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Abstract. To fully benefit from a cloud storage approach, privacy in
outsourced databases needs to be preserved in order to protect informa-
tion about individuals and organisations from malicious cloud providers.
As shown in recent studies [2, 11], encryption alone is insufficient to
prevent a malicious cloud provider from analysing data access patterns
and mounting statistical inference attacks on encrypted databases. In or-
der to thwart such attacks, actions performed on outsourced databases
need to be oblivious to cloud service providers. Approaches, such as
Fully Homomorphic Encryption (FHE), Oblivious RAM (ORAM), or
Secure Multi-Party Computation (SMC) have been proposed but they
are still not practical. This paper investigates and proposes a practical
privacy-preserving scheme, named Long White Cloud (LWC), for out-
sourced databases with a focus on providing security against statistical
inferences. Performance is a key issue in the search and retrieval of en-
crypted databases. LWC supports logarithmic-time insert, search and
delete queries executed by outsourced databases with minimised infor-
mation leakage to curious cloud service providers. As a proof-of-concept,
we have implemented LWC and compared it with a plaintext MySQL
database: even with a database size of 10M records, our approach shows
only a 10-time slowdown factor.

1 Introduction

Cloud computing provides organisations with virtually unlimited storage and
computational power at attractive prices. One of the main challenges of out-
sourcing large databases to the cloud is to secure data from unauthorised access.
A naive approach is to use standard encryption techniques for protecting the
data. However, using this approach, no operations could be performed on en-
crypted databases.

Ideally, one would like to perform operations such as search, insert and up-
date directly on encrypted databases without letting cloud providers learn in-
formation about both the query and the data stored in the database. For such
scenarios, the Searchable Symmetric Encryption (SSE) scheme has been pro-
posed, where symmetric keys are used for encrypting the data and queries. SSE
was first introduced by Song et al. in [13] in 2000 and several more research
efforts have been presented since then. Unfortunately, most of the existing SSE
schemes suffer from one or more of the issues listed below.



• Information Leakage During data search, the correlation between the
queries and the matched data is leaked to the cloud server. This correla-
tion can be exploited by a determined attacker to break the encryption
scheme as shown in recent studies [2, 8]. Approaches like Oblivious RAM
(ORAM) [6, 12, 15] or Private Information Retrieval (PIR) [3, 16] could be
used to minimise information leakage. However, these schemes are very costly
and/or can only be applied in static settings, meaning they do not scale well
when dealing with dynamic data updates and delete operations.

• Lack of Support for a Full-Fledged Multi-User Access The vast ma-
jority of existing approaches support a very basic key distribution scheme,
where all users share the same key. We refer to these as Single User (SU)
schemes. Another common approach is to have a read-only key shared among
all the users and one special key for inserting/updating data. We refer to
these as Semi Fledged Multiple User (SFMU) schemes. In both cases, if a
user misplaces a key or needs to have her access revoked, then a new key
needs to be generated and the data requires re-encryption under the new key.
Instead, in a Full-Fledged Multi-User (FFMU) scheme, any authorised user
is able to read and write data from and to the database, respectively [1]. An
FFMU scheme better fulfils needs of modern organisations, where users need
to access and update data and are able to join and leave the organisation at
any time without affecting rest of the users.

Our contribution is to propose a very efficient sub-linear Dynamic SSE (DSSE)
scheme, named Long White Cloud (LWC), able to support a high throughput of
queries while minimising information leakage. In terms of efficiency, our scheme is
similar to Stefanov et al. [14] and Ishai et al. [7]. However, unlike their approach,
our scheme is designed for large organisations, where users might join and leave
at any time. Therefore, we want to support an FFMU scheme to simplify the
user registration and revocation. At the same time, we want that each user is
able to insert a new record, update existing records, and retrieve any data from
the database.

The main idea in LWC is to use a hybrid private/public cloud approach. In
such an approach, organisations maintain a private part of the infrastructure
on their local premises while outsourcing the rest to a public cloud provider,
such as Amazon or Google. In LWC, the private cloud is used to maintain data
structures for speeding up the query processing and to perform operations in
order to minimise information leakage. The public cloud instead is mainly used
as an encrypted data store.

The rest of this paper is structured as follows: Section 2 gives an overview of
the related work. Section 3 presents the system model, threat model, an abstract
architecture of LWC. Section 4 describes key management and explains how we
represent the data. Section 5 explains the database queries supported by the
LWC scheme. Section 6 analyses security aspects of LWC. Section 7 evaluates
the performance of LWC and compares it with a cleartext MySQL database.
Section 8 concludes by highlighting the main contributions and results of the
LWC scheme.



2 Related Work

Since the seminal work by Song et al. [13], many searchable schemes have been
proposed and the research in this area has been extended in several directions.
We focus mainly on three aspects of the encrypted search: key management,
search efficiency and information leakage. A thorough and up-to-date survey
and comparison of the current literature can be found in our paper [4]. We stress
here that, with this work, we aim at proposing an FFMU scheme that minimises
information leakage while supporting sub-linear search. Most importantly, our
scheme is very efficient thus practical. Before discussing the rest, we first set the
context and informally define the properties related to information leakage.

• Search Pattern Privacy (SPP) refers to the property where the cloud
server is not able to distinguish if two (or more) queries are the same or not.

• Access Pattern Privacy (APP) means the cloud server is unable to learn
if two (or more) real result sets overlap or not.

• Size Pattern Privacy (SzPP) is achieved if the cloud server is unable to
learn the size of returned (real) records.

• Operation Pattern Privacy (OPP) ensures the cloud server cannot tell
if the executed query is a select, update, delete, or insert.

1. Encrypted query (insert,

search, update or delete)

DBU1

DBU
t

3. Encrypted results 

(for search)

2. Oblivious access

OPS CS
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Fig. 1. System entities and their interactions in LWC: A DBA is responsible for running
the setup (Step I then Step II). A DBU encrypts the query, which could be insert, select,
update or delete. A DBU sends the encrypted query to the OPS (Step 1). The OPS
communicates with the CS in an oblivious manner (Step 2). The OPS returns encrypted
results (in case of select) back to the DBU (Step 3). The DBU can decrypt and get
access to the requested data.

3 Overview of LWC

3.1 System Model

The system involves the following entities, also shown in Figure 1:

• A DataBase User (DBU) represents an authorised user who is allowed to
access, retrieve and update information in the outsourced database.



• A DataBase Administrator (DBA) is responsible for the setup and man-
agement of the outsourced database. It is also responsible for the manage-
ment of DBUs. A DBA is considered to act on behalf of the organisation
that outsources the database.

• The Operations Proxy Server (OPS) is under the direct control of the
DBA. With the help of the OPS, a DBA can grant, revoke and regulate access
to the outsourced database. For database operations, the DBU interacts with
the OPS to run all kinds of queries including insert, select, update and delete.

• The Cloud Server (CS) is part of the public infrastructure that provides
cloud storage services. The CS is usually hosted and operated by a third
party service with full access control over its cloud storage. It is expected to
provide only two main operations: read and write.

• The Key Management Authority (KMA) is responsible for issuing en-
cryption keys. Once the scheme is initialised, the KMA supplies encryption
keys to new DBUs and the OPS. Typically, the KMA is under the complete
control of the DBA and is online only when the DBA requests encryption
keys for new DBUs. In other words, it can go offline after a DBU gets regis-
tered.

3.2 Threat Model

The KMA is assumed to be a fully trusted entity. The DBUs are responsible for
securely keeping their keys (and decrypted information). We assume that the
OPS is deployed on the private cloud; whereas, the CS is hosted on a public
cloud infrastructure. The OPS is assumed to be trusted but may be potentially
vulnerable to external attacks since it communicates with the external world. As
the vast majority of the existing SSE schemes consider, including all the works
listed in [4], the CS is assumed to be honest-but-curious. That is, the CS follows
the protocol correctly, but may be interested to read the information or to try
and discover statistical inferences on its database access and operations. DBUs
may collude among themselves but they do not learn anything more than what
they would learn individually. A DBU colluding with the CS reveals no useful
information. An active or revoked DBU is unable to decrypt communication
between other DBUs and the OPS.

3.3 System Interactions

LWC aims at minimising potential information leakage while supporting sub-
linear search in a multi-user setting. The interactions between the entities are
shown in Figure 1. The following sequence of steps takes place to initialise and
run the system. The DBA sets up the OPS (Step I) and then prepares the
database on the CS (Step II). The DBA brings the KMA online to distribute
encryption keys between participating DBUs and the OPS. Using her key, a
DBU encrypts and issues queries including insert, search, update and delete.

As shown in Figure 1, a query is processed in two main phases. In the first
phase, the DBU sends the encrypted query to the OPS (Step 1) and then the



OPS consults the local lookup table for finding locations of the records stored
on the CS. In the second phase, the OPS uses these locations to fetch the data
from the CS. To avoid any potential information leakage, the OPS queries the
requested information in an oblivious manner (Step 2). The oblivious access
hides from the CS the actual query issued by the DBU or the result set returned
to the DBU. If the query is select, the OPS sends the encrypted result back to
the DBU (Step 3). Finally, the DBU decrypts the encrypted results using her
private key.

4 Key Management and Data Representation

4.1 Key Management

LWC supports the FFMU access. That is, if the DBU key is stolen or compro-
mised, the system can still work without requiring re-encryption of the data with
new keys and re-distribution of the new keys to the authorised users. In LWC,
for each DBU, the KMA generates two keys (KDBU , KU ). The KMA forwards
both (KDBU , KU ) keys to the DBU but only KDBU to the OPS. The key KU

is a shared key across all DBUs and the key KDBU is a DBU specific key that
is shared with the OPS. The OPS stores all the DBU specific keys in a key
store. Using both KDBU and KU , the DBU can issue queries and decrypt the
search result. For revoking a DBU, the DBA instructs the OPS to remove the
corresponding KDBU key from its key store. Without loss of generality, instead
of using KDBU , a secure channel (say using SSL) can be established to protect
communication between the DBU and the OPS.

4.2 Data Structure for the CS
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Fig. 2. Database on the CS: A database
consists of a set of n blocks {b0, . . . , bn−1}.
Each block containsm slots {s0, . . . , sm−1},
where a slot stores a single record. Each slot
sj has l cells.

OPS

…

(Alice), *

…

{(b3, s1),…}

… (Bob), * {(b1, s2),…}

… … …

Fig. 3. A sample of B+tree with 3
branches and 3 layers. The entry on
each node is an encrypted keyword,
and a pointer points to a list of (bi, sj)
indicating the record store location
on the CS.

The data stored on the CS is organised with three different data units, as
shown in Figure 2. As a whole, the database is a set of n blocks {b0, . . . , bn−1}.



The OPS uploads or downloads data to or from the CS block by block. Each
block consists of m slots {s0, . . . , sm−1}. Each slot stores a single record. A tuple
of block number and slot number (bi, sj) uniquely identifies a stored record in the
database. Specifically, we define a slot as empty if it holds no record. An empty
slot may hold null or a random bit string. On the contrary, a slot is full if it is
occupied by a DBU inserted record. Furthermore, each slot contains l cells. In
other words, each encrypted record in a slot is divided into l data cells. Overall,
each block is a set ofm∗l data cells {c0, . . . , cm∗l−1}. Data re-encryption in LWC
is implemented by permuting data cells (see Section 5.3). Assume each data cell
is w-bit long, there are 2w possible cell values, and each encrypted record is fixed
to w ∗ l bits.

4.3 Data Structure for the OPS

In LWC, the search operation is performed on the OPS. Considering the OPS
is trusted, any data structures that support sub-linear search, such as inverted
index technique proposed in [5] and the red-black tree introduced in [10], could
be used. In this work, we use a series of B+trees [9] for managing indexing in-
formation on the OPS, which aims at supporting sub-linear search. Each field
in a record is stored on a different B+tree (see Figure 3) and hence it provides
a simple and efficient method to query for keywords across different fields. Each
entry in the tree is a tuple of an encrypted keyword and a list of (bi, sj) indi-
cating the locations of the records containing this keyword on the CS. We can
notice that the unique keyword number in each field determines the size of the
corresponding tree, which is much less than the number of records on the CS. To
further reduce the storage overhead, the OPS could hash the encrypted keyword
first before inserting it into the tree.

The OPS also stores a list of flags to mark if each slot is full or empty. Using
this information, the OPS can pick an empty slot and store the inserted record.

5 Query execution

In LWC, a DBU can issue queries for inserting, updating, searching, and deleting
records. A query may include simple keywords or conjunctions/disjunctions of
conditions, like “select * from Staff WHERE name = Alice AND age = 25”. As
mentioned in Section 3.3, the queries are mainly processed in two phases by
LWC.

The first phase aims to get the locations of records (for a select query) or an
empty slot (for an insert query) on the CS. Technically, it involves 4 steps on
the DBU and the OPS. The detail of each step is shown in Figure 4.

5.1 Encryption on the DBU

The first two steps, which are part the first phase, are completed by the DBU.
The system components, running on the DBU end, include the encryption and
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decryption utilities. Each query is processed in two rounds of encryptions on the
DBU using two different functions ε : Q → εKU (Q) and ε : EQ → εKDBU (EQ).
ε is a deterministic symmetric encryption to make the encrypted data search-
able and retrievable. In the first round of encryption, the query Q is encrypted
using KU , a key shared among all DBUs. On one hand, it ensures the data
could be accessed by all the DBUs. On the other hand, it also means the en-
crypted query EQ and search pattern are not protected from other DBUs. To
address this issue, we introduce the second round of encryption, where EQ gets
re-encrypted under KDBU . The second round of encryption ε is semantically
secure. Because KDBU is unknown to other DBUs, they are unable to learn
EQ and search pattern. Without loss of generality, we could issue a password
to each DBU for authentication and then use SSL/TLS to establish a secure
channel between the DBU and the OPS to deliver EQ. ε−1 and ε−1 are the their
corresponding decryption functions. Note that the first round of encryption is
only performed over the keywords in Q. That is, the logical conditions and op-
erators in EQ are in cleartext (for the OPS). For instance, “select * from Staff
WHERE εKU (name) = εKU (Alice) AND εKU (age) = εKU (25)”. However, in the
second round of encryption, EQ is encrypted as a whole, which means all the
information in EQ is protected.

5.2 Index Search on the OPS

As shown in Figure 4, the last two steps of a query execution are performed
by the OPS. The OPS is responsible for parsing the query, searching for the
locations of the corresponding records on the CS database and fetching those
records. In case of a select query, the OPS returns those records to the DBU.
Parsing EEQ on the OPS enables LWC to execute any kind of query, which could



involve conjunctions, disjunctions and other logical operators for a multi-keyword
search, update and delete queries. As shown in Figure 4, the components on the
OPS includes the ε−1 for decrypting EEQ, B+ trees for managing indexing
information to enable sub-linear search.

In the third step, the OPS removes the outer layer encryption of EEQ to
get the executable query EQ by running the inverse stream cipher function
ε−1 : EEQ→ EQ.

For an insert query, the next step is to check the flags list and find an empty
location (bi, sj) to hold the record. Next, the selected location (bi, sj) will be
added to the corresponding entry in the B+ tree for each field (see Figure 3).
If the related entry is already in the tree, we just add the (bi, sj) to its list.
Otherwise, a new entry will be created. Note that the keywords in trees are
encrypted, which ensures data confidentiality even if the OPS gets compromised.

In case of search, delete and update queries, the fourth step is to search the
B+ trees and find out which records on the CS match the query. The B+tree
search incurs O(logbN), where N denotes the total number of nodes in the
tree and b represents the branching factor of the tree. For efficiency reasons,
we suggest having a separate tree for each field in the table. Recall the sample
query, two predicates “εKU (name) = εKU (Alice)” and “ε(age)KU = εKU (25)”
are searched over two trees separately. Once the location tuple list is searched
out for each separate keyword, the final search result is the combination of them
according to the logical operator between keywords, which is in cleartext on the
OPS.

With these locations, the second phase is to execute (i.e., insert, select, up-
date or delete) on the CS database obliviously, which is explained in Section
5.3.

5.3 Oblivious Access

In LWC, we aim to protect operation pattern, size pattern, access pattern and
search pattern from the CS. The OPS gets the location tuples for the query. If the
OPS sends the tuples to the CS directly, the CS could learn these patterns easily.
The data should be accessed in an oblivious manner. The detail of the oblivious
access between the OPS and the CS is shown in Figure 5. The OPS performs
the following three steps: inverse permutation, update slots and permute. The
detail of each step is given below.

Recall that all the data stored on the CS is encrypted using KU , which is a
key shared among all the DBUs. This implies that KU is still known to DBUs
that have been revoked. A revoked DBU can collude with the CS to decrypt
the data stored on the CS. To address the problem, instead of re-encrypting the
data, we propose a more efficient approach. The idea is to shuffle the data cells
between different records in each block with a pseudo-random permutation π.
That is, all the data cells in each block are permuted in an invertible way, which
is only known to the OPS. Consequently, the DBU is unable to decrypt the data
without the assistance of the OPS. In each permuted block, the data in each slot
is no longer a complete record. The permutation seed for each block is kept by



the OPS. Note that to make the permutation invertible for the CS, we should
set m ∗ l � 2w, where m ∗ l is the number of data cells in a block and w is bit
length of a data cell.

Before any operation, the OPS has to download the matched records from
the CS. If the matched slots are distributed in k blocks, the CS will download γ
blocks, where k < γ. k of them are the matched blocks, the rest γ− k blocks are
picked randomly. Note that all blocks from the database must be picked through
a single request from the OPS. After receiving γ blocks, the OPS first performs
π−1 over the m ∗ l data cells for each block to recover the data order. In the
second step, actions (described below) are taken based on the query type:

• If EQ is a select query, all the matched slots will be sent to the DBU.
• If EQ is a delete query, the OPS just changes flags of these matched slots to

mark them empty and does nothing over the records in each block.
• If EQ is an update query, the matched records will be updated with the new

values.
• If EQ is an insert query, the new records will be inserted into the selected

slot.

After that, the OPS updates or fills a number of empty slots with random
bit strings for each block. In the third step, all the data cells in each block are
permuted again with a new seed. Finally, the γ updated blocks are written back
to the CS. The security of LWC is analysed in Section 6.

5.4 Data Decryption

In case of a select query, there is one more phase between the OPS and the DBU,
i.e., the decryption of the result. Once the records in each block are retrieved,
the OPS will extract the records satisfying the query. Before sending them to
the DBU, the OPS first encrypts it with ε. Since the encryption key KDBU is
unique for each DBU, the search result could only be decrypted by the DBU
who issued the query. Considering ε is semantically secure, the access pattern
can not be inferred from the interaction between the DBU and the OPS. To hide
the size pattern, the OPS could add a set of dummy data into the result. On the
DBU, two rounds of decryptions will be performed to get the cleartext records.

6 Security Analysis

In this section, we analyse how the oblivious access described in Section 5.3 could
protect size pattern, access pattern and operation pattern from the CS.

Recall that we say SzPP is achieved if the CS cannot learn how many records
are matched for each query. LWC achieves SzPP with two techniques. First, the
OPS downloads data from the CS block by block, rather than slot by slot. It is
unknown to the CS how many slots are matched with the query in each block.
Second, γ blocks are downloaded by the OPS for each access. Here γ is a random
number determined by load on the OPS, but independent from the real matched



blocks. Note that, for the same query, if load on the OPS is different, the value
of γ would be different. In other words, from the number of accessed blocks, the
CS is unable to infer anything about search pattern.

Similarly, access pattern is also protected at two different levels. Since the
data is downloaded block by block, it is unknown to the CS which slots in each
block are matched with the query. If only the matched blocks are downloaded
by the OPS, given the number of matched records is unknown to the CS, in the
view of the CS, each record in a block could be a matched one or not with 50%
probability. Furthermore, matched blocks are also protected by random blocks.
When γ blocks are downloaded for a query, there are 2γ possible block access
patterns. The probability that the CS could guess the real block access pattern
successfully is 1

2γ . Moreover, from the relationship between downloaded blocks,
the CS is unable to infer search pattern.

Theorem 1. If the γ − k blocks are picked randomly, LWC partially achieves
SPP.

Proof. (sketch) Since EQ is never sent to the CS, the CS could only infer search
pattern from the relationship between size patterns and the relationship between
accessed blocks. If access patterns and size patterns of two queries are the same,
there is a high probability that the queries are the same, and vice versa. As
we mentioned above, search pattern cannot be inferred from size pattern, since
they are always variable no matter whether the queries are the same or not.
In LWC, due to the random blocks, access patterns are also always variable for
all queries. More specifically, for the same queries, γ − k random blocks could
make their block access patterns different. However, for different queries, γ − k
random blocks may cause an overlap between their block access patterns. In the
view of the CS, each block could be the matched one or random with the same
probability. It has no advantage to infer search pattern from the overlap between
block access patterns. There are 2m possible slot access patterns in each block.
The probability that queries have the same slot access patterns in one block is
1

22m . However, the CS could learn the two queries are different when the two
accessed block sets are totally different. To avoid such leakage, the OPS could
download the whole database each time, but it is costly.

Theorem 2. If the encrypted records are indistinguishable from random bit
strings and if π is a pseudo-random permutation, LWC achieves OPP.

Proof. (sketch) To protect operation pattern, the OPS always performs the same
operations. Specifically, no matter what type the query is, the OPS updates or
fills a number of the empty slots with random bit strings. If the query is insert,
the selected empty slot will be filled with the new record. If the query is update,
the matched slots will be updated with new values. But, in the view of the CS,
there are always some slots that are updated or filled in each block for each access.
Since the encrypted record is indistinguishable from a random bit string, the CS
is unable to learn if the slot is filled with a record or random bit string, making
insert and update queries indistinguishable. If the query is delete, the records
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are removed by changing the flags, but the values in each block are unchanged
like the select query. Moreover, the m ∗ l slots in each block are permuted again
with a new seed before uploading them to the CS. Consequently, which slots
and how many slots are updated or filled, and if slots are updated partially or
completely are also protected from the CS.

The problem is, for select and delete queries, if all the slots in accessed
blocks are filled with DBU inserted records, the OPS would not be able to insert
or update random bit strings. Recall that there are 2w different cell values in
the system. Even if all the data cells will be permuted again, the number of
each unique cell value in each block remains unchanged for select and delete
operations. With the frequency information of each data cell value, the CS could
distinguish update from select and delete operations. To solve this problem, we
set a block is full when θ out of m slots are occupied by records and do not insert
any records into it anymore, where θ < m. That is, each block always has at
least m− θ empty slots to fill random bit strings. Therefore, whatever the query
type is, the frequency of data cell values is changed all the time. In practice, we
can set θ = d2w/le. In this case, the frequency of each data cell value could be
changed.

Although the OPS is trusted, considering the data stored in the B+ trees
are encrypted, the queries received from the DBUs are encrypted as well. Thus,
compromising the OPS will not put any data at risk. However, SPP, APP and
OPP might not be guaranteed, since the data and queries are encrypted using
a deterministic algorithm. We aim at further investigating these issues in our
future work.

7 Experimental Evaluation

In this section, we analyse performance of LWC. For all the experiments, we
used a PC powered by Intel i5-4670 3.40 GHz processor and 8 GB of RAM using
Linux Ubuntu 15.04. Note that we have chosen a very basic PC setup to show
that LWC can achieve high performance even when deployed on cheap hardware.



The prototype is programmed in C and is compiled using GCC version 4.9.2.
No parallel operations or hyper-threading were implemented. All data structures
are stored in RAM. For the experiment, we set the OPS to pick up to 2 ·k blocks
from the CS for each query, where k is the number of blocks needed to execute
the query. We fixed the maximum size of a record inserted at 128 bytes the
number of cells in a slot was set at 256 cells.

The experiments presented in the following were set up as follows. All the
entities (the DBU, the OPS and the CS) were executed on the same machine.
However, where required, we used a simulated round-trip network latency for the
links between each entity. In the following, the queries with a single predicate
were executed on a database with 10 million records and all the results were
averaged over 10 trials.

First, we measured the end-to-end time for a DBU to perform a search oper-
ation varying the number of the returned records between 100 to 1 million. The
results are shown in Figure 6 in milliseconds (ms). These measurements include
also the time on the DBU to encrypt the query and decrypt all the returned
records. As a baseline, we executed the same experiments using a plaintext
MySQL database where the client and the database were deployed on the same
machine without any network latency. With no network latency, LWC end-to-
end search time on an average was between 2 (when 100 records were returned)
and 10 times slower than the plaintext MySQL. Given that in LWC the DBU
and the CS do not interact directly but through the OPS, we have performed the
same experiments but introducing a simulated round trip network latency of 25
ms, 50 ms and 100 ms. As we can see in Figure 6, the effect of network latency
on search time rapidly reduces when the result size increases. In any case, with
a result size of 1 million records, the end-to-end search time is under 1 second
even when 100 ms network latency is introduced.

To investigate the penalty introduced by the OPS, we have compared the
query throughput of LWC with schemes proposed by Stefanov et al. [14] and
Ishai et al. [7]. To the best of our knowledge, both schemes are currently the best
in term of performance when compared with other SSE schemes. The results
of this comparison are presented in Figure 7. Note that, at the time of the
writing of this paper, we could not get access to their implementations. The
graphs for Stefanov’s and Ishai’s schemes in Figure 7 are plotted using the data
presented in their respective papers. The comparison shown in Figure 7 is an
approximation for two main reasons: (1) in Ishai’s paper, there are no throughput
values for result sizes smaller than 1K; (2) while Ishai’s scheme has been tested
on a hardware configuration very similar to ours, results by Stefanov et al. were
collected on a top of the line hardware configuration with a maximum degree
of parallelism at 32. Therefore, the results presented in Figure 7 for Stefanov’s
scheme have been normalised as executed on a single core.

The comparison in Figure 7 shows that LWC on average has a throughput
about twice that of Stefanov’s when no parallelism is used. For instance at 10,000
results, the throughput of LWC is 852 queries per second, where Stefanov’s
scheme achieves 450 queries per second. Though the comparisons are on the log



scale, the results on individual data points indicate that LWC has a significantly
higher throughput. LWC is also seen to easily outperform the results in Ishai’s
scheme.
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Fig. 9. Time taken for executing a
delete query in LWC.

We also provide the latency results for insert, update and delete operations
with simulated end-to-end network latencies.

Figure 8 plots the times for an insert query including network latency in
seconds. It is observed that LWC takes around over 0.1 seconds to insert 1K
records and up to 100 seconds for inserting 10M records. We also observe that
the effect of network latency diminishes when a large number of records are
inserted.

Figure 10 plots the time for an update query with network latency. We can
observe that LWC can update 1M records in just under 4 seconds. Again, the
network latency effect diminishes when a large number of records are updated.
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Finally, Figure 9 plots the time for a delete query including network latency.
LWC can delete 1M records in under 4 seconds. Note that, in LWC, the steps
executed for the delete operation are similar to the update. The only difference
is that in a delete operation there is not replacing of the old with new value like
in an update.

To achieve OPP and resist against the collusion between the DBU and CS,
the OPS could also encrypt each block with other cryptographic primitives, like
AES-CBC, rather than permuting data cells. However, permuting data cells is
more efficient than re-encryption. We did another test and compared the perfor-
mance of permutation with AES-CBC encryption. AES-CBC with 256-bit key
implemented in MIRACL 7.00 C library was used for the test. For permutation,
we set the size of each data cell to 1 byte. Before getting all the required blocks,
the OPS could first pre-generate new seeds for accessed blocks and pre-compute
the new orders. As shown in Figure 11, permutation is more efficient than AES-
CBC when the block size is between 512 and 16384 bytes. When the block size
is greater than 216 bytes, the data cell can be set to 2 bytes, which will make
the permutation more efficient.

We can conclude our analysis by discovering that even though LWC requires
the OPS to perform most of the computation, its centralised nature does not
degrade performance of the system. LWC achieves a high throughput perfor-
mance and even with network latency simulations, returning 1 million records
from a database of 10 million records takes less than a second including the time
on the DBU to decrypt the returned results. When compared with a plaintext
database, LWC results 10 times slower but achieves a high level of privacy. Fi-
nally, our comparison with other similar works, with all its current limitations,
shows that LWC has a higher throughput for any result size while it still provides
a very flexible key management scheme not supported by Stefanov’s and Ishai’s
schemes. Moreover, LWC supports more privacy properties when compared with
existing schemes.

8 Conclusion and Future Work

In this paper, we proposed LWC, a dynamic searchable encrypted scheme for
hybrid outsourced databases with a full-fledged multi-user key management.
LWC is a sub-linear scheme that does not leak information on its search pattern,
access pattern, size pattern and operation pattern. The experimental results
indicate that LWC is able to achieve high performance without requiring top of
the line hardware. We have compared LWC with two relevant high-performance
approaches: Stefanov et al. [14] and Ishai et al. [7]. LWC outperforms both while
providing a higher level of privacy and a more flexible key management.

In our future work, we plan to extend the capabilities of the B+ tree imple-
mentation to support range queries. It also remains to be explored how to move
most of the operations to the untrusted cloud server, but without compromising
on security.
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