Holistic spectilications

 characterizat How do I designate thee?
Sophia Drossopoulout and

James Noble (VU Wellington), Mark Miller (Agorics),
Toby Murray (Uni Melbourne)
Shupeng Loh and Emil Klasan (Imperial)

Functional

- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

Functional

vs

- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

Functional

VS

Robust

- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

Functional

- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions

Today

- Functional = Robustness
- Robustness in terms of the Bank/Account Example
- Holistic Specification:
"Classical assertions"
+ Time
+ Space
+ Access
+ Authority
"in an open world"
- Examples

Bank/Account

- Banks and Accounts
- Accounts hold money
- Money can be transferred between Accounts
- A banks' currency = sum of balances of accounts held by bank
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_3: The bank can only inflate its own currency
- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_3: The bank can only inflate its own currency
- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional

Pol_1: With two accounts of same bank one can transfer money between them.

- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_3: The bank can only inflate its own currency
- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional robustness

Pol_1: With two accounts of same bank one can transfer money between them.

- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_3: The bank can only inflate its own currency
- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional robustness

Pol_1: With two accounts of same bank one can transfer money between them.
Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency

- Pol_3: The bank can only inflate its own currency
- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional robustness

Pol_1: With two accounts of same bank one can transfer money between them.
Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
Pol_3: The bank can only inflate its own currency

- Pol_4: No one can affect the balance of an account they do not have.
- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional
 robustness

Pol_1: With two accounts of same bank one can transfer money between them.

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not have.

- Pol_5: Balances are always non-negative.
- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

Bank/Account - 2

functional
 robustness

Pol_1: With two accounts of same bank one can transfer money between them.

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
Pol_3: The bank can only inflate its own currency
Pol_4: No one can affect the balance of an account they do not have.

Pol_5: Balances are always non-negative.

- Pol_6: A reported successful deposit can be trusted as much as one trusts the account one is depositing to.
[Miller et al, Financial Crypto 2000]

```
1:Ban
```

$?$

$?$

$?$	$?$
2:Acc	3:Acc
4:Acc	

?

$?$

Should the following be possible?

- 21 takes money from 4.
- 21 takes money from 2.

Q 10 affects the currency.
Q 10 takes money from 4.

- 21 finds out 2's balance.

Should the following be possible?

- 21 takes money from 4.
- 21 takes money from 2.

Q 10 affects the currency.
Q 10 takes money from 4.

- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.
- 21 finds out 2's balance.

Should the following be possible?

- 21 takes money from 4. ∇
- 21 takes money from 2. X

Q10 affects the currency. ∇
Q 10 takes money from 4. X
Q 21 finds out 2's balance. ?

- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1: Code

```
class Bank {
```

\}

```
class Account {
    fld myBank // a Bank
    fld balance // a number
    Account(aBank,amt) { myBank=aBank; balance=amt }
    fun deposit(destination,amt)
        { if myBank==destination.myBank then
            { this.balance-=amt;
                destination.balance+=amt } }
}
```


MBA1: Code

```
class Bank {
}
```

class Account {
fld myBank // a Bank
fld balance // a number
Account(aBank,amt) { myBank=aBank; balance=amt }
Account(aBank,amt) { myBank=aBank; balance=amt }
fun deposit(destination,amt)
fun deposit(destination,amt)
{ if myBank==destination.myBank then
{ if myBank==destination.myBank then
{ this.balance-=amt;
{ this.balance-=amt;
destination.balance+=amt } }
destination.balance+=amt } }
}

```
}
```


Note: bank.currency is a model field

MBA1: Objects

1:Bank
class Bank\{ \}

MBA1: Objects

class Account \{
fld myBank
fld balance
\}

MBA1: Objects

MBA1: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1s - safe

```
class Bank {
}
```

class Account {
class private fld myBank // a Bank
class private fld balance // a number
Account(aBank,amt) { myBank=aBank; balance=amt }
Account(aBank,amt) { myBank=aBank; balance=amt }
fun deposit(destination,amt)
fun deposit(destination,amt)
{ if myBank==destination.myBank then
{ if myBank==destination.myBank then
{ this.balance-=amt;
{ this.balance-=amt;
destination.balance+=amt } }
destination.balance+=amt } }
}

```
}
```


MBA1s: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA1s: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2: Code

```
class Bank {
    fld book // a Node
    Bank( ) { book=null }
    fun makeAccount(amt) { ... }
    fun deposit(src,dest,amt) {
        srce=book.get(src);
        destn=book.get(dest);
        if srce.balance>amt then
        { srce.balance-=amt;
            destn.balance+=amt } }
class Node {
    fld balance // a number
    fld next // a Node
    fld theAccount // an Account
    fun get(acc) {
        if theAccount==acc
        then{ this; }
        else{ ... next.get(acc) ... }
    }
class Account {
    fld myBank // a Bank
    Account(aBank) { myBank=aBank }
    fun deposit(destination,amt)
        { myBank.deposit(this,destination,amt) }
}
```


MBA2: Code

```
class Bank {
    fld book // a Node
    Bank( ) { book=null }
    fun makeAccount(amt) { ... }
    fun deposit(src,dest,amt) {
        srce=book.get(src);
        destn=book.get(dest);
        if srce.balance>amt then
        { srce.balance-=amt;
        destn.balance+=amt } }
class Node {
    fld balance // a number
    fld next // a Node
    fld theAccount // an Account
    fun get(acc) {
```


bank.currency is model field

account.balance is model field

```
class Account {
    fld myBank // a Bank
    Account(aBank) { myBank=aBank }
    fun deposit(destination,amt)
        { myBank.deposit(this,destination,amt) }
}
```


MBA2: Objects

MBA2: Objects

$$
\begin{aligned}
& 1: \text { Bank } \\
& \text { lass Bank \{ } \\
& \text { fld book }
\end{aligned}
$$

...
\}

MBA2: Objects

MBA2: Objects

MBA2: Objects

MBA2: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2: Adherence to Policies

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2: Adherence to Policies

MBA2 \vDash Pol_1
MBA2 $\#$ \# Pol_2
MBA2 \neq Pol_4

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

MBA2s: safe Code

```
class Bank {
    instance private fld book // a Node
    Bank( ) { book=null }
    fun makeAccount(amt) { ... }
    fun deposit(src,dest,amt){
        srce=book.get(source);
        destn=book.get(dest);
        if srce.balance>amt then
        { srce.balance-=amt;
            destn.balance+=amt } }
```

```
class Node {
```

class Node {
fld balance // a number
fld balance // a number
fld next // a Node
fld next // a Node
fld theAccount // an Account
fld theAccount // an Account
fun get(acc){
fun get(acc){
if theAccount==acc
if theAccount==acc
then{ this; }
then{ this; }
else{ ... next.get(acc) ... }
else{ ... next.get(acc) ... }
}
}
class Account {
instance private fld myBank // a Bank
Account(aBank) { myBank=aBank }
fun deposit(destination,amt)
{ myBank.deposit(this,destination,amt) }
}

```

\section*{MBA2s: Adherence to Policies}

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

\section*{MBA2s: Adherence to Policies}

- Pol_1: With two accounts of same bank one can transfer money between them.
- Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
- Pol_4: No one can affect the balance of an account they do not have.

Research Questions:
- Formalize policies such as Pol_1,... Pol_5
- Meaning of \(\mathrm{Mx} \vDash\) Pol_v

\section*{Today}
- Functional = Robustness
- Robustness in terms of the Bank/Account Example
- Holistic Specification:
"Classical assertions"

\author{
+ Time \\ + Space \\ + Permission \\ + Authority \\ + "in an open world"
}
- Examples

\section*{Assertions}

\section*{Assertions}
e ::= this | x | e.fld | func(e1,...en) | ...

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
A ::= e>e | e=e | \(P(e 1, . . e n) \mid \ldots\)

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=e>e|e=e| P(e 1, . . e n) \mid \ldots\)
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=e>e|e=e| P(e 1, . . e n) \mid \ldots\)
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=\) e>e | e=e | P(e1,..en)|...
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
Changes(e)

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=\) e>e | e=e | P(e1,..en)|...
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
| Changes(e)
|•A | oA

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=e>e|e=e| P(e 1, . . e n) \mid .\).
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
Changes(e)
| \(\cdot \mathrm{A} \mid \mathrm{OA}\)
| A @ S

\section*{Assertions}
e ::= this | \(\times\) | e.fld | func(e1,...en) | ...
\(A \quad::=e>e|e=e| P(e 1, . . e n) \mid .\).
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
Changes(e)
| \(\bullet\) A | \(\circ \mathrm{A}\)
| A @ S
x.Call(y,m,z1,..zn)

\section*{Assertions}
e \(::=\) this \(|x|\) e.fld \(\mid\) func(e1,...en) | ...
\(A \quad:=e>e|e=e| P(e 1, . . e n) \mid \ldots\)
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
permission
Changes(e)
authority
|•A | oA time
| A @ S
space
| x.Call(y,m,z1,..zn)
call

\section*{Formalizing Pol_1}

Pol_1: With two accounts of same bank one can transfer money between them.

\section*{Formalizing Pol_1}

Pol_1: With two accounts of same bank one can transfer money between them.
\[
\begin{aligned}
& \text { Pol_1 } \equiv \text { a1:Account } \wedge \text { a2:Account } \wedge \mathrm{a} 1 \neq \mathrm{a} 2 \wedge \\
& \text { a1.myBank = a2.myBank } \wedge
\end{aligned}
\]

\section*{Formalizing Pol_1}

Pol_1: With two accounts of same bank one can transfer money between them.
\[
\begin{aligned}
& \text { Pol_1 } \equiv \text { a1:Account } \wedge \text { a2:Account } \wedge \text { a1 } \neq \mathrm{a} 2 \wedge \\
& \text { a1. } \mathrm{myBank}=\mathrm{a} 2 . \text { myBank } \wedge \\
& \wedge \\
& \wedge \\
& \wedge \\
& \longrightarrow \\
& \text { - ( a1.balance }=\ldots \text { - amt } \wedge \\
& \text { a2. balance }=\ldots+\text { amt ) }
\end{aligned}
\]

\section*{Formalizing Pol_1}

Pol_1: With two accounts of same bank one can transfer money between them.
\[
\begin{aligned}
\text { Pol_1 } \equiv & \text { a1:Account } \wedge \text { a2:Account } \wedge \mathrm{a} 1 \neq \mathrm{a} 2 \wedge \\
& \text { a1.myBank }=\mathrm{a} 2 \cdot \mathrm{myBank} \wedge \\
& \text { a1.balance }=\mathrm{b} 1>\mathrm{amt} \wedge \\
& \text { a2.balance }=\mathrm{b} 2 \quad \\
& \quad . \text { Call(a1,transfer,a2,amt }) \wedge \\
& \rightarrow
\end{aligned}
\]

\section*{Formalizing Pol_1}

Pol_1: With two accounts of same bank one can transfer money between them.
\[
\begin{aligned}
\text { Pol_1 } \equiv & \text { a1:Account } \wedge \text { a2:Account } \wedge \mathrm{a} 1 \neq \mathrm{a} 2 \wedge \\
& \text { a1.myBank }=\text { a2.myBank } \wedge \\
& \text { a1.balance }=\mathrm{b} 1>\text { amt } \wedge \\
& \text { a2.balance }=\mathrm{b} 2 \quad \wedge \\
& \text {. Call(a1,transfer, a2,amt }) \wedge \\
& \rightarrow \\
& \bullet(\text { a1.balance }=\mathrm{b} 1-\mathrm{amt} \wedge \\
& \text { a2.balance }=\mathrm{b} 2+\mathrm{amt})
\end{aligned}
\]

\section*{Formalizing Pol_2}

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency

This says: If some execution which starts now and which involves at most the objects from \(S\) modifies b.currency at some future time, then at least one of the objects in S can access b directly now, and this object is not internal to \(b\).

\section*{Formalizing Pol_2}

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
\[
\begin{aligned}
\text { Pol_2 } & \doteq \text { b:Bank } \wedge \\
& \bullet(\text { Changes(b.currency) ) @ S }
\end{aligned}
\]

This says: If some execution which starts now and which involves at most the objects from \(S\) modifies b.currency at some future time, then at least one of the objects in S can access b directly now, and this object is not internal to \(b\).

\section*{Formalizing Pol_2}

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { b:Bank } \wedge \\
& \bullet(\text { Changes(b.currency) }) @ S \\
& \exists 0 \in S .[\text { Access }(o, b) \wedge \text { o } \neq \text { Internal(b) }]
\end{aligned}
\]

This says: If some execution which starts now and which involves at most the objects from \(S\) modifies b.currency at some future time, then at least one of the objects in \(S\) can access b directly now, and this object is not internal to \(b\).

\section*{Formalizing Pol_2-2}

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency
\[
\begin{aligned}
\text { Pol_2 } \equiv & b: B a n k ~ \\
& \bullet(\text { Changes(b.currency) ) @ S } \\
& \exists 0 \in S .[\operatorname{Access}(o, b) \wedge \text { o } \neq \text { Internal(b) }]
\end{aligned}
\]
equivalent to
b:Bank ^
\(\forall o \in S\).[ \(\neg\) Access(o,b) v oelnternal(b) ]
\(\rightarrow\)
\(\neg(\bullet(\) Changes(b.currency) ) @ S )

\section*{Formalizing Pol_2 -3}

Pol_2: Only someone with the Bank of a given currency can violate conservation of that currency

Pol_2 reformulated
\[
\begin{aligned}
& \text { b:Bank ^ } \\
& \forall 0 \in S .[\text { Access(o,b) } \rightarrow \text { o } \quad \text { Internal(b) ] } \\
& \rightarrow \\
& \neg(\bullet(\text { Changes(b.currency) ) @ S ) }
\end{aligned}
\]

This says: A set S whose elements have direct access to b only if they are internal to b is insufficient to modify b.currency.

Internal

\section*{Internal}

MBA1:


\section*{Internal}

MBA1:

MBA2:


\section*{Internal}

MBA1:

Internal(b) \(\equiv\)

\(\{b\} \cup\{a \mid a: A c c o u n t \wedge\) a.myBank = b \}

MBA2:


\section*{Internal}

MBA1:

Internal(b) \(\equiv\)

\(\{\mathrm{b}\} \cup\{\mathrm{a} \mid \mathrm{a}:\) Account \(\wedge\) a.myBank = b \}

MBA2:


\section*{Internal}

MBA1:

Internal(b) \(\equiv\)

\(\{b\} \cup\{a \mid a: A c c o u n t \wedge\) a.myBank \(=b\}\)

MBA2:

Internal(b) \(\equiv\)
\(\{b\} \cup\left\{n \mid n:\right.\) Node \(\wedge \exists k . b . b^{\prime}\) bookk.next \(\left.^{n}=n\right\} \cup\)
\(\left\{n \mid\right.\) a:Account \(\wedge \exists k . b\). bookk. \(\left.^{\text {my }} \mathrm{Account}_{25}=\mathrm{a}\right\}\)

\section*{Internal}

MBA1:

Internal(b) \(\equiv\)

\(\{\mathrm{b}\} \cup\{\mathrm{a} \mid \mathrm{a}:\) Account \(\wedge\) a.myBank = b \}

MBA2:

Internal(b) \(\equiv\)

\(\{b\} \cup\{n \mid n:\) Node \(\wedge ~ \exists k . b . b o o k k . n e x t=n\} \cup\)
\(\left\{n \mid\right.\) a:Account \(\wedge \exists k . b\). bookk. \(\left.^{\text {my }} \mathrm{Account}_{25}=\mathrm{a}\right\}\)

\section*{Guarantees of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { b:Bank } \wedge \\
& \forall 0 \in S .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \text { o } \in \text { Internal }(\mathrm{b})] \\
& \neg(\bullet(\text { Changes(b.currency) ) @ S ) }
\end{aligned}
\]


\section*{Guarantees of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \mathrm{b}: \text { Bank } \wedge \\
& \forall 0 \in S .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \text { o } \in \text { Internal }(\mathrm{b})] \\
& \rightarrow \\
& \neg(\bullet(\text { Changes }(\mathrm{b} . \text { currency })) @ \mathrm{~S})
\end{aligned}
\]


\section*{Guarantees of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \mathrm{b}: \text { Bank } \wedge \\
& \forall 0 \in S .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \text { o } \in \text { Internal }(\mathrm{b})] \\
& \rightarrow \\
& \neg(\bullet(\text { Changes }(\mathrm{b} . \text { currency })) @ \mathrm{~S})
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,20,21

\section*{Guarantees of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \mathrm{b}: \text { Bank } \wedge \\
& \forall 0 \in \mathrm{~S} .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \mathrm{o} \in \operatorname{Internal}(\mathrm{~b})] \\
& \rightarrow \\
& \neg(\bullet(\text { Changes }(\mathrm{b} . \text { currency })) @ \mathrm{~S})
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,20,21
\(\longrightarrow\) no change in 1.currency

\section*{Guarantees of Pol_2 in MBA2s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \mathrm{b}: \text { Bank } \wedge \\
& \forall 0 \in \mathrm{~S} .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \text { o } \in \operatorname{Internal}(\mathrm{b})] \\
& \rightarrow \\
& \neg(\bullet(\text { Changes }(\mathrm{b} . \text { currency })) @ \mathrm{~S})
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,5,6,7,20,21;

\section*{Absence of Guarantee of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { b:Bank } \wedge \\
& \forall 0 \in S .[\neg \text { Access }(o, b) \vee \text { oflnternal(b) }] \\
& \neg(\bullet(\text { Changes }(\text { b.currency })) @ S)
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,10,11;

\section*{Absence of Guarantee of Pol_2 in MBA1s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { b:Bank } \wedge \\
& \forall 0 \in S .[\neg \text { Access }(o, b) \vee \text { oflnternal(b) }] \\
& \neg(\bullet(\text { Changes }(\text { b.currency })) @ S)
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,10,11;

\section*{Absence of Guarantee of Pol_2 in MBA2}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { b:Bank } \wedge \\
& \forall 0 \in S .[\neg \operatorname{Access}(\mathrm{o}, \mathrm{~b}) \vee \text { o } \in \text { Internal }(\mathrm{b})] \\
& \neg(\bullet(\text { Changes(b.currency) ) @ S })
\end{aligned}
\]


1 is not on stack, and execution involves at most 1,2,3,4,10,11; change in 1.currency possible

\section*{Formalizing Pol_4}

Pol_4: No one can affect the balance of an account they do not have.

\section*{Formalizing Pol_4}

Pol_4: No one can affect the balance of an account they do not have.
```

Pol_4 引 a:Account \wedge
- (Changes(a.balance)) @ S

```

\section*{Formalizing Pol_4}

Pol_4: No one can affect the balance of an account they do not have.
\[
\begin{aligned}
\text { Pol_4 } \doteq & \text { a:Account } \wedge \\
& \bullet(\text { Changes }(\text { a.balance })) @ S \\
& \rightarrow 0 \in S .[\operatorname{Access}(0, a) \wedge \quad \notin \text { Internal(a) }]
\end{aligned}
\]

\section*{Guarantees of Pol_4 in MBA2s}
\[
\begin{aligned}
\text { Pol_2 } \equiv & \text { a:Account } \wedge \text { a } \notin \text { FrameVals } \wedge \\
& \bullet(\text { Changes }(a . \text { balance })) @ S \\
& \rightarrow \\
& \exists 0 \in S .[\operatorname{Access}(0, a) \wedge \text { o } \notin \operatorname{lnternal}(\mathrm{a})]
\end{aligned}
\]


2 not on stack, and execution involves at most 1,2,3,4,5,6,7,20,21;
\(\longrightarrow\) no change in 2.balance

\section*{Giving a meaning to our Assertions}

\section*{Giving a meaning to our Assertions}

We define in a"conventional" way (omit from slides):
```

module
configuration
execution M, \sigma->\sigma'

```

\section*{Giving a meaning to our Assertions}

We define in a"conventional" way (omit from slides):
```

module M : Ident —-> ClassDef u PredicateDef u FunctionDef
configuration \sigma : Heap }\times\mathrm{ Continuations }\times\mathrm{ Expression
execution M,\sigma->\sigma'

```

Define module concatenation * so that
\(M^{*} M^{\prime}\) undefined, iff dom(M)ndom( \(\left.M^{\prime}\right) \neq \varnothing\)
otherwise
\(M^{*} M^{\prime}(i d)=M(i d)\) if \(M^{\prime}(i d)\) undefined, else \(M^{\prime}(i d)\)

\section*{Giving a meaning to our Assertions}

We define in a"conventional" way (omit from slides):
```

module M : Ident —-> ClassDef u PredicateDef u FunctionDef
configuration \sigma : Heap }\times\mathrm{ Continuations }\times\mathrm{ Expression
execution M,\sigma->\sigma'

```

Define module concatenation * so that
\(M^{*} M^{\prime}\) undefined, iff dom(M)ndom( \(\left.M^{\prime}\right) \neq \varnothing\)
otherwise
\(M^{*} M^{\prime}(i d)=M(i d)\) if \(M^{\prime}(i d)\) undefined, else \(M^{\prime}(i d)\)

We will define \(M, \sigma \vDash A\)
Initial( \(\sigma\) ) and Arising(M)
\(M \vDash A\)

\section*{Giving a meaning to our Assertions}

We define in a"conventional" way (omit from slides):
```

module M : Ident —-> ClassDef u PredicateDef u FunctionDef
configuration \sigma : Heap }\times\mathrm{ Continuations }\times\mathrm{ Expression
execution M,\sigma->\sigma'

```

Define module concatenation * so that
\(M^{*} \mathrm{M}^{\prime}\) undefined, iff dom(M)ndom( \(\left.\mathrm{M}^{\prime}\right) \neq \varnothing\)
otherwise
\(M^{*} M^{\prime}(i d)=M(i d)\) if \(M^{\prime}(i d)\) undefined, else \(M^{\prime}(i d)\)

Lemma \(M^{*} M^{\prime}=M^{\prime *} M\)

We will define \(M, \sigma \vDash A\)
Initial( \(\sigma\) ) and Arising(M)
\(M \vDash A\)

\section*{Expressions and Assertions - reminder}
e \(::=\) this \(|x|\) e.fld \(\mid\) func(e1,...en) | ...
\(A \quad::=e>e|e=e| P(e 1, . . e n) \mid \ldots\)
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(e,e')
permission
Changes(e)
authority
|•A | ○A time
\| A @ S
space
| Call(x,m,x1,..xn)
call

\section*{Giving a meaning to Expressions}
\[
\text { e }::=\text { this }|x| \text { e.fld } \quad \mid \text { func(e1,...en) | ... }
\]

Define \(\lfloor e\rfloor_{M, \sigma}\) as expected

\section*{Giving a meaning to Expressions}
e \(::=\) this \(|x|\) e.fld \(\mid\) func(e1,...en) | ...

Define \(\lfloor e\rfloor_{M, \sigma}\) as expected

Eg, with x mapping to 3, we have \(\lfloor x \text {.myBank.book.next }\rfloor_{M, \sigma}=6\)


\section*{Giving a meaning to Assertions}
"Conventional part"
\[
A \quad::=e>e|A \rightarrow A| P(e 1, . . e n)|\exists x . A| \ldots
\]

\section*{Giving a meaning to Assertions}
"Conventional part"
\[
A \quad::=e>e|A \rightarrow A| P(e 1, . . e n)|\exists x . A| \ldots
\]

We define \(M, \sigma \vDash A\)

\section*{Giving a meaning to Assertions}

\section*{"Conventional part"}
\[
A \quad::=e>e|A \rightarrow A| P(e 1, . . e n)|\exists x . A| \ldots
\]

We define \(M, \sigma \vDash A\)
\[
\begin{aligned}
& M, \sigma \vDash e>e^{\prime} \quad \text { iff } \quad\lfloor e\rfloor_{M, \sigma}>\left\lfloor e^{\prime}\right\rfloor_{M, \sigma} \\
& M, \sigma \vDash A \rightarrow A^{\prime} \quad \text { iff } \quad M, \sigma \vDash A \text { implies } M, \sigma \vDash A^{\prime} \\
& M, \sigma \vDash P\left(e_{1}, \ldots e_{n}\right) \quad \text { iff } \quad M, \sigma \vDash M(P)\left[x_{1} \mapsto\left\llcorner e_{1}\right\rfloor_{M, \sigma}, \ldots x_{n} \mapsto\left\lfloor e_{n}\right\rfloor_{M, \sigma}\right] \\
& M, \sigma \vDash \exists x . A \quad \text { iff } M, \sigma[z \mapsto l] \vDash A[x \mapsto z] \\
& \text { for some } ı \text { dom( } \sigma . \text { heap), and } z \text { free in } A
\end{aligned}
\]

\section*{Giving meaning to Assertions}
"Unconventional part"
\[
A \quad::=\operatorname{Access}(x, y)|C h a n g e s(e)| \bullet A|\circ A| A @ S \mid C a l l\left(x, m, x_{1}, . . x_{n}\right)
\]

\section*{Giving meaning to Assertions}
"Unconventional part"
\[
\begin{aligned}
& \text { A }::=\operatorname{Access}(\mathrm{x}, \mathrm{y})|\operatorname{Changes}(\mathrm{e})| \bullet \mathrm{A}|\mathrm{OA}| \mathrm{A} @ \mathrm{~S} \mid \text { Call(x,m,x1,...xn) } \\
& M, \sigma \vDash \operatorname{Access}\left(e, e^{\prime}\right) \text { iff } \quad\lfloor e . f l d\rfloor_{M, \sigma}=\left\lfloor e^{\prime}\right\rfloor_{M, \sigma} \text { for some field fld } \quad V \\
& \lfloor\text { this }\rfloor_{M, \sigma}=\lfloor e\rfloor_{M, \sigma} \wedge\lfloor y\rfloor_{M, \sigma}=\left\lfloor e^{\prime}\right\rfloor_{M, \sigma} \\
& \wedge \mathrm{y} \text { is a parameter of the current function } \\
& M, \sigma \vDash \text { Changes(e) iff } M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e\rfloor_{M, \sigma^{\prime}} \\
& \mathrm{M}, \sigma \vDash \bullet A \\
& \text { iff } \\
& \exists \sigma^{\prime}, \sigma^{\prime \prime}, \phi \cdot\left[\sigma=\sigma^{\prime} . \phi \wedge M, \Phi \rightarrow \sigma^{\prime \prime} \wedge \mathrm{M}, \sigma^{\prime \prime} \vDash A\right] \\
& M, \sigma \vDash \circ A \\
& \text { iff } \left.\forall \sigma_{0} \text {.[Initial( } \sigma_{0}\right) \wedge M, \sigma_{0} \rightarrow^{*} \sigma \rightarrow \\
& \left.\exists \sigma_{1} \cdot\left(M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{+} \sigma \wedge M, \sigma_{1} \vDash A\right)\right] \\
& M, \sigma \vDash A @ S \quad \text { iff } M, \sigma @_{\mid s} \vDash A \text { where } \quad \text { I } s=\lfloor S\rfloor_{M, \sigma} \text { and } \sigma @_{\mid s} \ldots \\
& M, \sigma \vDash x \text {.Call }\left(y, m, z_{1}, . . z_{n}\right) \text { iff } \quad\lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge \ldots
\end{aligned}
\]

\section*{Giving meaning to Assertions - the full truth -}
\(M, \sigma \vDash \operatorname{Access}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)\) iff \(\ldots\) as before ...
\(M, \sigma \vDash\) Changes(e) iff \(M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e[z \mapsto y]\rfloor_{M, \sigma^{\prime}[y \mapsto \sigma(z)]}\) where \(\{z\}=\) Free \((e) \wedge y\) fresh in \(e, \sigma, \sigma\) '
\(M, \sigma \vDash \bullet A \quad\) iff \(\quad \exists \sigma^{\prime}, \sigma^{\prime \prime}, \phi \cdot\left[\sigma=\sigma^{\prime} . \phi \wedge M, \phi \rightarrow^{*} \sigma^{\prime} \wedge\right.\)
\[
\left.\mathrm{M}, \sigma^{\gtrdot}[y \mapsto \sigma(z)] \vDash \mathrm{A}[\mathrm{z} \mapsto y]\right]
\]
where \(\{z\}=\operatorname{Free}(A) \wedge y\) fresh in \(A, \sigma, \sigma^{\prime}\)
\(M, \sigma \vDash \circ A \quad\) iff \(\quad \forall \sigma_{0} .\left[\operatorname{Initial}\left(\sigma_{0}\right) \rightarrow\right.\)
\[
\begin{aligned}
& \exists \sigma_{1} .\left(M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{+} \sigma \wedge\right. \\
& \left.M, \sigma_{1}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right] \\
& \text { where }\{z\}=\text { Free }(A) \wedge y \text { fresh in } A, \sigma_{1}, \sigma
\end{aligned}
\]
\(M, \sigma \vDash\) A@S iff ... as before ...
\(M, \sigma \vDash x . C a l l\left(y, m, z_{1}, . . z_{n}\right)\) iff \(\quad .\). as before ...

\section*{Giving meaning to Assertions - the full truth -}
\(M, \sigma \vDash\) Access(e,e') iff ... as before ...
\(M, \sigma \vDash\) Changes(e) iff \(M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e[z \mapsto y]\rfloor_{M, \sigma^{\prime}\left(y y^{\mapsto} \mapsto(z)\right]}\)
where \(\{z\}=\) Free (e) \(\wedge \mathrm{y}\) fresh in \(\mathrm{e}, \sigma, \sigma^{\prime}\)
\(M, \sigma \vDash \bullet A \quad\) iff \(\quad \exists \sigma^{\prime}, \sigma^{\prime \prime}, \phi \cdot\left[\sigma=\sigma \prime . \phi \wedge M, \phi \rightarrow{ }^{*} \sigma^{\prime} \wedge\right.\)
\(\left.\mathrm{M}, \sigma^{\prime}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right]\)
where \(\{z\}=\) Free \((A) \wedge y\) fresh in \(A, \sigma, \sigma\)
\(M, \sigma \vDash \circ A \quad\) iff \(\quad \forall \sigma_{0} \cdot\left[\operatorname{lnitial}\left(\sigma_{0}\right) \rightarrow\right.\)
\[
\begin{aligned}
& \exists \sigma_{1} \cdot\left(M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{+} \sigma \wedge\right. \\
& \\
& \left.M, \sigma_{1}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right] \\
& \text { where }\{z\}=\text { Free }(A) \wedge y \text { fresh in } A, \sigma_{1}, \sigma
\end{aligned}
\]
\(M, \sigma \vDash\) A@S iff ... as before ...
\(M, \sigma \vDash x . C a l l\left(y, m, z_{1}, . . z_{n}\right)\) iff \(\quad .\). as before ...

\section*{Giving meaning to Assertions - the full truth -}
\(M, \sigma \vDash\) Access(e,e') iff ... as before ...
\(M, \sigma \vDash\) Changes(e) iff \(M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e[z \mapsto y]\rfloor_{\left.M, \sigma^{\prime} \mid y \mapsto \sigma(z)\right]}\)
where \(\{z\}=\) Free (e) \(\wedge \mathrm{y}\) fresh in \(\mathrm{e}, \sigma, \sigma^{\prime}\)
\(M, \sigma \vDash \bullet A \quad\) iff \(\quad \exists \sigma^{\prime}, \sigma^{\prime \prime}, \phi \cdot\left[\sigma=\sigma \prime . \phi \wedge M, \phi \rightarrow{ }^{*} \sigma^{\prime} \wedge\right.\)
\(\left.\mathrm{M}, \sigma^{\prime}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right]\)
where \(\{z\}=\operatorname{Free}(A) \wedge y\) fresh in \(A, \sigma, \sigma\)
\(M, \sigma \vDash \circ A \quad\) iff \(\quad \forall \sigma_{0} \cdot\left[\operatorname{lnitial}\left(\sigma_{0}\right) \rightarrow\right.\)
\[
\begin{aligned}
& \exists \sigma_{1} .\left(M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{+} \sigma \wedge\right. \\
& \\
& \left.M, \sigma_{1}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right] \\
& \text { where }\{z\}=\text { Free }(A) \wedge y \text { fresh in } A, \sigma_{1}, \sigma
\end{aligned}
\]
\(M, \sigma \vDash\) A@S iff ... as before ...
\(\mathrm{M}, \sigma \vDash \mathrm{x} . \mathrm{Call}\left(\mathrm{y}, \mathrm{m}, \mathrm{z}_{1}, . . \mathrm{z}_{\mathrm{n}}\right)\) iff \(\ldots\) as before ...

\section*{Giving meaning to Assertions - the full truth -}
\(M, \sigma \vDash\) Access(e,e') iff ... as before ...
\(M, \sigma \vDash\) Changes(e) iff \(\quad M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e[z \mapsto y]\rfloor_{\left.M, \sigma^{\prime} \mid y \mapsto \sigma(z)\right]}\)
where \(\{z\}=\) Free (e) \(\wedge \mathrm{y}\) fresh in \(\mathrm{e}, \sigma, \sigma^{\prime}\)
\(M, \sigma \vDash \bullet A \quad\) iff \(\quad \exists \sigma^{\prime}, \sigma^{\prime \prime}, \phi \cdot\left[\sigma=\sigma \prime . \phi \wedge M, \phi \rightarrow{ }^{*} \sigma^{\prime} \wedge\right.\)
\(\left.\mathrm{M}, \sigma^{\prime}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right]\)
where \(\{z\}=\) Free \((A) \wedge y\) fresh in \(A, \sigma, \sigma\)
\(M, \sigma \vDash \circ A\)
iff \(\forall \sigma_{0}\).[ Initial \(\left(\sigma_{0}\right) \rightarrow\)
\[
\begin{aligned}
& \exists \sigma_{1} \cdot\left(M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow+\sigma \wedge\right. \\
& \\
& \left.M, \sigma_{1}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right] \\
& \text { where }\{z\}=\text { Free }(A) \wedge y \text { fresh in } A, \sigma_{1}, \sigma
\end{aligned}
\]
\(M, \sigma \vDash\) A@S iff ... as before ...
\(\mathrm{M}, \sigma \vDash \mathrm{x} . \mathrm{Call}\left(\mathrm{y}, \mathrm{m}, \mathrm{z}_{1}, . . \mathrm{zn}_{\mathrm{n}}\right)\) iff \(\ldots\) as before ...

\section*{Giving meaning to Assertions - the full truth -}
\(M, \sigma \vDash\) Access(e,e') iff ... as before ...
\(M, \sigma \vDash\) Changes(e) iff \(M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor\mathrm{e}[z \mapsto y]\rfloor_{\left.M, \sigma^{\prime} \mid y \mapsto \sigma(z)\right]}\)
where \(\{z\}=\) Free(e) \(\wedge \mathrm{y}\) fresh in \(\mathrm{e}, \sigma, \sigma^{\prime}\)
\(M, \sigma \vDash \cdot A\)
iff ヨ \({ }^{\prime}, \sigma^{\prime \prime}, \phi .\left[\sigma=\sigma^{\prime} . \phi \wedge \mathrm{M}, \phi \rightarrow^{\star} \sigma^{\prime} \wedge\right.\)
\(\left.\mathrm{M}, \sigma^{\prime}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right]\)
where \(\{z\}=\) Free \((A) \wedge y\) fresh in \(A, \sigma, \sigma\)
\(M, \sigma \vDash \circ A\)
iff \(\forall \sigma_{0}\).[ Initial( \(\sigma_{0}\) ) \(\rightarrow\)
\[
\begin{aligned}
& \exists \sigma_{1} \cdot\left(\mathrm{M}, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{+} \sigma \wedge\right. \\
& \left.M, \sigma_{1}[y \mapsto \sigma(z)] \vDash A[z \mapsto y]\right] \\
& \text { where }\{z\}=\operatorname{Free}(A) \wedge y \text { fresh in } A, \sigma_{1}, \sigma
\end{aligned}
\]
\(M, \sigma \vDash\) A@S iff ... as before
\(\mathrm{M}, \sigma \vDash \mathrm{x} . \mathrm{Call}\left(\mathrm{y}, \mathrm{m}, \mathrm{z}_{1}, . . \mathrm{zn}_{\mathrm{n}}\right)\) iff \(\quad\)... as before ...

\section*{Giving meaning to Assertions}
\[
\begin{aligned}
& M, \sigma \vDash \operatorname{Access}(x, y) \text { iff } \quad \text { Initial }>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor x . f\rfloor_{M, \sigma}>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge\lfloor y\rfloor_{M, \sigma}=\lfloor z\rfloor_{M, \sigma} \wedge \ldots \\
& M, \sigma \vDash \text { Changes(e) iff } M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e\rfloor_{M, \sigma^{\prime}} \\
& M, \sigma \vDash \bullet A \\
& \text { iff } \exists \sigma^{\prime} \text {. }\left[M, \sigma \rightarrow \sigma^{\prime} \wedge M, \sigma^{\prime} \vDash A\right] \\
& M, \sigma \vDash \circ A \\
& \text { iff } \exists \sigma_{0}, \sigma_{1} \text {.[Initial }\left(\sigma_{0}\right) \wedge M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{*} \sigma \wedge \\
& \left.\mathrm{M}, \sigma_{1} \vDash \mathrm{~A}\right] \\
& M, \sigma \vDash A @ S \quad \text { iff } M, \sigma @ \mid s \vDash A \text { where } \quad I S=\lfloor S\rfloor_{M, \sigma} \text { and } \sigma @_{\mid S} \ldots \\
& M, \sigma \vDash \text { Call }\left(x, m, x_{1}, . . x_{n}\right) \text { iff }\lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge \ldots
\end{aligned}
\]

\section*{Givin outstanding definitions rtions}
\[
\begin{aligned}
& M, \sigma \vDash \operatorname{Access}(x, y) \text { iff } \quad \text { Initial }>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor x . f\rfloor_{M, \sigma}>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge\lfloor y\rfloor_{M, \sigma}=\lfloor z\rfloor_{M, \sigma} \wedge \ldots \\
& M, \sigma \vDash \text { Changes(e) iff } M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e\rfloor_{M, \sigma^{\prime}} \\
& M, \sigma \vDash \bullet A \quad \text { iff } \quad \exists \sigma^{\prime} .\left[M, \sigma \rightarrow \sigma^{\prime} \wedge M, \sigma^{\prime} \vDash A\right] \\
& M, \sigma \vDash \circ A \text { iff } \exists \sigma_{0}, \sigma_{1} \cdot\left[\operatorname{Initial}\left(\sigma_{0}\right) \wedge M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{*} \sigma \wedge\right. \\
& \mathrm{M}, \sigma_{1} \vDash A \text { ] } \\
& M, \sigma \vDash A @ S \quad \text { iff } M, \sigma @ \mid s \vDash A \text { where } \quad \mid s=\lfloor S\rfloor_{M, \sigma} \text { and } \sigma @_{\mid s} \ldots \\
& M, \sigma \vDash \text { Call }\left(x, m, x_{1}, . . x_{n}\right) \text { iff }\left\lfloor_{\text {this }}\right\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge \ldots
\end{aligned}
\]

\section*{Givin outstanding definitions rtions}
\[
\begin{aligned}
& M, \sigma \vDash \operatorname{Access}(x, y) \text { iff } \quad \text { Initial }>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor x . f\rfloor_{M, \sigma}>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge\lfloor y\rfloor_{M, \sigma}=\lfloor z\rfloor_{M, \sigma} \wedge \ldots \\
& M, \sigma \vDash \text { Changes(e) iff } M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e\rfloor_{M, \sigma^{\prime}} \\
& M, \sigma \vDash \bullet A \quad \text { iff } \quad \exists \sigma^{\prime} .\left[M, \sigma \rightarrow \sigma^{\prime} \wedge M, \sigma^{\prime} \vDash A\right] \\
& M, \sigma \vDash \circ A \quad \text { iff } \exists \sigma_{0}, \sigma_{1} \cdot\left[\operatorname{Initial}\left(\sigma_{0}\right) \wedge M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{*} \sigma \wedge\right. \\
& \left.\mathrm{M}, \sigma_{1} \vDash \mathrm{~A}\right] \\
& M, \sigma \vDash A @ S \quad \text { iff } M, \sigma @ \mid s \vDash A \text { where } \quad \mid s=\lfloor S\rfloor_{M, \sigma} \text { and } \sigma @_{\mid s} \ldots \\
& M, \sigma \vDash \text { Call }\left(x, m, x_{1}, . . x_{n}\right) \text { iff }\left\lfloor_{\text {this }}\right\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge \ldots
\end{aligned}
\]

\section*{Givin outstanding definitions rtions}
\(M, \sigma \vDash \operatorname{Access}(x, y)\) iff \(\quad\) Initial \(>\lfloor y\rfloor_{M, \sigma} \vee\)
\[
\begin{aligned}
& \lfloor x . f\rfloor_{M, \sigma}>\lfloor y\rfloor_{M, \sigma} \vee \\
& \lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge\lfloor y\rfloor_{M, \sigma}=\lfloor z\rfloor_{M, \sigma} \wedge \ldots
\end{aligned}
\]
\(M, \sigma \vDash\) Changes(e) iff \(M, \sigma \rightarrow \sigma^{\prime} \wedge\lfloor e\rfloor_{M, \sigma} \neq\lfloor e\rfloor_{M, \sigma^{\prime}}\)
\(M, \sigma \vDash \bullet A \quad\) iff \(\quad \exists \sigma^{\prime} .\left[M, \sigma \rightarrow \sigma^{\prime} \wedge M, \sigma^{\prime} \vDash A\right]\)
\(M, \sigma \vDash \circ A \quad\) iff \(\exists \sigma_{0}, \sigma_{1} \cdot\left[\operatorname{Initial}\left(\sigma_{0}\right) \wedge M, \sigma_{0} \rightarrow^{*} \sigma_{1} \wedge M, \sigma_{1} \rightarrow^{*} \sigma \wedge\right.\)
\(\left.\mathrm{M}, \sigma_{1} \vDash \mathrm{~A}\right]\)
\(M, \sigma \vDash A @ S \quad\) iff \(M, \sigma @ \mid s \vDash A\) where \(\quad I S=\lfloor S\rfloor_{M, \sigma}\) and \(\sigma @_{\mid S} \ldots\)
\(M, \sigma \vDash\) Call \(\left(x, m, x_{1}, . . x_{n}\right)\) iff \(\lfloor\text { this }\rfloor_{M, \sigma}=\lfloor x\rfloor_{M, \sigma} \wedge \ldots\)

\section*{outstanding definitions: Initial}

A runtime configuration is initial iff
1) The heap contains only one object, of class Object
2) The continuation consists of just one frame, where this points to that object.

Note: The expression can be arbitrary

Initial(б) iff \(\quad\).heap \(=(1 \mapsto(\) Object,...)) \() \wedge \quad \sigma . c o n t i n u a t i o n s=(\) this \(\mapsto 1) .[]\)

\section*{outstanding definitions: @}

\section*{outstanding definitions: @}
\(\sigma @ \mid s=(\sigma . h e a p @ l s, ~ \sigma . c o n t i n u a t i o n s, ~ \sigma . e x p r e s s i o n) ~\)

\section*{outstanding definitions: @}

where dom(hp.@IS)=IS and \(\mapsto \forall a \in\) S. hp@IS(a)=hp(a)

\section*{outstanding definitions: @}
\(\sigma @ \mid s=(\sigma . h e a p @ l s, ~ \sigma . c o n t i n u a t i o n s, ~ \sigma . e x p r e s s i o n) ~\)
where dom(hp.@IS)=IS and \(\mapsto \forall a \in\) S. hp@IS(a)=hp(a)
eg, given hp:


\section*{outstanding definitions: @}
\(\sigma @ \mid s=(\sigma . h e a p @ l s, ~ \sigma . c o n t i n u a t i o n s, ~ \sigma . e x p r e s s i o n)\)
where dom(hp.@IS)=IS and \(\mapsto \forall a \in\) S. hp@IS(a)=hp(a)
eg, given hp:

hp@\{1,2,4,10,20,21\}:

\section*{outstanding definitions: @}
\(\sigma @ \mid s=(\sigma . h e a p @ \mid s, \sigma . c o n t i n u a t i o n s, \sigma\). expression \()\)
where dom(hp.@IS)=IS and \(\mapsto \forall a \in\) S. hp@IS(a)=hp(a)
eg, given hp:
hp@\{1,2,4,10,20,21\}:

\section*{Giving meaning to Assertions}
\[
M \vDash A \text { iff } \quad \forall \sigma \in \operatorname{Arising}\left(M^{*} M^{\prime}\right) . M^{*} M^{\prime}, \sigma \vDash A
\]

A module M satisfies an assertion A if all runtime configurations \(\sigma\) which arrive from execution of code from \(\mathrm{M}^{\star} \mathrm{M}^{\prime}\) (for any module \(\mathrm{M}^{\prime}\) ), satisfy A .

\section*{outstanding definitions: Arising}

Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0}\right.\). [ Initial \(\left(\sigma_{0}\right) \wedge M^{*} M^{\prime}\) is defined \(\left.\left.\wedge M^{* *} M, \sigma_{0} \neg^{*} \sigma\right]\right\}\)

\section*{outstanding definitions: Arising}

Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0} .\left[\operatorname{Initial}\left(\sigma_{0}\right) \wedge M^{*} M^{\prime}\right.\right.\) is defined \(\left.\left.\wedge M^{\prime *} M, \sigma_{0} \rightarrow{ }^{*} \sigma\right]\right\}\)

\section*{outstanding definitions: Arising}

Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0}\right.\). [ Initial \(\left(\sigma_{0}\right) \wedge M^{*} M^{\prime}\) is defined \(\left.\left.\wedge M^{\prime *} M, \sigma_{0} \rightarrow{ }^{*} \sigma\right]\right\}\)
E.g., Arising(MBA2s).heap and Arising(MBA2).heap contain:


\section*{outstanding definitions - Arising}

Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0} .\left[\operatorname{Initial}\left(\sigma_{0}\right) \wedge M^{*} M^{\prime}\right.\right.\) is defined \(\left.\left.\wedge M^{\prime *} M, \sigma_{0} \rightarrow^{*} \sigma\right]\right\}\)

Also, Arising(MBA2s).heap and Arising(MBA2).heap contain:


Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0}\right.\). [ Initial \(\left(\sigma_{0}\right) \wedge M^{*} \mathrm{M}^{\prime}\) is defined \(\left.\left.\wedge \mathrm{M}^{\prime *} \mathrm{M}, \sigma_{0} \rightarrow{ }^{*} \sigma\right]\right\}\)

But the following is in Arising(MBA2).heap but is not in Arising(MBA2s).heap


\section*{outstanding definitions - Arising}

Arising \((M)=\left\{\sigma \mid \exists M^{\prime}, \sigma_{0}\right.\). [ Initial \(\left(\sigma_{0}\right) \wedge M^{*} \mathrm{M}^{\prime}\) is defined \(\left.\left.\wedge \mathrm{M}^{\prime *} \mathrm{M}, \sigma_{0} \rightarrow{ }^{*} \sigma\right]\right\}\)

But the following is in Arising(MBA2). heap but is not in Arising(MBA2s). heap


\section*{Giving meaning to Assertions}
\[
M \vDash A \quad \text { iff } \quad \forall \sigma \in \operatorname{Arising}\left(M^{*} M^{\prime}\right) . \quad M^{*} M^{\prime}, \sigma \vDash A
\]

\section*{Giving meaning to Assertions}

\author{
\(\mathrm{M} \vDash A\) iff \(\quad \forall \sigma \in A r i s i n g\left(M^{*} M^{\prime}\right) . \quad M^{*} M^{\prime}, \sigma \vDash A\)
}
"Lemma"

\section*{Giving meaning to Assertions}
\[
\mathrm{M} \vDash A \quad \text { iff } \quad \forall \sigma \in \operatorname{Arising}\left(\mathrm{M}^{*} \mathrm{M}^{\prime}\right) . \quad \mathrm{M}^{*} \mathrm{M}^{\prime}, \sigma \vDash \mathrm{A}
\]
"Lemma"
- MBA1s \(\vDash\) Pol_1
- MBA1s \(\vDash\) Pol_2
- MBA1s \(\vDash\) Pol_4
- MBA2s \(\vDash\) Pol_1
- MBA2s \(\vDash\) Pol_2
- MBA2s \(\vDash\) Pol_4

Proof sketches are "holistic".
Proof sketches use more framing notions, and require frames are self-framing.

\section*{Entailments}

\section*{Definitions}
- \(M \vDash A \subseteq A^{\prime}\) iff \(\quad \forall \sigma \in \operatorname{Arising}(M)\). \(\left[M, \sigma \vDash A \rightarrow M, \sigma \vDash A^{\prime}\right]\)
- \(M \vDash A \sqsubseteq A^{\prime}\) iff \(M \vDash A \rightarrow M \vDash A^{\prime}\)

\section*{Entailments}

Definitions
- \(M \vDash A \subseteq A^{\prime}\) iff \(\forall \sigma \in \operatorname{Arising}(M)\). \(\left[M, \sigma \vDash A \rightarrow M, \sigma \vDash A^{\prime}\right]\)
- \(M \vDash A \sqsubseteq A^{\prime}\) iff \(M \vDash A \rightarrow M \vDash A^{\prime}\)

Facts
- \(M \vDash A \subseteq A^{\prime}\) implies \(M \vDash A \sqsubseteq A^{\prime}\)
- \(M \vDash A \sqsubseteq A^{\prime}\) does not imply \(M \vDash A \subseteq A^{\prime}\)
\(\bigcirc M \vDash\left(\bullet A \rightarrow A^{\prime}\right) \sqsubseteq\left(A^{\prime} \rightarrow \circ A\right)\)

\section*{Entailments}

Definitions
- \(M \vDash A \subseteq A^{\prime}\) iff \(\forall \sigma \in \operatorname{Arising}(M)\). \(\left[M, \sigma \vDash A \rightarrow M, \sigma \vDash A^{\prime}\right]\)
- \(M \vDash A \sqsubseteq A^{\prime}\) iff \(M \vDash A \rightarrow M \vDash A^{\prime}\)

Facts
- \(M \vDash A \subseteq A^{\prime}\) implies \(M \vDash A \sqsubseteq A^{\prime}\)
- \(M \vDash A \sqsubseteq A^{\prime}\) does not imply \(M \vDash A \subseteq A^{\prime}\)
- \(M \vDash\left(\bullet A \rightarrow A^{\prime}\right) \sqsubseteq\left(A^{\prime} \rightarrow \circ A\right)\)
- \(M \vDash A @ S\) and \(M \vDash S \subseteq S^{\prime}\) imply \(M \vDash A @ S^{\prime}\) ?
- \(\mathrm{M}, \sigma \vDash(\bullet A) @ S \quad i m p l y \mathrm{M} \vDash \bullet(A @ S)\) ?

\section*{Entailments}

Definitions
- \(M \vDash A \subseteq A^{\prime}\) iff \(\forall \sigma \in \operatorname{Arising}(M)\). \(\left[M, \sigma \vDash A \rightarrow M, \sigma \vDash A^{\prime}\right]\)
- \(M \vDash A \sqsubseteq A^{\prime}\) iff \(M \vDash A \rightarrow M \vDash A^{\prime}\)

Facts
- \(M \vDash A \subseteq A^{\prime}\) implies \(M \vDash A \sqsubseteq A^{\prime}\)
- \(M \vDash A \sqsubseteq A^{\prime}\) does not imply \(M \vDash A \subseteq A^{\prime}\)
\(\bigcirc M \vDash\left(\bullet A \rightarrow A^{\prime}\right) \sqsubseteq\left(A^{\prime} \rightarrow \circ A\right)\)

\section*{Entailments}

Definitions
- \(M \vDash A \subseteq A^{\prime}\) iff \(\forall \sigma \in \operatorname{Arising}(M)\). \(\left[M, \sigma \vDash A \rightarrow M, \sigma \vDash A^{\prime}\right]\)
- \(M \vDash A \sqsubseteq A^{\prime}\) iff \(M \vDash A \rightarrow M \vDash A^{\prime}\)

Facts
- \(M \vDash A \subseteq A^{\prime}\) implies \(M \vDash A \sqsubseteq A^{\prime}\)
- \(M \vDash A \sqsubseteq A^{\prime}\) does not imply \(M \vDash A \subseteq A^{\prime}\)
- \(M \vDash\left(\bullet A \rightarrow A^{\prime}\right) \sqsubseteq\left(A^{\prime} \rightarrow \circ A\right)\)
- \(M \vDash A @ S\) and \(M \vDash S \subseteq S^{\prime}\) does not imply \(M \vDash A @ S\)
- We call \(A\) monotonic, if \(M, \sigma \vDash A @ S\) and \(M, \sigma \vDash S \subseteq S^{\prime}\) imply \(M, \sigma \vDash A @ S^{\prime}\)
- If A monotonic, then \(M, \sigma \vDash(\bullet A) @ S\) and \(M, \sigma \vDash S^{\prime}=A l l o c a t e d\) imply \(\quad M, \sigma \vDash \bullet\left(A @\left(S u\left(A l l o c a t e d \backslash S^{\prime}\right)\right)\right)\)

\section*{Example2: DAO - simplified}

DAO, a "hub that disperses funds"; (https://www.ethereum.org/dao). In a simplified form it allows clients to contribute and retrieve their funds (by calling payIn (...) and repay()).

\section*{Example2: DAO - simplified}

DAO, a "hub that disperses funds"; (https://www.ethereum.org/dao). In a simplified form it allows clients to contribute and retrieve their funds (by calling payIn (...) and repay()).
```

Pol_DAO_withdraw
三
\forall cl:External. $\forall d: D A O . ~ \forall . n ’: N a t . ~$
[cl.Calls(d.repay()) $\wedge \circ(c l . C a l l s(d . p a y I n(n))$
$\wedge \neg(0$ cl.Calls(d.repay ())
\rightarrow
d.ether $\geqq \mathrm{n} \wedge \bullet(\mathrm{d} . \mathrm{Calls}(\mathrm{cl} . \operatorname{send}(\mathrm{n}))$]

```

\section*{Example2: DAO - simplified}

DAO, a "hub that disperses funds"; (https://www.ethereum.org/dao). In a simplified form it allows clients to contribute and retrieve their funds (by calling payIn (...) and repay ()).
```

Pol_DAO_withdraw
\doteq
$\boldsymbol{\forall}$ cl:External. $\forall \mathrm{dd}: \mathrm{DAO}$. $\boldsymbol{\forall} . \mathrm{n}^{\prime}:$ Nat.
[cl.Calls(d.repay()) ^○(cl.Calls(d.payIn(n))
$\wedge \neg(\circ \mathrm{cl} . C a l l s($ d.repay ())
\rightarrow
d.etheræn $\wedge \bullet(d . C a l l s(c l . s e n d(n))]$

```

This says: If a client cl asks to be repaid (cl.Calls(d.repay () ) and in the past they had contributed ( ( cl.Calls(d.payIn(n))) and not withdrawn their contribution ( \(\neg(\mathrm{o}\) cl.Calls(d.repay () )), then the DAO will have enough funds (d.ether®n) and will send the money to client (• d.Calls(cl.send(n ))).

\section*{Example2: DAO continued}

Vulnerability: Through repeated calls of a buggy version of repay(), a client could deplete all funds of the DAO and thus the DAO could not repay its other clients.

\section*{Example2: DAO continued}

Vulnerability: Through repeated calls of a buggy version of repay(), a client could deplete all funds of the DAO and thus the DAO could not repay its other clients.
```

Pol_DAO_withdraw
三
\forall cl:External. \foralld:DAO. V.n:Nat.
[cl.Calls(d.repay()) ^○(cl.Calls(d.payIn(n))
\wedge\neg(ocl.Calls(d.repay())
->
d.ether\geqqn ^ \bullet (d.Calls(cl.send(n))]

```

\section*{Example2: DAO continued}

Vulnerability: Through repeated calls of a buggy version of repay(), a client could deplete all funds of the DAO and thus the DAO could not repay its other clients.
```

Pol_DAO_withdraw
\equiv
\forall cl:External. \foralld:DAO. \forall.n:Nat.
[cl.Calls(d.repay()) ^○(cl.Calls(d.payIn(n))
\wedge\neg(ocl.Calls(d.repay())
d.ether\geqqn ^ \bullet (d.Calls(cl.send(n))]

```

This specification avoids the vulnerability: A contract which satisfies Pol_DAO_withdraw will always be able to repay all its customers.

\section*{Example2: DAO continued}

Vulnerability: Through repeated calls of a buggy version of repay(), a client could deplete all funds of the DAO and thus the DAO could not repay its other clients.
```

Pol_DAO_withdraw
\#
\forall cl:External. \foralld:DAO. \forall.n:Nat.
[cl.Calls(d.repay()) ^○(cl.Calls(d.payIn(n))
\wedge ᄀ(o cl.Calls(d.repay())
d.ether\geqqn ^ \bullet (d.Calls(cl.send(n))]

```

This specification avoids the vulnerability:
A contract which satisfies Pol_DAO_withdraw will always be able to repay all its customers.

\section*{Example2: a possible classical spec}

Assume that the DAO keeps a directory of contributions, and require:
R1: that the directory is compatible with the amount of ether kept in the DAO, and
R2: that withdraw reduces the ether but that amount.

\section*{Example2: a possible classical spec}

Assume that the DAO keeps a directory of contributions, and require:
R1: that the directory is compatible with the amount of ether kept in the DAO, and
R2: that withdraw reduces the ether but that amount.

R1: \(\forall \mathrm{d}: \mathrm{DAO}\). d.ether \(=\sum_{\mathrm{cl} \text { such that } \mathrm{d} . \text { directory (cl) defined }} \mathrm{d}\). directory \((\mathrm{cl})\)

\section*{Example2: a possible classical spec}

Assume that the DAO keeps a directory of contributions, and require:
R1: that the directory is compatible with the amount of ether kept in the DAO, and
R2: that withdraw reduces the ether but that amount.

R1: \(\forall d: D A O\). d.ether \(=\sum_{c 1}\) such that d.directory (cl) defined d. directory (cl)
R2: cl:External \(\wedge\) d:DAO ^ n:Nat \(\wedge\) d.directory(cl)=n
\{d.repay() ^ caller=cl\}
d.directory(cl)=0 \(\wedge\) d.Calls(cl.send(n))

\section*{Example2: a possible classical spec}

Assume that the DAO keeps a directory of contributions, and require:
R1: that the directory is compatible with the amount of ether kept in the DAO, and
R2: that withdraw reduces the ether but that amount.

R1: \(\forall d: D A O\). d.ether \(=\sum_{c 1}\) such that d.directory (cl) defined d. directory (cl)
R2: \(\mathrm{cl}:\) External \(\wedge \mathrm{d}: D A O \wedge \mathrm{n}:\) Nat \(\wedge\) d.directory \((\mathrm{cl})=\mathrm{n}\)
\(\{d . r e p a y() \wedge\) caller=cl \}
d.directory(cl)=0 \(\wedge\) d.Calls(cl.send(n))

R2 says: If client cl has m tokens (d. directory(cl)=n) and asks to be repaid (cl calls d.repay ()) then all his tokens will be sent (d.Calls(cl.send(n))) and no tokens will be left (d. directory(cl)=0).
Together with R2, this spec avoids the vulnerability, provided the attack goes through the function repay.

\section*{Example2: classical spec vs holistic spec}

Assume that the DAO keeps a directory of contributions, and require:
R1: that the directory is compatible with the amount of ether kept in the DAO, and
R2: that withdraw reduces the ether but that amount.

R1: \(\forall d: D A O\). d.ether \(=\sum_{c 1}\) such that d.directory (cl) defined d.directory (cl)
R2:
\[
\begin{aligned}
& \text { cl:External } \wedge \text { d:DAO } \wedge \text { n:Nat } \wedge \text { d.directory }(\mathrm{cl})=\mathrm{n} \\
& \{\text { d.repay }() \wedge \text { caller }=\mathrm{cl}\} \\
& \text { d.directory }(\mathrm{cl})=0 \wedge \text { d.Calls(cl.send }(\mathrm{n}))
\end{aligned}
\]

This classical specification is insufficient to avoid the vulnerability in general, as it does not prevent other functions from affecting the contents of d.directory.

To avoid the vulnerability in general, we would need to either manually inspect the specification of all the functions in the DAO, or add another holistic spec, promising, eg that only calls by cl can affect the contents of \(d\) directorv(cl)

\section*{Example3: ERC20 - simplified}
a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/ ERC20 Token Standard); allows clients to buy and transfer tokens, and to designate other clients to transfer on their behalf.

\section*{Example3: ERC20 - simplified}
a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/ ERC20 Token Standard); allows clients to buy and transfer tokens, and to designate other clients to transfer on their behalf.
```

Pol_ERC20_withdraw
三
\forall e:ERC20. \forall cl: Client.
[e.balance(cl) <e.balance(cl)pre)
->
[o (\existscl': Client. \existsm: Nat.
[cl.Calls(e.transfer(cl',m)))
v
\existscl": Client.
Authorized(c,cl") ^ c'.Calls(e.transferFrom(c,cl',m))]

```

\section*{Example3: ERC20 - simplified}
a popular standard for initial coin offerings. (https://theethereum.wiki/w/index.php/ ERC20 Token Standard); allows clients to buy and transfer tokens, and to designate other clients to transfer on their behalf.
```

Pol_ERC20_withdraw
三
\forall e:ERC20. \forall cl: Client.
[e.balance(cl) <e.balance(cl)pre)
\rightarrow
[o (\existscl': Client. \existsm: Nat.
[cl.Calls(e.transfer(cl',m)))
v
\existscl": Client.
Authorized(c,cl") ^ c".Calls(e.transferFrom(c,cl',m))]

```

This says: A client's balance decreases only if that client, or somebody authorised by that client, made a payment.

\section*{Example3: ERC20 - Authorized}

\section*{Example3: ERC20 - Authorized}

Authorized(c, c') \(\fallingdotseq \exists m:\) Nat. ○(c.Calls(e.approve (c', m) ) )

\section*{Example3: ERC20 - Authorized}

Authorized(c, c') \(\doteq \exists \mathrm{m}:\) Nat. \(\circ\left(\mathrm{c} . C a l l s\left(e . \operatorname{approve}\left(c^{\prime}, \mathrm{m}\right)\right)\right)\)

This says: A client cl' is authorised by another client cl, iff at some time in the past the latter informed the tokenholder that it authorised the former.

\section*{Example3: ERC20 - classical spec}

\section*{Example3: ERC20 - classical spec}
e:ERC20 \(\wedge\) e.balance (cl) >m \(\wedge\) e.balance (cl') \(=\mathrm{m}^{\prime} \wedge \mathrm{cl} \neq \mathrm{cl}\) '
\[
\{\text { e.transfer }(\mathrm{cl}, \mathrm{~m}) \wedge \text { Caller=cl\} }
\]
e.balance \((c l)=e . b a l a n c e(c l)_{\text {pre }}-m \wedge\) e.balance \(\left(c l^{\prime}\right)\) pre \(=m^{\prime}+m\)
e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') = m’ ^clキcl' \(\wedge\) Authorized (e, cl, cl")
\[
\{\text { e.transferFrom (cl',m) ^ Caller=cl"\} }
\]
e.balance \((c l)=\) e.balance \((c l)_{\text {pre }}-m \wedge\) e.balance \(\left(c l^{\prime}\right)_{\text {pre }}=m^{\prime}+m\)
e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') = m'
\[
\{\text { e.allow (cl') ^Caller=cl \} }
\]

Authorized (e, cl, cl")

\section*{Example3: ERC20 - classical vs holistic}
```

e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') = m' ^ cl\not=cl'
{e.transfer(cl'm) ^ Caller=cl}
e.balance(cl) = e.balance(cl)pre -m ^ e.balance(cl')}\mp@subsup{)}{\mathrm{ pre }}{}=m\prime+
e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') = m' ^ cl\not=cl'
^ Authorized (e,cl,cl")
{e.transferFrom(cl'm) ^ Caller=cl'}
e.balance(cl) = e.balance(cl)pre -m ^ e.balance(cl')}\mp@subsup{)}{\mathrm{ pre }}{}=m\prime+
e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') = m'
{e.allow(cl') ^ Caller=cl }

```

Authorized (e, cl, cl")

\section*{Example3: ERC20 - classical vs holistic}
```

e:ERC20 ^ e.balance(cl) >m ^ e.balance(cl') $=m \times$ cl $\neq c l \prime$
$\{$ e.transfer (cl',m) ^ Caller=cl\}
e.balance(cl) $=$ e.balance(cl) $)_{\text {pre }}-m \wedge$ e.balance(cl') $)_{\text {pre }}=m^{\prime}+m$
e:ERC20 \wedge e.balance $(c l)>m \wedge$ e.balance $\left(c l^{\prime}\right)=m \times c l \neq c l '$
\wedge Authorized (e, cl, cl")
\{ e.transferFrom (cl'm) ^Caller=cl'\}
e.balance $(c l)=e . b a l a n c e(c l)_{\text {pre }}-m \wedge$ e.balance(cl') $)_{\text {pre }}=m^{\prime}+m$
$e: E R C 20 \wedge$ e.balance(cl) $>m \wedge$ e.balance $\left(c l^{\prime}\right)=m^{\prime}$
\{e.allow (cl') ^ Caller=cl \}
Authorized (e, cl, cl")

```

The above does not determine whether there are other means to transfer tokens, or to authorise clients. For this we would need to inspect the classic specs of all the functions, or add holistic aspects

\section*{Example4: DOM attenuation}


\section*{Example4: DOM attenuation}

\section*{Access to any Node gives access to complete tree}

Wrappers have a height;
Access to Wrapper w allows modification of Nodes under the w . hei ght-th parent and nothing else

:Nod
p:..

\title{
:Node
}
p:.


\section*{Example4: DOM attenuation - 2}


\section*{Example4: DOM attenuation - 2}


\section*{Example4: DOM attenuation - 2}

Pol_W 引
VS:Set. \(\forall n d: N o d e .[\)
[ [ Access(s,nd) \(\rightarrow\) s:Node \(\vee\) s:Wrapper ^ Distance(s.node,nd)>s.height ]
\(\neg((\bullet\) Changes(nd.p))@S )]
where
Distance(nd,nd')=k iff \(\exists \mathrm{j} .\left[\right.\) nd.parentk \(=\) nd'.parentj \({ }^{j}\)


\section*{Example4: DOM attenuation - 3}


\section*{Example4: DOM attenuation - 3}


\section*{Example4: DOM attenuation - 3}

Pol_W 引
VS:Set. \(\forall n d: N o d e .[\)
[ [ Access(s,nd) \(\rightarrow\) s:Node \(\vee\) s:Wrapper ^ Distance(s.node,nd)>s.height ]
\(\rightarrow\)
ᄀ (( •Changes(nd.p))@S )]

\section*{Example4: DOM attenuation - 3}

Pol_W 引
VS:Set. \(\forall n d: N o d e .[\)
[ [ Access(s,nd) \(\rightarrow\) s:Node \(\vee\) s:Wrapper ^ Distance(s.node,nd)>s.height ]
\(\rightarrow\)
ᄀ ( (•Changes(nd.p))@S )]
This means:
A set of objects where any object which can directly access nd is either a Node, or a Wrapper with height smaller than its distance to nd, is insufficient to modify nd.p

:Node

\section*{Example4: DOM attenuation - use}
function mm(unknwn) \{
n1:=Node (...) ; n2:=Node (n1,...) ; n3:=Node (n2,...) ; n4:=Node (n3,...); n2.p:="robust"; n3.p:="volatile"; w=Wrapper(n4,1); unknwn.untrusted(w);

\section*{Example4: DOM attenuation - use}
function mm(unknwn) \{
n1:=Node (...) ; n2:=Node (n1, ...) ; n3:=Node (n2, ...) ; n4:=Node (n3, ...) ; n2.p:="robust"; n3.p:="volatile"; w=Wrapper (n4,1); unknwn.untrusted (w);

n2:No de
:Node p:

Node p:

\section*{Example4: DOM attenuation - use}
function mm(unknwn) \{
n1:=Node (...) ; n2:=Node (n1, ...) ; n3:=Node (n2, ...) ; n4:=Node (n3, ...) ; n2.p:="robust"; n3.p:="volatile"; w=Wrapper (n4,1) ; unknwn.untrusted (w);

With Pol_W we can show that despite the call to unknown object, at this point: n2.p:="robust"

\section*{Summary of our Proposal}
\(A \quad:=e>e|e=e| P(e 1, . . e n) \mid \ldots\)
\(|A \rightarrow A| A \wedge A|\exists x . A| \ldots\)
| Access(x,y) permission
| Changes(e) authority
|•A | \(\circ \mathrm{A}\) ..... time
\| A @ S space
| x.Calls(y,m,z1,..zn)call

Initial( \(\sigma\) )
\(M, \sigma \vDash A\)
Arising(M)

\section*{Functional}

\section*{Robust}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions

\section*{Functional}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions
\(M \vDash A\{\) code \(\} A^{\prime}\)
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions

\section*{Functional}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

\section*{Robust}
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions
\[
M \vDash A
\]
\(M \vDash A\{\) code \(\} A^{\prime}\)

\section*{Functional}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

\section*{Robust}
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions
\[
M \vDash A
\]
\(M \vDash A\{\) code \(\} A^{\prime}\)

\section*{Functional}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions
\(M \vDash A\{\) code \(\} A^{\prime}\)

\section*{Robust}
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions
\[
M \vDash A
\]
\(M \vDash \bullet A \rightarrow A^{\prime}\)

\section*{Functional}
- services offered by objects/ data structure to clients,
- what will happen, under correct use
- sufficient conditions

\section*{Robust}
- preserved properties of the objects/data structure
- what will not happen, under arbitrary use
- necessary conditions
\[
\begin{aligned}
& M \vDash A \\
& M \vDash \bullet A \rightarrow A^{\prime} \\
& M \vDash A^{\prime} \rightarrow \neg(\bullet A)
\end{aligned}
\]

\section*{Classical Specification}

\section*{Holistic Specification}
- fine-grained
- per function
- ADT as a hole
- emergent behaviour

Which one is more accurate? Classical.

Which one is more expressive?
For a "closed" ADT (no functions can be added, all functions have classical specs, and ghost state has known representation), the holistic specs can be proven.

When do we need holistic specs?
* When the holistic aspect more important
(eg cannot lose money unless I authorised).
* When we do not have "closed ADTs.
* When we want to reason in an open world (eg DOM attenuation)

\section*{Classical Specification}

\section*{Holistic Specification}
- fine-grained
- per function
- ADT as a hole
- emergent behaviour

Which one is more accurate? Classical.

Which one is more expressive?
For a "closed" ADT (no functions can be added, all functions have classical specs, and ghost state has known representation), the holistic specs can be proven.

When do we need holistic specs?
* When the holistic aspect more important
(eg cannot lose money unless I authorised).
* When we do not have "closed ADTs.
* When we want to reason in an open world (eg DOM attenuation)```

