
ObliviousDB: Practical and Efficient Searchable
Encryption with Controllable Leakage

Shujie Cui, Muhammad Rizwan Asghar, Steven D. Galbraith and Giovanni Russello

The University of Auckland, New Zealand

Abstract. Searchable encryption allows users to execute encrypted queries over
encrypted databases. Several encryption schemes have been proposed in the lit-
erature but they leak sensitive information that could lead to inference attack-
s. We propose ObliviousDB, a searchable encryption scheme for an outsourced
database that limits information leakage. Moreover, our scheme allows users to
execute SQL-like queries on encrypted data and efficiently supports multi-user
access without requiring key sharing. We have implemented ObliviousDB and
show its practical efficiency.

1 Introduction

Cloud computing is a successful paradigm offering companies virtually unlimited data
storage and computational power at very attractive costs. Despite its benefits, cloud
computing raises new challenges for protecting data.

Motivation. Once the data is outsourced to the cloud environment, the data owner
lacks a valid mechanism for protecting the data from unauthorised access. This pos-
es serious confidentiality and privacy concerns to the outsourced data. To mitigate this
problem, the hybrid cloud computing approach is getting more popular among large en-
terprises [1,2]. In a hybrid cloud approach, the organisation maintains sensitive data and
services within their infrastructure and outsources the rest to a public cloud. However,
identifying sensitive assets is not an easy task and once the data and services leave the
internal infrastructure, there is a risk of compromising the confidentiality of the assets
if no proper security mechanisms have been put in place.

Problem. In recent years, Searchable Encryption (SE) schemes have been proposed
to partially overcome the confidentiality issue in cloud computing. These schemes al-
low the cloud to perform encrypted search operations on encrypted data. Most of them
focus on improving the search efficiency and functionality. A thorough survey with a
comparative analysis of existing SE schemes can be found in our recent work [3].

Unfortunately, researchers have paid little attention to the information the cloud
provider can learn during search and match operations even if performed on encrypted
data. Some recent works [4–6] have shown that even a minor leakage can be exploited
to learn sensitive information and break the scheme.

In [5], Naveed et al. recover a vast majority of data in CryptDB [7] by using fre-
quency analysis. Zhang et al. [6] further investigate the consequences of leakage by
injecting chosen files or records into the encrypted database. Based on the information

learned by looking at which encrypted data is accessed by a given query, referred to
as access pattern leakage, they could recover a very high fraction of the searched key-
words by injecting a small number of known files or records into the database. The
cloud provider can also infer if two or more queries are equivalent or not, referred to as
search pattern leakage. A recent study by Cash et al. [4] also shows that given small
leakage a determined attacker (including a malicious cloud provider) could break the
encryption scheme.

Matters are even worse for dynamic SE schemes where insert and delete operations
are also supported. Most of the dynamic SE schemes do not support forward privacy and
backward privacy properties. Lacking forward privacy means that the cloud provider
can learn if newly inserted data or updated data matches previously executed queries;
lack of support for backward privacy means that the cloud provider can learn if deleted
data matches new queries. Basically without forward and backward privacy, a cloud
provider executing a dynamic SE scheme is able to learn the evolution of the data over
time. Only a few of the existing dynamic schemes [8–10] support forward privacy, but
no scheme is able to support both properties simultaneously.

A possible solution could be to employ Oblivious Random Access Memory (O-
RAM) or Private Information Retrieval (PIR) schemes. However, current ORAM and
PIR schemes are prohibitively costly and impractical.

Our Solution. In this paper, we present ObliviousDB, an SE scheme for databases for
hybrid cloud environments, that is able to overcome all the issues discussed above.

Based on proxy-encryption given in [11], ObliviousDB is an encrypted search scheme
that supports the full-fledged multiple user management. Moreover, ObliviousDB ex-
ploits the hybrid cloud computing approach and minimises information leakage. In our
approach, the organisation is not required to make decisions on how to split its data be-
tween the private and public infrastructure. The public infrastructure is used for storing
all the data while the private infrastructure is used mainly for running our Oblivious
Proxy Service (OPS), a proxy service for maintaining metadata information about the
data stored in the public infrastructure.

The OPS plays a major role in ensuring the confidentiality of the data and manages
the data structures for achieving search efficiency. In terms of its functionality, the OPS
is similar to the proxy server used in CryptDB [7]. However, unlike CryptDB, we have
designed the OPS to be robust against attacks i.e., a compromised OPS will not reveal
sensitive data to adversaries.

Contributions. This paper makes the following novel contributions:

1. ObliviousDB minimises the information leaked to the cloud provider when execut-
ing queries by (i) dynamically re-randomising the encrypted data, (ii) shuffling the
locations of records within the database, and (iii) introducing and varying a ran-
dom number of dummy records, necessary for achieving search and access pattern
privacy.

2. To achieve operation pattern privacy, where the cloud server is not able to dis-
tinguish between select, insert, delete and update queries, the OPS obfuscates the
actual operations executed by the users by inserting additional queries and combin-
ing queries into the shuffle operation.

3. ObliviousDB supports both forward and backward privacy by randomising data and
query through the use of fresh nonces. In this way, even if the cloud provider stores
a search query, it cannot be matched with new data. Likewise, new queries cannot
be executed over deleted records.

To show the feasibility of our approach, we have implemented ObliviousDB and
measured its performance.

2 Overview of ObliviousDB

1a. Encrypted query

(insert, delete, update)DBU i

DBU j

1b. Encrypted query (select)

2. Transformed query

3. Pre-decrypted results

4b. Pre-decrypted real results

5. Oblivious

OPS CS

Untrusted environmentTrusted environment

DBA
I. Setup II. Setup

KMA …

Fig. 1. Overview of ObliviousDB: A DBA is responsible for running setup (Step I then Step II).
A DBU can insert, delete and update the data (Step 1a) or execute a select query (Step 1b) to re-
ceive matching records (Step 4b). Regardless of the query type, to control information disclosure,
the OPS transforms the query (Step 2) to perform the search (Step 3) followed by an oblivious
algorithm (Step 5).

In the remainder of the paper, we set the context and informally describe the prop-
erties used in our categorisation. Search Pattern Privacy (SPP) refers to the property
where the cloud provider is not able to distinguish if two (or more) queries are the same
or not. Access Pattern Privacy (APP) means the cloud provider is unable to infer if
two (or more) result sets contain the same records or not. Size Pattern Privacy (SzPP)
is achieved if the cloud provider is unable to learn the size of returned (real) records.
Operation Pattern Privacy (OPP) is achieved if the cloud provider is unable to dis-
cover if the issued query is select, insert, delete or update. Forward Privacy means the
cloud provider does not learn if a new or updated record matches a query executed in
the past. Backward Privacy means the cloud provider is unable to executed queries on
records that have been deleted or modified.

2.1 System Model

The system involves five main entities shown in Figure 1:

• Database Administrator (DBA): A DBA is responsible for management of the
database, its users and access control policies for regulating access to tables.
• Database User (DBU): It represents an authorised user who can execute select,

insert, update and delete queries over encrypted data. After executing encrypted
queries, a DBU can retrieve the result set, if any, and decrypt it.

• Oblivious Proxy Server (OPS): It provides greater security and search efficiency.
It serves as a proxy between DBUs and the cloud server. In order to hide sensitive
information about queries, it pre-processes the queries submitted by the DBU. It
also filters out dummy records from the result set returned to the DBU. To improve
performance, it manages some indexing information. Technically, the OPS is part
of the private cloud in the hybrid cloud environment, which is linked with a more
powerful public cloud infrastructure.

• Key Management Authority (KMA): This entity is responsible for generating
keying material once a new DBU joins the system. Furthermore, the KMA removes
the DBU, when she is compromised or no longer part of the database.

• Cloud Server (CS): A CS is part of the public cloud infrastructure provided by a
cloud service provider. It stores the encrypted data and access control policies and
enforces those policies to regulate access to the data.

Threat Model. We assume that the KMA is fully trusted. The KMA does not need
to be online all the times. In particular, it has to be online only when the system is
initialised, a new DBU is created or an existing one is removed from the system. In this
way, the organisation can easily secure the KMA from external attacks. DBUs are only
considered to keep their keys (and decrypted data) securely.

We consider that the CS is honest-but-curious. More specifically, the CS would hon-
estly perform the operations requested by the DBA and DBUs according to the desig-
nated protocol specification; however, it is curious to analyse the stored and exchanged
data so as to learn additional information. We assume that the CS will not mount active
attacks, such as modifying the message flow or denying access to the database.

The OPS is deployed in the private cloud, which is owned by the organisation.
Hence, we assume the OPS is trusted. However, it is responsible for communicating
with the external world. Thus, it could be the target of attackers and get compromised,
which means the data stored on the OPS could possibly be exposed to attackers.

In this work, we assume that there are mechanisms in place for data integrity and
availability. Last but not least, access policy specification is out of the scope of this
paper, but the approach introduced in [11, 12] can be utilised in ObliviousDB.

3 Solution Details

3.1 Data Representation

Table 1 illustrates an example of how we represent and store the data on the OPS and
CS. Let us assume that we have a table Staff (Table 1(a)) containing Name and Age
fields. The CS stores an encrypted version of this, which is EDB and illustrated in Ta-
ble 1(c), where each data element is encrypted under Data Encryption (DE) and Search-
able Encryption (SE), where DE ensures the confidentiality of the retrievable data, and
SE makes the data searchable (the implementation details are given in Algorithm 1).
Similarly, we encrypt each value in the table.

To improve search efficiency and reduce the communication overhead, we support
indexing. Technically, we divide the data into groups and build an index for each group

Table 1. Data representation on each entity.

(a) Staff
Name Age
Alice 25
Anna 30
Bob 27

(b) GDB
GID Nonce Index List
g1 n20 {1,3,4}
g2 n30 {2}
g3 na {1,2,4}
g4 nb {3}

(c) EDB
ID {Name}SE {Name}DE {Age}SE {Age}DE
1 SEna (Alice) DE(Alice) SEn20 (25) DE(25)
2 SEna (Anna) DE(Anna) SEn30 (30) DE(30)
3 SEnb (Bob) DE(Bob) SEn20 (27) DE(27)
4 SEna (Alice) DE(xyz) SEn20 (25) DE(13)

Table (a) is a sample table viewed by DBUs. Table (b) is the group information stored on the OPS. We have
g1 = GE(25) = GE(27), g2 = GE(30), g3 = GE(Alice) = GE(Anna) and g4 = GE(Bob). The group ID is encrypted, since

the OPS could be compromised. Each group has a nonce to ensure forward and backward privacy and a list of IDs
indicating the records in the group. The CS stores Table (c), where each value is encrypted with SE and DE for data search
and retrieval, respectively. Each SE value is bound with the nonce of its group. The last record, consisting of normal SE and

fake DE parts, is dummy.

maintained by the OPS. When a query is received, the OPS sends to the CS the corre-
sponding list of indices to be searched. Table 1(b), called GDB, shows an example of
the group information. Note that each field of the database corresponds to a different
group, so that in a complex query the OPS would identify all the groups correspond-
ing to fields in the query and send to the CS the union or intersection of the indices
(depending on whether the query is a disjunction or conjunction). The group identifiers
are concealed with GE (the detail is given in Algorithm 1, Section 3.3). The secret key
for GE is only known to DBUs. This means that if the OPS gets compromised then an
attacker is unable to learn the actual data items that correspond to a group.

SE and DE representations do not leak information about encrypted values. Howev-
er, the CS can easily learn the number of matching records during the search process. In
ObliviousDB, the OPS adds dummy records. Note that the CS is not able to distinguish
between a dummy and a real record. To make sure that the dummy records match with
the queries generated by DBUs, the OPS generates dummy records such that the SE
fields correspond to real data values. Specifically, the OPS generates dummy records by
sampling SE terms from the set of real records in the corresponding group. The OPS
also maintains a list of indices that contain dummy records (not shown in Table 1(b));
this could be an N-bit string f lags, where N is the total size of the database on the CS.
We have f lags[id] = 0 or 1 if the record is a dummy or real record, respectively.

To ensure that dummy records are not delivered to the DBU, the OPS filters them
out from the search result. A large number of dummy records can ensure a high level
of privacy but at the cost of poor performance since the CS has to search over more
records and the OPS has to filter out more dummy records before returning the result to
the DBU. For controlling dummy records, the DBA sets a threshold t at the initialisation
time, which is the ratio between dummy and real records. In reality, the value of t can be
set according to the practical requirements for security and performance, and depending
on the type of data being stored in the database. For example, in a different context,
Cash et al. [4] suggested taking t = 0.6 to resist against size pattern based attacks on
the Enron emails dataset.

ObliviousDB achieves both forward and backward privacy. That is, even if the CS
holds old queries, they cannot be matched with new records. Similarly, if the CS holds
deleted records, they cannot be matched with new queries. To achieve both properties,
the OPS re-encrypts each record and query with nonces. Nonces are generated and

maintained on groups, meaning all the records with the same group are under the same
nonce. When a query is executed over a given group, the OPS will generate a new nonce
and the data will be updated accordingly. The nonces are not revealed to the CS. The
OPS maintains the information between groups and nonces using the GDB table, as
shown in Table 1(b).

3.2 Setup

The system is set up by the KMA by taking as input a security parameter λ . The output
is a prime number p, three multiplicative cyclic groups G1, G2 and GT of order p, such
that there is a “Type 3’ bilinear map [13] e : G1×G2→ GT , which has the properties
of bilinearity, computability and non-degeneracy, but there is no symmetric bilinear
map defined on G1 alone or G2 alone. Let g1 and g2 be the generators of G1 and G2,
respectively. The KMA chooses a random x from Zp and returns h= gx

1. Next, it chooses
a collision-resistant keyed hash function H, a pseudorandom functions f and a random
key s for f . It also initialises the key store managed by the CS. That is, KS← φ . Finally,
it publishes the public parameters Params = (e,G1,G2,GT , p,g1,g2,h,H, f) and keeps
securely the master secret key MSK = (x,s).

Building on top of proxy encryption [11, 14], ObliviousDB supports multi-user ac-
cess with efficient DBU registration and revocation. Specifically, when the DBU i join-
ing the system, the KMA splits MSK into two values xi1 and xi2, where x = xi1 + xi2
mod p and xi1,xi2 ∈ Zp. Then, the KMA transmits KUi = (xi1,s) and KSi = (i,xi2)
securely to the DBU i and the CS, respectively. The CS adds KSi to its key store:
KS ← KS ∪KSi . With KUi , DBU i could issue a query. For revoking a DBU, we just
need to remove KSi on the CS.

3.3 Query Execution

ObliviousDB supports SQL-like queries consisting of a set of equalities and inequali-
ties, which are connected with conjunctions (i.e., and) and disjunctions (i.e., or), such
as ‘select * from staff where name=Alice and age> 30’. To support range queries, we
use the same approach presented in [11].

Every query executed in ObliviousDB is performed with the cooperation of the D-
BU, the OPS and the CS. The details of the steps performed by each entity are described
in Algorithm 1.

The DBU encrypts the query with key KUi (Lines 1-11, Algorithm 1). For an insert
or update query, each data element d is encrypted under GE, SE and DE. For a select
query, a keyword k in the WHERE-clause is encrypted only under GE and SE. The
encrypted query EQ and group information GQ are sent to the OPS. Both DE and SE
are semantically secure because of the random numbers r, which prevents the CS to
infer the search pattern from EQ, or learn any frequency information in EDB.

On the OPS, the original query EQ is cached temporarily (Line 14), and the real
insert, delete and update operations will be performed by the oblivious algorithm later.
To hide the operation pattern, the OPS always sends an encrypted select query to the
CS. So, the OPS first transforms EQ into a select query (Lines 15-17). Specifically, if
EQ is update or delete query, the OPS just changes the terms ‘delete’ and ‘update’ into

Algorithm 1 Query(Q)

1: DBUi(Q):
2: for each data element d in Query Q do
3: σ ← fs(d)
4: GE(d)← LSBk(σ){the least significant k bits of σ}

5: r← Z∗p,SE(d)← (c1 = gr
1,c2 = gσr

1)

6: r← Z∗p,DE(d)← (e1 = gr
2,e2 = hrd)

7: for each keyword k in WHERE-clause of Q do
8: σ ← fs(k)
9: GE(k)← LSBk(σ)
10: r← Z∗p,SE(k)← (t1 = gr

2, t2 = gσr
2)

11: Send the encrypted query EQ = (SE(Q),DE(Q)) and
its group information GQ = GE(Q) to the OPS

12: OPS(EQ,GQ):
13: IL← /0
14: Cache a copy of EQ
15: if EQ is an insert query then
16: Generate a fake select query as EQ
17: if EQ is a delete or update query then
18: Change the type of EQ into select
19: for each GE(k) ∈ GQ and SE(k) ∈ EQ do
20: (n, il)← GDB(GE(k))

21: IL← IL? il, where ? is the conjunction in GQ
22: SEn(k)← (t1← tn

1 = grn
2 , t2)

23: Send (IL,SEn(Q), i) to the CS, where i is the identifier
of the DBU

24: CS(IL,SEn(Q), i):
25: SR← /0
26: for each id ∈ IL do
27: if Match(EDB(id),SEn(Q))=true then
28: Add all the required DE(d) in EDB(id) into SR
29: for each DE(d) = (e1 = gr

1,e2 = hrd)inSR do
30: DE ′(d)← (e1,e′2 = e2 ∗ e−x2

1 = gx−x2
1 d = gx1r

1 d),
where x2 is the CS side key for DBUi

31: Send SR to the OPS

32: OPS(SR):
33: Remove all dummy records from SR by checking flags
34: Send SR to the DBU

35: DBUi(SR):
36: for each DE ′(d) = (e1 = gr

1,e
′
2 = gx1r

1 d) ∈ SR do
37: d← e′2 ∗ e−x1

1 = gx1r
1 d ∗g−x1r

1

Algorithm 2 Match(rcd,SEn(Q)

1: for each SEn(k) = (t1, t2) ∈ SEn(Q) do
2: Get SEn(d) in the same field from rcd
3: if e(c1, t2) 6= (c2, t1) and ∗= ‘and′ then
4: return false

5: if e(c1t2) = e(c2, t1) and (*=‘or’) or k
is the last keyword then

6: return true
7: return false

‘select *’. If EQ is insert, a random number of values in SE(Q) are used to assemble
the WHERE-clause of the fake select query.

Second, to improve search efficiency, the OPS gets the search range IL for the C-
S, which is populated by merging the index lists of involved groups according to the
conjunctions and disjunctions in GQ (Lines 19-21). Meanwhile, to ensure forward and
backward privacy, each SE in EDB is bound to the nonce of this group (Line 22). Only
the query bound with the same nonce could match the record. Both the index list IL and
the transformed query SEn(Q) are sent to the CS.

Finally, the CS checks each record in IL with SEn(Q) by performing the pairing
map operation (Lines 26-28). The match operation is described in detail in Algorithm 2.
Assume the searched data element is SEn(d) = (c1 = gr′n′

1 ,c2 = gσ ′r′
1) and the encrypted

keyword in SEn(Q) is SEn(k) = (t1 = grn
2 , t2 = gσr

2). The equality check between them
is performed by checking whether e(c1, t2) = e(c2, t1). Note that

e(c1, t2) = e(c2, t1) ⇐⇒ e(gr′n′
1 ,grσ

2) = e(gr′σ ′
1 ,grn

2)

⇐⇒ e(g1,g2)
r′n′rσ = e(g1,g2)

rnr′σ ′

and so if σ = σ ′ and n = n′ then equality holds, while inequality holds with negligible
probability if σ 6= σ ′ and n 6= n′ That is, the record matches the query only when k = d

and they are bound to the same nonce. Finally, the search result SR is sent to the OPS.
Yang et al. introduce a similar method to perform the equality check for SE schemes
in [15]. However, their method leaks the search pattern and frequency information of
records to the CS, since the pairing map they use is symmetric. That is, the CS could
still infer if they are the same or not by running the bilinear map operation between two
records or two queries, although they are encrypted with a probabilistic algorithm.

The search result is recovered in two rounds of decryption (Lines 29-37, Algorithm
1). Before sending SR to the OPS, the CS first pre-decrypts the DE parts of each matched
record with DBUi’s CS side key x2 (Lines 29-30), and sends the pre-decrypted SR to the
OPS. Next, the OPS filters the dummy records out (Lines 33-35). Finally, with the pre-
decrypted real search result get from the OPS, the DBU can recover the plaintext with
its DBU side key x1 (Lines 36-37).

Algorithm 3 Oblivious(EQ,GQ, t)

1: Rcds← /0
2: for each GE(k) ∈ GQ do
3: (n, il)← GDB(GE(k))
4: rcds← EDB(il) {Get from CS all the records in-

dexed by il}
5: n← nn′, where n′ $← Z∗p
6: for each record rcd ∈ rcds do
7: SEn(d) = (c1← cn′

1 ,c2) {d is in the same field as
k}

8: for each (SEn(d),DE(d)) pair in rcd do
9: r $← Zp,SEn(d) = (c1← cr

1,c2← cr
2)

10: r $← Zp,DE(d) = (e1← er
1,e2← er

2)

11: for each dummy record rcd ∈ rcds do
12: if du/re > t then
13: delete it, du−−
14: else
15: SE(d′) = (c1,c2)

$← rcds

16: SEn(d)← (crn
1 ,cr

2), r $← Z∗p {d is in the
same field as k}

17: Rcds← Rcds∪ rcds
18: for each matched real record rcd ∈ Rcds do
19: if EQ is an update query then
20: for each SE(d) ∈ SE(Q) do
21: SEn(d)← (cn

1,c2), n← GDB(GE(d))
22: Update rcd with SEn(Q) and DE(Q)
23: if EQ is a delete query then
24: Invert its flag

25: du++, re−−
26: if EQ is an insert query then
27: Assign an id to the new record
28: for each SE(d) ∈ SE(Q) do
29: if /0← GDB(GE(d)) then
30: n $← Z∗p
31: GDB(GE(d))← (n, id)
32: else
33: (n, il)← GDB(GE(d))
34: il← il∪ id
35: SEn(d)← (c1← cn

1,c2)

36: Rcds← Rcds∪ (SEn(Q),DE(Q))
37: re++
38: f lags[id] = 1
39: else
40: Assign the id to a new dummy record
41: for each field in rcd do
42: SE(d′) = (c1,c2)

$← Rcds

43: r $← Zp, n← GDB(g), SEn(d)← (cnr
1 ,cr

2)

44: e1,e2
$← G1, DE(d)← (e1,e2)

45: il′← GDB(GE(d′))
46: il′← il′ ∪ id
47: Rcds← Rcds∪ rcd
48: du++
49: f lags[id] = 0
50: Shuffle Rcds and upload to CS
51: Update the index list in GDB and update f lags

3.4 Oblivious Algorithm

To hide the access, size and operation patterns and ensure forward and backward pri-
vacy, in the oblivious algorithm, the OPS shuffles and re-randomises all the records
included in the searched the groups every time a query is executed.

To ensure a high level of security, it is possible to shuffle all the records in the
database. However, this degrades the system performance. The more records are shuf-

fled, the more difficult it is for the CSPs to infer the access pattern, but it is worse in
terms of the system performance. In this work, we shuffle all the records in the searched
groups. In this case, the CS can only recognise if two queries are performed within the
same group or not. In practice, the number of records to be shuffled can be set accord-
ing to the performance and security requirements. Note that, at this stage, the user has
already obtained the search results from the CS and does not need to wait for the shuffle
operation to be completed.

There are four main steps in the oblivious algorithm. In the first step (Lines 3-10,
Algorithm 3), for each group involved in the query, the OPS updates its nonce and
re-encrypts the associated SE parts of the records in this group with the new nonce
(Line 7). Consequently, the queries bound to previous nonces cannot match the re-
encrypted records, as illustrated in (3.3). Similarly, a new query bound to the latest
nonce can not match stale records. That is, both forward and backward privacy are
ensured. Meanwhile, the OPS re-randomises both the SE and DE parts of all the records
to be shuffled to make them untraceable (Lines 8-10).

In the second step (Lines 11-16), all the dummy records in each searched group are
updated. The OPS controls the number of dummy records to ensure the performance of
the system (Lines 12-13). To this end, the OPS counts the total number of real records
re in the index list IL and the total number of dummy records du in IL. When the ratio of
dummy records exceeds the threshold t, some of them are deleted. The OPS updates the
SE parts of the remained dummy records (Lines 14-16). Although the dummy record
protects the real size pattern, if the fake size pattern for the same query never changes,
the CS could make some assumptions on whether two queries are equivalent or not by
checking the number of the records in the result set. To protect the search pattern, it
is necessary to make the size pattern for all queries variable. Note that considering the
correctness of the system it is impossible to change the number of matched real records
when there is no insert, delete or update operation. In our work, the OPS replaces the
SE parts of dummy records with randomly chosen ones from non-dummy records in
the group (lines 15-16).

Recall that to protect the operation pattern the OPS only sends select queries to the
CS. The real insert, update and delete operations are executed in the third step (Lines
18-48). If the type of the original query is update (Lines 19-22), the OPS re-encrypts the
cached SE parts with the latest nonce stored in GDB, and replaces both the SE and DE
parts of the matched records with new values. If the type of the original query is delete
(Lines 23-25), in order to protect the operation pattern, the OPS converts them into
dummy records by inverting the flag into dummy instead of deleting them directly. In
this way, no matter what type the original query is, the number of records returned by the
oblivious algorithm is only affected by de, re and t. On the contrary, if we delete them,
fewer records will be sent to the CS. For other types of queries, a number of dummy
records are probably deleted. However, the CS could learn the type of the original query
must not be delete when it gets more records or the same number of records after the
oblivious algorithm. If the type of the original query is insert (Lines 26-38), the OPS
re-encrypts the cached SE parts with the latest nonces and adds it to the records set.
In case if the original query is not insert, the OPS generates a dummy record (Lines
39-49) by re-randomising the SE parts that picked from Rcds randomly. Otherwise, the

CS could infer the type of the original query must be insert when receiving one more
record after the oblivious algorithm.

Finally, the OPS shuffles all the updated records set and sends them to the CS (Line
50). Note that their flags and ids stored in the index list are updated at the same time.
Because of the shuffling and re-randomising, if the same query is executed again, the
search result will be totally different from the previous ones in terms of the store loca-
tions on the CS, size and appearance, which means the CS is unable to infer if different
search results contain the same records or not. That is, the access pattern is protected.

4 Security Analysis

In this section, we formally define and prove SPP, APP, SzPP, OPP, forward and back-
ward.

Leakage ObliviousDB aims at minimising information leakage. At the same time,
we require ObliviousDB to be efficient. To meet these two conflicting requirements, we
consider a trade-off between security and performance. In this work, we achieve SPP
and APP for those queries involved in the same groups. To optimise the performance of
the system, we divide the data into groups and only perform the search and oblivious
operations within groups. Consequently, the CS could learn if some records and inter-
ested keywords are in the same groups or not. Second, considering we do not encrypt
the conjunctions between predicates, the CS could learn the number of predicates and
their conjunctions in complex queries. In addition, the CS could learn if two queries are
searched over the same fields or not, since we do not re-randomise the field names and
shuffle the columns. Given these leakages, we formalise our security definition below.

Definition In our security definition, we only consider the queries with the same
structure. Any two queries Q0 and Q1 have the ‘same structure’ if they satisfy the fol-
lowing criteria:

• Both SQL queries have the same logical structure (all WHERE-clauses are the same
equalities and inequalities with respect to the same data fields, and the sentences are
formed from the clauses using the same conjunctions or disjunctions in the same
order). This can be achieved by padding and reordering the WHERE clause. Note
that the queries could be insert, select, update or delete.
• The groups involved by each equality/inequality in Q0 should be same to the one

involved in the corresponding equality/inequality in Q1. This will ensure that both
index lists are the same, i.e., IL0 = IL1.
• The number of matched real records |RR| for each equality/inequality in Q0 and Q1

should be similar in size, namely ||RR0|− |RR1|| ≤ θ ∗min{|RR0|, |RR1|}, where θ

is a parameter specified when the scheme is set up.

The CS is modelled as the Probabilistic Polynomial-Time (PPT) adversary A ,
which means A honestly follows the protocols and gets all the messages the CS sees.

The scheme is considered to be secure if an adversary could break it with not more
than a negligible probability. Formally, it could be defined as follows:

Definition 1 (Negligible Function). A function f is negligible if for every polynomial
p(.) there exits an N such that for all integers n > N it holds that f (n)< 1

p(n) .

Definition 2 Let ∏ =(Setup, Query, Oblivious) be ObliviousDB, λ be the security pa-
rameter, and t be the threshold indicating the ratio between dummy and real records.
A is a PPT adversary, and C is a challenger. The game between A and C in ∏ is
described as below:

• Setup The challenger C first initialises the system by generating Params and MSK.
Then, she generates the secret key pair (KU ,KS). The adversary A is given Params
and KS.
• Bootstrap A submits a database ∆ 1. Assume ∆ contains n records with a certain

number of fields. C encrypts ∆ and divides the data in each field into groups. More-
over, C generates a number of dummy records for each group, such that the total
number of dummy records is t · n. The encrypted database EDB is sent to A . The
encrypted groups information GDB is securely kept by C .
• Phase 1 A can make polynomially many SQL queries Q in plaintext. All the queries

are in the same structure but could be of different types. C encrypts and transforms
each query Q to SEn(Q), and generates the index list IL, as would be done by the
DBU and the OPS. With SEn(Q) and IL, A searches over EDB to get the search
result SR. After that, C and A engage in the oblivious algorithm to update EDB.
So, for each query, A sees SEn(Q), IL, SR and the records set Rcds returned by
the oblivious algorithm. Note that, the A could cache SEn(Q) and execute it again
independently at any time.

• Challenge A sends two queries Q0 and Q1 to C that have the same structure,
which can be those already issued in phase 1. Note that if Q0 or Q1 is insert or
update query, the data elements included in them should already exist in ∆ . C
responds the request as follows: it chooses a random bit b ∈ {0,1} and transforms
query Qb, as done by the DBU and OPS, to SEn(Q) and IL. Then, C and A perform
the full protocol, so that A learns SR and Rcds.

• Phase 2 A continues to adaptively request polynomially many queries, which could
include the challenged queries Q0 and Q1.

• Guess A submits her guess b′.

The advantage of A in this game is defined as:

AdvA ,∏(1
λ) = Pr[b′ = b]− 1

2
.

We say ObliviousDB achieves SPP, APP, SzPP, OPP, forward and backward privacy, if
all PPT adversaries have negligible advantage in the above game.

In this game, A is very powerful. She knows the plaintext of all the real records
and queries, could arbitrarily generate and issue any kind of queries as long as they are
in the same structure, and has the full access to EDB. That is, she could learn the real
search result of all the issued queries, and could adaptively run the encrypted queries
over EDB to get the encrypted search results at any time. If one of the search, access,
size, operation patterns and forward and backward privacy is not protected, A could

1For simplicity, we assume there is only a single table in ∆ and regard ∆ as a table. Without
loss of generality, our proofs will hold for a database containing a set of tables.

infer b easily. For example, if the search pattern is not protected (i.e., A can learn if the
terms involved in two queries are the same or not), she could select one of the queries
issued in phrase 1 as either Q0 or Q1 and win the game by checking if SEn(Q) is same
to one of those get in phase 1; if the size pattern is not protected (i.e., A can learn
the number of real records in SR), she could win the game by setting Q0 and Q1 with
different numbers of matched records; if the operation pattern is not protected (i.e., A
can learn the type of Qb), she could set two different types of query as Q0 and Q1 and
win the game from the type of SEn(Q). In other words, if with these abilities, A still
can not win the game with non-negligible advantage, it means ObliviousDB achieves
all the properties.

Theorem 1. Let the SE and DE schemes have semantic security. Let t (the proportion
of dummy records) be chosen sufficiently large relative to θ . If the SE and DE schemes
have semantic security, ObliviousDB achieves SPP, APP, OPP, SzPP, forward and back-
ward privacy.

Proof. (Sketch) We show that the bit b chosen by C is information-theoretically hidden
from the view of A , assuming that both SE and DE are semantically secure.

Consider the view of A in the game. A chooses an arbitrary database ∆ and uploads
this to C . In Phase 1, A makes queries that are answered correctly by C by following
the protocols.

In the challenge round, A sends two queries Q0 and Q1. A receives a list of SEn(k)
terms corresponding to the literals in the predicate defining the query. By definition, the
two queries have the same structure. Hence, the same number of literals, each of the
same type, will be received by A for either query. Since SE is semantically secure, A
cannot distinguish the query terms given the ciphertexts SEn(k).

A also receives a list IL of database indexes to be searched by the CS, and by
definition, this is the same list for all queries. Hence, no information about the queries
can be leaked by IL.

Each group involved in IL is accompanied by a nonce n. With overwhelming prob-
ability, these nonces are distinct and unrelated to the values used in previous queries.
Previously encrypted search keywords can no longer be used to query these indexes, and
SEn(Q) can not be executed over stale records, since the nonces do not match. Hence,
there is no way to link information from previous search queries to these records, indi-
cating forward and backward privacy is achieved.

The adversary A may try to guess b from the search result SR. Although the num-
bers of real records matched with Q0 and Q1 are known to A since all the queries and
real records in plaintext are set by her, a number of dummy records are inserted into
EDB in order to hide the number of real records that are matched. Since SE and DE
are semantically secure, the dummy records are indistinguishable from the real ones, if
t is sufficiently large compared to θ then the probability distributions of the result set
sizes |SR0| and |SR1| are statistically close and A cannot distinguish them from a single
query. Therefore, the CS is unable to distinguish the two queries from the size of SR,
indicating SzPP is achieved.

Even if the queries Q0 and/or Q1 have previously been executed by A , the refresh-
ing of dummy records, together with the shuffling and re-randomising performed in the

oblivious algorithm, imply that A cannot distinguish the two queries by comparing SR
with previous search results, indicating APP is achieved.

Finally, A gets Rcds from the oblivious algorithm. Some records in Rcds may be
updated with new values or turned into dummy records, and one of them is newly added.
Due to the semantic security of SE and DE, Rcds leaks nothing to A , indicating the
operation pattern is concealed, i.e., OPP is achieved.

The game continues in Phase 2. A may repeat Q0 and/or Q1. If Q0 and Q1 are
different types of queries, e.g., insert and delete. A may run a related select query to
test the search result. Again, due to the refreshing of dummy records, the shuffling and
re-randomising operations, the number, the ciphertext and store locations of matched
records for Q0 and/or Q1 will be different from SR. Similarly, the nonce updating does
not allow records to be linked to records found in previous search queries. Hence, the
future state of the database and the queries in Phase 2 are independent of the query
made in the challenge round.

Since A has no information to distinguish the bit b, the scheme satisfies the defini-
tion. �

5 Performance Analysis

We implemented the scheme in C using the MIRACL 7.0.0 library, necessary for cryp-
tographic primitives. The implementation of the overall system including the functions
on the DBU, the OPS and the CS was tested on a single machine with 64 Intel i5 3.3
GHz processor and 8 GB RAM running Ubuntu 14.08 Linux system. In our testing
scenario, we ignored network latency that could occur in a real deployment. In the fol-
lowing, all the results are averaged over 10 trials.

The tested database contains one table with 3 fields. Considering the search op-
eration can be performed in each field, we encrypted each field with SE separately.
However, each record was encrypted by DE as a whole since we only tested ‘select *’
queries. In the following, we tested how the three controllable parameters namely the
number of dummy records, the number of groups and the number of shuffled records,
affect the performance of the system.

We first present the results of end-to-end latency measured at the DBU when per-
forming a search operation on a database consisting of 100,000 real records with a
result set of 1,000 real records. Note that, in the DBU latency experiment, we did not
measure the time the OPS spends in executing the oblivious algorithm. The reason is
that the OPS will forward to the DBU the result sets before initiating the oblivious
algorithm.

The graphs in Figure 2 illustrate latency in seconds. In particular, Figure 2(a) shows
the results for a simple select query. Figure 2(b) reports latency for performing a range
query on a numerical field. In both graphs, the X-axis shows the number of groups:
that is, we change the granularity of the indexing going from no indexing (where all
the records are part of one group) to a more fine-grained indexing. For a given number
of groups, the same experiment was executed 5 times, each time changing the ratio t,
represented by different lines in both graphs.

 50
 100
 150
 200
 250
 300
 350
 400
 450

 1 2 6 13 26

E
nd

-t
o-

en
d

la
te

nc
y

in
 s

ec
on

ds

Number of groups

Name=Alice

t=0
t=0.6

t=1
t=1.6

t=2

 1 2 5 10 25
Number of groups

21<Age<31

t=0
t=0.6

t=1
t=1.6

t=2

Fig. 2. End-to-end latency on the DBU for getting
1,000 real records from the database consisting of
100,000 real records. The database size goes up to
300,000 with the increase of t, the ratio between dum-
my and real records.

 2

 4

 6

 8

 10

 12

 1600 3200 4800 6400 8000 9600

La
te

nc
y

in
 s

ec
on

ds

Result size X

Shuffle 2X
Shuffle 3X
Shuffle 4X
Dec

Fig. 3. Oblivious latency with t = 0.6.
Shuffle 2X, 3X, 4X mean the number of
records to be shuffled are 2, 3, 4 times
of the result size, respectively.

As we expected, for both queries, increasing the number of groups reduces the DBU
latency. For a given size of a database, more groups mean fewer records within a given
group. This reduces searching time on the CS and in turn reduces latency on the DBU.

On the other hand, increasing the value of t degrades the performance. For both
queries, for a given group size, there is a slight latency increase when we go from t = 0
dummy records (i.e., only real records) to a ratio of t = 2 (i.e., 2 times dummy records
of real ones). This is explained mainly by two facts: a) with more dummy records, the
CS has to retrieve more records (both real and dummy ones), and b) the OPS needs to
filter out the dummy records before sending the real records to the DBU: the higher
the percentage of dummy records, the longer it takes for the OPS to remove them from
the result set (to be returned to the DBU). Recall that t = 0.6 is the minimum value to
ensure security reported by Cash et al..

Second, we measured the effect on the oblivious algorithm when varying the num-
ber of records to be shuffled. As shown in Figure 3, the latency of the oblivious algo-
rithm goes up linearly with the increase in result size, which affects the size of shuf-
fled records in the test setting. Fortunately, the oblivious algorithm can be executed
in parallel with decryption operations since they are independently executed by differ-
ent entities. From Figure 3, we can observe that, if we shuffle the search result with
the unmatched records (where the number of unmatched records is same as the num-
ber of records in the search result), the latency of the oblivious algorithm is close to
the decryption time, indicating the oblivious algorithm does not severely degrade the
throughput of ObliviousDB.

Next, we want to provide some details on the time each entity, namely the DBU,
the OPS and the CS, spends for executing a query. Figure 4 shows the graphs for the
execution of the select query (same as the one for the graph in Figure 2(a)). In this
experiment, for each graph, we shuffled all the records in the searched group and kept
the ratio constant while we changed only the number of groups (shown on the X-axis).
As we can see, the more groups we introduce, the better performance we achieve on
the CS (while for the DBU and the OPS, there is no big variation). Increasing the ratio
between dummy and real records slightly increases latency on the OPS and the CS.

(a) t=0 (b) t=0.6 (c) t=1

Fig. 4. Latency on the DBU, the OPS and the CS for executing ‘select ∗ from staff where
name=Alice’ with three different ratios of dummy records.

From our experiments, we can see that latency, although substantially higher than a
less secure scheme like CryptDB, for DBUs using ObliviousDB is still usable especially
when introducing more groups. Also, by comparing Figures 2(a) and 2(b), we can see
that the performance of numerical range queries is not much different from simpler
single keyword queries.

At the same time, to ensure data confidentiality, it is necessary to maintain some
dummy records in the data set. However, our experiments show that the burden of main-
taining dummy records does not impact latency on the DBU, in particular when a large
number of groups are used. The cost of maintaining the dummy records is offloaded to
the OPS and the CS, which are likely to be deployed on more powerful machines than
the one used by the DBU.

6 Conclusions and Future Work

In this work, we propose ObliviousDB, a searchable scheme for hybrid outsourced
databases. ObliviousDB is the first full-fledged multi-user scheme that does not leak
information about search pattern, access pattern, size pattern and operation pattern. It
is also the first scheme that achieves both forward and backward privacy, where the CS
cannot reuse cached queries for checking if new records have been inserted or if records
have been deleted. We have implemented ObliviousDB and shown that it is capable of
performing numerical range queries with 1000 results on a database of 200,000 records
in around 4 seconds.

As future work, we plan to carry out a thorough security analysis for identifying a
right balance between real and dummy records for achieving a sustainable level of secu-
rity without degrading performance. Another area we want to explore is to investigate
sub-linear data structure to achieve more efficiency.

References

1. “Gartner expects five years for hybrid cloud to reach productivity,” last accessed: February
19, 2016. [Online]. Available: http://www.cloudcomputing-news.net/news/2015/aug/18/
gartner-expects-hybrid-cloud-reach-productivity-five-years-are-they-right/

http://www.cloudcomputing-news.net/news/2015/aug/18/gartner-expects-hybrid-cloud-reach-productivity-five-years-are-they-right/
http://www.cloudcomputing-news.net/news/2015/aug/18/gartner-expects-hybrid-cloud-reach-productivity-five-years-are-they-right/

2. “Rightscale 2016 state of the cloud report,” last accessed: July 3, 2016. [Online]. Available:
https://www.rightscale.com/lp/state-of-the-cloud

3. S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello, “Secure and practical searchable en-
cryption: A position paper,” in ACISP 2017, Part I, ser. Lecture Notes in Computer Science,
J. Pieprzyk and S. Suriadi, Eds., vol. 10342. Springer, 2017, pp. 266–281.

4. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against searchable
encryption,” in SIGSAC 2015, I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 668–679.

5. M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-preserving en-
crypted databases,” in SIGSAC 2015, I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp.
644–655.

6. Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to us: The power of
file-injection attacks on searchable encryption,” in USENIX Security 2016. USENIX Asso-
ciation, 2016, pp. 707–720.

7. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting
confidentiality with encrypted query processing,” in SOSP 2011, T. Wobber and P. Druschel,
Eds. ACM, 2011, pp. 85–100.

8. E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with
small leakage.” in NDSS 2013, vol. 71, 2014, pp. 72–75.

9. R. Bost, “∑oϕoς : Forward secure searchable encryption,” in SIGSAC 2016, E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 1143–1154.

10. Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted
data,” in ACNS 2005, ser. Lecture Notes in Computer Science, J. Ioannidis, A. D. Keromytis,
and M. Yung, Eds., vol. 3531, 2005, pp. 442–455.

11. M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting complex queries and access
policies for multi-user encrypted databases,” in CCSW 2013, A. Juels and B. Parno, Eds.
ACM, 2013, pp. 77–88.

12. M. R. Asghar, “Privacy preserving enforcement of sensitive policies in outsourced and dis-
tributed environments,” Ph.D. dissertation, University of Trento, Trento, Italy, December
2013, http://eprints-phd.biblio.unitn.it/1124/.

13. S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptographers,” Discrete
Applied Mathematics, vol. 156, no. 16, pp. 3113–3121, 2008.

14. C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted data for untrusted
servers,” in DBSec 2008, ser. Lecture Notes in Computer Science, V. Atluri, Ed., vol. 5094.
Springer, 2008, pp. 127–143.

15. G. Yang, C. H. Tan, Q. Huang, and D. S. Wong, “Probabilistic public key encryption with
equality test,” in CT-RSA 2010, ser. Lecture Notes in Computer Science, J. Pieprzyk, Ed.,
vol. 5985. Springer, 2010, pp. 119–131.

https://www.rightscale.com/lp/state-of-the-cloud
http://eprints-phd.biblio.unitn.it/1124/

	ObliviousDB: Practical and Efficient Searchable Encryption with Controllable Leakage

