
You Can Have It All
Abstraction and Good Cache Performance

Juliana Franco
Imperial College London

United Kingdom
j.vicente-franco@imperial.ac.uk

Martin Hagelin∗
Dirac
Sweden

Tobias Wrigstad
Uppsala University

Sweden
tobias.wrigstad@it.uu.se

Sophia Drossopoulou
Imperial College London

United Kingdom
s.drossopoulou@imperial.ac.uk

Susan Eisenbach
Imperial College London

United Kingdom
s.eisenbach@imperial.ac.uk

Abstract
On current architectures, the optimisation of an application’s
performance often involves data being stored according to
access affinity — what is accessed together should be stored
together, rather than logical affinity — what belongs together
logically stays together. Such low level techniques lead to
faster, but more error prone code, and end up tangling the
program’s logic with low-level data layout details.

Our vision, which we call SHAPES— Safe, High-level, Ab-
stractions for oPtimisation of mEmory cacheS — is that the
layout of a data structure should be defined only once, upon
instantiation, and the remainder of the code should be layout
agnostic. This enables performance improvements while also
guaranteeing memory safety, and supports the separation
of program logic from low level concerns. In this paper we
investigate how this vision can be supported by extending a
programming language.
We describe the core language features supporting this

vision: classes can be customized to support different lay-
outs, and layout information is carried around in types; the
remaining source code is layout-unaware and the compiler
emits layout-aware code. We then discuss our SHAPES im-
plementation through a prototype library, which we also
used for preliminary evaluations. Finally, we discuss how
the core could be expanded so as to deliver SHAPES’s full po-
tential: the incorporation of compacting garbage collection,

∗Work done while at Uppsala University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133861

ad hoc polymorphism and late binding, synchronization of
representations of different collections, support for dynamic
change of representation, etc.

CCS Concepts • Software and its engineering → Sec-
ondary storage; Object oriented languages; Data types
and structures; Extra-functional properties;

Keywords object layout
ACM Reference Format:
Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drosso-
poulou, and Susan Eisenbach. 2017. You CanHave It All: Abstraction
and Good Cache Performance. In Proceedings of 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!’17). ACM, New York,
NY, USA, 20 pages. https://doi.org/10.1145/3133850.3133861

1 Introduction
When the speed of memory accesses rivalled that of the
CPU, the perception that memory accesses are “for free” was
a valid one. However, today, CPU speeds greatly exceed
memory bandwidths on most platforms, to the point where
computation is almost for free, and the real cost of execu-
tion, both in terms of speed and power consumption, is in
accessing memory (c.f. the memory wall [Wulf and McKee
1995]).

For decades, to hide this latency, cache memories or hier-
archies of cache memories have been part of computer archi-
tectures, exploiting the temporal and spatial locality inherent
in most programs. To improve a program’s performance, pro-
grammers must minimise cache misses by understanding
“what goes into cache” when data is loaded from memory.
Writing programs that leverage cache effects requires the
programmer to keep a mental image of the high-level pro-
gram logic as well as the low level memory concerns, and is
at odds with mainstream programming abstractions.

For concreteness, the table below shows access times and
sizes for the machine we used in our evaluation on which
we report in Appendix A — an Intel i7-3770 (Ivy Bridge) [Ivy-
Bridge 2016]. Accessing RAM is 42× slower than accessing
the fastest cache.

https://doi.org/10.1145/3133850.3133861
https://doi.org/10.1145/3133850.3133861

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

Slowdown
Access Time Absolute Relative Size

L1 5 cycles – – 32 Kb
L2 12 cycles ×2,4 ×2,4 256 Kb
L3 30 cycles ×6 ×2,5 8 Mb

RAM 210 cycles ×42 ×7 16 GB
When a value is loaded from main memory, it, and some
surrounding values (a cache line), are copied to the cache.
This makes subsequent accesses to any of these values sig-
nificantly faster. Loading a value is a cache hit if the value
is in cache and a cache miss, if it is not. Furthermore, if the
hardware detects a pattern in the addresses loaded (e.g., 10,
26, 42, 58. . .), it will speculatively load — prefetch — data
into cache in time for subsequent access. Such patterns arise
easily when iterating over arrays, but not necessarily with
pointer-based data structures.

Figure 1 shows how access time is affected by fragmenta-
tion, which impacts both how much of a cache line is useful
and whether access patterns arise. The program creates a
linked list of 107 nodes in allocation order but with some
probability of “garbage” allocated between each node. It then
iterates over the list, accessing 4 adjacent fields in each node.
We ran this program and measured the iteration times for
varying size of of objects (i.e. amount of “garbage” per node).

As expected, more fragmentation means slower iteration.
Moreover, the larger the part of the node not used, the slower
the iteration, as cache utilisation drops. So objects accessed
consecutively should be allocated contiguously and fields
of the same object that are not used together should not be
adjacent in memory.

Like on our testmachine, caches are typicallymuch smaller
than many data structures in programs. This means that to
get good cache utilisation, a programmer has to carefully
configure data structures in a way that ignores the ideas
about data abstraction developed over the last 50 years and
may even require a rewrite to move to a machine with a
different architecture.
A programmer optimising for memory performance will

find herself using arrays for data structures – clearly not the
appropriate abstraction for problems that require complex
linked structures. Also, in some managed languages such
as Java or Scala, arrays are arrays of pointers (i.e. they store
pointers to values or objects) rather than arrays of values

Figure 1. Impact of fragmentation on iteration over objects
of different sizes. Smaller is better.

(i.e. they store the actual values or objects), and therefore
arrays do not guarantee good cache behaviour. Splitting an
object into primitive constituents (if possible) overcomes
this, at the cost of convoluted code (as we shall soon see).
Even with support for arrays storing objects, splitting is

useful to address cache pollution — fetching unused data into
cache. Programmers commonly transform arrays of structs
(objects) into structs of arrays, deconstructing the objects
of an array into smaller parts, stored separately but used
together. This optimisation brings even more complexity
than using arrays to hold entire objects, and is good for
iteration but bad for random access.

1.1 The SHAPES Concept
SHAPES has been designed as an extension for high-level, im-
perative, object-oriented programming languages and aims
to facilitate the development of cache friendly code, while
keeping important high-level properties, such as:
– type safety and memory safety,
– separation of layout and program logic,
– usual reasoning about pointer-based data structures,
– code reusability, and
– notions of object and object identity.
The goal of SHAPES is to make it possible to write a data
structure once, and then tune it — by changing how objects
are placed and laid out internally — to fit different usage sce-
narios and deployment onto different hardware. Changing
from one layout to another should be as simple as changing
a layout specification, written separately from the algorithm,
and then a quick recompile, delegating to the compiler the
hard work of updating all accesses to the objects correctly.

In order to achieve this, SHAPES extends the host language
with pools, layouts, and class parameterization. Pools are con-
tiguous memory regions into which objects can be grouped.
Layouts describe how objects are organized in these pools,
and in particular whether and how they are split. Classes
take pool parameters, which determine how their instances
will be allocated to pools. Moreover, SHAPES relies on the
existence of a runtime that supports pools as described above,
and compacting garbage collection, which will be used to
reduce fragmentation of pools, often caused by dropping
references to objects.

Contributions In this paper we outline a core SHAPES
language, we describe a prototype library which supports
the SHAPES features, we demonstrate the benefits of the
use of the SHAPES library in terms of some short programs,
and finally we discuss how SHAPES would fit into a full
programming language, and how the original SHAPES remit
can be expanded.

2 Core SHAPES
Managed languages abstract memory away, voiding the need
for programmers to worry about allocation and reclamation,

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

Table 1. Different layouts for the same data structure. Code and representation in memory. The init method of each class
represents the class constructor. White rectangles represent meta-data and coloured rectangles represent the “objects” values.

Array of Structs (AoS) Struct of Arrays (SoA) Struct of Arrays of Structs (SoAoS)
class Element

■f1: int

■f2: int

■f3: bool

var aos = new Element[N]

class Elements

■f1: int[]

■f2: int[]

■f3: bool[]

var soa = new Elements(N)

class Elements

■f1: int[]

f2f3: SubElement[]

var soaos = new Ele

class SubElement

■f2: int

■f3: bool

ments(N)

Element Element

Element ElementElement Element

def init(x: int, y: int,

z: bool): void

this.f1 = x

this.f2 = y

this.f3 = z

def init(N: int): void

soa.f1 = new int[N]

soa.f2 = new int[N]

soa.f3 = new bool[N]

// requires f1!=null && f2!=null

// && f3!=null

def initElem(i: int, x: int, y: int,

z: int): void

this.f1[i] = x

this.f2[i] = y

this.f3[i] = z

class Elements

def init(N: int): void

this.f1 = new int[N]

this.f2f3 = new SubElement[N]

// requires f1 != null && f2f3 != null

def initElem(i: int, x: int, y: int,

z: int): void

this.f1[i] = x

this.f2f3[i].f2 = y

this.f2f3[i].f3 = z

def m(e: Element): void

e.f3 = true

def main(): void

var aos = new Element[N]

for i ←[0 .. N] do

aos[i] =

new Element(i, 0, false)

for i ←[0 .. N] do

m(aos[i])

def m(es: Elements, i: int): void

es.f3[i] = true

def main(): void

var soa = new Elements(N)

for i ←[0 .. N] do

soa.initElem(i, i, 0, false)

for i ←[0 .. N] do

m(soa, i)

def m(es: Elements, i: int): void

es.f2f3[i].f3 = true

def main(): void

var soaos = new Elements(N)

for i ←[0 .. N] do

soaos.initElem(i, i, 0, false)

for i ←[0 .. N] do

m(soaos, i)

and excluding errors like double-free and dangling pointers.
The downside of this abstraction is that a programmer has
less (or no) control over how a program’s data is placed in
memory. In unmanaged languages like C andC++, a program-
mer can malloc a chunk of memory, allocate several objects
inside that space, and access them either using pointers, or
as if accessing elements of an array. This type of flexibility
enables layout optimisations, but at the cost of more brittle
software (e.g. memory unsafety) and higher maintenance
costs. When writing code in high-level languages, the pro-
grammer often has no other option than using arrays of
values to control object layout.

In this Section, we discuss the advantages of a good mem-
ory layout, we survey some of the difficulties in writing code
that exploits cache locality with arrays, and explain how

we address them in SHAPES. We use a small running ex-
ample of a collection of objects (Elements). Table 1 shows
three possible layouts for this data structure using arrays of
values to ensure that all Elements are allocated contiguously.
This program creates an array of Elements and iterates over
it twice. First, initialising all the Elements, and then calling
some method m on each object. The allocation of Elements in
an array of objects will guarantee that they will be contigu-
ous in memory. As discussed before, this is advantageous
because when reading the first Element (aos[0]), more adja-
cent Elements will be fetched to cache.

Figure 2a shows a cache line being fetched to cache, when
the processor first touches the aos data of Table 1, invoking
the m method. We assume an architecture with cache lines
of 64 bytes, as in the machine we used for our experiments,

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

cache line: 64 bytes

cache line: 64 bytes

(a) Contents of cache line, upon iteration on aos, when i=1

cache line: 64 bytes

(b) Contents of cache line, upon iteration on soa, when i=1.

Figure 2. Cache lines for different layouts.

and we depict which data is fetched to cache. Note that we
expect an int to fit in 8 bytes and a bool to fit in 1 (ignoring
padding for simplicity). The objects in aos[0], aos[1] and
aos[2] will be fetched. Thus, while the first loop iteration is
expensive, due to a cache miss, the next two loop iterations
are almost for free, due to cache hits. For a large number of
objects, N, this will bring performance improvements.

Even more advantageous for this code in particular, is the
layout in the second column of Table 1. Once the processor
touches the array f3 for the first time — and note this is the
only one needed for this part of the program — it can fetch
many more boolean values. It fetches only the “f3 fields”,
resulting in many more cache hits in the next loop iterations.

2.1 Why Arrays Are Insufficient
Absence of Value Semantics Many high-level languages,
such as Java or Scala, do not support arrays with value se-
mantics, i.e., arrays contain pointers to objects, rather than
the objects themselves. This means that none of the layouts
depicted in Table 1 are possible, and that the programmer
has no control on data placement — the location of objects
in memory will depend on the allocator, or on the garbage
collector.1

Unsafe Splitting Once an object is split into more than
one array, it becomes possible to inadvertently reassemble
the wrong parts of an object, thus creating an object out-of-
thin-air. For example, the creation of a Frankenstein object
is created by reassembling: aos.f1[0], aos.f2[0] and aos.f3
[1].

Pointer-BasedData StructuresMapped toArrays Some
of the most common data structures, e.g. Lists, Trees, and
Stacks rely on the existence of pointers. Mapping such data
structures to arrays is non-trivial [Vollmer et al. 2017], given
that a pointer to an object is the array(s) in which the ob-
ject is allocated, and an offset. Even in low-level languages,
such mappings require some non-trivial pointer manage-
ment. Consider, for example, the SoA data structure from Ta-
ble 1. Adding a fourth field with a pointer to another Element
is tricky if such an element is also split over several different
arrays. Additional complications arise when reorganising
1A moving collector might improve locality — or make it worse.

objects in data structures (e.g. sorting, inserting or deleting
objects). Reordering objects in an array is also complex if
they can only be accessed through the array (using an index).

Cost of Growing an Array Holding objects in an array for
locality raises the issue of capacity. When an array reaches
its maximum capacity, it must be re-sized — typically, by
creating a new and bigger array, and copying all the data
from an array to the other — anO (n) operation onn elements,
especially if it involves additional indirection inside of the
objects.

ElementObjectswithDifferent Lifetimes Objects belong-
ing to the same data structure commonly have different life-
times. Arrays holding unreachable objects cause fragmenta-
tion of memory, unless the programmer manually shifts all
the data once each object becomes unreachable. Fragmenta-
tion causes cache misses, and manual memory management
is known to be error prone and unsafe [Jones et al. 2016].

SHAPES We strive to have it all: keep memory abstract
(e.g. no need to worry about how many bytes to allocate, or
when and where to deallocate), without giving up on lay-
out control — simple development and efficient code. We
believe in the run-time doing most of the hard work, such
as providing memory management that keeps relevant parts
of related objects allocated contiguously in memory without
expensive copying of elements and without compromising
memory safety. Programmers can keep a pointer-based ab-
straction, but project it differently onto array-like structures
for different usage scenarios, with minimal effort — without
changing the logic of the program. Compaction and reorder-
ing must be supported for locality and low fragmentation. To
this end, we introduce a notion of pools which are abstract
contiguous regions in which objects can be grouped.
Pools are chunks of memory that allow contiguous allo-

cation of objects. The rationale behind pools is that objects
with high access affinity (frequently used together) should
be placed together for better cache utilisation. In prior work,
pooling separated objects in separate memory pools depend-
ing on their type, time or place of allocation, so that objects
with high access affinity are placed together for better cache
utilisation [Calder et al. 1998; Lattner and Adve 2003]. We
do not intend for SHAPES to use any complex heuristics on
which objects go into each pool. Instead, we require that
pools hold objects of the same type, and we use the knowl-
edge of the programmer to decide for each object which pool
it should be in. Later, we will discuss how we can provide
memory safety, and prevent instances of the same class but
with different layout and placement from being confused.

A SHAPES pool is reminiscent of an array of objects (not
pointers), but also supports object splitting as well as garbage
collection, both to reorder its contents (e.g. to align it with
access patterns) and reduce fragmentation. Figure 3 shows

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

Pool of Elements where objects are not split (AoS).

f1 f2 f3

Element

f1 f2 f3

Record

Cluster

f1 f2

Cluster

Record

f3

Record

Cluster

Cluster Cluster

Record Record Record

Pool of Elements where objects are fully split (SoA).

f1 f2 f3

Element

f1 f2 f3

Record

Cluster

f1 f2

Cluster

Record

f3

Record

Cluster

Cluster Cluster

Record Record Record

Pool of Elements where objects are partially split (SoAoS).

f1 f2 f3

Element

f1 f2 f3

Record

Cluster

f1 f2

Cluster

Record

f3

Record

Cluster

Cluster Cluster

Record Record Record

Figure 3. The layouts from Table 1 transformed into pools.

three different pools, with three different splitting strategies:
AoS, SoA, and SoAoS from Table 1.

A SHAPES pool consists of clusters, which contain se-
quences of records. Records contain sequences of values. A
cluster contains the same data as the arrays of Table 1: the
pool in the AoS column contains a single cluster with all the
Elements allocated contiguously; the pool in the SoA column
contains three clusters, one for each field, one for each array;
and the pool in the SoAoS column contains two clusters, one
for each array, where the first cluster contains all the val-
ues pointed by field f1, and the second cluster all the values
pointed by fields f2 and f3. A record represents a part of, or
an entire object. For example, an object that is not split, as
in the first pool, is a record consisting of fields f1, f2, and f3.
In the third pool, an object is split into two and thus consists
of two records: one in the first cluster, containing the fields
f1, and another in the second cluster, containing the fields
f2 and f3. An important property that we want to ensure
is that records are aligned, that is, parts of the same object
must have the same offset within their clusters.
The pooling mechanism brings a number of advantages,

which help us deal with the problems mentioned above.
Namely, an object is split within the same pool, rather than
in multiple arrays. This property combined with record align-
ment allows us to have references to pooled objects such
that a single value allows calculating all field locations. A
reference contains the address of the pool and the offset of
the object N — the different records of the object can be
found in the offset N of all the pool clusters. This means that
the exact location of a field of a given object at offset N can
always be obtained through simple pointer arithmetic. Natu-
rally, these references will not be visible to the programmer
of the high-level language, in the same way that a memory
pointer in not visible to a Scala/Java programmer.

El
em

en
t

N
od

e

El
em

en
t

N
od

e

El
em

en
t

N
od

e

(a) A LinkedList representation. Each Node points to the next
Node, and to an Element.

El
em

en
t

N
od

e

El
em

en
t

N
od

e

El
em

en
t

N
od

e

f1 f2 f3

(b)A LinkedList of Nodes, allocated in a pool of Nodes without any
splitting, that point to Elements, allocated in a pool of Elements
split into two clusters.

Figure 4. Different layouts for a LinkedList.

Being able to reference a split, pooled object without ad-
ditional indirection simplifies the mapping of pointer-based
data structures onto arrays, such as the one in Figure 4a, to
pools, such as in Figure 4b. From the programmer’s view, ob-
ject allocation can take place “somewhere in memory” (like
normal allocation in e.g. Java), or in a pool. In our example,
we allocate Nodes and Elements in a pool; and rather than
using a “regular” pointer (as in offsets from start of global
memory) from Nodes to Elements, we use a pooling–splitting
aware SHAPES reference, so that splitting is taken into ac-
count. Later we will show how SHAPES can be used in a
high-level language to implement such a data structure.
Pools allow pointers and aliases to point to individual

pooled objects, in contrast to the way most languages allo-
cate objects in arrays. For example, in Rust one can allocate
several objects in an array with value semantics, but ac-
cessing these objects through a mutable reference is rather
complex: While multiple references to immutable structures
are possible, for a mutable reference, one needs to “borrow”
a reference from the array, making the array temporarily in-
accessible. Moreover, while arrays are typically of fixed size,
pools can grow dynamically, allowing addition in constant
time. We explain how we achieve this in Section 3.
Pools are more high-level, powerful and flexible than ar-

rays with value semantics (arrays of objects). To address
reordering of objects in data-structures, changing of access
order in the program, and because of problems with frag-
mentation, we will use a moving garbage collector, which
compacts and reorders pools. This is discussed in Section 4.1.

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

2.2 Layout and Program Logic Are Entangled
Whether writing code in a high-level or low-level language,
if the programmer needs to manually change the layout of
data in memory, then she needs to change the code that uses
(reads and writes) this data. This is visible in Table 1, when
converting an AoS into a Soa and a SoAoS. It changes the
type of the class fields, and the logic of the code that uses
them, as we can see in the init and m methods. Moreover,
in order to split an object of three fields into two records,
one needs to write another class (SubElement). This makes
programming complicated, as the usage of a data structure
can be spread over thousands of lines of code. This also leads
to repeated code, if one needs to use multiple instances of
the same data structure with different layouts. Since layout
optimisation can be platform dependent (e.g. varying cache
configurations), many versions may need to be maintained
differing slightly on layout but with the same program logic.
Because of layout differences, one bug-fixing patch may not
be applicable across versions.
To overcome this issue, SHAPES uses classes parametric

with pools, pools belonging to layouts, and layout declara-
tions describing object splitting. The idea is that decisions
regarding layout are made at class instantiation, and not
class declaration. Thus, the data structure’s code is oblivious
to layout and location. For example, the class Element can be
annotated as follows:

class Element⟨p: [Element]⟩

f1: int

f2: int

f3: bool

def init(x: int, y: int, z: bool): void

this.f1 = x; this.f2 = y; this.f3 = z

Classes are parameterized over pools. The first parameter
binds the location of instances of the class. The remaining pa-
rameters bind other locations of objects pointed by instances
of the class. For example, the class Element takes a single
parameter, denoting the location of its instances, annotated
as a pool holding Elements ([Element]). A location is either
a pool, or the “mixed heap” (like a normal Java heap). The
annotation of the first parameter is optional, as it is the same
as the class itself. An example of a class that takes multiple
parameters is as follows.

class Container⟨loc, elemLoc: [Element]⟩

elem: Element⟨elemLoc⟩

def setField(n: int): void

this.elem.f1 = n

Each container instance will reside in a location it internally
refers to as loc, and will point to Elements allocated in a
location bound by elemLoc. More examples will be given
later, but note that this is similar to how object ownership is
propagated in ownership type systems [Clarke et al. 1998].

In contrast to ownership contexts, pools do dot enforce a
hierarchical decomposition of the object graph.

The Element class is oblivious as to whether its instances
will be allocated in pools, or not, and as to which (if any)
splitting will be used. Thus, its reads and writes to its fields
are unaware of layout decisions. This separation between lay-
out concerns and the program logic allows the programmer
to use this class declaration and change its layout as many
times as needed without changing the code of its methods —
the init method remains exactly the same.

When instantiating an object, the programmer must spec-
ify where it shall be allocated. Naturally, the location of
objects is reflected in their types. Object types consist of a
class name followed by a sequence of pool arguments, where
the first argument denotes the pool where the object will
be allocated, and the remaining, the pools that object may
reach. Objects can be allocated anywhere in memory, using
the keyword heap, or in pools, using the name of a particular
pool. This means that objects may only be created in pools
that were previously created, according to some splitting
strategy. SHAPES requires the host language to be extended
with layout declarations, which define how instances of a
given class can be split.
For example, the programmer can specify different split-

ting strategies for Elements:

Minimal split. All the object fields are allocated together.
layout MinElt: [Element] = rec{f1, f2, f3}

Maximal split. All the object fields are allocated separately.
layout MaxElt: [Element] = rec{f1} + rec{f2} + rec{f3}

Custom split Fields f1 and f2 together; field f3 separately.
layout CustElt: [Element] = rec{f1, f2} + rec{f3}

Layout declarations define how/if objects in pools are split,
and impose any splitting on all objects in a pool into different
records. A layout declaration consists of a type/layout iden-
tifier (MaxElt), the class of objects it holds ([Element]), and
record declarations (recs) defining which fields go together.
For example, a pool of type MaxElt will organize its objects
with maximal split . This pool will be split into three different
clusters, where each cluster contains a sequence of records,
and each record contains a single field. For example, records
of the first cluster contain values of field f1. Creating pools
of different layouts, and allocating an object with customized
split and another with minimal split is done so:
pool elements : CustElement

pool elements' : MaxElt

... new Element⟨elements⟩

... new Element⟨elements'⟩

The function m can be written in SHAPES as follows. This
function is oblivious to the layout of the parameter e, even
though it is applicable to objects with different layouts.

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

⟨p⟩ def m(e: Element⟨p⟩): void

e.f3 = true

def main(): void

pool elems : MinElt

var es = new Element⟨elems⟩[N]

for i ←[0 .. N] do

es[i] = new Element⟨elems⟩(i, 0, false)

for i ←[0 .. N] do

m(es[i])

2.3 Declaration of Pointer-Based Data Structures
As we have discussed previously, mapping pointer-based
data structures to arrays is quite complex. In this Section,
we show how a linked list could be annotated to support
pool allocation. To show how code can be kept clean, we use
typedef-like synonyms. The code looks as follows.

class List⟨x1, x2: [Node], x3: [Element]⟩

synonym PooledNode = Node⟨x2, x3⟩

synonym PooledElement = Element⟨x3⟩

head: PooledNode

def addFirst(elem: PooledElement): void

this.head = new PooledNode(elem, this.head)

def get(index: int): PooledElement

var cur = this.head

var i = 0

while (cur != null && i < index)

cur = cur.next; i++

return (cur != null ? cur.elem : null)

def removeFirst(): void

this.head = this.head.next

class Node⟨x1, x2: [Element]⟩

elem: Element⟨x2⟩

next: Node⟨x1, x2⟩

def init(elem: Element⟨x2⟩, next: Node⟨x1, x2⟩): void

this.elem = elem; this.next = next

Note that nowhere in the List class declaration is there a
reference to pool layout. The developer of a data structure
does not need to consider, at all, where and how constituent
objects will be allocated2. As discussed before, this is due
to class parametricity and because class parameters are an-
notated with abstract types, delegating layout decisions to
use-site, and instantiation-time. The only extra labour for the
programmer is at the type level. The type information can
be used at compile time, or dynamically, to generate layout
aware code. We will give more details about it later. SHAPES
code for other data structures, such as, a Stack, Queue or
ArrayList can be found in Appendix B.

2Note that the type [C] means that itmay be allocated in a pool of C objects.

2.4 Instantiation and Usage of Data Structures
SHAPES does not change code that reads andwrites to data in
memory. The “internal” code of a data structure is mostly the
same as if there were no SHAPES annotations. But how does
it look for the data-structure’s client code? Let us consider
the following code that creates an instance of List, adds a
new Element to it, and then gets a pointer to the first element
in the list.

pool nodePool : heap

pool elemPool : heap

var list = new List⟨heap, nodePool, elemPool⟩

list.add(new Element⟨elemPool⟩(0, 0, false))

var elem = list.get(0)

This code creates a list with the layout of Figure 5a: Nodes
and Elements are not allocated in pools, and objects are not
split. To obtain the layout from Figure 5b, we only need to
replace the second line with:

pool elemPool : MinElt

Similarly, assuming the existence of a layout declarations
MinNode which does not split objects, MaxNode which splits
each Node into two clusters, and MixElem which stores f2 and
f3 in one cluster, and f1 in another, the layout of Figure 5c is
obtained by replacing the first two lines with:

pool nodePool : MinNode

pool elemPool : MixElt

And using the list still goes as before:

list.add(new Element⟨elemPool⟩(0, 0, false))

var elem = list.get(0)

2.5 SHAPES is Type Safe
Once SHAPES is integrated in a high-level language, the
programmer will be able to enjoy all the advantages of such
a language: abstract memory, automatic memory manage-
ment, safey, etc. Type safety ensures the absence of errors
which are possible when implementing memory optimisa-
tions manually. We now describe three such errors.

ERR1: Allocation of Objects in the Wrong Pool Allocat-
ing an Element in a pool of Nodes could be problematic: since
they have difference sizes, access patterns may be disrupted
(irregular strides); since they have different structure, they
cannot be split easily using the same clusters. Thus, the fol-
lowing code would be forbidden by the type system, because
nodePool is not a pool for Elements.

pool nodePool : MinNode

... new Element⟨nodePool⟩ -- ERR

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

f1

El
em

en
t

f2 f3

N
od

e
N
od

e

Li
st

f1 f2 f3

Li
st

Li
st

f1f2 f3

...

...

... ...

(a) List⟨heap, heap, heap⟩

f1

El
em

en
t

f2 f3

N
od

e
N
od

e

Li
st

f1 f2 f3

Li
st

Li
st

f1f2 f3...

...

... ...
(b) List⟨heap, heap, elems⟩,
where elems:MinElt

f1

El
em

en
t

f2 f3

N
od

e
N
od

e

Li
st

f1 f2 f3

Li
st

Li
st

f1f2 f3...

...

... ...
(c) List⟨heap, nodes, elems⟩,
where nodes:MinNode, elems:MixElt

Figure 5. Three different layouts for the same data structure.

ERR2: Creation of Objects Out-Of-Thin-Air As we dis-
cussed before, SHAPES guarantees correctness of object re-
assembly. This is made possible through pool-aware refer-
ences containing pool addresses and object offsets, and types
which carry layout declarations that contain enough infor-
mation to calculate offsets of fields.
Moreover, the type system should forbid incomplete, or

overlapping layout declarations, such as the ones below.
layout Missing: [Element] = rec{f1} + rec{f2} -- ERR

layout Many: [Element] =

rec{f1, f2} + rec{f2, f3} -- ERR

ERR3: Mixing pools. Objects allocated in the same pool
must have the same layout. For example, below, n.next ex-
pects objects laid out as in MinNode, while we store an object
organized as in MaxNode

pool nodes1 : MinNode

pool nodes2 : MaxNode

var n = new Node⟨nodes1, heap⟩

n.next = new Node⟨nodes2, heap⟩

Neither do we support pools with the same layout sharing
objects:
pool nodes3 : MinNode

n.next = new Node⟨nodes3, heap⟩

The type system can prevent such errors by extending tech-
niques found, e.g., in the ownership types literature [Clarke
and Drossopoulou 2002; Clarke et al. 2013].

2.6 Formal Model
We have developed a formal model for the core SHAPES
language, its type system, a low level language incorporating
pools, and the compiler. We have proven that the type system
is sound, and that compilation is meaning preserving. The
formal model is not part of the current submission.

2.7 Let Objects be Objects. SHAPES is OO.
While objects may be deconstructed internally, SHAPES pre-
serves the object concept at the surface-level. Given that the
splitting strategies are external to class declarations, the pro-
grammer can still keep programming using the same object-
oriented mindset. Objects encapsulate fields and methods

that use those fields, independently of their layout. With
SHAPES fully integrated in an object-oriented language, it
will be possible to keep the same design principles of the
object-oriented paradigm (modulo field visibility, unless the
pools are created inside the objects themselves).

2.8 Design Decisions
Here we briefly discuss the design iterations and the consid-
erations for the core language.

Pools andClass Parameterization In our initial attempts
we described object splitting in the class definitions – but
this required different class definitions for different layouts
of the same class. We then tried to obtain object splitting
through different pool parameters, whereby clusters of fields
are annotated with pools indicating where they will be stored
– but then we faced the problem that a pool could contain
clusters originating from objects in different pools.

This led to the idea of layouts as separate entities, describ-
ing how objects of a given class are organized within a pool.
Thus, pools are instances of layouts, and classes are parame-
terized by pools. Moreover, the fields of an object may point
to objects located in other pools. This requires that a class
would allow for several pool parameters.

Because we want to be able to access fields from pooled
objects, and to iterate over pools safely and efficiently, we
need to ensure that pools contain objects of the same class.
To ensure this, we initially tried to infer that the use of class
arguments was consistent, but then found it simpler to give
types to class parameters.

Subtyping For now, SHAPES pools are monomorphic, in
the sense that it is not possible to store objects of type T ′,
s.t. T ′ <: T in a pool P containing T values. We imposed
this restriction in order to avoid having to handle any extra
fields in T ′ that are not in T ? As we already mentioned,
storing objects of different sizes makes it harder to construct
regular access patterns. If P is maximally split, we could
deal uniformly with the T (sub)structure, and deal with any
extensions separately.
We will evaluate the design decision of monomorphic

pools when we have a working compiler.

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

Polymorphism Polymorphism is a corner stone of object-
oriented programming. In conjunction with dynamic bind-
ing, polymorphism allows writing code that is future-proof,
e.g. is able to invoke a method that has not yet been written.
This is important for object-oriented reuse. Again, perfor-
mance and flexibility are usually at odds. For example, in a
study of refactoring a moderately sized C++ program in the
Scientific Computing realm to use a more object-oriented
design (e.g. SOLID [Chidamber and Kemerer 1994]), dynamic
dispatch alone incurred an 4–8× slow-down because of neg-
ative inline effects [Källén et al. 2014]. A JIT compiler might
be able to mitigate such effects.
When parameterising types over layout information, un-

less there is rudimentary support for polymorphism, pro-
grammers will be forced to duplicate semantically equivalent
code that perform the same operations on differently laid-out
objects. (This is what happens when optimisations like these
are applied manually.) Parameterising classes over types,
which in turn are parameterised by layout parameters is
essentially the same problem.
Polymorphic code in shapes can be compiled into either:

a single unified binary blob which inspects the types at run-
time to calculate the addresses for loads and stores; many
versions of the same code specialised for a particular (combi-
nation of) type(s). The former is less efficient than the latter,
but causes less binary bloat. This problem is not unique to
SHAPES (c.f. C++ templates) but exacerbated by additional
parameters to types. Exploring using a JIT or trace compiler
to produce specialised versions for hot paths in a program
might prove a solid middle ground.

3 Implementation of Core SHAPES
We plan to integrate SHAPES into Encore[Brandauer et al.
2015], an object-oriented, statically-typed, actor-based lan-
guage, which uses class declarations to define objects. Encore
compiles to C code, thus the integration of SHAPES into En-
core should be straightforward. Class declarations will be
extended with pool parameters, types with pool arguments,
and expressions with primitives for pool creation. The com-
piler will be extended with rules that use types to generate
code that “knows” how to allocate objects into pools, and
the Encore runtime will be extended with object pooling and
compacting garbage collection.

As a proof of concept, we have developed a SHAPES pro-
totype API in C that features pooling and splitting, and is
designed to be linked with a managed run-time3. It provides
a set of functions and structures to be used by the compiler to
handle pools and pooled objects. Our API will be used for ob-
ject pooling and pool compaction, and the existing runtime

3Once a front-end implementation exists, the library will be linked with the
run-time of the Encore programming language [Brandauer et al. 2015]. The
library is already usable from C, but uses idioms expecting code generation
and is therefore somewhat verbose and clunky.

for allocation of non-pooled objects (the ones allocated in the
heap). We have also evaluated it through a set of small bench-
marks, to better understand if our implementation can indeed
improve a program’s performance. Our prototype and evalu-
ation can be found at: https://github.com/jupvfranco/shapes.
More in Appendix A.

In this Section, we briefly describe our implementation.

3.1 Object Pooling
Pools are chunks of memory that allow for contiguous allo-
cation of objects, with or without splitting, such as described
before. Pools are constructed from sub-pools, eachwith space
for 4096 same-typed objects; whenever a sub-pool is full, an-
other one is created. Our prototype aligns pools on a 4GB
boundary4, so that they have space to grow. In the unlikely
event of 4GB not being enough for a data-structure, one can
move the whole data structure to somewhere else in memory.
The number of objects in a sub-pool is constant, but its size
is variable. Given that no object can be smaller than 1 byte,
the choice of 4096 objects in each subpool guarantees they
will be at least of size 4KB, ensuring page alignment which
is important for prefetching.

Whenever a pool of T objects is created, SHAPES reserves
space for 4096 × sizeof(T), and uses the layout information
provided by the programmer to logically split this (sub)pool
into several clusters. This means that the information found
in layout declarations is kept during runtime.

In order to do this, our library must keep a table for all the
types of the program; it stores in this table both record types
and pool types. Record types represent blobs of memory that
cannot be split, e.g. rec {f1, f2} of CustElement. Of course,
these types can be primitive types, e.g. int, representing
single-field records. Pool types are directly mapped from
layout declarations and contain the number of clusters in a
given pool, and the record types allocated in each cluster —
remember that each cluster allocates a sequence of records
with the same type. Table 2 shows the different record and
pool types obtained from the Element class and respective
layouts. This information can then be used to create pools
and to allocate objects in pools. For example, when creating
a pool of Elements with maximal split, SHAPES uses a mmap

to reserve 4096 × 17 bytes: the first 4096 × 8 bytes will be
used to allocate values in f1 fields, the second 4096 × 8 bytes
to allocate values in f2 fields, and so on.

3.2 References to Pooled Objects
Our API does not exclude the usage of ordinary C pointers to
objects and fields within pools. However, when an object is
split across different clusters, a single pointer is not enough
to re-assemble the whole object5. We have implemented
4We have implemented our SHAPES API for a 64-bit address space, which
gives us space for a large number of pools.
5Naturally, one could use more than a pointer, however this is expensive,
and potentially unsafe.

https://github.com/jupvfranco/shapes

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

Table 2. Layout information of Elements at runtime.

Record type Size
int 8

Element_f1_f2 16

Record type Size
bool 1

Element_f1_f2_f3 17

Pool types #clusters Clusters
MinElement 1 Element_f1_f2_f3

MaxElement 3 int int bool

CustElement 2 Element_f1_f2 bool

a structure for references, named global_references, that
contains all the information required to refer to an object
in a pool, whether split or not. Each reference is a 64 bit
number — the size of a C pointer — containing:
– type_id (16 bits) – a type identifier,
– pool (16 bits) – the location of the pool,
– subpool_id (16 bits) – the sub-pool where the object lives,
– index – the offset of the object within the subpool (12
bits), which can be some number between 0 and 4096 (the
number of objects allocated in a pool), and

– and 4 extra bits used for pointer compression and garbage
collection purposes.
Keeping the type identifier of the pool that the reference

is pointing to is useful for a number of reasons: it can be
used during garbage collection to find the fields to be traced,
or to calculate the field offsets on the fly6. The rest of the
information is used to access independent object fields, or to
re-assemble an object. The following calculation shows how
to calculate the memory offset of each field of an Element,
which is maximally split.

pool + 4096 × 17 × subpool_id +




index × 8 (f1)

8 ∗ 4096 + index × 8 (f2)

16 ∗ 4096 + index × 1 (f3)

We know that every subpool holds 4096 objects and that
the fields of every Element fit in 17 bytes. We can use this
information, with the pool and subpool_id to find the start-
ing address of the sub-pool, in which the object is allocated.
Moreover, we know the size of each field, (8, 8 and 1), and
that each subpool is split into three clusters. We can use this
information to calculate the starting address of each cluster.
For example, the third cluster has offset 16 * 4096 (8 * 4096
bytes occupied by the first cluster and 8 * 4096 occupied by
the second). Using the field size, and the index of the object,
we can find exactly the location pointed to by the field.

Compressed References. The system optionally allows for
pointer compression by using object-relative addressing in-
stead of global references. Since each subpool contains 4096
elements, object-relative addressing within a subpool fits in
12 bits, plus 1 bit to enable references into related subpools
and global addresses via a table indirection. Object-relative
addressing allows fast copying or relocation of entire sub-
pools because pointer addresses are stable accross copies.

6this is particularly important if using an interpreted language

This optimisation is orthogonal to the SHAPES goals, and
thus not disussed in further detail.

3.3 Compacting Garbage Collection
We now discuss how we have implemented the last ingredi-
ent of SHAPES: a compacting garbage collector that reduces
fragmentation within pools. The current version of the pro-
totype requires a pause in the execution of the application.
However, moving and copying garbage collectors are well-
studied topics [Jones et al. 2016], and it should be possible
to use our techniques with parallel or concurrent collectors.
Our garbage collector collects and compacts pools individ-
ually. For each pool being managed, it creates a new pool
of the same type, and copies live object by live object to the
new pool. It then destroys the original pool. Given that the
new pool only contains live objects, after the GC has run no
garbage will be fetched to cache.
External references into a pool can be managed in sev-

eral ways: system-wide garbage collection can update them,
or external references can go via proxies which can be up-
dated by the garbage collector. The latter design requires
means to distinguishing between references within a pool
and references into a pool.

3.4 The SHAPES Library
Functions provided:
Pool creation. Creation of a new memory pool with split-
ting stratety defined by type_id. The result is a pool reference
that points to a pool in which allocation can happen.
pool_reference pool_create(uint16_t type_id)

Pool destruction. Destruction of a memory pool. All the
objects currently allocated in the pool are freed.
int pool_destroy(pool_reference ∗pool)

Pool allocation. Allocation of an object in the pool pool,
leaving all fields uninitialised. The result is a reference to
the newly created object.
global_reference pool_alloc(pool_reference ∗pool)

Pool grow. Allocation of memory in the pool ∗pool for n
more objects. When combined with an iterator, this function
can create and initialise many objects at once.
int pool_grow(pool_reference ∗pool, const size_t n)

Pool shrink. Shrinking of the pool ∗pool by n elements.
int pool_shrink(pool_reference ∗pool, const size_t n)

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

Pool read. Reading a field of a pooled object referred by
reference. In order to find the field, this function is given
the cluster offset, the size of the record where the field is,
and the field offset within the record.
void∗ pool_read(const global_reference reference,

const size_t cluster_offset,

const size_t record_size,

const size_t field_offset);

For example, if the field being read is f3, from an Element

that is maximally split, then we have: cluster_offset = 16,

record_size=1, field_offset=0.
Pool write. Writing a field of a pooled object referred by
reference. Similar to the pool_read operation, but copying
data to the location of the field.
void pool_write(const global_reference reference,

const size_t cluster_offset,

const size_t record_size,

const size_t field_offset,

const size_t field_size,

const void∗ data)

3.5 Iteration
Iteration on pointer-based data structures that involve deref-
erencing all global_references may be expensive, due to all
the calculations needed. However this too can be optimised.
For example, assuming no fragmentation in a pool, if there
are no constraints on the order of objects being accessed,
one can just iterate over all objects in the pool by moving the
index. For that, our library provides a function that iterates
over the first N objects (of size size) in the pool, following
their allocation order, and applies some function fun to each
one of them.
void pool_iterate(const pool_reference pool,

const size_t size,

const size_t N,

const pool_apply fun);

We have also implemented another iteration function that
calculates the location of the pool only in the beggining of the
iteration and the location of subpools only when following a
pointer from an object in a different sub-pool. The rationale
behind this iteration is that the index of the object should
be enough for most objects. One can implement other types
of iteration. For example, if only one field is used, a similar
iteration over all records of a cluster.

3.6 Compiling and Executing SHAPES Code
As we have mentioned before, the compilation process of
SHAPES will be guided by the program’s types. Given that
types will have enough information regarding location and
layout of objects, it will be possible to generate code using the
SHAPES library. Given that the same data structure can be
instantiated with different layouts, our first approach will be

to generate all the possible code versions, for all the declared
layouts. One could write a more optimised compiler, or even
use Just-in-Time compilation, in order to avoid large binaries.
However, this is orthogonal to SHAPES, and therefore we
leave it for future work.
In order to demonstrate, how the SHAPES compiler will

function, in this Section, we “manually” compile some code,
considering two different layouts. We consider the layout
information for the class and layouts described previously,
and the following code:

pool elems = new MinElement

var elem = new Element⟨elems⟩

elem.f3 = false

It creates a pool of Elements with minimal split, it allocates
a new Element in this pool, and writes the f3 field of this
object. This code shall be compiled to the following C code.

pool_reference elems = pool_create(MIN_ELEM_TYPE_ID);

global_reference elem = pool_alloc(&elems);

boolean b = false;

pool_write(elem, 0, 17, 16, 1, &b);

However, if the Elementss were maximally split, we would
need to pass a different type identifier to the pool, and use
different offsets when reading the field:

pool_reference elems = pool_create(MAX_ELEM_TYPE_ID);

// ... same as before

pool_write(elem, 16, 1, 0, 1, &b);

The code above is only possible when using a compiler
that knows how to calculate the sizes and offsets of object
fields. However we believe our proposed syntax contains
enough information for such calculation. Note that there
are several dynamic languages, such as Python, that do not
require compilation. In this case, SHAPES would not be as
efficient, however it could still be used, given that the layout
structures contain enough information regarding the fields
of each type, and their sizes.

4 Extended SHAPES
In this section we outline the promise of SHAPES, in particu-
lar what possibilities structuring parts of memory into pools
unlock, how pools can be combined to create more com-
plicated object structures, and how we intend to integrate
garbage collection with SHAPES not only for reclaiming
garbage objects, but to improve locality.

4.1 Garbage Collection and Compaction
Libraries that use pooling and splitting commonly do so
in unmanaged languages. When manually transforming ar-
rays of structures to structures of arrays in managed lan-
guages like Java and C#, programmers are giving up on

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

automatic garbage collection by tying the lifetime of a (de-
constructed) object to its containing array. In SHAPES, we
integrate garbage collection into the approach so that
– programmers do not need to give up garbage collection;
– garbage collection can be used as an advantage — in
particular relying on moving and compacting for locality

Because structures are pointer-based in SHAPES, normal
tracing garbage collection (for example) can be used to deter-
mine liveness. Thus, removing an object split over N clusters
is still a single unlinking, regardless of the value of N .

Pools are Boundaries A pool can be thought of as a logi-
cal subheap nested in a bigger heap, where objects naturally
belong together. Thus, when a garbage collector should de-
cide how objects are placed in memory, it should do so based
on pool membership. Thus, pools naturally give groupings to
objects to help a collector do its job, and also gives a natural
boundary for when to stop tracing.
The latter theoretically allows running garbage collec-

tion in a small subpart of the heap, for example to compact
all links of a linked list, or change their order to list order
post sorting. Since garbage collection can be localised to a
pool (or even a subpool), garbage collection can be run more
frequently, or even triggered by the programmer before a
lengthy operation, similar to how programmers today trans-
form matrices prior to big operations to better align access
order with memory placement [Ureche et al. 2015].
For localised garbage collection to be possible, we can

either rely on alias restrictions (e.g. like ownership types
[Clarke et al. 1998], essentially control the visibility of pools)
to exclude the possibility of incoming pointers or dynami-
cally track incoming references (for example like [Clebsch
et al. 2015]) to either fix aliased objects in place, or handle
such pointers using indirections that allow aliased objects
to move.

Tuning Placement Strategy Hirzel experiments with dif-
ferent placement strategies for garbage collection [Hirzel
2007]. He finds that every placement strategy (allocation or-
der, depth-first, breadth-first, etc.) performs best on certain
benchmarks and worst on others. By allowing the heap to
be logically partitioned into pools, SHAPES will unlock the
possibility to tune placement strategy on a per-data structure-
basis. This stresses the ownership types-like [Clarke et al.
1998] nature of SHAPES, but instead of prohibiting certain
pointers, we simply pay less attention to them when garbage
collecting (i.e.a pointer from outside a pool to an object in
the pool should not control its placement in the pool).

Inter-Pool Object Affinity So far, we have discussed affin-
ity of objects in the same pool, but in real-world scenar-
ios it is common to construct linked structures built from
different objects. For example, we may have a container
with customers Records; where each Record has a field for
AccountInfo. this case, we want to store the Record entries

in their pool in an order compatible7 with the AccountInfo

entries (in their pool). If the orderings are thus aligned, ac-
cesses to ages to access grades will enjoy cache locality and
efficient prefetching on batch operations, e.g. on iteration.
This would allow having two lists sharing the same set of
grade object, which is not easily possible if grade objects
must be embedded in the links.
To this end, SHAPES must be able to express relation-

ships between pools. For example, in the above example, the
AccountInfo pool is dependent on the Record pool. Dependen-
cies between pools introduces a bijection between objects.
For example, we could say that a AccountInfo object corre-
sponds to a Record object if it is pointed to by a field in the
same Record. This should mean, for example, that a garbage
collection cycle in the latter pool also triggers on in the for-
mer, and that pointers from the Record pool to AccountInfo

pool decides the order in the AccountInfo pool.
This could be encoded e.g. by nesting pool declarations:

layout records: [Record] = ... {

layout accounts: [AccountInfo] = ... // dependent

}

This is easily tractable, but also static. An alternative ap-
proach is to allow dependencies to change dynamically (since
they will be enforced dynamically by garbage collection).

4.2 Concurrency & Parallelism
Introducing concurrency into SHAPES brings in all known
issues to do with avoiding data races in the source code, and
also for the garbage collector. However, SHAPES does not
introduce any new problems: any data-race-free SHAPES
program will be compiled to data-race-free binary code:
Even though object identity of pooled objects is represented
through tuples (c.f. Section 3), these tuples will be used atom-
ically.

Because of how pools are structured, parallelism can natu-
rally happen on a subpool or cluster boundary. For example,
summarising all Elements in a collection thus:

if f3 then f1 + f2 else f1

can be broken up into two parallel operations:

if f3 then f2 else 0 // Op 1 f1 // Op 2

which are performed by separate threads on each cluster
(both task and data parallel) and then reduced. If a pool is
free from garbage, or if it is possible to efficiently determine
if an entry is live or not, it is not necessary to traverse the
pointer-based spine of the data structure. This means that
compact pools are suitable for vectorisation. Thus, it will be
possible to compile some operations on collections of objects
to vector operations, for improved efficiency.

7In the sense that access patterns for both objects arise similar to as if they
were perfectly interleaved in the same pool (which we don’t want to do in
the general case because of poor cache utilisation).

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

4.3 Dynamically Changing Field Affinity
While certain pool layout might be advantageous to a certain
access pattern of the objects in the pool, the access pattern
might change during program execution. For example, at the
beginning of a program, health and age data are accessed
together, while later on, health and addresses are being ac-
cessed together. Transforming a pool from one layout to
another is relatively straightforward, and can be reflected by
a type change, meaning it can be readily expressed in code.
We could for example use techniques as the reclassification
of Fickle [Drossopoulou et al. 2001] or type-state related
mechanisms [Strom and Yemini 1986].

Naturally, changing an object’s type requires considering
who can witness such a type change. One possibility is to
piggyback on garbage collection to find all references, and
combine with code update, which has been done leveraging
ownership-like annotations [Boyapati et al. 2003], to make
sure that subsequent accesses have the proper types. An
alternative approach is to rely on dynamic lookup, which
only requires changing the type of the target(s), but is less
performant.

When to apply layout changes is an interesting question.
As a first approach SHAPESwill leave this to the programmer
to decide. The ultimate goal is to have pool layouts be deter-
mined by a combination of clever compiler and run-time as
a result of monitoring the execution of the program.

4.4 Value Semantics
Low-level languages like C and C++ (and also some high-
level languages like C#, Rust and Eiffel) distinguish between
reference (pointer) semantics and value semantics, where
the former passes values by reference (i.e. sharing, or alias-
ing) and the latter by passing around copies of values. Like
storing values in arrays avoid indirection, so can embedding
values in objects. Choosing between reference semantics
and value semantics is an important part of layout as it al-
lows bringing in data (value semantics) and avoiding cache
pollution (reference semantics).

SHAPES uses pointer semantics by default. However, when
e.g. iterating over our linked list, if the elem field is always
read, it makes sense to embed it in the Node that points to
it. This would avoid dereferencing and it would fetch useful
data (Element) to cache in advance (when fetching a Node).We
will extend SHAPES with value semantics. Ideally, SHAPES
can allow this optimisation while keeping it separated from
the program’s logic — keeping classes parametric with their
layouts, and extending layout declarations with embedding

information:

layout valNode: [Node] = rec { next, embed elem }

When dealing with value semantics, it is hard to keep the
code completely unware of the layout. Challenges will arise

with aliasing for example, and usual solutions involve copy-
ing of objects. Following C and C++, class declarations could
be annotated to control embedding:
class Node⟨loc⟩

elem: embed Element

next: Node⟨loc⟩

Note the class no longer takes the location of the Element as
parameter. Thus, value semantics reduces pool parameters.

5 Related Work
Object Pooling and Splitting Pooling and splitting are
two techniques often used to improve a program’s perfor-
mance through better data layout. The idea of data place-
ment to reduce cache misses was first introduced by Calder
et al. [Calder et al. 1998], where the authors apply profil-
ing techniques to find temporal relationships among objects.
This work was then followed up by Lattner et al. [Lattner
and Adve 2003, 2005] where rather than relying on profiling,
static analysis of C and C++ programs finds what layout to
use. Huang et al. [Huang et al. 2004] explore pool allocation
in the context of Java. Object Splitting was introduced by
Franz and Kistler [Franz and Kistler 1998], where fields are
classified as hot (accessed frequently) and cold (accessed less
frequently); this classification is used to decide how to split
objects. Since then splitting has been combined with pool-
ing [Chilimbi and Shaham 2006; Curial et al. 2008; van der
Spek et al. 2010; Wang et al. 2010, 2012].

Garbage Collection for Program Locality Hirzel [Hirzel
2007] uses a moving garbage collector in order to implement
several data layouts of object oriented programs and evaluate
which layout presents the best performance.

HeapPartitioning andRegions Loci [Wrigstad et al. 2009]
split the heap into per-thread subheaps plus a shared space.
This division is only conceptually, and does not aim to af-
fect representation in memory. Some languages split the
heap into several sub-heaps in order to simplify garbage
collection or parallelism. Examples of these languages are
Pony [Clebsch et al. 2015; Clebsch and Drossopoulou 2013]
and Erlang [Armstrong 2007; Armstrong et al. 1993]. None of
these languages share direct goals with SHAPES, in the sense
that they do not try to improve data locality. Particularly in
Pony and Erlang, the programmer does not have any control
on how to divide the heap.

Jaber and Kulkarni presented a notion of heap partitioning
that allow different data structures to be allocated in different
partitions [Jaber and Kulkarni 2017]. They use static analysis
to infer ownership relations between objects, and a prepro-
cessor that adds ownership information to the code without
changing its meaning. They seek to integrate this heap parti-
tioning in computation offloading tools, region-based mem-
ory management, and with techniques for memory locality
optimisations. This work relates to SHAPES in that it aims

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

at improving memory locality. However, it does not given
any layout control to the programmer, neither does it give
any guarantees of contiguous allocation, or means for object
splitting.
Tofte and Talpin introduced the concept of region-based

memory management [Tofte and Talpin 1994, 1997]. They
use region types, which divide memory in regions, in an
ML language, where allocation and deallocation are inferred
from type and effect analysis. This idea was used in the
Cyclone language [Hicks et al. 2004], which is concerned
with safety of C-like languages. Deterministic Parallel Java
also provides means to split data in the heap: Java code is
annotated with regions information used to calculate the
effects of reading and writing to data [Bocchino et al. 2009].

Pools are similar to regions (or Rust’s lifetimes) in that they
both guarantee that objects are allocated in the same part of
memory, but they differ in the following salient points:
– Objects of the same region have the same lifetime, while
objects from the same SHAPES pool may have different
lifetimes, meaning less floating garbage. The inability to
GC within a region can lead to substantial memory con-
sumption [Berger et al. 2002]. In SHAPES, when an object
within a pool becomes unreachable, it will be possible to
collect it.

– As regions are nested objects, they may only point to ob-
jects with shorter lifetimes. No such restriction in SHAPES.

– Regions do not support object splitting — all fields of an
object are stored together, and thus within the object’s
region. Rust’s multiple lifetime parameters to a value, only
allow the determination of the region where the field’s
target is stored, but not where the field itself is stored.

– Regions do not offer any guarantees as to whether objects
are stored contiguously, or as to which objects are stored
within them. Therefore, regions cannot support efficient
iteration, whereby pointers are incremented by a small
offset, such as in our iterators (c.f. Section 3).

On the other hand, it is possible to develop in Rust collections
which store split objects: Using Rust traits, one can impement
data structures whose interface hides the splitting from the
client of the structure, but internally is layout-aware. All
field accesses are represented as function calls, which are
however inlined and thus incur no penalties. Nevertheless, it
is necessary to write these data structures by hand, while in
SHAPES we only require annotations. Moreover, one cannot
have more than one mutable alias to any of the elements
of the data strcure. We show the list-of-elements example
encoded with Rust traits in Appendix C.

Location Abstractions in Programming Languages In
the context of NUMA systems, Franco and Drossopoulou use
annotations to describe in which NUMA nodes the objects
should be placed [Franco and Drossopoulou 2015],with the
aim to improve program performance by reducing memory

accesses to remote nodes, ignoring any possible in-cache
data accesses.

Programming Languages Supporting Locality Vollmer
et al. propose an approach to compiling tree-shaped data
structures into amore efficient, packed representation [Vollmer
et al. 2017]. De Wael et al. propose “Just-in-Time Data Struc-
tures” that adapt their internal workings to fit a current
usage scenario [De Wael 2015]. It would be interesting to
use SHAPES to implement such data structures. In the con-
text of dynamic languages, Bolz et al. use storage strategies
to dynamically optimise collections containing instances
of the same primitive type [Bolz et al. 2013]. Ureche et al.
introduced an extension to Scala that allows for safe and
automatic changes in data layouts. The programmer uses
scopes to define transformations of data layout, and the com-
piler uses this information to generate the code that accesses
the data [Ureche et al. 2015]. This work is very similar to the
SHAPES ideas in the sense that the programmer needs not to
change the code accordingly to the layout, and in that it uses
types for correctness guarantees. Its goals are different, and
does not provide programmers new tools to control data lay-
out and placement — for example, it is not possible to express
that an array should hold pointers to objects consecutive
in memory, like in SHAPES. Furthermore, when providing
array-of-structs and struct-of-arrays layout transformations,
a programmer must specify both representations separately,
and how to access them. In a sense, this work is complimen-
tary to SHAPES and exploring how they can be combined is
an interesting direction for future work.

6 Conclusions
Wehave introduced SHAPES, an extension of high-level man-
aged languages that allows the programmer to shape data in
memory using object pooling and splitting. SHAPESwas con-
ceived for a managed language, and relies on garbage collec-
tion for compaction and aligning objects across pools, but is
useful even without these features in an unmanaged setting.
SHAPES adds to languages class declarations parametric
with layouts, postponing layout decisions from declaration
to creation time. This makes it possible to write code layout
unaware and keeping memory abstract, while enjoying the
performance of good memory layouts. We have introduced
the core ideas of SHAPES, described our implementation,
and discussed ideas for potential optimisations.

A Preliminary Evaluation
We evaluate our implementation through a set of sequential
micro-benchmarks. We now describe our evaluation method-
ology and results.

Methodology. Our benchmarks arewritten in C, Encore [Bran-
dauer et al. 2015], and Java. We compare SHAPES code man-
ually compiled into C code that uses our library against:

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

• Malloc: C code using malloc and free functions for
data (de)allocation;
• Malloc_opt: Optimised version of Malloc code, which
uses a single malloc at the beginning of the program
with space for all the data allocated and data manu-
ally placed consecutively in that segment with even
strides. Assuming the same logic as in the malloc ver-
sion of a benchmark, the Malloc_opt code gives us a
lower bound on optimal number of cache misses and
execution time.
• Encore: Encore is an actor-based, object-oriented pro-
gramming language that compiles to C, and allocation
groups objects of the same size together. Encore is
also a managed language and uses the Pony garbage
collector and allocator [Clebsch et al. 2015];
• Java: A managed, and well-known Object-Oriented
language.

Encore and Java are different in that Java used a moving
collector, whereas Encore does not. SHAPES, Encore and
Java all use mmap on Linux to request memory pages.

We ran our benchmarks on a machine equipped with an
Intel Core i7-3770 CPU @ 3.40GHz, with 8 cores on a sin-
gle socket, and 16GB of memory. L1, L2 and L3 caches was
32KB, 256KB, and 8192KB, respectively and cache lines are
64 bytes. L1 and L2 were 8-way associative and L3 is 16-way
associative. The operating system was Ubuntu 14.04.5 LTS.
The C code was compiled with GCC 6.2.0 and using level O3
of optimisations; and we used Java 1.7. We used perf [Perf
2017], a lightweight profiler that uses the CPU performance
counters of Linux. We used perf stat -e cache-misses
-r <repetition> <benchmark>, which reports the average
number of cache misses and execution times. We repeated
each benchmark 30 times and report averages.

Benchmarks andResults Wenowdiscuss the benchmarks
used and the results obtained. We first study the benefits and
overhead of object pooling, which are presented in Figure 6.

pool_array Compares a SHAPES pool against a malloced
array. It creates a pool, and an array (a single allocation for
the entire array and its objects), with size objects, each one
with two fields using minimal split. It then iterates over this
pool twice to initialise all the objects’ fields, and then to read
all the objects’ values. Note that the malloc and malloc_opt
versions are the same for this example. Moreover, we do
not present Java and Encore results for this benchmark, as
these languages only support arrays of pointers, and it is not
possible to have an array of objects with value semantics
(although value semantics seem to be coming in Java 10).
Results are in Figure 6a. Naturally, given that the malloc
version is as optimal as it can be, it shows better behaviour
than SHAPES. Although malloc and SHAPES are comparable
in terms of cache misses, SHAPES is slower than malloc.
This overhead is due to the extra calculations needed for

dereferencing pointers to pooled objects. We could further
optimise the SHAPES code for this benchmark, as those
calculations can be avoided: if objects have no split, a C
pointer would be enough for this this program. We leave this
to further work.

list_rand Allocates a linked list of 106 nodes, interleaved
with the allocation of unrelated objects (of random sizes of
1–16 bytes), allocated every N nodes created. The program
then iterates over all the nodes of this data structure. In
the SHAPES version, all the nodes are allocated in a pool,
with minimal split. Results are in Figure 6b. As expected,
given that unrelated objects are not allocated in the pool of
nodes, they do not create any fragmentation. Thus, they do
not affect performance, both in terms of cache misses and
execution time. The interleaved allocation does affect malloc,
Encore and Java though.

iterate Allocates a pool (in SHAPES) or an array (in C)
with space for size pointers, initialises as many objects,
stores them in the array and iterates over all of them. Even
in the malloc version, there will not be any fragmentation,
as nodes are allocated one after the other. Results are in
Figure 6c. It is interesting to see that SHAPES has comparable
performance with malloc_opt in terms of cache misses, and
is better thanmalloc in both cache misses and execution time,
even though dereferencing of references to pooled objects is
more expensive than dereferencing of C pointers. We believe
this is associated with extra space for meta-data required
by malloc, and with the allocation of nodes, which is faster
with SHAPES.

rand_access Similar to iterate, but rather than iterating
over all objects in allocation order, it randomly picks size
indices of objects to be dereferenced. Results are in Figure 6d.
Although SHAPES is not accessing objects in order of alloca-
tion, it still has better performance than the others.

We now discuss the impact of different splitting strategies
and report results in Figure 7.

max_min Creates a pool with space for size objects with
three fields and it iterates twice over all the objects: first
writing to one of the fields, and then to another field. One of
the fields is never used. We measure SHAPES’s performance
using maximal and minimal split of objects. The maximal
split presents better performance. This happens because the
unused field is never loaded to cache.

conditional Similar to max_min, but in the second itera-
tion we only read the three fields if a certain condition is
satisfied. We report performance for different probabilities
of accessing the full object using maximal and minimal split,
and we see that for smaller probabilities of access the maxi-
mal split is better than the minimal one. However, these two
layouts get similar behaviours for bigger probabilities.

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

SHAPES

(a) pool_array

SHAPES

(b) list_rand

SHAPES

(c) iterate

SHAPES

(d) rand_access

Figure 6. Comparison of pools against arrays and pointer-based data structures. Smaller is better in all the plots. Cache misses
and time plots share the same x-axis.

We nowdiscuss the impact of data structure re-organization
and report results in Figure 8. Namely, throughout a pro-
gram’s execution, data structures may be modified: new
objects are added, other objects become unreachable, data
structures are sorted or reorganized. The SHAPES prototype
does not move objects in pools, when objects are added or
become unreachable, or when data structures are sorted. For
example, when a Node is deleted from VideoList, even if it
becomes unreachable, it is not removed from the pool; when
a Node is inserted, it is appended to the end of the pool, inde-
pendently from where it is logically added. This means that
the order of VideoList nodes may be different from their
pool order, and that the pool may contain useless Nodes, lead-
ing to deteriorating cache locality. To overcome this issue
we intend to use a moving and compacting garbage collector,
which will reorganise pools so that their objects are allocated

in the same order they are used. We leave the implementa-
tion of such a collector for future work, and we now evaluate
the impact of fragmentation, and the benefits of compaction,
when simulating the lifetime of a data structure.

lifetime Creates a linked list of 106 nodes, and performs
5 ∗ 105 operations. These operations can be: the insertion of a
node in a given index; the deletion of a node in a given index;
and the finding of a node in a given index. When deleting an
object, we use an explicit free in the malloc version of the
code, but no explicit deallocation in the SHAPES version8. In
Java and Encore, garbage collection is not triggered. All these
operations cost O (n). From all the operations performed, a

8In SHAPES, removed objects in a pool are freed automatically on com-
paction.

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

SHAPES
SHAPES

(a) max_min

SHAPES
SHAPES

(b) conditional

Figure 7. Comparison of different splitting strategies.
Smaller is better in all the plots. Cache misses and time plots
share the same x-axis.

given percentage P (% of updates in the plot) will be updates
(P2 % of operations are insertions and P

2 % deletions).
The SHAPES version applies some compaction and re-

ordering to the pool where the linked list is allocated — it
creates a new pool with the same layout and it copies all the
objects from one pool to the other following the iteration
order. The source pool is then deallocated and the destina-
tion pool is used for the rest of the program’s execution.
Compaction and sorting is triggered after T updates on the
data structure. We vary the percentage of updates, and we
measure cache misses and execution time of Java, Encore,
malloc, and SHAPES (for different T s). The results are in
Figure 8.
In this benchmark, contrary to the previous results, the

number of cache misses does not affect the execution time.
For instance, SHAPES behavesworse than the others in terms

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ca
ch

e
 m

is
se

s

1e7

0 20 40 60 80 100
% of updates

0
2
4
6
8

10
12
14

ti
m

e
 (

s)

(a) All languages

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ca
ch

e
 m

is
se

s

1e7

0 20 40 60 80 100
% of updates

0.5

1.0

1.5

2.0

2.5

3.0

ti
m

e
 (

s)

(b) Focus on SHAPES
SHAPES
SHAPES SHAPES

SHAPES
SHAPES
SHAPES SHAPES

Figure 8. Cache misses and execution time of Java, Encore,
malloc, and SHAPES.

of cache misses and better in term of execution times. This
happens because the whole (or most of) data structure fits
in the last level cache, meaning that only accesses to new
objects will result in cache misses. However, when using
compaction, SHAPES copies all the reachable objects into a
new pool.
With different levels of fragmentation, SHAPES shows

better execution time (not cache misses) than the rest of the
languages. This is expected, as we already saw that even
when reading random objects of a pool, SHAPES presents
better behaviour (c.f. Figure 6).

Although, SHAPES performs better than Java, Encore and
malloc, in terms of execution time, it is interesting to observe
that with the right update threshold, SHAPES’ performance

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

can be even better, as we can see in Figure 8b. If no com-
paction happens (T = 50001) throughout the program’s
execution, then we can see that fragmentation impacts the
program’s performance: it is directly proportional to the
probability of updates. If compaction does not happen often
enough (T = 25000), we can see that once half of the updates
were performed, and the pool was compacted, the execution
time becomes constant. However, if compaction happens
to often, it also hurts performance, as compaction itself is
a O (n) operation9. For this specific benchmark, an optimal
threshold, with respect to execution time is 3000 updates to
the data structure before it is compacted.
It should be noted that the current implementation of

SHAPES is still in a prototype stage and therefore not yet
optimised. In part, this is due to its library implementation,
that makesmany optimisations difficult that a compiler could
easily do — in particular hiding costs (e.g. through careful
instruction order optimisation) of and caching results of
address calculations for object accesses in the presence of
splitting. This explains why the significantly reduced cache
misses have less impact on run-time than one might expect.

B Minimal API Implementation
B.1 Stack

class Stack⟨thisLoc, elemsLoc: [Element]⟩

nodesPool: MinimalNodes

top: Node⟨nodesPool, elemsLoc⟩

def peek(): Element⟨elemsLoc⟩

this.top.elem

def pop(): Element⟨elemsLoc⟩

let cur = this.top

this.top.next = cur.next

cur.elem

def push(e: Element⟨elemsLoc⟩: void

var newTop = new Node⟨this.nodesPool, elemsLoc⟩

newTop.elem = e

newTop.next = this.top

this.top = newTop

B.2 ArrayList

class ArrayList⟨thisLoc, elemsLoc: [Element]⟩

elems: Array[Element⟨elemsLoc⟩]

size: int

def init(cap: int): void

this.elems = new Array[Element⟨elemsLoc⟩](cap)

this.size = 0

9We have not implemented external pointer reassignment, as a moving
garbage collector would.

def add(e: Element⟨elemsLoc⟩): void

if this.size + 1 == this.elems.length() then

this.resize()

end

this.elems[this.size] = e

this.size += 1

def resize(): void

var tmp = new Array[Element⟨elemsLoc⟩](this.size *

2)

for i ←[0 .. this.size] do

tmp[i] = this.elems[i]

end

this.elems = tmp

def remove(i: int): void

this.shiftLeft(i+1)

this.size -= 1

def shiftLeft(start: int): void

if start > 0 then

for i ←[start .. this.size - 1] do

this.elems[i] = this.elems[i+1]

end

end

B.2.1 Queue

class Queue⟨thisLoc, elemsLoc[Element]⟩

elems: Array[Element⟨elemsLoc⟩]

start: int

end: int

initCap: int = ...

def init(): void

this.elems = new Array[Element⟨elemsLoc⟩](initCap)

this.start = 0

this.end = 0

def push(e: Element⟨elemsLoc⟩): void

if this.end + 1 == this.elems.length() then

if this.start > 0 then

this.shift(this.start, 0) end

else this.resize() end

end

this.elems[this.end] = e

this.end += 1

def pop(i: int): Element⟨elemsLoc⟩

var e = this.elems[this.start]

this.start += 1

return e

def resize(): void // as in the ArrayList

You Can Have It All: Abstraction and Good Cache Performance Onward!’17, October 25–27, 2017, Vancouver, Canada

def shift(from: int, to: int): void // similar to

the ArrayList

C Rust Version
Rust does not support object splitting. Nevertheless, using
traits, one can provide implementations for the various data
layouts, allow the client to choose which layout they wanted
to use, and at the same time avoid overhead stemming from
dynamic dispatch. The client code can be layout unaware.
Still, this requires a lot of programming: the transformation
from Array_of_Structs to Struct_of_Arrays is exposed in
each of the traits, each of the traits has to provide methods
for accessing the fields. Moreover, mutable references to
different elements of the data structure are impossible.

Belowwe show how traits can be used to program the List-
of-Elements example from our paper, just for two layouts.
The two implementations of Element provide functions f1, f2
and f3 which are layout aware, and know how to access the
individual fields. We also require implementations of lists-of-
elements which are layout-aware. These functions are inline
expanded, and therefore do not incur performance penalties.
However, writing this code is unnecessary in SHAPES. The
client code, eg the function iterate, is layout-unaware, and
can access the field f1 in the normal way.

Moreover, it is very difficult to obtain more than one muta-
ble reference into the collection. We discuss this at the very
end of the section

Object Splitting inRust, Immutable References We show
how we can split objects, using traits and immutable refer-
ences.

trait Element {

fn f1(self) → usize;

fn f2(self) → usize;

fn f3(self) → bool; }

trait ElementList<E: Element>{

fn get(&self, i:usize) → E;

fn length(&self) → usize;

fn iterate(&self) {

let n = self.length();

for i in 0..n {

let element = self.get(i);

println!("whatever {}", element.f1()) }}}

struct MinimalSplit {

elements: Vec<(usize,usize,bool)> }

impl <'e> Element for &'e (usize,usize,bool) {

fn f1(self) → usize { self.0 }

fn f2(self) → usize { self.1 }

fn f3(self) → bool { self.2 } }

impl <'e> ElementList<&'e (usize,usize,bool)> for &

'e MinimalSplit {

fn get(&self, i:usize) → &'e (usize,usize,bool)

{ &self.elements[i] }

fn length(&self) → usize {

self.elements.len() }}

struct MaximalSplit {

f1s : Vec<usize>,

f2s : Vec<usize>,

f3s : Vec<bool> }

struct MaximalSplitRef<'e> {

m: &'e MaximalSplit, i: usize }

impl <'e> Element for MaximalSplitRef<'e> {

fn f1(self) → usize { self.m.f1s[self.i] }

fn f2(self) → usize { self.m.f2s[self.i] }

fn f3(self) → bool { self.m.f3s[self.i] } }

impl <'e> ElementList<MaximalSplitRef<'e⟩ for &'e

MaximalSplit {

fn get(&self, i:usize) → MaximalSplitRef<'e> {

MaximalSplitRef { m: self, i: i } }

fn length(&self) → usize {

self.f1s.len() }}

fn main() {

println!("Hello, world!");

let minsplit = MinimalSplit {

elements: vec![(1,2,true), (10,20,false)]};

(&minsplit).iterate();

let maxsplit = MaximalSplit {

f1s: vec![1,10],

f2s: vec![2,20],

f3s: vec![true,false]};

(&maxsplit).iterate(); }

Object Splitting in Rust, Mutable References Extending
the code from above to support object splitting as well as sev-
eral mutable references, is difficult. Adding the setter method
setf1 to the Element trait as per below gives a compiler er-
ror, because the tuple is immutable, and we cannot mutably
borrow an immutable field.

trait Element {

fn setf1(self,j:usize) → (); ... }

impl <'e> Element for &'e (usize,usize) {

fn setf1(self,j:usize) → () {

self.0=j // COMPILER ERROR
} ... }

Onward!’17, October 25–27, 2017, Vancouver, Canada J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach

On the other hand, implementing the Element trait for a
mutable reference (i.e., & mut 'e) will make it very difficult
to pass mutable references to the outside.

Acknowledgments
We would like to thank Stephan Brandauer for the discus-
sions about Rust and Kim-Ahn Tran for the suggestions
on the evaluation, as well as the anonymous referees for
their comments. This project received funding from the FP7
project UPSCALE, the Swedish Research council through the
grant Structured Aliasing, the UPMARC Linneaus Centre of
Excellence, and EPSRC (grant EP/K011715/1).

References
Joe Armstrong. 2007. A History of Erlang. In HOPL. ACM, 6–1.
Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. 1993.

Concurrent Programming in ERLANG. (1993).
Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002. Re-

considering Custom Memory Allocation. SIGPLAN Not. 37 (2002), 1–12.
DOI:http://dx.doi.org/10.1145/583854.582421

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey L. Overbey, Patrick Simmons,
Hyojin Sung, and Mohsen Vakilian. 2009. A Type and Effect System for
Deterministic Parallel Java. In OOPSLA. 97–116.

Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Storage
Strategies for Collections in Dynamically Typed Languages. In OOPSLA.
ACM, 167–182. DOI:http://dx.doi.org/10.1145/2509136.2509531

Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh,
and Steven Richman. 2003. Lazy Modular Upgrades in Persistent Object
Stores. In OOPSLA’03. ACM, 403–417.

Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,
EinarBroch Johnsen, KaI. Pun, S.LizethTapia Tarifa, Tobias Wrigstad, and
AlbertMingkun Yang. 2015. Parallel Objects for Multicores: A Glimpse
at the Parallel Language Encore. In Formal Methods for Multicore Pro-
gramming. Springer, 1–56.

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-
Conscious Data Placement. In ASPLOS VIII. ACM, 139–149.

Shyam R Chidamber and Chris F Kemerer. 1994. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering 20, 6 (1994).

Trishul M. Chilimbi and Ran Shaham. 2006. Cache-Conscious Coallocation
of Hot Data Streams. In PLDI ’06. ACM, 252–262.

Dave Clarke and Sophia Drossopoulou. 2002. Ownership, Encapsulation
and the Disjointness of Type and Effect. SIGPLAN Not. 37, 11 (2002),
292–310. DOI:http://dx.doi.org/10.1145/583854.582447

Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Own-
ership Types: A Survey. In Aliasing in Object-Oriented Programming.
Types, Analysis and Verification. LNCS, Vol. 7850. Springer, 15–58. DOI:
http://dx.doi.org/10.1007/978-3-642-36946-9_3

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types
for Flexible Alias Protection. In OOPSLA ’98. ACM, 48–64. DOI:http:
//dx.doi.org/10.1145/286936.286947

Sylvan Clebsch, Sebastian Blessing, Juliana Franco, and Sophia
Drossopoulou. 2015. Ownership and Reference Counting based
Garbage Collection in the Actor World. In ICOOOLPS’2015. ACM.

Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully Concurrent Garbage
Collection of Actors on Many-Core Machines. In OOPSLA’2013. ACM.

Stephen Curial, Peng Zhao, Jose Nelson Amaral, Yaoqing Gao, Shimin Cui,
Raul Silvera, and Roch Archambault. 2008. MPADS: Memory-Pooling-
Assisted Data Splitting. In ISMM ’08. ACM, 101–110.

Mattias De Wael. 2015. Just-in-time Data Structures: Towards Declarative
Swap Rules. In WODA 2015. ACM, 33–34. DOI:http://dx.doi.org/10.1145/

2823363.2823371
Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini,

and Paola Giannini. 2001. Fickle: Dynamic Object Re-classification. In
ECOOP’01. Springer, 130–149.

Juliana Franco and Sophia Drossopoulou. 2015. Behavioural Types for
Non-Uniform Memory Accesses. In PLACES 2015. 109–120. DOI:http:
//dx.doi.org/10.4204/EPTCS.203.9

Michael Franz and Thomas Kistler. 1998. Splitting Data Objects to Increase
Cache Utilization. Technical Report. University of California, Irvine.

Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. 2004. Expe-
rience with Safe Manual Memory-Management In Cyclone. In ISMM’04.
ACM, 73–84. DOI:http://dx.doi.org/10.1145/1029873.1029883

Martin Hirzel. 2007. Data Layouts for Object-Oriented Programs. In
ICMMCS. ACM, 265–276.

Xianglong Huang, Stephen M Blackburn, Kathryn S Mckinley, J Eliot, B
Moss, Zhenlin Wang, and Perry Cheng. 2004. The Garbage Collection
Advantage: Improving Program Locality. In OOPSLA. ACM.

IvyBridge 2016. Intel Ivy Bridge. http://www.7-cpu.com/cpu/IvyBridge.html.
(2016).

Nouraldin Jaber and Milind Kulkarni. 2017. Data Structure-Aware Heap
Partitioning. In CC’2017. ACM, 109–119. DOI:http://dx.doi.org/10.1145/
3033019.3033030

Richard Jones, Antony Hosking, and Eliot Moss. 2016. The garbage collection
handbook: the art of automatic memory management. CRC Press.

Malin Källén, Sverker Holmgren, and Ebba Hvannberg. 2014. Impact of
Code Refactoring Using Object-Oriented Methodology on a Scientific
Computing Application. In SCAM’2014. IEEE, 125–134.

Chris Lattner and Vikram Adve. 2003. Data Structure Analysis: A Fast and
Scalable Context-Sensitive Heap Analysis. Technical Report. U. of Illinois.

Chris Lattner and VikramAdve. 2005. Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap. In PLDI
’05. ACM, 129–142.

Perf 2017. Perf Wiki. https://perf.wiki.kernel.org/index.php. (2017).
Robert E Strom and Shaula Yemini. 1986. Typestate: A Programming Lan-

guage Concept for Enhancing Software Reliability. IEEE Transactions on
Software Engineering 1 (1986), 157–171.

Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed
Call-by-Value λ-calculus Using a Stack of Regions. In POPL ’94. ACM,
188–201. DOI:http://dx.doi.org/10.1145/174675.177855

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Manage-
ment. Inf. Comput. 132, 2 (1997), 109–176. DOI:http://dx.doi.org/10.1006/
inco.1996.2613

Vlad Ureche, Aggelos Biboudis, Yannis Smaragdakis, and Martin Odersky.
2015. Automating Ad Hoc Data Representation Transformations. InOOP-
SLA’15. ACM, 801–820. DOI:http://dx.doi.org/10.1145/2814270.2814271

Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wijshoff.
2010. Automatic Restructuring of Linked Data Structures. In LCPC’09.
Springer, 263–277.

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya
Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton.
2017. Compiling Tree Transforms to Operate on Packed Representations.
In ECOOP 2017 (LIPIcs). Schloss Dagstuhl. DOI:http://dx.doi.org/10.4230/
LIPIcs.ECOOP.2017.26

Zhenjiang Wang, ChenggangWu, and Pen-Chung Yew. 2010. On Improving
Heap Memory Layout by Dynamic Pool Allocation. In CGO ’10. ACM.

Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and Di Xu.
2012. On-the-fly Structure Splitting for Heap Objects. ACM TACO 8, 4
(2012), 26:1–26:20. DOI:http://dx.doi.org/10.1145/2086696.2086705

Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. 2009.
Loci: Simple Thread-Locality for Java. In ECOOP 2009 (LNCS). Springer,
445–469. DOI:http://dx.doi.org/10.1007/978-3-642-03013-0_21

WmAWulf and Sally AMcKee. 1995. Hitting the memory wall: implications
of the obvious. ACM SIGARCH computer architecture news 23, 1 (1995),
20–24.

http://dx.doi.org/10.1145/583854.582421
http://dx.doi.org/10.1145/2509136.2509531
http://dx.doi.org/10.1145/583854.582447
http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1145/286936.286947
http://dx.doi.org/10.1145/286936.286947
http://dx.doi.org/10.1145/2823363.2823371
http://dx.doi.org/10.1145/2823363.2823371
http://dx.doi.org/10.4204/EPTCS.203.9
http://dx.doi.org/10.4204/EPTCS.203.9
http://dx.doi.org/10.1145/1029873.1029883
http://www.7-cpu.com/cpu/IvyBridge.html
http://dx.doi.org/10.1145/3033019.3033030
http://dx.doi.org/10.1145/3033019.3033030
https://perf.wiki.kernel.org/index.php
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1145/2814270.2814271
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.26
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.26
http://dx.doi.org/10.1145/2086696.2086705
http://dx.doi.org/10.1007/978-3-642-03013-0_21

	Abstract
	1 Introduction
	1.1 The SHAPES Concept

	2 Core SHAPES
	2.1 Why Arrays Are Insufficient
	2.2 Layout and Program Logic Are Entangled
	2.3 Declaration of Pointer-Based Data Structures
	2.4 Instantiation and Usage of Data Structures
	2.5 SHAPES is Type Safe
	2.6 Formal Model
	2.7 Let Objects be Objects. SHAPES is OO.
	2.8 Design Decisions

	3 Implementation of Core SHAPES
	3.1 Object Pooling
	3.2 References to Pooled Objects
	3.3 Compacting Garbage Collection
	3.4 The SHAPES Library
	3.5 Iteration
	3.6 Compiling and Executing SHAPES Code

	4 Extended SHAPES
	4.1 Garbage Collection and Compaction
	4.2 Concurrency & Parallelism
	4.3 Dynamically Changing Field Affinity
	4.4 Value Semantics

	5 Related Work
	6 Conclusions
	A Preliminary Evaluation
	B Minimal API Implementation
	B.1 Stack
	B.2 ArrayList

	C Rust Version
	Acknowledgments
	References

