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Abstract—A Content Delivery Network (CDN) is a distributed
system composed of a large number of nodes that allows users
to request objects from nearby nodes. CDN not only reduces the
end-to-end latency on the user side but also offloads Content
Providers (CPs) providing resilience against Distributed Denial
of Service (DDoS) attacks. However, by caching objects and
processing users’ requests, CDN service providers could infer
user preferences and the popularity of objects, thus resulting
in information leakage. Unfortunately, such information leakage
may result in compromising users’ privacy and reveal business-
specific information to untrusted or potentially malicious CDN
providers. State-of-the-art Searchable Encryption (SE) schemes
can protect the content of sensitive objects but cannot prevent
the CDN providers from inferring users’ preferences and the
popularity of objects.

In this work, we present a privacy-preserving encrypted CDN
system not only to hide the content of objects and users’ requests,
but also to protect users’ preferences and the popularity of
objects from curious CDN providers. We encrypt the objects
and user requests in a way that both the CDNs and CPs can
perform the search operations without accessing those objects
and requests in cleartext. Our proposed system is based on a
scalable key management approach for multi-user access, where
no key regeneration and data re-encryption are needed for user
revocation.

I. INTRODUCTION

A Content Delivery Network (CDN) is a distributed system
composed of a large number of nodes deployed across the
world. Each node caches the replica of the most frequently or
most recently requested objects, e.g., files, images, and videos.
When a user requests a certain object, the request will be
forwarded to the nearby node, rather than the origin server.
In recent years, a large number of Content Providers (CPs),
such as Netflix, Youtube, and Facebook, use CDNs to deliver
objects that are geographically closer to the users. CDN not
only decreases the end-to-end latency on the user side but also
reduces the load on CPs, ensuring availability in the face of
Distributed Denial of Service (DDoS) attacks.

Despite these benefits, the use of CDNs also raises confi-
dentiality and privacy issues to CPs and users, respectively.
In most cases, CPs may wish for their objects to be available
only to a particular set of users. For example, only the paying
users could watch pay-per-view movies on Netflix. However,
once the object is outsourced to CDN nodes, it will be out of
the control of CPs. Users could access unauthorised objects
by colluding with malicious CDN service providers. In some
commercial sites, user requests are analysed to extract user
preferences and push targeted advertising. In e-commerce, the

popularity of each product is business-critical information.
The CDN service provider could get the object popularity
by analysing the request history on each CDN node. It
will seriously impact the business strategy of the CPs if a
malicious CDN service provider sells this information to their
competitors. Finally, users’ privacy might also be impacted
when contents are delivered through CDNs. Given that CDN
providers serve the requests from users they are also able to
profile users based on the requested content. Such profiling
might put user privacy at risk.

Therefore, when distributing sensitive objects in CDNs, it
is crucial to protect (i) the content of objects and requests, (ii)
the popularity of objects, and (iii) user preferences from CDN
service providers.

Searchable Encryption (SE) [1] supports search operations
over encrypted data. In cloud computing, SE is widely used
to protect the outsourced data from the cloud service provider.
Such schemes allow the cloud service provider to perform en-
crypted search operations on encrypted data without revealing
the data. In CDNs, encrypting the objects and requests with SE
schemes could address the above security concerns. However,
most of the SE schemes, such as [2]–[4], can not be directly
applied to CDNs due to the following issues:
• First, they leak the search pattern and access pattern

[2]. That is, with traditional SE schemes, CDN service
providers could learn if any two encrypted requests are
the same or not, and which objects match them. As
discussed by Cash et al. [5], exploiting this information
leads to breaking the SE encryption scheme and retrieve
the data in cleartext.

• If an SE scheme is used, a scalable key management
mechanism would be required. In CDN systems, the ob-
ject is cached by a number of nodes and can be accessed
by a large number of users. Ideally, the user should be
able to join in or leave the system without affecting other
users. In particular, a user should be revoked without
any new key generation and re-encryption of the data.
Otherwise, it would be significantly expensive to refresh
all the objects cached in each node and distribute the new
keys to the rest of users. Unfortunately, most of the SE
schemes, such as [2], [4], fail to offer such a scalable
key management method. Proxy re-encryption based SE
schemes, like [3], [6], could solve this problem. However,
they are based on asymmetric encryption and tend to be
much slower than traditional symmetric encryption.



• Third, in traditional SE schemes, all the search operations
are performed only by the cloud service providers. How-
ever, in CDNs, when the requested object is not found
in one of the CDN nodes, the request will be forwarded
to CPs for another round of searching. Hence, in using
a tradition SE scheme, a CP has to store a searchable
data structure and perform the encrypted search as the
CDN node does. But this would require heavy storage
and intensive computation on the CP end.

In this work, we present a privacy-preserving encrypted
CDN system to address the aforementioned issues. In our
approach, we encrypt the objects and user requests such that
both the CDNs and CPs can perform the matching operation
efficiently without performing any decryption. By distributing
the objects and requests across multiple CDN service provider-
s, user preferences and object popularity are concealed from
each CDN service provider as long as they do not collude.

II. APPROACH OVERVIEW

A. Multi-CDN

In this paper, we focus on the CDN systems based on the
pull-based mode and DNS-based request routing [7]. The time
to process user requests strongly depends on the availability of
CDN nodes. Ideally, the more the nodes, the more efficient is
to retrieve the object. However, the nodes owned by one CDN
service provider are not everywhere, and their performance
varies across regions, throughout the day. Thus, the users may
not get the best service anywhere, anytime. Multi-CDN is
one of the strategies to ensure that objects are delivered to
users as quickly as possible by combining a range of existing
nodes owned by different CDN service providers into a single
network known as cluster. In this strategy, user requests can
be distributed to the most optimal node within the cluster. Due
to its benefits, the use of multi-CDN has risen in recent years
for those organisations that find their sites experiencing huge
amounts of traffic on a global scale, such as Netflix, LinkedIn,
and Twitter [8]. CDN Aggregator (e.g., Cedexis [9]) and Load
Balancer (e.g., Amazon Route 53) [10] are two options for
implementing a multi-CDN. In this work, we exploit multi-
CDN to conceal user preference and object popularity from
CDN providers.

B. System Model

As shown in Figure 1, our system involves four main
entities:
• User: It represents the entity that can request objects.
• Content Provider (CP): It stores and distributes its

objects to CDN nodes.
• CDN Cluster: It is a set of CDN nodes located in the

same geographical region, e.g., a country, but offered by
different CDN service providers. Each CDN node can
receive user requests and return the matched objects, or
redirect the request to the CP.

• Request Routing System (RRS): It is responsible for
directing user requests to a high-performing available
node.
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Fig. 1: The proposed architecture: A CDN cluster is composed
of a set of CDN nodes owned by different CDN service
providers. The CP uploads encrypted objects with the pull-
based or push-based mode. With the IPs of the closest nodes,
users could issue encrypted request and get the requested
object.

C. Threat Model

We assume the CP is trustworthy. It encrypts the outsourced
objects and authorises users to get objects from CDN nodes.
Users are only supposed to securely keep their secret keys and
objects properly. We assume each CDN service provider is
honest but it could be victim of an insider or outsider attack.
In our threat model, we assume that any two CDN service
providers do not collude together. In other words, an attacker
is not able to infiltrate the infrastructure of more than one
CDN provider. Considering there is no content stored on the
RRS, it does not matter if it is trusted or untrusted. If the RRS
is provided by the CP, like in URL rewriting routing schemes,
it would be trusted. On the contrary, if it is provided by a
CDN provider, like in DNS-based routing schemes, it would
be untrusted. In this work, we assume the RRS is provided by
one of the involved CDN service providers.

III. SOLUTION DETAILS

We consider a CDN cluster with N nodes: N1, . . . , NN ,
where N > 3 and Ni,Ni+1,Ni+2,Ni+3

1 (i ≥ 1) should be
provided by different CDN service providers. Let λ be the
security parameter in our system. The system is set by the CP
by generating the secret key k and configuring CDN clusters.
k is shared among users and is used to protect the request and
objects from CDN service providers.

A. Data Representation

The object cached in CDNs could be a document, image,
or video. In this work, we specifically consider the object
as a digital document and model it as a 2-tuple C =
〈name, payload〉. Each object can be identified by its unique
name, and both name and payload are represented as binary
strings.

Before uploading to CDNs, objects should be encrypted by
the CP. Formally, each object stored in CDNs is encrypted as:

EO = 〈EN ← Hk(name)⊕ n, EP ← fk(payload)⊕ η〉

where Hk : {0, 1}λ ← {0, 1}∗ is a keyed hash function, fk :
{0, 1}∗ ← {0, 1}∗ represents symmetric encryption primitives,

1Ni±a is short for N(i±a) mod N , where a is an integer.



such as AES, and n, η are two nonces. Considering both H
and f are deterministic, to avoid repetitive computation, the
CP pre-computes and locally stores:

PEO = 〈PEN ← Hk(name), PEP ← fk(payload)〉

Once requested by a node Ni, the CP just XORs the encrypted
object with nonces 〈n, η〉 and sends it to Ni. A pair of nonces
〈n, η〉 will be sent to Ni+1, where i ∈ [1, N ]. Therefore,
each node Ni has two separate stores: Content Store (CS) and
Nonce Store (NS). The CS caches EO, and the NS caches the
pair of nonces 〈n, η〉. However, the nonces stored in Ni’s NS
are those included in the EOs cached in Ni−1’s CS.

In order to reduce the storage and communication overhead
among the CDN cluster (will explain in Section III-B), every
W objects cached in a node is encrypted with the same nonce.
In concept, the objects cached in each surrogate are divided
into partitions {P0, P1, ...} base on their physical order. As a
result, Ni+1 just needs to store a nonce pair 〈n, η〉 for each
partition rather than each object. Specifically, each partition is
identified with an unique identifier pid, and 〈npid, ηpid〉 is the
nonce pair used to encrypt the objects in partition Ppid.

Algorithm 1 Encryption(name,Ni,Ni+1)
1: counter ← 0

2: ER← Hk(name)⊕ α0, α0
2 $← {0, 1}2λ

3: Send the encrypted request ER and counter to Ni, and send α0 to Ni+1

B. Request Process

Here, we explain the request process details. Basically,
the user uses the Encryption and Decryption components to
encrypt requests and decrypt returned payloads, respectively.
Each node Ni is equipped with NonceEnc, Search and Post-
search to process encrypted requests, where NonceEnc is used
to provide nonces for the search to be performed on Ni−1,
Search is used to search its CS, and Post-search is used to
process the objects migrated from Ni−1. The CP is only
deployed with the Search components to provide the missed
objects for CDN clusters. The implementation detail of each
component is given below.

1) User Encryption: The user encryption algorithm is de-
scribed in Algorithm 1. To avoid an infinite loop, the user
initialises a counter to record the times the request has been
forwarded. The name of the required object is hashed and
XOR-ed with a nonce α0. The nonce can ensure that the
encrypted request ER is semantically secure, such that the
CDN service providers can not tell if users are requesting for
the same object or not just from ER. Finally, (ER, counter)
and the nonce α0 are sent to Ni and Ni+1, respectively.

2αi means the nonce α is generated by Ni. For instance, αs−2 is
generated by Ns−2. Particularly, α0 is generated by the user.

3Ns stands for the host node running Algorithms 2, 3, and 4. For instance,
when Ni+1 running Algorithm 2, s = i+ 1.

Algorithm 2 NonceEnc3(αs−2)
1: ENS ← ∅
2: for each npid ∈ NS do
3: ENS[pid]← h(npid ⊕ αs−2)
4: Send ENS = {h(n1 ⊕ αs−2), h(n2 ⊕ αs−2), . . .} to Ns−1

Algorithm 3 Search(ER, counter)
1: if counter > 0 then
2: ER← ER⊕ αs−2

3: if counter = N then
4: Send ER to the CP
5: else
6: Get ENS from Ns+1

7: for each EOid ∈ CS do
8: pid← b idW c
9: if ENS[pid] = h(ENid ⊕ ER) then

10: Send EPid to the user, and send pid to Ns+1

11: n′
$← {0, 1}2λ, η′ $← {0, 1}λ

12: for each EOid ∈ Ppid do
13: EO′id ← EOid ⊕ 〈n′, η′〉
14: Send Ppid = {EO′pid∗W , . . . , EO

′
pid∗W+W−1} to Ns+1

15: Send 〈n′, η′〉 to Ns+2

16: Remove Ppid from CS, and exit
17: if the requested object is not found in CS then
18: ER← ER⊕ αs, αs

$← {0, 1}2λ
19: counter + +
20: Send (ER, counter) to Ns+1

21: if counter < N then
22: Send αs to Ns+2

23: else
24: Send αs to the CP

2) Search Operation on Ni: Considering both the objects
and request are encrypted with nonces, Ni alone would not be
able to check if there is a match. It needs Ni+1’s assistance.
Specifically, after receiving the nonce α0 from the user,
Ni+1 executes NonceEnc (Algorithm 2) to encrypt all the
nonces stored in the NS. Formally, for each npid it computes
ENS[pid]← h(α0 ⊕ npid), where h : {0, 1}∗ → {0, 1}λ is a
hash function. The encrypted nonce sets ENS is sent to Ni
for search.

If counter < N , Ni searches over its CS to check if there
is a hit with Search component (Algorithm 3). Specifically,
for each object EOid stored in CS, Ni checks (Line 9) if:
ENS[pid]

?
= h(ER⊕ENid). where pid = b idW c. That is, Ni

Algorithm 4 Post-search(Ppid, pid)
1: Send ηpid to the user
2: for each EO′id ∈ Ppid do
3: EOid ← EO′id ⊕ 〈npid, ηpid〉
4: Insert EOid into the CS
5: Remove 〈npid, ηpid〉 from the NS

Algorithm 5 Search-on-CP(ER,αi+N )
1: ER← ER⊕ αi+N
2: for each PEOid do
3: if PENid = ER then
4: Send PEPid to the user
5: Ask Ni+N to send lid, the identifer of the last object in its CS
6: if (lid+ 1)%W > 0 then
7: Ask Ni+N+1 to send the last 〈n, η〉 in its NS
8: else
9: n

$← {0, 1}2λ, η $← {0, 1}λ, send 〈n, η〉 to Ni+N+1

10: EOid ← PEOid ⊕ 〈n, η〉, send EOid to Ni+N
11: Exit



checks if:

h(α0 ⊕ npid)
?
= h(Hk(name)⊕ α0 ⊕Hk(nameid)⊕ npid)

It is clear that there is a match when name = nameid. Once
there is a match, Ni stops the search, returns the matched
EPid to the user, and notifies Ni+1 to send the ηpid to the
user by sending the matched pid to it (Line 10). Subsequently,
all the records in the matched partition are re-encrypted with
a new nonce pair 〈n′, η′〉 (Line 13) and sent to Ni+1 (Line
14). Meanwhile, the new nonce pair 〈n′, η′〉 is sent to Ni+2

(Line 15). Afterwards, all the records in the matched partition
are removed from Ni (Line 16). Consequently, whether these
objects will match future requests will be unknown to Ni.

If Ni+1 receives the migrated partition Ppid and its pid from
Ni, it carries out Post-search (Algorithm 4). Specifically, it
first sends ηpid to the user (Line 1). Next, Ni+1 removes the
old nonces 〈npid, ηpid〉, which are stored in its NS, from each
object in Ppid with XOR operation (Line 3). Consequently,
they are only bound to the new nonce pair 〈n′, η′〉, which is
unknown to Ni+1, indicating Ni+1 is unable to check if the
mitigated objects match previous requests or not without the
assistance of Ni+2. Finally, Ni+1 inserts Ppid into its CS and
removes 〈npid, ηpid〉 from its NS (Lines 4 and 5).

3) Request Process on Ni+1: Instead, if the requested
object is not cached on Ni, the request ER will be re-
encrypted with a new nonce αi (Line 18, Algorithm 3) and
forwarded to Ni+1 for another round of search. Formally, the
re-encrypted ER is: ER = Hk(name)⊕α0⊕αi. Meanwhile,
if counter < N , αi is sent to Ni+2, with which Ni+2 could
help Ni+1 to perform the second round of search operation
by running NonceEnc and generating ENS.

Unlike Ni, Ni+1 first removes α0 from ER (Line 2). Recall
that Ni+1 has already get α0 from the user. Then, with ENS,
Ni+1 could perform the second round of search over its CS
as Ni did. The same operations will be performed on the rest
nodes until the requested object is found or counter = N .

4) Search Operation on the CP: If the requested object
is not found when counter = N , i.e., all the nodes have
been searched, the request will be forwarded to the CP.
Formally, the CP receives ER = Hk(name) ⊕ αi+N and
αi+N from Ni+N+1 and Ni+N , respectively. By XOR-ing
αi+N with ER, the CP could get Hk(name). Then, the CP
searches its pre-encrypted store. Considering the hash function
H is deterministic, the search operation over pre-encrypted
store can be performed like the search on plaintext domain,
where the CP just checks if Hk(name)

?
= Hk(nameid). The

matched object is first sent to the user (Line 4, Algorithm
5), and then it will be re-encrypted with nonces and sent
to Ni+N . Depending on the location where the new replica
will be cached in, the nonce pair used to encrypt it can be
retrieved in two different ways. If the new replica is part of an
existing partition, the CP needs to get the corresponding nonce
pair from Ni+N+1 (Line 7). Otherwise, the CP generates a
new pair and sends it to Ni+N+1 (Line 9).4 Moreover, the

4The matched object and nonce can also be sent to the user by Ni+N

and Ni+N+1.

partition containing the matched object should be re-encrypted
and migrated to Ni+N+1.

5) User Decryption: If the requested object is found in the
cluster, the user will receive EPid = fk(payload)⊕ ηpid and
ηpid. It can easily get fk(payloadid) by XOR-ing them. It can
finally decrypt the matched payload by executing f−1k with the
secret key k.

C. User Revocation

Since the nonce is bound to an EO, without the assistance
of the CDN service providers, the revoked user is unable to
access and recover the payload. Therefore, for user revocation,
we just need to manage a revoked user list at each node. Once
a user is revoked, the CP informs CDN nodes to add this user
to their revoked user list. When receiving a request, the node
will first check if the user has been revoked. If yes, they will
reject the request. In case a revoked user colludes with one of
the CDN service providers, she cannot get the search results,
since such operation requires the cooperation of at least two
of them.

IV. CONCLUSION

In this work, we identified the limitations of traditional CDN
systems and presented a multi-CDN system for protecting
outsourced objects and users privacy. Our scheme not only
protects the content of the objects and requests, but also
conceals user preferences and the popularity of objects from
CDN providers. It offers a flexible key management method
for multi-user access. When the requested object is not cached
in CDNs, the CP can efficiently search over its local storage
as without decrypting the request or storing encrypted objects.
As for future work, we plan to implement a prototype of the
system and show its practical efficiency and give a compre-
hensive security analysis of the system.
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