a1 ≠ a2 ∧ 
 a1.myBank = a2.myBank ∧ 
 …………………………. ∧ 
 …………………………. ∧ 
 ………………………….. ∧ 

 → 
  
  

 • (a1.balance = … - amt ∧ 
 a2.balance = … + amt)

Pol_1: With two accounts of same bank one can transfer money
between them.

 20

Formalizing Pol_1

Pol_1 ≡ a1:Account ∧ a2:Account ∧ a1 ≠ a2 ∧ 
 a1.myBank = a2.myBank ∧ 
 a1.balance = b1 > amt ∧ 
 a2.balance = b2 ∧ 
 _.Call(a1,transfer,a2,amt) ∧ 

 → 
  
  

Pol_1: With two accounts of same bank one can transfer money
between them.

 21

Formalizing Pol_1

Pol_1 ≡ a1:Account ∧ a2:Account ∧ a1 ≠ a2 ∧ 
 a1.myBank = a2.myBank ∧ 
 a1.balance = b1 > amt ∧ 
 a2.balance = b2 ∧ 
 _.Call(a1,transfer,a2,amt) ∧ 

 → 
  
  

 • (a1.balance = b1 - amt ∧ 
 a2.balance = b2 + amt)

Pol_1: With two accounts of same bank one can transfer money
between them.

 21

Formalizing Pol_2
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency

 22

This says: If some execution which starts now and which involves at
most the objects from S modifies b.currency at some future time,  
then at least one of the objects in S can access b directly now, and
this object is not internal to b.

Formalizing Pol_2

Pol_2 ⩧ b:Bank ∧  
 • (Changes(b.currency)) @ S  
 → 
  
  

Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency

 22

This says: If some execution which starts now and which involves at
most the objects from S modifies b.currency at some future time,  
then at least one of the objects in S can access b directly now, and
this object is not internal to b.

Formalizing Pol_2

Pol_2 ⩧ b:Bank ∧  
 • (Changes(b.currency)) @ S  
 → 
  
  

 ∃o∈S.[Access(o,b) ∧ o∉Internal(b)]

Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency

 22

This says: If some execution which starts now and which involves at
most the objects from S modifies b.currency at some future time,  
then at least one of the objects in S can access b directly now, and
this object is not internal to b.

Formalizing Pol_2 -2

Pol_2 ⩧ b:Bank ∧  
 • (Changes(b.currency)) @ S  
 → 
  
  

 ∃o∈S.[Access(o,b) ∧ o∉Internal(b)]

Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency

 b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)  
  

equivalent to

 23

Formalizing Pol_2 -3
Pol_2: Only someone with the Bank of a given currency can
violate conservation of that currency

 b:Bank ∧  
 ∀o∈S.[Access(o,b) → o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)  
  

Pol_2 reformulated

 24

This says: A set S whose elements have direct access to b only if
they are internal to b is insufficient to modify b.currency.

 25

Internal

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

MBA1:

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA1:

MBA2:

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
Internal(b) ≡  
{ b } ∪ { a | a:Account ∧ a.myBank = b }

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA1:

MBA2:

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
Internal(b) ≡  
{ b } ∪ { a | a:Account ∧ a.myBank = b }

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA1:

MBA2:

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
Internal(b) ≡  
{ b } ∪ { a | a:Account ∧ a.myBank = b }

Internal(b) ≡  
{ b } ∪ { n | n:Node ∧ ∃k.b.bookk.next=n } ∪ 
{ n | a:Account ∧ ∃k.b.bookk.myAccount=a }

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA1:

MBA2:

 25

Internal
1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
Internal(b) ≡  
{ b } ∪ { a | a:Account ∧ a.myBank = b }

Internal(b) ≡  
{ b } ∪ { n | n:Node ∧ ∃k.b.bookk.next=n } ∪ 
{ n | a:Account ∧ ∃k.b.bookk.myAccount=a }

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

MBA1:

MBA2:

Guarantees of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
🔐🔐🔐

 26

Guarantees of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20
🔐🔐🔐

 26

Guarantees of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

1 is not on stack, and execution involves at most 1,2,3,4,20,21

🔐🔐🔐

 26

Guarantees of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

1 is not on stack, and execution involves at most 1,2,3,4,20,21
 ——> no change in 1.currency

🔐🔐🔐

 26

Guarantees of Pol_2 in MBA2s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1 is not on stack, and execution involves at most 1,2,3,4,5,6,7,20,21;
 ——> no change in 1.currency

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20
🔐

🔐

🔐
🔐

 27

Absence of Guarantee of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

1 is not on stack, and execution involves at most 1,2,3,4,10,11;

🔐🔐🔐

 28

Absence of Guarantee of Pol_2 in MBA1s
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

1 is not on stack, and execution involves at most 1,2,3,4,10,11;
 change in 1.currency possible

🔐🔐🔐

 28

Absence of Guarantee of Pol_2 in MBA2
Pol_2 ≡ b:Bank ∧  
 ∀o∈S.[¬ Access(o,b) ∨ o∈Internal(b)]  
 → 
 ¬ (• (Changes(b.currency)) @ S)

1 is not on stack, and execution involves at most 1,2,3,4,10,11;
 change in 1.currency possible

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20
🔐🔐🔐

🔐

 29

Formalizing Pol_4
Pol_4: No one can affect the balance of an account they do not
have.

 30

Formalizing Pol_4

Pol_4 ⩧ a:Account ∧  
 • (Changes(a.balance)) @ S  
 → 
  
  

Pol_4: No one can affect the balance of an account they do not
have.

 30

Formalizing Pol_4

Pol_4 ⩧ a:Account ∧  
 • (Changes(a.balance)) @ S  
 → 
  
  

 ∃o∈S.[Access(o,a) ∧ o∉Internal(a)]

Pol_4: No one can affect the balance of an account they do not
have.

 30

Guarantees of Pol_4 in MBA2s
Pol_2 ≡ a:Account ∧ a∉FrameVals ∧  
 • (Changes(a.balance)) @ S  
 → 
 ∃o∈S.[Access(o,a) ∧ o∉Internal(a)]

 2 not on stack, and execution involves at most 1,2,3,4,5,6,7,20,21;
 ——> no change in 2.balance

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20
🔐🔐 🔐

🔐

 31

Giving a meaning to our Assertions

 32

Giving a meaning to our Assertions

We define in a“conventional” way (omit from slides):  
 
module M : Ident —-> ClassDef ∪ PredicateDef ∪ FunctionDef 
configuration σ : Heap × Continuations × Expression  
execution M, σ ↝ σ’

 32

Giving a meaning to our Assertions

We define in a“conventional” way (omit from slides):  
 
module M : Ident —-> ClassDef ∪ PredicateDef ∪ FunctionDef 
configuration σ : Heap × Continuations × Expression  
execution M, σ ↝ σ’

Define module concatenation * so that
 M*M’ undefined, iff dom(M)∩dom(M’) ≠∅  
otherwise 
 M*M’(id) = M(id) if M’(id) undefined, else M’(id)

 32

Giving a meaning to our Assertions

We define in a“conventional” way (omit from slides):  
 
module M : Ident —-> ClassDef ∪ PredicateDef ∪ FunctionDef 
configuration σ : Heap × Continuations × Expression  
execution M, σ ↝ σ’

We will define M, σ ⊨ A 
 Initial(σ) and Arising(M)  
 M ⊨ A

Define module concatenation * so that
 M*M’ undefined, iff dom(M)∩dom(M’) ≠∅  
otherwise 
 M*M’(id) = M(id) if M’(id) undefined, else M’(id)

 32

Giving a meaning to our Assertions

We define in a“conventional” way (omit from slides):  
 
module M : Ident —-> ClassDef ∪ PredicateDef ∪ FunctionDef 
configuration σ : Heap × Continuations × Expression  
execution M, σ ↝ σ’

We will define M, σ ⊨ A 
 Initial(σ) and Arising(M)  
 M ⊨ A

Define module concatenation * so that
 M*M’ undefined, iff dom(M)∩dom(M’) ≠∅  
otherwise 
 M*M’(id) = M(id) if M’(id) undefined, else M’(id)

 32

Lemma M*M’ = M’*M

 space

 call

 time

 authority

 permission

Expressions and Assertions - reminder

A ::= e>e | e=e | P(e1,..en) | …
 | A → A | A ∧ A | ∃x. A | …

e ::= this | x | e.fld | func(e1,…en) | …

 | Access(e,e’)

 | Changes(e)

 | •A | ◦A

 | Call(x,m,x1,..xn)

 | A @ S

 33

Giving a meaning to Expressions

Define ⎣e⎦M,σ as expected

e ::= this | x | e.fld | func(e1,…en) | …

 34

Giving a meaning to Expressions

Define ⎣e⎦M,σ as expected

e ::= this | x | e.fld | func(e1,…en) | …

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

Eg, with x mapping to 3, we have ⎣x.myBank.book.next⎦M,σ =6

 34

Giving a meaning to Assertions
“Conventional part”  
 A ::= e>e | A → A | P(e1,..en) | ∃x.A | …

 35

Giving a meaning to Assertions

We define M, σ ⊨ A

“Conventional part”  
 A ::= e>e | A → A | P(e1,..en) | ∃x.A | …

 35

Giving a meaning to Assertions

We define M, σ ⊨ A

M,σ ⊨ e>e’ iff ⎣e⎦M,σ > ⎣e’⎦M,σ

M,σ ⊨ A→A’ iff M,σ ⊨ A implies M,σ ⊨ A’  
 

M,σ ⊨ P(e1,…en) iff M,σ ⊨ M(P)[x1↦⎣e1⎦M,σ,.…xn↦⎣en⎦M,σ] 
 

M,σ ⊨ ∃x.A iff M,σ[z↦ι] ⊨ A[x↦z]  
 for some ι∈dom(σ.heap), and z free in A  

“Conventional part”  
 A ::= e>e | A → A | P(e1,..en) | ∃x.A | …

 35

Giving meaning to Assertions
“Unconventional part”

 A ::= Access(x,y) | Changes(e) | •A | ◦A | A @ S | Call(x,m,x1,..xn)

 36

Giving meaning to Assertions
“Unconventional part”

 A ::= Access(x,y) | Changes(e) | •A | ◦A | A @ S | Call(x,m,x1,..xn)

M,σ ⊨ Access(e,e') iff ⎣e.fld⎦M,σ = ⎣e'⎦M,σ for some field fld ∨  
 ⎣this⎦M,σ = ⎣e⎦M,σ ∧⎣y⎦M,σ =⎣e'⎦M,σ  
 ∧ y is a parameter of the current function

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e⎦M,σ’

M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’’ ∧ M, σ’’ ⊨ A] 
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) ∧ M,σ0 ↝* σ →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧ M,σ1 ⊨ A)]
M,σ ⊨ A@S iff M,σ@Is ⊨ A where Is = ⎣S⎦M,σ and σ@Is …

M,σ ⊨ x.Call(y,m,z1,..zn) iff ⎣this⎦M,σ = ⎣x⎦M,σ ∧ …

 36

Giving meaning to Assertions 
- the full truth -

M,σ ⊨ Access(e,e') iff … as before … 

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e[z↦y]⎦M,σ’[y↦σ(z)]  
 where {z}=Free(e) ∧ y fresh in e, σ,σ’
M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’ ∧
 M, σ’[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ,σ’
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧  
 M,σ1[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ1,σ
M,σ ⊨ A@S iff … as before …

M,σ ⊨ x.Call(y,m,z1,..zn) iff … as before …

 37

Giving meaning to Assertions 
- the full truth -

M,σ ⊨ Access(e,e') iff … as before … 

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e[z↦y]⎦M,σ’[y↦σ(z)]  
 where {z}=Free(e) ∧ y fresh in e, σ,σ’
M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’ ∧
 M, σ’[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ,σ’
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧  
 M,σ1[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ1,σ
M,σ ⊨ A@S iff … as before …

M,σ ⊨ x.Call(y,m,z1,..zn) iff … as before …

 37

Giving meaning to Assertions 
- the full truth -

M,σ ⊨ Access(e,e') iff … as before … 

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e[z↦y]⎦M,σ’[y↦σ(z)]  
 where {z}=Free(e) ∧ y fresh in e, σ,σ’
M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’ ∧
 M, σ’[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ,σ’
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧  
 M,σ1[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ1,σ
M,σ ⊨ A@S iff … as before …

M,σ ⊨ x.Call(y,m,z1,..zn) iff … as before …

 37

Giving meaning to Assertions 
- the full truth -

M,σ ⊨ Access(e,e') iff … as before … 

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e[z↦y]⎦M,σ’[y↦σ(z)]  
 where {z}=Free(e) ∧ y fresh in e, σ,σ’
M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’ ∧
 M, σ’[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ,σ’
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧  
 M,σ1[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ1,σ
M,σ ⊨ A@S iff … as before …

M,σ ⊨ x.Call(y,m,z1,..zn) iff … as before …

 37

Giving meaning to Assertions 
- the full truth -

M,σ ⊨ Access(e,e') iff … as before … 

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e[z↦y]⎦M,σ’[y↦σ(z)]  
 where {z}=Free(e) ∧ y fresh in e, σ,σ’
M,σ ⊨ •A iff ∃σ’,σ’’,φ.[σ = σ’.φ ∧ M,φ ↝*σ’ ∧
 M, σ’[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ,σ’
M,σ ⊨ ◦A iff ∀σ0.[Initial(σ0) →  
 ∃σ1.(M,σ0 ↝* σ1 ∧ M,σ1 ↝+ σ ∧  
 M,σ1[y↦σ(z)] ⊨ A[z↦y]]  
 where {z}=Free(A) ∧ y fresh in A, σ1,σ
M,σ ⊨ A@S iff … as before …

M,σ ⊨ x.Call(y,m,z1,..zn) iff … as before …

 37

Giving meaning to Assertions

M,σ ⊨ Access(x,y) iff Initial > ⎣y⎦M,σ ∨  
 ⎣x.f⎦M,σ > ⎣y⎦M,σ ∨  
 ⎣this⎦M,σ = ⎣x⎦M,σ ∧⎣y⎦M,σ = ⎣z⎦M,σ ∧ …

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e⎦M,σ’

M,σ ⊨ •A iff ∃σ’.[M,σ ↝ σ’ ∧ M, σ’ ⊨ A] 
M,σ ⊨ ◦A iff ∃σ0,σ1.[Initial(σ0) ∧ M,σ0 ↝* σ1 ∧ M,σ1 ↝* σ ∧  
 M,σ1 ⊨ A]
M,σ ⊨ A@S iff M,σ@Is ⊨ A where Is = ⎣S⎦M,σ and σ@Is …

M,σ ⊨ Call(x,m,x1,..xn) iff ⎣this⎦M,σ = ⎣x⎦M,σ ∧ …

 38

Giving meaning to Assertions

M,σ ⊨ Access(x,y) iff Initial > ⎣y⎦M,σ ∨  
 ⎣x.f⎦M,σ > ⎣y⎦M,σ ∨  
 ⎣this⎦M,σ = ⎣x⎦M,σ ∧⎣y⎦M,σ = ⎣z⎦M,σ ∧ …

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e⎦M,σ’

M,σ ⊨ •A iff ∃σ’.[M,σ ↝ σ’ ∧ M, σ’ ⊨ A] 
M,σ ⊨ ◦A iff ∃σ0,σ1.[Initial(σ0) ∧ M,σ0 ↝* σ1 ∧ M,σ1 ↝* σ ∧  
 M,σ1 ⊨ A]
M,σ ⊨ A@S iff M,σ@Is ⊨ A where Is = ⎣S⎦M,σ and σ@Is …

M,σ ⊨ Call(x,m,x1,..xn) iff ⎣this⎦M,σ = ⎣x⎦M,σ ∧ …

outstanding definitions

 38

Giving meaning to Assertions

M,σ ⊨ Access(x,y) iff Initial > ⎣y⎦M,σ ∨  
 ⎣x.f⎦M,σ > ⎣y⎦M,σ ∨  
 ⎣this⎦M,σ = ⎣x⎦M,σ ∧⎣y⎦M,σ = ⎣z⎦M,σ ∧ …

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e⎦M,σ’

M,σ ⊨ •A iff ∃σ’.[M,σ ↝ σ’ ∧ M, σ’ ⊨ A] 
M,σ ⊨ ◦A iff ∃σ0,σ1.[Initial(σ0) ∧ M,σ0 ↝* σ1 ∧ M,σ1 ↝* σ ∧  
 M,σ1 ⊨ A]
M,σ ⊨ A@S iff M,σ@Is ⊨ A where Is = ⎣S⎦M,σ and σ@Is …

M,σ ⊨ Call(x,m,x1,..xn) iff ⎣this⎦M,σ = ⎣x⎦M,σ ∧ …

outstanding definitions

 38

Giving meaning to Assertions

M,σ ⊨ Access(x,y) iff Initial > ⎣y⎦M,σ ∨  
 ⎣x.f⎦M,σ > ⎣y⎦M,σ ∨  
 ⎣this⎦M,σ = ⎣x⎦M,σ ∧⎣y⎦M,σ = ⎣z⎦M,σ ∧ …

M,σ ⊨ Changes(e) iff M, σ ↝ σ’ ∧ ⎣e⎦M,σ ≠⎣e⎦M,σ’

M,σ ⊨ •A iff ∃σ’.[M,σ ↝ σ’ ∧ M, σ’ ⊨ A] 
M,σ ⊨ ◦A iff ∃σ0,σ1.[Initial(σ0) ∧ M,σ0 ↝* σ1 ∧ M,σ1 ↝* σ ∧  
 M,σ1 ⊨ A]
M,σ ⊨ A@S iff M,σ@Is ⊨ A where Is = ⎣S⎦M,σ and σ@Is …

M,σ ⊨ Call(x,m,x1,..xn) iff ⎣this⎦M,σ = ⎣x⎦M,σ ∧ …

outstanding definitions

 38

Initial(σ) iff σ.heap=(1↦(Object,…)) ∧ σ.continuations=(this↦1).[]

outstanding definitions:
Initial

 39

A runtime configuration is initial iff  
1) The heap contains only one object, of class Object
2) The continuation consists of just one frame,  
 where this points to that object.

Note: The expression can be arbitrary

 40

outstanding definitions: @

σ@Is = (σ.heap@Is, σ.continuations, σ.expression)

 40

outstanding definitions: @

σ@Is = (σ.heap@Is, σ.continuations, σ.expression)
where dom(hp.@IS)=IS and ↦∀α∈ S. hp@IS(α)=hp(α)

 40

outstanding definitions: @

σ@Is = (σ.heap@Is, σ.continuations, σ.expression)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

where dom(hp.@IS)=IS and ↦∀α∈ S. hp@IS(α)=hp(α)

eg, given hp:

 40

outstanding definitions: @

σ@Is = (σ.heap@Is, σ.continuations, σ.expression)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

where dom(hp.@IS)=IS and ↦∀α∈ S. hp@IS(α)=hp(α)

hp@{1,2,4,10,20,21}:

eg, given hp:

 40

outstanding definitions: @

σ@Is = (σ.heap@Is, σ.continuations, σ.expression)

1:Ba 10 11

2:Ac 3:Ac 4:Ac 21 20

where dom(hp.@IS)=IS and ↦∀α∈ S. hp@IS(α)=hp(α)

hp@{1,2,4,10,20,21}:

eg, given hp:

1:Ba 10

2:Ac 4:Ac 21 20 40

outstanding definitions: @

Giving meaning to Assertions

M ⊨ A iff ∀σ∈Arising(M*M’). M*M’, σ ⊨ A  

 41

A module M satisfies an assertion A if all runtime configurations σ which
arrive from execution of code from M*M’ (for any module M’), satisfy A.

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

outstanding definitions: Arising

 42

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

outstanding definitions: Arising

Open World

 42

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

outstanding definitions: Arising

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

E.g., Arising(MBA2s).heap and Arising(MBA2).heap contain:

Open World

 42

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

outstanding definitions - Arising

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

Also, Arising(MBA2s).heap and Arising(MBA2).heap contain:

9:Ac

8:No

 43

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

But the following is in Arising(MBA2).heap but is not in Arising(MBA2s).heap

 44

Arising(M) = { σ | ∃M’,σ0. [Initial(σ0) ∧ M*M’ is defined ∧ M’*M,σ0 ↝* σ] }

outstanding definitions - Arising

1:Ba 10 11

2:Ac 3:Ac 4:Ac

5:No 6:No 7:No

21 20

But the following is in Arising(MBA2).heap but is not in Arising(MBA2s).heap

 44

Giving meaning to Assertions

M ⊨ A iff ∀σ∈Arising(M*M’). M*M’, σ ⊨ A  

 45

Giving meaning to Assertions

M ⊨ A iff ∀σ∈Arising(M*M’). M*M’, σ ⊨ A  

“Lemma”

 45

Giving meaning to Assertions

M ⊨ A iff ∀σ∈Arising(M*M’). M*M’, σ ⊨ A  

“Lemma”
MBA1s ⊨ Pol_1
MBA1s ⊨ Pol_2
MBA1s ⊨ Pol_4
MBA2s ⊨ Pol_1
MBA2s ⊨ Pol_2
MBA2s ⊨ Pol_4

 
Proof sketches are “holistic”.
 
Proof sketches use more framing notions,  
 and require frames are self-framing.

 45

Entailments

M ⊨ A ⊆ A’ iff ∀σ∈Arising(M). [M, σ ⊨ A → M, σ ⊨ A’]
M ⊨ A ⊑ A’ iff M ⊨ A → M ⊨ A’

Definitions

 46

Entailments

M ⊨ A ⊆ A’ iff ∀σ∈Arising(M). [M, σ ⊨ A → M, σ ⊨ A’]
M ⊨ A ⊑ A’ iff M ⊨ A → M ⊨ A’

Definitions

Facts

M ⊨ A ⊆ A’ implies M ⊨ A ⊑ A’
M ⊨ A ⊑ A’ does not imply M ⊨ A ⊆ A’
M ⊨ (•A → A’) ⊑ (A’ → ◦A)

 46

Entailments

M ⊨ A ⊆ A’ iff ∀σ∈Arising(M). [M, σ ⊨ A → M, σ ⊨ A’]
M ⊨ A ⊑ A’ iff M ⊨ A → M ⊨ A’

Definitions

Facts

M ⊨ A ⊆ A’ implies M ⊨ A ⊑ A’
M ⊨ A ⊑ A’ does not imply M ⊨ A ⊆ A’
M ⊨ (•A → A’) ⊑ (A’ → ◦A)

M ⊨ A @ S and M ⊨ S ⊆ S’ imply M ⊨ A @ S’?
M,σ ⊨ (•A)@S imply M ⊨ •(A@S)?

 46

Entailments

M ⊨ A ⊆ A’ iff ∀σ∈Arising(M). [M, σ ⊨ A → M, σ ⊨ A’]
M ⊨ A ⊑ A’ iff M ⊨ A → M ⊨ A’

Definitions

Facts

M ⊨ A ⊆ A’ implies M ⊨ A ⊑ A’
M ⊨ A ⊑ A’ does not imply M ⊨ A ⊆ A’
M ⊨ (•A → A’) ⊑ (A’ → ◦A)

 46

Entailments

M ⊨ A ⊆ A’ iff ∀σ∈Arising(M). [M, σ ⊨ A → M, σ ⊨ A’]
M ⊨ A ⊑ A’ iff M ⊨ A → M ⊨ A’

Definitions

Facts

M ⊨ A ⊆ A’ implies M ⊨ A ⊑ A’
M ⊨ A ⊑ A’ does not imply M ⊨ A ⊆ A’
M ⊨ (•A → A’) ⊑ (A’ → ◦A)

M ⊨ A @ S and M ⊨ S ⊆ S’ does not imply M ⊨ A @ S’
We call A monotonic, if M,σ ⊨ A @ S and M,σ ⊨ S ⊆ S’ imply M,σ ⊨ A @ S’ 

If A monotonic, then  
 M,σ ⊨ (•A)@S and M,σ ⊨ S’=Allocated imply M,σ ⊨ • (A @ (S∪(Allocated\S’)))  

 46

Example2: DAO - simplified

 47

DAO, a “hub that disperses funds”; (https://www.ethereum.org/dao).  
In a simplified form it allows clients to contribute and retrieve their funds (by
calling payIn(…) and repay()).

https://www.ethereum.org/dao

Example2: DAO - simplified

Pol_DAO_withdraw  
 ⩧  
 ∀ cl:External. ∀d:DAO. ∀.n’:Nat.
 [cl.Calls(d.repay()) ∧ ◦ (cl.Calls(d.payIn(n))
 ∧ ¬(◦ cl.Calls(d.repay())
 → 
 d.ether≧n ∧ • (d.Calls(cl.send(n))]

 47

DAO, a “hub that disperses funds”; (https://www.ethereum.org/dao).  
In a simplified form it allows clients to contribute and retrieve their funds (by
calling payIn(…) and repay()).

https://www.ethereum.org/dao

Example2: DAO - simplified

Pol_DAO_withdraw  
 ⩧  
 ∀ cl:External. ∀d:DAO. ∀.n’:Nat.
 [cl.Calls(d.repay()) ∧ ◦ (cl.Calls(d.payIn(n))
 ∧ ¬(◦ cl.Calls(d.repay())
 → 
 d.ether≧n ∧ • (d.Calls(cl.send(n))]

 47

This says: If a client cl asks to be repaid (cl.Calls(d.repay()) and in the
past they had contributed (◦ (cl.Calls(d.payIn(n))) and not withdrawn
their contribution (¬(◦ cl.Calls(d.repay())),  
then the DAO will have enough funds (d.ether≧n) and will send the money to
client (• d.Calls(cl.send(n))).

DAO, a “hub that disperses funds”; (https://www.ethereum.org/dao).  
In a simplified form it allows clients to contribute and retrieve their funds (by
calling payIn(…) and repay()).

https://www.ethereum.org/dao

Example2: DAO continued

 48

Vulnerability: Through repeated calls of a buggy version of repay(), a client
could deplete all funds of the DAO and thus the DAO could not repay its
other clients.

Example2: DAO continued

 48

Vulnerability: Through repeated calls of a buggy version of repay(), a client
could deplete all funds of the DAO and thus the DAO could not repay its
other clients.

Pol_DAO_withdraw  
 ⩧  
 ∀ cl:External. ∀d:DAO. ∀.n:Nat.
 [cl.Calls(d.repay()) ∧ ◦ (cl.Calls(d.payIn(n))
 ∧ ¬(◦ cl.Calls(d.repay())
 → 
 d.ether≧n ∧ • (d.Calls(cl.send(n))]

Example2: DAO continued

 48

This specification avoids the vulnerability:  
A contract which satisfies Pol_DAO_withdraw will always be able to
repay all its customers.

Vulnerability: Through repeated calls of a buggy version of repay(), a client
could deplete all funds of the DAO and thus the DAO could not repay its
other clients.

Pol_DAO_withdraw  
 ⩧  
 ∀ cl:External. ∀d:DAO. ∀.n:Nat.
 [cl.Calls(d.repay()) ∧ ◦ (cl.Calls(d.payIn(n))
 ∧ ¬(◦ cl.Calls(d.repay())
 → 
 d.ether≧n ∧ • (d.Calls(cl.send(n))]

Example2: DAO continued

 48

This specification avoids the vulnerability:  
A contract which satisfies Pol_DAO_withdraw will always be able to
repay all its customers.

Vulnerability: Through repeated calls of a buggy version of repay(), a client
could deplete all funds of the DAO and thus the DAO could not repay its
other clients.

Pol_DAO_withdraw  
 ⩧  
 ∀ cl:External. ∀d:DAO. ∀.n:Nat.
 [cl.Calls(d.repay()) ∧ ◦ (cl.Calls(d.payIn(n))
 ∧ ¬(◦ cl.Calls(d.repay())
 → 
 d.ether≧n ∧ • (d.Calls(cl.send(n))]

Example2: a possible classical spec
Assume that the DAO keeps a directory of contributions, and require:  
R1: that the directory is compatible with the amount of ether  
 kept in the DAO, and  
R2: that withdraw reduces the ether but that amount.

Example2: a possible classical spec
Assume that the DAO keeps a directory of contributions, and require:  
R1: that the directory is compatible with the amount of ether  
 kept in the DAO, and  
R2: that withdraw reduces the ether but that amount.

 
R1: ∀d:DAO. d.ether = ∑ cl such that d.directory(cl)defined d.directory(cl)

Example2: a possible classical spec
Assume that the DAO keeps a directory of contributions, and require:  
R1: that the directory is compatible with the amount of ether  
 kept in the DAO, and  
R2: that withdraw reduces the ether but that amount.

 
R1: ∀d:DAO. d.ether = ∑ cl such that d.directory(cl)defined d.directory(cl)

R2: cl:External ∧ d:DAO ∧ n:Nat ∧ d.directory(cl)=n
 { d.repay() ∧ caller=cl }  
 d.directory(cl)=0 ∧ d.Calls(cl.send(n))

Example2: a possible classical spec
Assume that the DAO keeps a directory of contributions, and require:  
R1: that the directory is compatible with the amount of ether  
 kept in the DAO, and  
R2: that withdraw reduces the ether but that amount.

 
R1: ∀d:DAO. d.ether = ∑ cl such that d.directory(cl)defined d.directory(cl)

R2: cl:External ∧ d:DAO ∧ n:Nat ∧ d.directory(cl)=n
 { d.repay() ∧ caller=cl }  
 d.directory(cl)=0 ∧ d.Calls(cl.send(n))

R2 says: If client cl has m tokens (d.directory(cl)=n) and asks to be repaid (cl
calls d.repay()) then all his tokens will be sent (d.Calls(cl.send(n))) and no
tokens will be left (d.directory(cl)=0). 
Together with R2, this spec avoids the vulnerability, provided the attack goes
through the function repay.

Example2: classical spec vs holistic spec

This classical specification is insufficient to avoid the vulnerability in
general, as it does not prevent other functions from affecting the
contents of d.directory.  

To avoid the vulnerability in general, we would need to either manually
inspect the specification of all the functions in the DAO, or add another
holistic spec, promising, eg that only calls by cl can affect the contents
of d.directory(cl).

Assume that the DAO keeps a directory of contributions, and require:  
R1: that the directory is compatible with the amount of ether  
 kept in the DAO, and  
R2: that withdraw reduces the ether but that amount.

R1: ∀d:DAO. d.ether = ∑ cl such that d.directory(cl)defined d.directory(cl)

R2: cl:External ∧ d:DAO ∧ n:Nat ∧ d.directory(cl)=n
 { d.repay() ∧ caller=cl }  
 d.directory(cl)=0 ∧ d.Calls(cl.send(n))

Example3: ERC20 - simplified  

 51

a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/
ERC20_Token_Standard); allows clients to buy and transfer tokens, and to
designate other clients to transfer on their behalf.

https://en.wikipedia.org/wiki/Initial_coin_offering
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

Example3: ERC20 - simplified  

 51

a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/
ERC20_Token_Standard); allows clients to buy and transfer tokens, and to
designate other clients to transfer on their behalf.

Pol_ERC20_withdraw  
 ⩧  
∀ e:ERC20. ∀ cl: Client.  
[e.balance(cl) <e.balance(cl)pre) 
 →
[◦ (∃cl’: Client. ∃m: Nat.  
 [cl.Calls(e.transfer(cl’,m))) 
 ∨ 
 ∃cl’’: Client.  
 Authorized(c,cl’’) ∧ c’’.Calls(e.transferFrom(c,cl’,m))]

https://en.wikipedia.org/wiki/Initial_coin_offering
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

Example3: ERC20 - simplified  

 51

a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/
ERC20_Token_Standard); allows clients to buy and transfer tokens, and to
designate other clients to transfer on their behalf.

Pol_ERC20_withdraw  
 ⩧  
∀ e:ERC20. ∀ cl: Client.  
[e.balance(cl) <e.balance(cl)pre) 
 →
[◦ (∃cl’: Client. ∃m: Nat.  
 [cl.Calls(e.transfer(cl’,m))) 
 ∨ 
 ∃cl’’: Client.  
 Authorized(c,cl’’) ∧ c’’.Calls(e.transferFrom(c,cl’,m))]

This says: A client’s balance decreases only if that client, or somebody
authorised by that client, made a payment.

https://en.wikipedia.org/wiki/Initial_coin_offering
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

Example3: ERC20 - Authorized  

 52

Example3: ERC20 - Authorized  

 52

Authorized(c,c’) ⩧ ∃m: Nat. ◦ (c.Calls(e.approve(c’,m)))

Example3: ERC20 - Authorized  

 52

Authorized(c,c’) ⩧ ∃m: Nat. ◦ (c.Calls(e.approve(c’,m)))

This says: A client cl’ is authorised by another client cl, iff at some time in
the past the latter informed the tokenholder that it authorised the former.

Example3: ERC20 - classical spec  

 53

Example3: ERC20 - classical spec  

 53

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 { e.transfer(cl’,m) ∧ Caller=cl}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 ∧ Authorized(e,cl,cl’’)  
 { e.transferFrom(cl’,m) ∧ Caller=cl’’}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  
 

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’  
 { e.allow(cl’) ∧ Caller=cl }
Authorized(e,cl,cl’’)

Example3: ERC20 - classical vs holistic

 54

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 { e.transfer(cl’,m) ∧ Caller=cl}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 ∧ Authorized(e,cl,cl’’)  
 { e.transferFrom(cl’,m) ∧ Caller=cl’’}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  
 
e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’  
 { e.allow(cl’) ∧ Caller=cl }
Authorized(e,cl,cl’’)

Example3: ERC20 - classical vs holistic

 54

The above does not determine whether there are other means to transfer
tokens, or to authorise clients. For this we would need to inspect the classic
specs of all the functions, or add holistic aspects

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 { e.transfer(cl’,m) ∧ Caller=cl}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  

e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’ ∧ cl≠cl’  
 ∧ Authorized(e,cl,cl’’)  
 { e.transferFrom(cl’,m) ∧ Caller=cl’’}
e.balance(cl) = e.balance(cl)pre -m ∧ e.balance(cl’)pre = m’+m  
 
e:ERC20 ∧ e.balance(cl) >m ∧ e.balance(cl’) = m’  
 { e.allow(cl’) ∧ Caller=cl }
Authorized(e,cl,cl’’)

Example4: DOM attenuation

:Node 
p:..

Access to any Node gives  
access to complete tree

unknwn1

 55

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation

:Node 
p:..

w:Wrapper 
height=1

Access to any Node gives  
access to complete tree

Wrappers have a height;  
 Access to Wrapper w allows modification of
Nodes under the w.height-th parent

and nothing else

unknwn1

unknwn2

 55

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation - 2

:Node 
p:..

unknwn1

 56

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation - 2

:Node 
p:..

w:Wrapper 
height=1

unknwn1

unknwn2

 56

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation - 2

:Node 
p:..

w:Wrapper 
height=1

unknwn1

unknwn2

 56

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Pol_W ⩧  
∀S:Set. ∀nd:Node.[ 
[[Access(s,nd) → s:Node ∨ s:Wrapper ∧ Distance(s.node,nd)>s.height]
 →
 ¬ ((•Changes(nd.p))@S)]

where 
Distance(nd,nd’)=k iff ∃ j .[nd.parentk = nd’.parentj]

Example4: DOM attenuation - 3

:Node 
p:..

unknwn1

 57

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation - 3

:Node 
p:..

w:Wrapper 
height=1

unknwn1

unknwn2

 57

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Example4: DOM attenuation - 3

:Node 
p:..

w:Wrapper 
height=1

unknwn1

unknwn2

 57

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Pol_W ⩧  
∀S:Set. ∀nd:Node.[ 
[[Access(s,nd) → s:Node ∨ s:Wrapper ∧ Distance(s.node,nd)>s.height]
→
 ¬ ((•Changes(nd.p))@S)]

Example4: DOM attenuation - 3

:Node 
p:..

w:Wrapper 
height=1

unknwn1

unknwn2

 57

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

:Node 
p:..

Pol_W ⩧  
∀S:Set. ∀nd:Node.[ 
[[Access(s,nd) → s:Node ∨ s:Wrapper ∧ Distance(s.node,nd)>s.height]
→
 ¬ ((•Changes(nd.p))@S)]

This means:  
A set of objects where any object which can directly access nd
is either a Node, or a Wrapper with height smaller than its
distance to nd, 
is insufficient to modify nd.p

Example4: DOM attenuation - use

:Node 
p:..

 58

n2:No
de 

n1:No
de 

n4:No
de 

:Node 
p:..

n3:No
de 

:Node 
p:..

:Node 
p:..

:Node 
p:..

function mm(unknwn){  
 n1:=Node(…); n2:=Node(n1,…);n3:=Node(n2,…);n4:=Node(n3,…);  
 n2.p:=“robust”; n3.p:=“volatile”;  
 w=Wrapper(n4,1);  
 unknwn.untrusted(w);

 ….

Example4: DOM attenuation - use

:Node 
p:..

w:Wrapper 
height=1unknwn

 58

n2:No
de 

n1:No
de 

n4:No
de 

:Node 
p:..

n3:No
de 

:Node 
p:..

:Node 
p:..

:Node 
p:..

function mm(unknwn){  
 n1:=Node(…); n2:=Node(n1,…);n3:=Node(n2,…);n4:=Node(n3,…);  
 n2.p:=“robust”; n3.p:=“volatile”;  
 w=Wrapper(n4,1);  
 unknwn.untrusted(w);

 ….

Example4: DOM attenuation - use

:Node 
p:..

w:Wrapper 
height=1unknwn

 58

n2:No
de 

n1:No
de 

n4:No
de 

:Node 
p:..

n3:No
de 

:Node 
p:..

:Node 
p:..

:Node 
p:..

function mm(unknwn){  
 n1:=Node(…); n2:=Node(n1,…);n3:=Node(n2,…);n4:=Node(n3,…);  
 n2.p:=“robust”; n3.p:=“volatile”;  
 w=Wrapper(n4,1);  
 unknwn.untrusted(w);

 ….

With Pol_W we can show that despite the
call to unknown object, at this point:  

n2.p:=“robust”  

 space

 call

 time

 authority

 permission

 Summary of our Proposal
A ::= e>e | e=e | P(e1,..en) | …

 | A → A | A ∧ A | ∃x. A | …
 | Access(x,y)

 | Changes(e)

 | •A | ◦A

 | x.Calls(y,m,z1,..zn)

 | A @ S

Initial(σ)

Arising(M)
M, σ ⊨ A
M ⊨ A

 59

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 60

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 M ⊨ A { code } A’

 60

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 M ⊨ A { code } A’
 M ⊨ A

 60

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 M ⊨ A { code } A’
 M ⊨ A

 60

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 M ⊨ A { code } A’
 M ⊨ A
 M ⊨ •A → A’

 60

• services offered by objects/
data structure to clients,

• what will happen,  
under correct use

• sufficient conditions 

• preserved properties of the
objects/data structure

• what will not happen,  
under arbitrary use

• necessary conditions

Functional Robust vs

 M ⊨ A { code } A’
 M ⊨ A
 M ⊨ •A → A’

 60
 M ⊨ A’ → ¬ (•A)

• fine-grained
• per function  

• ADT as a hole
• emergent behaviour

Classical  
Specification

vs

 61

Holistic  
Specification

Which one is more accurate? 
Classical. 
 
Which one is more expressive? 
For a “closed” ADT (no functions can be added, all functions have classical specs,
and ghost state has known representation), the holistic specs can be proven. 
 
When do we need holistic specs? 
* When the holistic aspect more important  
 (eg cannot lose money unless I authorised).  
* When we do not have “closed ADTs.  
* When we want to reason in an open world (eg DOM attenuation) 

• fine-grained
• per function  

• ADT as a hole
• emergent behaviour

Classical  
Specification

vs

 61

Holistic  
Specification

Which one is more accurate? 
Classical. 
 
Which one is more expressive? 
For a “closed” ADT (no functions can be added, all functions have classical specs,
and ghost state has known representation), the holistic specs can be proven. 
 
When do we need holistic specs? 
* When the holistic aspect more important  
 (eg cannot lose money unless I authorised).  
* When we do not have “closed ADTs.  
* When we want to reason in an open world (eg DOM attenuation) 

