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Abstract. This paper describes a high-speed software implementation
of Elliptic Curve Cryptography (ECC) for GeForce GTX graphics cards
equipped with an NVIDIA GT200 Graphics Processing Unit (GPU). In
order to maximize throughput, our ECC software allocates just a single
thread per scalar multiplication and aims to launch as many threads in
parallel as possible. We adopt elliptic curves in Montgomery as well as
twisted Edwards form, both defined over a special family of finite fields
known as Optimal Prime Fields (OPFs). All field-arithmetic operations
use a radix-224 representation for the operands (i.e. 24 operand bits are
contained in a 32-bit word) to comply with the native (24 × 24)-bit in-
teger multiply instruction of the GT200 platform. We implemented the
OPF arithmetic without conditional statements (e.g. if-then clauses) to
prevent thread divergence and unrolled the loops to minimize execution
time. The scalar multiplication on the twisted Edwards curve employs
a comb approach if the base point is fixed and uses extended projective
coordinates so that a point addition requires only seven multiplications
in the underlying OPF. Our software currently supports elliptic curves
over 160-bit and 224-bit OPFs. After a detailed evaluation of numerous
implementation options and configurations, we managed to launch 2880
threads on the 30 multiprocessors of the GT200 when the elliptic curve
has Montgomery form and is defined over a 224-bit OPF. The resulting
throughput is 115k scalar multiplications per second (for arbitrary base
points) and we achieved a minimum latency of 19.2 ms. In a fixed-base
setting with 256 precomputed points, the throughput increases to some
345k scalar multiplications and the latency drops to 4.52 ms.

1 Introduction

Driven by the requirements of 3D computer games, Graphics Processing Units
(GPUs) have evolved into massively parallel processors consisting of hundreds
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of cores that are capable of running thousands of threads concurrently [14]. In
contrast, recent general-purpose CPUs feature a maximum of 12 cores and can
handle only few threads per core. They dedicate a large portion of their silicon
area to support a hierarchical memory organization (i.e. multi-level cache) and
sophisticated flow control mechanisms (e.g. branch prediction, out-of-order exe-
cution). In a modern GPU, on the other hand, the vast majority of transistors
(more than 80% according to [19]) is devoted to data processing (i.e. numerical
computations) rather than data caching and flow control. Over the past couple
of years, the performance of CPUs doubled roughly every 18 months, whereas
the computational power of GPUs increased significantly faster with an average
doubling rate of just about six months (“Moore’s law cubed”) [13]. Today, the
floating-point performance of contemporary GPUs exceeds that of CPUs of the
same or similar price by more than an order of magnitude. The unprecedented
computational power and relatively low cost of modern GPUs has made them
an attractive platform for various “number-crunching” applications outside the
graphics domain, e.g. in cryptography [4,6] and cryptanalysis [5].

The recent literature contains several case studies that demonstrate the use
of a GPU as “accelerator” for cryptographic workloads; a well-known example
is SSLShader [12], a GPU-based reverse proxy for SSL servers. SSL, along with
its successor TLS, is the current de-facto standard protocol for enabling secure
communication over an insecure network like the Internet. The most expensive
part of SSL/TLS is the handshake sub-protocol, whose task is to authenticate
the server to the client1 and establish a so-called pre-master secret [12]. When
an RSA-based cipher suite is used for the handshake, the server has to execute
computation-intensive modular exponentiations, which causes excessive delays
and hampers throughput. SSLShader tackles this problem by “off-loading” the
modular exponentiations to one or more GPUs, thereby alleviating the burden
of the server’s CPU. Practical experiments in [12] show that GPU acceleration
of the handshake increases the number of SSL transactions per second by a fac-
tor of 2.5 (1024-bit RSA) and 6.0 (2048-bit RSA) compared to a configuration
where the CPU performs the exponentiations. Even though [12] only considers
RSA-based cipher suites, the idea of accelerating SSL via one or more GPUs is
also applicable to handshakes using Elliptic Curve Cryptography (ECC).

In this paper, we present an efficient implementation of ECC (or, more pre-
cisely, of scalar multiplication in an elliptic curve group) for NVIDIA graphics
cards featuring a Tesla GPU [14]. Our implementation is specifically optimized
for high throughput, which means we aimed at maximizing the number of sca-
lar multiplications the GPU can execute per second. The basic idea we pursue
is to employ just one single thread for each scalar multiplication, but launch as
many threads in parallel as possible. This contrasts with the bulk of previous
work, which followed a relatively “fine-grained” approach to parallel processing
by invoking several threads to cooperatively compute one scalar multiplication
[2]. Avenues for exploiting thread-level parallelism to speed up ECC on GPUs

1 Client authentication is optional in SSL. Web applications usually authenticate the
client (i.e. user) through a higher-level protocol, e.g. by entering a password.
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exist in both the field arithmetic (i.e. modular multiplication and squaring, see
e.g. [1,4]) and the group arithmetic (i.e. point addition and point doubling, see
e.g. [6,11]). A major challenge of such a “many-threads-per-task” strategy is to
partition the task (scalar multiplication in our case) into independent subtasks
that can be executed in parallel with little communication and synchronization
overhead. The goal is to find a partitioning that keeps all threads busy all the
time so that no resources are wasted by idling threads, which is difficult due to
the iterative (i.e. sequential) nature of scalar multiplication algorithms. On the
other hand, a “one-thread-per-task” strategy avoids these issues and is easy to
implement because all involved operations are executed sequentially by a single
thread. Therefore, this approach has the virtue of (potentially) better resource
utilization when launching a large number of threads. However, the problem is
that the threads, even though they are independent of each other, share certain
resources such as registers or fast memory, which are sparse. The more threads
are active at a time, the fewer resources are available per task.

This paper seeks to shed new light on the question of how to “unleash” the
full performance of GPUs to achieve maximum throughput for scalar multipli-
cation. To this end, we combine the state-of-the-art in terms of implementation
options for ECC with advanced techniques for parallel processing on GPUs, in
particular the NVIDIA GT200 [14,19]. Our implementation currently supports
elliptic curves in Montgomery [18] and twisted Edwards form [3], both defined
over a special type of prime field known as Optimal Prime Field (OPF) [9]. In
order to ensure a fair comparison with previous work (most notably [1,6]), we
benchmarked our ECC software on a GeForce GTX285 graphics card equipped
with a GT200 processor. Even though the GT200 is already five years old and
has a (by today’s standards) rather modest compute capability of 1.3 [20], its
integer performance is still “remarkably good,” as was recently noted by Bos in
[6, Section 5]. This is not surprising since, in the past few years, NVIDIA has
focused primarily on cranking up the performance of single-precision floating-
point operations, whereas integer performance improved at a rather slow pace
from one GPU generation to the next. A peculiarity of the GT200 GPU are its
integer multipliers, which “natively” support only (24 × 24)-bit multiplications
and MAC operations, even though the integer units, including registers, have a
32-bit datapath. (32× 32)-bit multiplications can be executed, but they need to
be composed of several mul24 instructions and are, therefore, slow.

2 Preliminaries

In this section, we first discuss some basic properties and features of NVIDIA’s
GT200 platform (Subsection 2.1) and then recap the used elliptic curve models
as well as the underlying prime field (Subsection 2.2).

2.1 Graphics Processing Units (GPUs)

A large number of multi-core GPU platforms exist today, e.g. the Tesla, Fermi
and Kepler families from NVIDIA, or the Radeon series from AMD. We use an
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NVIDIA GeForce GTX285 card for our implementation due to its attractive
price-performance ratio and easy programmability. The main component of an
NVIDIA GPU is a scalable array of multi-threaded Streaming Multiprocessors
(SMs), in which the actual computations are carried out. A GT200 is composed
of exactly 30 SMs, each coming with its own control units, registers, execution
pipelines and caches. The main components of an SM are Streaming Processors
(SPs), which are essentially just ALUs, referred to as “cores” in NVIDIA jar-
gon [20]. Each SM contains eight cores and two Special Function Units (SFUs).
The SMs are designed to create, manage, schedule, and execute a large num-
ber of threads concurrently following the SIMT (Single-Instruction, Multiple-
Thread) principle. A batch of 32 threads executed physically in parallel is called
a warp. At each cycle, the SM thread scheduler chooses a warp to execute. We
should note that a warp executes one common instruction at a time. If there is
a data-dependent conditional branch, divergent paths will be executed serially.
So, in order to obtain full performance, all the threads of a warp should have
the same execution path, i.e. conditional statements should be avoided.

The so-called Compute Unified Device Architecture (CUDA) is a parallel
programming model introduced by NVIDIA to simplify software development for
GPUs, including software for general-purpose processing on GPUs (GPGPU).
It provides both a low-level and high-level API and also defines the memory
hierarchy. The parallel portion of an application is executed on GPUs as kernels
(a kernel is a grid of thread blocks). A block is a group of threads, whereby all
threads in one block can cooperate with each other. A thread is the smallest
unit of parallelism and only threads with the same instructions can be executed
synchronously. Our implementation launches thousands of threads to compute
thousands of scalar multiplications in parallel on the GT200.

CUDA provides a hierarchical memory model, including registers, shared
memory, global memory, and constant memory [20]. Registers are on-chip mem-
ories, which are private to individual threads. Variables that reside in registers
can be accessed at the highest speed in a highly parallel manner. On a GT200,
each SM has 16384 registers of a width of 32 bits. However, registers can not be
addressed. Shared memory is also located on chip and can, therefore, be accessed
at a high speed. Shared memory is allocated to a thread block. All the threads
in one block can cooperate by sharing their input data and intermediate results
through shared memory. In the GT200 series, each SM has 16 kB shared memory.
Global memory and constant memory are off-chip memories. Global memory is
the only one that can be accessed by the host processor, so it is normally used
to exchange data with host memory. Constant memory can only be read and
is optimized for one-dimensional locality of accesses. One can achieve optimal
performance by carefully considering the advantages of the different variants
of memory. As registers and shared memory are the fastest memory spaces, we
mainly use them in our implementation. In order to get the best performance, it
is vital to balance the number of parallel threads per block with the utilization
of the limited registers and shared memory. Furthermore, one has to be careful
to prevent bank conflicts [20] when accessing shared memory.
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2.2 Elliptic Curve Cryptography (ECC)

Twisted Edwards Curve. Twisted Edwards curves were presented by Bern-
stein et al [3] and are widely considered to be one of the most efficient models
for implementers. Let K be a field with char(K) �= 2. A twisted Edwards curve
over K can be defined as

ET,a,d : ax2 + y2 = 1 + dx2y2 (1)

where a and d are distinct non-zero elements of K, i.e. ad(a− d) �= 0.
Our implementation adopts the idea of extended coordinates from [11] to

perform a point addition and point doubling. A point in extended projective
coordinates can be represented as (X : Y : T : Z) whereby the corresponding
extended affine coordinates have the form (X/Z, Y/Z, T/Z) with Z �= 0. The
auxiliary coordinate T has the property T = XY/Z. Fixing the parameter a to
−1 allows for a further reduction of the cost of point operations as described
in [11]. We follow the approach from [7] and use a quintuple with two variables
E and H instead of T to represent a point, whereby E ·H = T . In this case, a
point doubling can be performed with three multiplications and four squarings
(i.e. 3M+4S), while the point addition costs seven multiplications (7M).

To reach high throughput, our implementation adopts a comb method [10]
for scalar multiplication, which can only be used in scenarios where the base
point is fixed. Given the amount of constant memory the GTX285 provides,
we chose a window width of w = 8 for the comb method. Consequently, 256
points (one of which is the neutral element) have to be pre-computed off-line and
then transferred to constant memory before the actual execution of the scalar
multiplication. To prevent thread divergence and protect our implementation
against timing-based side-channel attacks, we simply exploit the completeness
of the Edwards addition law (i.e. we add the neutral element when an 8-bit digit
of the scalar is zero) to achieve a branchless execution path.

Montgomery Curve. Peter Montgomery introduced in 1997 a special fam-
ily of elliptic curves with outstanding implementation properties [18]. A Mont-
gomery curve EM with coefficients A and B over Fp is defined as

EM,A,B : By2 = x3 +Ax2 + x (2)

Montgomery curves allow a special ladder technique to perform a scalar multipli-
cation, which is generally referred to as “Montgomery ladder”. Instead of using
conventional (x, y) coordinates, the scalar multiplication on a Montgomery-form
curve can be computed using only the x coordinate of the base point. Due to
this feature, all point additions and doublings can be executed in an efficient
way since they never involve a y coordinate. Therefore, the point addition has
an operation count of of only 3M+2S, where M represents a field multiplica-
tion and S a squaring operation. Doubling a point costs 2M+2S+1C, where C
stands for a multiplication of a field element by the constant (A + 2)/4. In our
implementation, the parameter A is chosen such that this constant is small.
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Fig. 1. Radix-224 representation of a 160-bit integer using 32-bit words

Optimal Prime Fields (OPFs). We use a special class of finite field, known
as Optimal Prime Field (OPF) [15]. OPFs are defined via a prime of the form
p = u · 2k + v, whereby u and v are small in relation to 2k. It is obvious that
there exist many such primes for a given bitlength. In our implementation, v is
always 1 and u is a 16-bit integer. A concrete example for a 160-bit prime is
p = 65356 · 2144 + 1 = 0xff4c000000000000000000000000000000000001. Primes
of such form have a low Hamming weight, i.e. they contain many zero words
[15]. Generic modular reduction algorithms, e.g. Montgomery reduction, can be
optimized for these primes as only the non-zero words must be processed.

3 Implementation

This section describes our implementation in detail. First, we demonstrate the
advantage of using a radix-224 representation for the field elements in Section
3.1, and then describe the field arithmetic operations in Section 3.2 and finally
the group arithmetic along with the scalar multiplication in Section 3.3.

3.1 Integer Representation

One of the fundamental questions when implementing multi-precision arithmetic
for a given architecture is how to represent the operands so as to take best
advantage of its computational resources. In general, multiplication and carry
propagation are of primary concern.

Multiplication plays an important role in ECC implementations, especially
when projective coordinates are used. The GT200 series is based on the Tesla
architecture, which means the native integer multiply instruction calculates a
(24 × 24)-bit product. A 32-bit integer multiplication is actually performed via
a combination of several 24-bit multiplications, shifts and additions. According
to the CUDA C programming guide [20], eight 24-bit integer multiplications can
be executed per clock cycle on each SM, which is more efficient than the integer
multiplication using a straightforward 32-bit representation. Thus, we adopt a
24-bit representation for the field elements in our work.

Multi-precision operands are typically represented by arrays of w-bit words
whereby w is determined by the word-size of the target processor. When us-
ing a straightforward 32-bit-per-word representation, a 160-bit operand X can
be stored in an array of five 32-bit words. On the other hand, a radix-224

representation (i.e. 24 bits per word) requires seven 32-bit words as shown in
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Fig. 2. Comparison of multi-precision addition (radix-232 vs radix-224)

Figure 1. The most significant byte is 0 in every word and the most significant
word of a 160-bit integer contains only 16 bits. Even though this representation
takes two additional 32-bit words (namely seven in total instead of five), it yields
significantly better field-multiplication performance on a GT200.

224 Addition vs 232 Addition. As shown in the left side of Figure 2, when
using the radix-232 representation, the sum of two words may overflow, and
the resulting carry bit has to be added to the next-higher word. This can be
performed efficiently in PTX assembly language using the add.cc instruction
[21]. On the other hand, the radix-224 representation provides enough space in
the unused most significant byte to hold the carry. However, there are extra
instructions necessary to extract the carry bit and then add it to the next-
higher pair of words. Thus, the radix-224 representation makes multi-precision
addition slightly slower, but this is more than compensated by a significant gain
in multiplication performance as will be described below.

224 Multiplication vs 232 Multiplication. We use the product-scanning
method [10], which can be optimized to take advantage our 24-bit integer rep-
resentation. Figure 3 shows an example of its implementation. As mentioned
before, CUDA provides the [u]mul24.lo/hi instructions, whereby the former
multiplies the 24 Least Significant Bits (LSBs) of the operands and returns the
32 LSBs of the 48-bit product. On the other hand, [u]mul24.hi also multiplies
the 24 LSBs of the operands, but returns the 32 Most Significant Bits (MSBs)
of the product [21, p. 60]. Therefore, the 48-bit product is written to two 32-bit
registers. In the inner loop of the product-scanning method, the partial prod-
ucts of the same column are added together. Due to the 24-bit representation, we
have 8 unused bits, which allows the carries to be added as part of the operands
(we only need to extract the carries at the end of the inner loop). Hence, only
two 32-bit additions are needed in each iteration of the inner loop.

The inner loop is much slower when using a 32-bit representation, which
has two main reasons. First, a 32-bit integer multiplication takes much longer
than the native 24-bit multiply instruction. Second, the processing of the carry
bits requires additional effort because both a 32-bit addition (to accumulate
the lower part) and a 64-bit addition (to accumulate the higher part) has to be
executed per loop iteration. A further disadvantage is the need for extra registers.
Figure 4 compares the execution time of the multiplication using a radix-224 and
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Fig. 3. Product-scanning method for multi-precision multiplication

a radix-232 representation. The figure also includes a radix-229 representation,
which uses 32-bit multiply instructions to get the partial products, but handles
the carries in the same way as the radix-224 representation. Our results show
that the 24-bit representation outperforms the other two approaches by far.

Besides addition and multiplication, the proposed radix-224 representation is
also beneficial for modular reduction. The reason is twofold:

– No Reduction Operation: The idea of incomplete modular reduction was
described in detail by Yanik et al [23]. This technique allows the result of
an operation to be greater than the prime p, but it must have the same bit
length (denoted as s). Normally, if p < 2s < 2p − 1, we require the result
of a field arithmetic operation to be in the range [0, 2s − 1], but it does not
necessarily need to be smaller than p. Consequently, the reduction opera-
tion can be avoided when this condition is met, which means incompletely
reduced results can save execution time. However, if the result does not fit
into s bits, we need to reduce it until it is in the range [0, 2s − 1]. Our im-
plementation does not need to perform the reduction operation for every
field operation since the excess bits can be held in the unused bits without
additional memory or register usage.

– No Conditional Branches: Addition and Montgomery reduction may re-
quire a final subtraction of p, which can cause thread divergence and leak
side-channel information if implemented in a naive way. As we pointed out
before, the radix-224 representation does not have this problem.
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3.2 Field Operations

“Lazy” Modular Addition and Subtraction. The modular addition and
subtraction are basic operations in ECC. We implemented them efficiently using
our special integer representation. For modular addition, we replace the field
addition a + b mod p by an ordinary integer addition a + b without reduction
operation. Since the unused bits in the most significant word can hold excess
bits (i.e. carries), the conditional subtraction can be eliminated. In a modular
subtraction, it is not possible to get a negative result due to the final reduction
operation (i.e. addition of p). However, this is not true for an ordinary subtrac-
tion. In our work, we compute kp+a− b instead of a− b to avoid to get negative
results, which is more efficient than doing a reduction since we just need to add
two 24-bit words before subtracting. The problem is to decide how many p have
to be added, which of course depends on the operands a and b. If a > b is always
true then we could just compute a − b. Unfortunately, there is no guarantee
that this is the case. In our implementation, the field-arithmetic operations are
invoked by the point addition and point doubling. In these two operations, the
inputs of a modular subtraction are generally the outputs of addition, modular
multiplication or squaring. The outputs of modular multiplication and squaring
are always in [0, 2p). On the other hand, the output of an addition is in the range
of [0, 4p). Therefore, we can avoid a negative result when k = 4, which means
we can simply replace a− b mod p by 4p+ a− b.

Efficient Field Multiplication and Squaring. Modular multiplication and
modular squaring are the two most performance-critical arithmetic operations in
ECC. In our implementation, they are realized through Montgomery’s modular
reduction technique introduced in [17]. We use a special variant of the so-called
Montgomery multiplication, the so-called Finely Integrated Product Scanning
(FIPS) method. The OPF primes we use have a very low Hamming weight so
that only the most significant and the least significant 24-bit word needs to be
considered in the reduction. We implemented both modular multiplication and
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squaring on basis of Liu et al’s OPF-FIPS algorithm introduced in [15], which
simply ignores all the zero-words and, in this way, achieves very high perfor-
mance. We refer to [15] for a detailed description of the implementation. Some
further optimizations are possible when using a radix-224 representation and
following the approach of incomplete modular reduction. In this way, the final
subtraction in both the Montgomery multiplication and squaring does not need
to be carried out. However, the result of a modular multiplication/squaring is
now in the range of [0, 2p − 1]. Note that, since the FIPS method is based on
the product-scanning approach, we can process carries efficiently as described
before. All loops are fully unrolled for performance reasons. The operands are
loaded into registers and then we perform the computation in a word by word
fashion. Finally, the result is written back to memory.

3.3 Group Operations and Scalar Multiplication

Point Addition and Doubling. The most efficient way to represent a point
P = (x, y) on a twisted Edwards curve is to use extended projective coordinates
of the form (X : Y : T : Z) as proposed by Hisil et al in [11]. However, in
order to further optimize the point arithmetic, our implementation omits the
multiplication that produces the auxiliary coordinate T and outputs the two
factors E, H it is composed of instead (see [7] for details). In this way, one
can obtain more efficient point addition formulae, especially when the curve
parameter a = −1. By applying these optimizations, the cost of addition and
doubling amounts to 7M and 3M+4S, respectively.

We implemented the point addition/doubling on the Montgomery curve in
a straightforward way using exactly the formulae given in [18].

Scalar Multiplication. We benchmark our GPU implementation with two
different scalar multiplication techniques. In the case of an arbitrary point (i.e. a
base point that that neither constant or known in advance), we use the standard
Montgomery ladder on the Montgomery curve. In this way, we have to always
execute exactly one point addition and one point doubling for each bit of the
scalar, which amounts to 5M +4S per bit. On the other hand, if the base point
is fixed, our implementation uses a regular version of the comb method with 256
pre-computed points, similar as described in [16]. The idea of the regular comb
method is as follows: Since the base point P is fixed, we can do an off-line pre-
computation of multiples d ·P of P and store them in a table. Then, during the
actual scalar multiplication, we process 8 bits of the scalar at a time, and add
the corresponding entry from the table to the previous intermediate result. In
this way, the number of point doublings is reduced by a factor of 8 compared to
the straightforward double-and-add method. The number of point additions is
exactly the same as the number of doublings since we exploit the completeness
of the Edwards addition law and add the neutral element O = (0, 1) when an
8-bit block of the scalar is 0. The overall cost of our comb method with 256
pre-computed points amounts to 10

8 nM+ 4
8nS for an n-bit scalar.
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4 Experimental Results

Our experimental platform is an NVIDIA GTX285 graphics card; it contains
a GT200 GPU clocked at a frequency of 1476 MHz. The GT200 is nowadays
considered a low-end GPU with a compute capability of 1.3.

4.1 Throughput and Latency

The number of blocks per grid and the number of threads per block are two es-
sential parameters of an execution configuration since they directly impact the
utilization of the GPU. Furthermore, these two parameters interplay with the
memory and register usage. In our evaluation, we focus on three parameters,
namely the number of blocks running on each SM, the number of threads per
block, and the usage of on-chip memory.

The threads are assigned to an SM in a group of blocks. A block of threads
gets scheduled to one available multiprocessor. We can use more than one block
to expand the throughput by taking advantages of the 30 SMs. In [1], the best
performance was achieved by launching 30 blocks on the GT200. However, the
GT200 allows for up to 512 threads per SM, provided that there is sufficient
on-chip memory and registers available for each thread. Unfortunately, both is
severely limited, which requires to carefully balance the number of threads per
block with register and shared memory usage. Furthermore, the performance
also varies depending on what kind of memory is used. There are three basic
implementation options; we briefly describe them below taking variable-base
scalar multiplication on the 160-bit Montgomery curve as example.

– Shared memory can be accessed very fast, but is small. We can achieve the
lowest latency when all operands are held in shared memory. However, due
to its limited capacity of 16 kB per SM, only up to 80 threads per block can
be launched. We call this number of threads the threads limit point.

– Global memory is large. Thus, we can move some operands that are not
frequently used into global memory. In this case, the threads limit point
increases to 144. However, due to slower access time, the latency rises.

– To launch even more threads, we can put all operands into global memory.
In this case, the threads limit point is 160 threads per block, determined by
the register restriction. Unfortunately, the latency becomes very high.

The resulting throughput and latency of all three cases are illustrated in Figure
5. We can see that the blue line representing the latency is flat until the first
threads limit point of 80. Thereafter (i.e. from 96 onwards), the latency rises
slightly since now global memory is used to hold parts of operands. After pass-
ing the second threads limit point (i.e. 144), only global memory is used, and
therefore the latency increases sharply. In our work, throughput refers to the
number of point multiplications that can be executed per second, which is an
important performance metric. Figure 5 shows that the green bars representing
this metric keep increasing until the second thread limit point of 144, where the
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Fig. 5. Throughput and latency for a different number of variable-base scalar multi-
plications per block (using the Montgomery ladder on a Montgomery curve)

peak is reached. After this point, the throughput declines sharply. Hence, we
achieve the highest throughput, namely 502k scalar multiplications per second,
with 4320 threads (i.e. 144 threads per block). This shows that one can increase
throughput by sacrificing latency; we did this by using both shared memory and
global memory for storing operands. For the 224-bit Montgomery ladder, the
highest throughput of 115k scalar multiplications per second is achieved when
96 threads per block are launched (i.e. 2880 threads altogether).
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Our implementation of the comb method stores the pre-computed points in
constant memory. Figure 6 shows the latency and throughput for a twisted
Edwards curves over a 160 and 224-bit OPF, respectively. Table 1 summarizes
the maximum performance of the four implementations. The throughput of the
comb method is about 1412k and 345k in the 160 and 224-bit case, respectively.
The performance is highly dependent on choosing the proper number of scalar
multiplications per block. Our results show that 112 and 128 are the best choices
for 160 and 224-bit curves, respectively, if one aims for high throughput.
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Table 1. Minimum latency and maximum throughput of scalar multiplication

Implementation Latency [ms] Throughput [op/s]

160-bit Montgomery ladder 5.9 502326

160-bit Comb method 1.84 1411756

224-bit Montgomery ladder 19.2 115200

224-bit Comb method 4.52 345417

4.2 Comparison with Related Work

In recent years, numerous ECC implementations for GPUs have been reported
in the literature. In [1], Antão et al introduced a parallel algorithm for point
multiplication using a Residue Number System (RNS) to expose parallelism in
the multi-precision integer arithmetic. Their results on the GTX285 platform
suggest a maximum throughput of 9990 scalar multiplications per second and a
latency of 24.3 ms if the underlying field has a size of 224 bits. Szerwinski and
Güneysu [22] presented an implementation on an NVIDIA 8800GTS based on
the operand-scanning method for multi-precision multiplication. Their results
indicate a throughput of 1412 scalar multiplications per second using the NIST
P-224 curve. In [8], Giorgi et al did a comprehensive evaluation of both prime-
field arithmetic and point arithmetic (including scalar multiplication) on the
NVIDIA 9800 GX2 GPU for operands of different length. When using a 224-bit
field, they achieved throughput of 1972 scalar multiplications per second.

Table 2. Comparison of GPU implementations of 224-bit scalar multiplication

Implementation Platform Latency [ms] Throughput
[op/s]

Processor
clock [MHz]

Szerwinski [22] 8800 GTS 305 1412.6 n./a.

Giorgi [8] 9800 GX2 n./a. 1972 n./a.

Antão [1] GTX 285 24.3 9990 1476

Bos [6] GTX 295 10.6 79198 1242

Our work (var. point) GTX 285 19.2 115200 1476

Our work (fixed point) GTX 285 4.52 345417 1476

To our knowledge, Bos reported in [6] the best previous result for ECC over
a 224-bit prime field on the GT200, even though he optimized latency instead
of throughput. He used a Montgomery ladder on a Weierstrass curve for scalar
multiplication, which is implemented with 8 threads so as to exploit parallelism
in the point operations. As shown in Table 2, he reached a throughput of 79198
scalar multiplications per second, but one has to consider that the GTX295
he used for benchmarking contains two GT200 GPUs, which are clocked with
a slightly lower frequency than in our GTX285. Taking these differences into
account, our throughput in the variable-base setting is 2.45 times higher than
that of Bos. On the other hand, the latency differs by a factor of 2.15.
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5 Conclusions

In this work, we combined Optimal Prime Fields (OPFs) with twisted Edwards
and Montgomery curves, and implemented both the field and curve arithmetic
to match the characteristics of the NVIDIA GT200 GPU. To optimize the field
arithmetic with respect to 24-bit integer multipliers of the GT200, we adopted
a radix-224 representation for the field elements. This representation facilitates
lazy or incomplete modular addition and subtraction since the most significant
word contains (at least) 8 vacant bits. We use OPFs as underlying algebraic
structure, which allows for very fast modular reduction since only the non-zero
words of the prime need to be processed. For point operations on the twisted
Edwards curve, extended coordinates are used to represent the points, which
allows the point addition to be performed with only seven multiplications in the
underlying OPF, while a point doubling requires three multiplications and four
squarings. We adopted the complete point addition formulae for curves with
parameter a = −1. The scalar multiplication uses a regular variant of the comb
method with 256 pre-computed points. Regarding the implementation options
related to memory (resp. register) usage and number of threads, we scarified
latency to get a higher throughput by moving temporary arrays from shared
memory to the un-cached global memory. In this way, we managed to achieve a
significantly higher throughput than the state-of-the-art.
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