
P-McDb: Privacy-preserving Search using
Multi-cloud Encrypted Databases

Shujie Cui, Muhammad Rizwan Asghar, Steven D. Galbraith, Giovanni Russello
The University of Auckland, Auckland, New Zealand

Email: scui379@aucklanduni.ac.nz, {r.asghar, s.galbraith, g.russello}@auckland.ac.nz

Abstract—Searchable Symmetric Encryption (SSE) allows
users to execute encrypted queries over encrypted databases.
A large number of SSE schemes have been proposed in the
literature. However, most of them leak a significant amount of
information that could lead to inference attacks.

In this work, we propose an SSE scheme for a Privacy-
preserving Multi-cloud encrypted Database (P-McDb), which
aims at preventing inference attacks. P-McDb allows users
to execute queries in an efficient sub-linear manner without
leaking search, access and size patterns. We have implemented
a prototype of P-McDb and show its practical efficiency.

I. INTRODUCTION

Searchable Symmetric Encryption (SSE) schemes allow
users to perform encrypted queries over encrypted data. SSE
is very useful in a scenario where sensitive data is outsourced
to a Cloud Service Provider (CSP): by performing encrypted
queries over encrypted data, the CSP never gets access to the
data (and queries) in cleartext.

In the literature, a long line of recent work has investigated
SSE with flexible functionality and better performance [1]–
[12]. Although these schemes are secure in certain models
under various cryptographic assumptions, the CSP is still able
to learn some information about the data from the access
patterns of users performing search operations. For instance,
the CSP is able to see which encrypted data is accessed by a
given query by looking at the matching records (referred to as
access pattern leakage). The CSP can also infer if two or more
queries are equivalent (referred to as search pattern leakage)
by comparing the encrypted queries or matched records. Last
but not least, the CSP can simply log the number of matched
records or files returned by each query (referred to as size
pattern leakage).

When an SSE scheme supports insert and delete operations,
it is referred to as a dynamic SSE scheme. Dynamic SSE
schemes might leak extra information if they do not support
forward privacy and backward privacy properties. Lacking
forward privacy means that the CSP can learn if newly inserted
data or updated data matches previously executed queries.
Lacking backward privacy means that the CSP learns if deleted
data matches new queries.

Supporting forward and backward privacy is fundamental to
limit the power of the CSP to collect information on how the
data evolves over time. Only a few of the existing schemes
[7], [13], [14] support forward privacy, but no scheme is able
to support both properties simultaneously.

Some recent works [15]–[18] have shown that these leak-
ages can be exploited to learn sensitive information and break
the scheme. Naveed et al. [16] recover more than 60% of
the data in CryptDB [6] using frequency analysis. Zhang et
al. [17] further investigate the consequences of leakage by
injecting chosen files or records into the encrypted database.
Based on the access pattern, they could recover a very high
fraction of searched keywords by injecting a small number
of known files into the database. Liu et al. [18] demonstrate
that the search pattern can be used to reveal the underlying
keywords in queries.

Another issue with SSE schemes is a very inflexible key
management mechanism. Some schemes, like [4], encrypt the
data and queries with the key shared among all the users.
Consequently, all the queries and search results issued by one
user could be decrypted by all authorised users. Even worse,
when one user is revoked, the single key has to be changed
and the data has to be re-encrypted with the new key. In other
schemes, such as [2] and [8], the keys are only known to the
data owner. The users have to send the query and search results
to the data owner to get the search tokens and cleartext results,
which means that the data owner represents a bottleneck in the
system.

In this paper, we present an SSE scheme for multi-cloud
environments named Privacy-preserving Multi-cloud Database
(P-McDb). P-McDb can effectively resist attacks based on
the access pattern. Our key technique is to use two cloud
servers, that are assumed not to collude: one server stores the
data and performs the search operation, the other manages re-
randomisation and shuffling of the database and coordinates
the sub-linear search. (Sub-linear search means that the search
operation does not have to be performed on every record in
the database.) A user with access to both servers can perform
an encrypted search in sub-linear time without leaking the
search pattern, access pattern, or size pattern. Furthermore,
we handle the situation where many users have access to the
same database. Each user is able to protect her queries and
search results against all the other entities. Last but not least,
P-McDb is more efficient for user revocation than most of the
existing SSE schemes: Instead of changing the key and re-
encrypting the data, we only need to inform all the CSPs to
stop any service for the revoked user. Although the revoked
users still own the key, they are unable to issue queries or
recover the data even if they collude with one of the CSPs.

The rest of this paper is organised as follows. We review

some background and related work in Section II. In Section III,
we provide an overview of our approach. In Section IV, we
define some notations. Solution and construction details can
be found in Section V. Section VI reports the performance.
We analyse the potential limitations of our scheme and give
a possible solution in Section VII. Finally, we conclude this
paper in Section VIII.

II. BACKGROUND AND RELATED WORK

Since the seminal paper by Song et al. [10], many SSE
schemes have been proposed and the research in this area has
been extended in several directions.

In the remainder of the paper, we use the following security
notions: Search Pattern Privacy (SPP) means the CSP is
not able to learn if two (or more) queries are the same
or not. Access Pattern Privacy (APP) means the CSP is
unable to infer if two (or more) result sets contain the same
records or not. Size Pattern Privacy (SzPP) is achieved
if the CSP is unable to learn the number of records that
match the query. Forward Privacy means the CSP does not
learn if a new or updated record matches a query executed
in the past. Backward Privacy means the CSP is unable to
executed queries on records that have previously been deleted
or modified.

Curtmola et al. [4] introduce a multi-user scheme by com-
bining a single-user SSE scheme with a broadcast encryption.
However, the data stored on the CSP is encrypted with the
key K shared among all the users, which means the revoked
users can still recover all the data if they collude with the
CSP. The multi-user SSE scheme proposed by Jarecki et al.
[19] has the same problem, i.e., it needs to regenerate a new
key and re-encrypt the data with the new key when a user is
revoked. Hang et al. [20] and Ferretti et al. [21] present two
different collusion-resistant mechanisms that support multi-
user access to the outsourced data. Although they support
approaches without sharing the keys among users, in both,
after user revocation, it is necessary to generate a new key
and re-encrypt the data.

Asghar et al. [1] propose a multi-user scheme with an
efficient and flexible key management method, where each
user has her own private key and does not require any re-
encryption when an authorised user is revoked. However, this
scheme is not secure if a user colludes with the CSP.

A thorough and up-to-date survey and comparison of the
current literature can be found in our paper [22].

III. SOLUTION OVERVIEW

A. System Model

In the following, we define our system model to describe
the entities involved in P-McDb, as shown in Figure 1:
• Admin: An admin is responsible for the setup and

maintenance of databases, user management as well as
specification and deployment of access control policies.

• User: It is an entity that represents a user who joins the
system, if granted by the admin. A user can issue queries
according to deployed access control policies.

User 1

User n

…

Storage & Search
Service (SSS)

Untrusted environmentTrusted environment

Index & Nonce
Service (INS)

Admin

CSP 2

CSP 1

Fig. 1. An overview of P-McDb: Users can upload records and issue queries.
The SSS and the INS represent independent CSPs. The SSS stores encrypted
records and executes queries. The INS stores auxiliary information to ensure
search efficiency and privacy. The INS provides auxiliary information to the
SSS for performing search. After each query, the SSS sends a set of records
to the INS for shuffling and re-randomising to protect patterns privacy.

• Storage and Search Service (SSS): It provides encrypt-
ed data storage, executes encrypted queries and returns
matching records in an encrypted manner.

• Index and Nonce Service (INS): It stores and man-
ages auxiliary information necessary to ensure search
efficiency and privacy. Precisely, it stores nonces that
are needed to retrieve data, performs shuffling and re-
randomisation of the database, has some control over
the number of dummy records, and provides an index
service that enables sub-linear search. After each query, it
updates the database and auxiliary information to achieve
privacy. The INS has no access to the encrypted data.

• Cloud Service Providers (CSPs): Each of the INS and
the SSS is deployed on the infrastructure managed by
a separate CSP. The CSPs have to ensure that there is
a two-way communication between the INS and SSS,
but our model assumes there is no collusion between the
CSPs.

B. Threat Model

We assume the admin is fully trusted. All the users are
semi-trusted in our model. That is, they are only assumed to
securely store their keys and the data, however, malicious and
revoked users may try to learn what other users are searching
for and the result set, or they can collude with the SSS or
INS (or the CSPs hosting them) to get access to the data they
otherwise are not authorised to access.

The CSPs hosting the SSS and the INS are modelled as
honest-but-curious. More specifically, they honestly perform
the operations requested by users according to the designated
protocol specification. However, they are curious to learn sen-
sitive information by analysing the stored and exchanged data.
We assume both the SSS and the INS are part of the public
cloud infrastructures provided by different CSPs. According
to the latest report given by Rightscale [23], organisations
are using more than three public CSPs on average, which
means the schemes based on multi-cloud are feasible for most
organisations. We emphasise that the CSPs are assumed not
to collude. In practice, any two competitive cloud providers,
such as Amazon S3, Google Drive and Microsoft Azure, could
be considered since they may be less likely to collude in an
attempt to gain information from their customers. In case they

collude, pattern privacy will no longer be guaranteed, although
the data still remains protected. Similarly, we assume a user
cannot collude with the two CSPs at the same time. Solutions
to resist these collusion attacks are given in Section VII. We
do not consider active attacks and assume that there are mech-
anisms in place for ensuring data integrity and availability of
the system.

C. Approach Overview

P-McDb aims at providing pattern privacy for minimising
information leakage from queries. P-McDb also achieves both
backward and forward privacy by using nonces in the data and
queries. To achieve search pattern privacy, we encrypt queries
and use nonces. Access pattern and size pattern privacy are
achieved by shuffling records. In order to achieve efficiency,
an indexing mechanism is implemented: we divide the data
into groups and build an index for each group, which enables
sub-linear search. To support forward and backward privacy,
P-McDb uses nonces in the data and queries. In P-McDb, it is
efficient to revoke users because no key re-generation and data
re-encryption operations are needed. To combine indexing and
shuffling and pattern privacy, it is necessary to have more than
one CSP. We now give an overview of our approach.

To protect the search pattern, we use a semantically secure
encryption algorithm. Hence, identical queries will look differ-
ent once encrypted. However, the SSS may still infer the search
pattern by looking at the access pattern. That is, by looking
at the physical locations of the encrypted records returned by
the search operation, the SSS can infer that two queries are
equivalent if the same records are returned.

To address this issue, after executing each query, we shuffle
the locations of the searched records. Moreover, prior to re-
inserting these records, we re-randomise the ciphertexts, mak-
ing them untraceable. Technically, after each search operation,
we update all the records touched during the search operation.
In this way, even if a query equivalent to the previous one is
executed, the SSS will see a new set of records being searched
and returned, and cannot easily infer the access pattern. This
also implies that the search pattern remains protected.

Another form of leakage is size pattern leakage, where
an adversary can learn the number of records returned after
performing a query, referred to as a count attack in [15]. More-
over, even after shuffling and re-randomisation, an adversary
could guess whether two queries are equivalent by checking
the number of records in the result set. To protect the size
pattern, we introduce a random number of dummy records.
Dummy records look exactly as the real ones and can even
match queries. The search result for each query will contain a
number of dummy records making it difficult for an adversary
to identify the actual number of real records returned by a
query. Moreover, after each query we update a random number
of dummy records, thus varying the size of the result set of
consecutive queries. Increasing the number of dummy records
will make it harder for an adversary to identify the actual real
records; this however will incur an increase in processing time.

Furthermore, to achieve forward and backward privacy, we
use nonces in the encrypted records and queries. After each
search operation, the records are re-randomised using fresh
nonces. Only queries that include the current nonce will be
able to match the records. In this way, even if a malicious
CSP tries to use previously executed queries with old nonces,
she will not be able to match the records in the data set,
ensuring forward privacy. Similarly, deleted records (with old
nonces) will not match newly issued queries because they use
different nonces. The use of nonces also limits the records that
a revoked user could be able to access even if she is able to
access the encrypted data.

Finally, to achieve sub-linear search complexity and min-
imise the communication overhead, we use an indexing tech-
nique. Technically, we divide the data into groups and require
one of the CSPs to keep track of all the data locations for each
record in the group. The search is then performed only on the
records within a group rather than across the whole dataset.

The details and algorithms of our scheme will be discussed
in the following section.

IV. NOTATION

In this work, a database DB = {rcd1, rcd2, . . .} is a set
of records. Each record rcd = (D1, . . . , DM) has M fields.
Each element Dm for 1 ≤ m ≤ M could be any allowed
value, such as an integer, string or date. Data elements are
collected into groups, which are used for the indexing. There
is a function G that returns the group of a data element
as gidm = G(Dm). Hence, associated to each record is an
M -tuple Grcd = (gid1, . . . , gidM) that represents the group
information for each data item in the record.
EDB is the encrypted DB stored on the SSS, consisting of

a set of encrypted records, i.e., EDB = {Ercd1, Ercd2, . . .}
where Ercd = (SE(D1), . . . , SE(DM), tag) represents an
encrypted record (here SE(Dm) is the encrypted element and
tag is used to mark if the record is dummy or real). The
implementation of SE and tag is given in the next section.

The INS has a nonce database NDB =
{Nrcd1, Nrcd2, . . .}, storing nonces related to EDB.
Each nonce record Nrcd = (n1, . . . , nM+1, f lag) is a list of
nonces, where the nonce nm is used to encrypt Dm and is
included in SE(Dm). The nonce nM+1 is used to hide the
value of tag from both the SSS and INS, and flag is used
to mark a dummy records for the INS.

In DB, EDB and NDB, each record is identified by a
unique id, which can be thought of as being the physical
location of the record. Hence, we will use the notation
rcd← DB(id), Ercd← EDB(id) and Nrcd← NDB(id)
to indicate selecting the corresponding information from these
databases.

The INS also stores a matching of groups to indices, in
the array GDB. So for each 1 ≤ m ≤ M and gid the array
GDB stores the list of all ids of records such that the m-th
data element lies in group gid.

Let λ be the security parameter in our system. We define
the set of binary strings of length λ as {0, 1}λ, the set of all

finite binary strings is denoted as {0, 1}∗. Sampling uniformly
random from a set X is denoted as x $← X . Given two binary
strings a and b, the concatenation of them is denoted as a||b,
and the xor operation between them is denoted as a⊕b. Given
two sets of binary strings, i.e., S1 = {a1, · · · , aI} and S2 =
{b1, · · · , bJ}, assume I ≤ J , we define the xor operation
between them as S1 ⊕ S2 = {a1 ⊕ b1, · · · , aI ⊕ bI}.

We use a symmetric encryption scheme Enc : {0, 1}λ ×
{0, 1}∗ → {0, 1}∗, such as AES-ECB. This is sufficient for
our searchable encryption functionality; we do not require
any special features of the encryption scheme. Function G
is defined as G : {0, 1}∗ × {0, 1}λ → {0, 1}ι, where ι is the
length of gid.

V. SOLUTION DETAILS

The system is setup by the admin by generating the secret
key k. k is shared among users and is used to protect the data
(including queries and records) from both the SSS and the
INS.

A. Insert Query

Algorithm 1 Insert(rcd)
1: User(rcd):
2: for m = 1 to M do
3: nm

$← {0, 1}|Dm|, SE(Dm)← Enck(Dm)⊕ nm
4: gidm ← G(Dm)
5: if rcd is a real record then
6: tag

$← {0, 1}2λ, nM+1
$← {0, 1}2λ

7: flag ← 1
8: else
9: S

$← {0, 1}λ, nM+1
$← {0, 1}2λ , tag ← (Hk(S)||S)⊕ nM+1

10: flag
$← {0, 1}

11: Send Ercd = (SE(D1), . . . , SE(DM), tag) to the SSS
12: Send Nrcd = (n1, . . . , nM+1, flag) and Grcd = (gid1, . . . , gidM) to

the INS

13: SSS(Ercd):
14: Determine the next available index id for the record
15: EDB(id)← Ercd
16: Send id to the INS

17: INS(Nrcd,Grcd, id):
18: NDB(id)← Nrcd
19: for m = 1 to M do
20: Add id to GDB(m, gidm)

In this section, we describe the steps involved in inserting
a record in P-McDb. The actual details of each operation are
provided in Algorithm 1.

To insert a (real or dummy) record rcd, first each data
element Dm in rcd is encrypted using the symmetric encryp-
tion algorithm Enc, and then XORed with the corresponding
nonce nm (Line 3, Algorithm 1). The use of the nonce nm
makes SE(Dm) semantically secure. The user does not have
to remember the nonce; this is the job of the INS.

To improve the search efficiency, data items are associated
with groups, via gidm = G(Dm). For each group, the INS
maintains an index list il containing the record’s id. Grcd is
sent to the INS to build il.

To protect the size pattern privacy, while inserting new
records, the user also generates and inserts together with
the real records a number of dummy records. Each data

element in a dummy record can be either copied from the
real records or picked from the value space randomly, and
encrypted using SE, which ensures that the dummy records
may match with queries and are indistinguishable from real
ones. Consequently, the size pattern is concealed.

To mark if a record is dummy or real, a tag tag is generated
as shown in Lines 6 and 9, Algorithm 1, where H : {0, 1}λ×
{0, 1}∗ → {0, 1}λ is a keyed hash function. With the secret
key k, the dummy records can be efficiently filtered out by
users before decrypting the search result by checking if:

lhtag
?
=Hk(rhtag), where lhtag||rhtag ← tag ⊕ nM+1

To make the size of the search results different, even when
the same query is executed twice, we reveal a subset of dummy
records to the INS by associating a flag with each record
(Line 7 and 10). When the INS sees flag = 0, it knows
the record is dummy. However, flag = 1 does not mean a
record is real. After each query, the INS randomly updates
the records with flag = 0 (see Algorithm 3).

The number of dummy records must be controllable since it
affects the security and performance of P-McDb. The higher
the percentage of dummy records with respect to real ones,
the harder for the SSS and the INS to infer the search
pattern. However, this also implies that more records should be
searched for each query. In P-McDb, we set two parameters,
δ1 and δ2, to control the minimum and maximum proportion
of dummy records, respectively. The values of these two
parameters can be set according to the practical requirements
for security and performance. Specifically, when a user inserts
x records, y dummy records are generated such that, on
average, δ1x ≤ y ≤ δ2x (this is easily done using standard
random variable sampling methods). The study by Cash et al.
in [15] suggests that 1.6 is the minimum ratio between dummy
and real records to resist against size pattern-based attacks.
A thorough security analysis for identifying a right balance
between real and dummy records for achieving a sustainable
level of security and performance is part of our future work.

To summarise, for each record rcd, the user generates (1)
an encrypted record Ercd that is sent to the SSS to be inserted
into the encrypted database EDB; (2) a set of nonces Nrcd
that is sent to the INS and inserted into the database called
NDB; (3) and the group information Grcd is also sent to the
INS that inserts it into another database named GDB.

Table I provides an example of EDB, GDB and NDB for
a Staff table shown in cleartext in Table I(a). In our example,
the Staff table has two fields, Name and Age, and contains two
records.
EDB (shown in Table I(b)) is stored on the SSS and

contains the encrypted records. In addition to the database
fields (i.e., Name and Age), EDB also contains the tag field
for tag. Note that EDB contains two extra records with id 3
and id 4: they are two dummy records inserted by the user.
The INS knows the last record is dummy, since its flag is set
to be 0 in NDB.

Table I(c) represents GDB stored on the INS. It contains
unique group ids (gid) and the list of records ids belonging

TABLE I
(A) A SAMPLE staff TABLE. (B) THE ENCRYPTED staff TABLE STORED ON THE SSS. EACH ENCRYPTED DATA ELEMENT SE(Dm) = Enck(Dm)⊕ nm .

EACH RECORD HAS A TAG, ENABLING USERS TO DISTINGUISH BETWEEN DUMMY AND REAL RECORDS. (C) INDEX MAINTAINED BY THE INS. THE names
AND ages ARE DIVIDED INTO GROUPS ACCORDING TO THE FIRST LETTER AND RANGE, RESPECTIVELY. PRECISELY, gid20 = G(25), gid30 = G(32),
gida = G(Alice), gidb = G(Bob). (D) NONCES ARE STORED ON THE INS. FOR EACH DATA ELEMENT Dm , THE INS STORES A NONCE nm THAT IS

BOUND TO SE(Dm). MOREOVER, FOR EACH RECORD, IT STORES ONE MORE NONCE FOR THE tag, AND A 1-BIT FLAG TO MARK IF IT IS DUMMY.

(a) Staff
id Name Age
1 Alice 25
2 Bob 32

(b) EDB on the SSS
id SE(name) SE(age) tag
1 SE(Alice) SE(25) tag1
2 SE(Bob) SE(32) tag2
3 SE(Bob) SE(25) tag3
4 SE(Alice) SE(25) tag4

(c) GDB on the INS
gid Index list
gid20 {1, 3, 4}
gid30 {2}
gida {1, 4}
gidb {2, 3}

(d) NDB on the INS
id n1 n2 n3 flag
1 n11 n21 n31 1
2 n12 n22 n32 1
3 n13 n23 n33 1
4 n14 n24 n34 0

to a given group. For instance, in our example, the group with
gida contains the id of all the records where the values of the
field Name starting with the letter A. The INS also stores in
NDB the nonce set Nrcd associated with each record stored
in EDB. Table I(d) represents NDB for our toy example.

Finally, the field names in Tables I(b) and I(d) (as well as
in queries) are encrypted as SE(name) = Enck(name).

B. Select Query

For simplicity, we only explain our solution for queries
whose predicate is a single equality statement Dm = Cm.
For example, ‘select * from staff where name=Alice’. From
this building block, it is possible to support complex queries
and range queries; for details, see the full version of the
paper [24]. EQ represents the encrypted query. The group
is gidm = G(Cm).

Algorithm 2 Search(m,Cm)
1: User(m,Cm):
2: for i = 1 to M do
3: ηi

$← {0, 1}|Di|

4: Set N = (η1, . . . , ηM+1) where ηM+1
$← {0, 1}2λ

5: SE(Cm)← Enck(Cm)⊕ ηm
6: gidm ← G(Cm)
7: Send EQ = SE(Cm) to the SSS
8: Send the nonce set N and gidm to the INS

9: INS(m, gidm,N):
10: EN ← ∅
11: ilm ← GDB(m, gidm)
12: IL← ilm∪ a set of ids selected from other groups randomly
13: for each id ∈ IL do
14: EN(id)← NDB(id)⊕N
15: Send the encrypted nonce set EN and the index list IL to the SSS

16: SSS(m,EQ, IL,EN):
17: for i = 1 to M do
18: n′

i
$← {0, 1}|Di|

19: Set N ′ = (n′
1, . . . , n

′
M+1) where n′

M+1 ← {0, 1}
2λ

20: SR← ∅, Trcds← ∅
21: for each id ∈ IL do
22: Trcd← EDB(id)⊕ EN(id)
23: if Trcd(m) = EQ then
24: SR← SR ∪ Trcd
25: Trcds(id)← Trcd⊕N ′

26: Send the search result SR to the user
27: Send the transformed record set Trcds to the INS for shuffling

For performing a select query, P-McDb requires the coop-
eration between the INS and the SSS. The details of the steps
performed by the user, the INS and the SSS are shown in
Algorithm 2.

The user first encrypts the query ‘Dm = Cm’ using k and a
nonce set N to get EQ. The nonce ensures that the encrypted
query EQ is semantically secure. Also, the user generates
group information gidm for Cm. Finally, the user sends the
encrypted query EQ to the SSS, and the group information
set GQ together with the nonce set N to the INS.

The INS determines the search range from GQ (Line 11,
Algorithm 2). In addition to the queried group, a set of random
ids from other groups are selected (the number of additional
ids is another parameter). The SSS will end up searching
over all these indices, so it is hard to know exactly which
indices correspond to the group. For each record in the search
range IL, the INS creates an encrypted nonce vector by
retrieving the nonces from NDB (using the record id in IL)
and XORing them with the nonces N generated by the user
(Line 14). The set EN encrypted nonces is then sent to the
SSS together with the search range IL.

For each search operation, the SSS creates a set N ′ with
fresh nonces (this is needed to hide the data from the INS
during the shuffling operation). It also creates two empty sets:
SR that will contain search results and Trcds that will contain
transformed records. The SSS performs the search operation
within the ids contained in IL. For each id in IL, the SSS
XORs the record in EDB with the corresponding element
in EN . This operation is necessary because the nonce in the
encrypted query is different from the nonces in the records
stored in EDB. Therefore, it would not be possible for the
SSS to match the encrypted values in the query with the
encrypted values of the fields in the records. By XORing the
encrypted record with the corresponding element in EN , we
basically XOR the records with the same nonce as the query
without revealing its content to the SSS. In details, recalling
that the elements in EN are nm⊕ηm, the operation in Line 22
is:

Trcd(m)← Enck(Dm)⊕ηm = (Enck(Dm)⊕nm)⊕(nm⊕ηm)

where ηm represents the nonce in the query. Similarly, the tag
is XORed as: tag ⊕ (nM+1 ⊕ ηM+1).

At this stage, the SSS can perform the matching operation.
In case of a match, the SSS adds Trcd to SR (Line 24).

Only the user issuing the query knows N and is able to
decrypt the records in SR by computing Enc−1k (Trcd⊕N),
where Enc−1 is the inverse of Enc. Similarly, only the user

issuing the query will be able to distinguish between real and
dummy records because she is the only one who knows ηM+1.

All the records listed in IL are touched by the SSS during
the search (even if they do not match the query). To protect the
access pattern, all these records in IL need to be shuffled and
re-encrypted. The shuffling and re-encryption are performed
by the INS as explained in Section V-C. Each Trcd in Trcds
is now encrypted under k and the nonce set N . If the INS
and the user collude then they could retrieve all the records in
Trcds, which could contain more records than SR. To avoid
this, all the records in Trcd are XORed with the new set of
nonces N ′ that is known only to the SSS (Line 25).

C. Shuffling and Re-randomisation

Algorithm 3 Shuffle(Trcds)
1: INS(Trcds, IL)
2: for each id ∈ IL do
3: for i = 1 to M do
4: ri

$← {0, 1}|Di|
5: Set R = (r1, . . . , rM+1) where rM+1 ← {0, 1}2λ
6: if NDB(id).flag = 0 then
7: for each SE(Dm) ∈ Trcds(id) do
8: SE(D′

m)
$← Trcds , SE(Dm)← SE(D′

m)⊕ rm
9: tag ← tag ⊕ rM+1

10: else
11: Trcds(id)← Trcds(id)⊕ R
12: NDB(id)← N ⊕ R
13: Shuffle Trcds and update GDB and NDB
14: Send Trcds to the SSS.
15:
16: SSS(Trcds, IL)
17: for each record id ∈ IL do
18: EDB(id)← Trcds(id)⊕N ′

In most of the existing searchable schemes, the ciphertext
and location of the data are not changed, unless there is a
delete or update query. Consequently, if the same search results
are returned, an adversary can infer that the two queries are
logically equivalent, thus leaking the access pattern. To protect
the access pattern, after executing every query, we shuffle the
search results with other records and re-randomise all of them.
In this way, having the same ids in two search results does
not mean the corresponding queries are equivalent.

Ideally, one could shuffle all the records in the database.
However, this would have a significant impact on performance.
In this work, we only shuffle all the records in IL, representing
the set of records touched by the SSS.

The INS is responsible for shuffling and re-randomisation of
the records in Trcds as described in Algorithm 3. Note that,
at this stage, the user has already obtained the search results
from the SSS and does not need to wait for this operation to
be completed.

For each record in Trcds, which contains all the records
in IL, the INS first generates a new set of nonces R. To
make sure that the size of the matching records is different
for every query (e.g., size pattern privacy), the INS updates
the subset of dummy records, where flag = 0. Specifically,
for each data element SE(Dm) in the dummy record, the
INS updates it with another value SE(D′m) that is picked
from Trcds randomly, and then re-randomises it with a nonce

(Line 6-9, Algorithm 3). For the record with flag = 1, it is
just re-randomised with the nonce set R (Line 11). Formally,
the final re-randomised data element is:

SE(Dm)← Enck(Dm)⊕ ηm ⊕ rm
while the tag is:

tag ← tag ⊕ ηM+1 ⊕ rM+1

The new value Nrcd corresponding to the re-randomised
record is:

Nrcd = (η1 ⊕ r1, . . . , ηM+1 ⊕ rM+1)

and it will be stored in NDB. Finally, the list Trcds is
permuted randomly, or in other words shuffled. Because of
the shuffling and updating operations, the group information
should be updated in GDB (Line 13). The shuffled and re-
randomised records Trcds are then sent to the SSS. Before
the records are stored in EDB, the nonce set N ′ is removed
from each record by XORing it again (Line 18, Algorithm 3).
Finally, the shuffled data is re-written by the SSS into the same
memory locations specified by IL. The point is that the SSS
knows that these and only these indices have been changed,
but it does not know the permutation that was applied to the
data.

By using a new set of nonces R during the shuffling, we
are able to achieve both forward and backward privacy. If the
SSS tries to execute an old query, it will not be able to match
any records without the new nonce set, which is known only
to the INS. Similarly, the SSS cannot learn if deleted records
match new queries.

Due to page limit, the security analysis of P-McDb is not
provided in this paper. For a security analysis of P-McDb, an
interested reader is referred to the extended version [24].

D. Delete and Update Queries
On the user and the INS, delete queries are processed in

the same way as select queries. On the SSS, all the matched
records are deleted as usual. Meanwhile, the SSS sends the
ids of the matched records and informs the INS to delete the
corresponding nonces. The remaining records in IL will be
shuffled and re-randomised by the INS. Update queries are
executed by deleting the stale data first and inserting the new
value later.

E. User Revocation
Because of the nonces bound to SE, without the assistance

of the INS and the SSS, the revoked user is unable to
recover the query and records only with k. Therefore, for user
revocation, we just need to manage a revoked user list at the
INS as well as at the SSS. Once a user is revoked, the admin
informs the INS and the SSS to add this user into their revoked
user lists. When receiving a query, the INS and the SSS will
first check if the user has been revoked. If yes, they will reject
the query. In case a revoked user colludes with either the SSS
or INS, she cannot get the search results, since such operation
requires the cooperation of both the user issuing the query, the
INS and the SSS.

VI. PERFORMANCE ANALYSIS

	0

	50

	100

	150

	200

1 2 6 13 26

La
te
n
cy
	i
n
	m

s

Number	of	groups

Search
Dec
Shuffle

(a) Latency of each phase with different num-
ber of groups. The result size is 2600 (1000
real records).

	0

	50

	100

	150

	200

26 260 2600 26000

La
te
n
cy
	i
n
	m

s

Result	size

Search
Dec
Shuffle

(b) Latency of each phase with different result
sizes and 26 groups.

	0

	50

	100

	150

	200

1 2 6 13 26

La
te
n
cy
	i
n
	m

s

Number	of	groups

User
INS
SSS

(c) Latency at each entity with different num-
ber of groups. The result size is 2600 (1000
real records).

	0

	50

	100

	150

	200

26 260 2600 26000

La
te
n
cy
	i
n
	m

s

Result	size

User
INS
SSS

(d) Latency at each entity with different result
sizes and 26 groups.

Fig. 2. Query time for a single keyword search with 2.6 million records,
where 1 million are real records.

We implemented P-McDb in C consisting of 1000 lines of
code using MIRACL 7.0 library for cryptographic primitives.
The performance of all the entities was evaluated on a desktop
machine running Intel i5 3.3 GHz 4-core processor with 8GB
of RAM. In the experiments, we ignored network latency that
could occur in a real deployment. We created a Staff table
with five fields, name, age, gender, position and email. The
database contains 2.6 million records of which 1.6 million are
dummy records. The ratio between real records and dummy

records is same as the suggested by Cash et al. in [15]. In the
following, all the data points in the graphs were averaged over
10 trials.

In the following experiments, we distinguish three phases
when a query is executed: Search, Dec and Shuffle. The Search
phase includes all the operations shown in Algorithm 1. In
the Dec phase, the user removes the dummy records from the
results set and decrypts the real ones. In the Shuffle phase,
instead of shuffling all the records in IL as described in
Algorithm 3, the INS shuffles and re-randomises the same
number of searched records together with the result set.

Figure 2(a) shows the effect on each phase when we change
the number of groups and fix the size of the search result. As
we can see, the latency is mostly spent on the Search phase.
We observe that increasing the number of groups reduces the
search time as the SSS has fewer records to search through.
Due to the efficient XOR operation, even without grouping
the data, the user can get the cleartext search result in 200
milliseconds (ms). The Dec and Shuffle phases instead are
not affected by the group size but by the search results. This
is more clearly shown in the following experiment.

Figure 2(b) shows how the latency varies when we fix the
group size and use different sizes for search results. As we can
see, the Search latency remains constant, but the time of the
Dec and Shuffle phases increases with the increase in the result
size. Similarly, the shuffling time is affected significantly by
the result size. The worst case is to shuffle a single group or
the whole database, where the latter ensures a higher security
level. When the result size is 26000 (10000 real records), the
shuffle time becomes the main overhead. It should be noted
that, the Dec phase on the user can be started without waiting
for the completion of the Shuffle phase.

An important aspect of an outsourced service is that most of
the intensive computations should be off-loaded to the CSPs.
To quantify the workload on each of the entities, we have
measured the latency on the user, the INS and the SSS for
processing a result set of 2600 records with different group
sizes. The results are shown in Figure 2(c). We can notice
that for a fixed result set of 2600 records, the latency on the
user is always less than 10 ms. The latency on the user side
is mainly for decrypting the returned values. This is clearly
shown in Figure 2(d) where we keep the group size fixed
and change the size of the returned set. As we can see, the
latency on the user increases with the increase in the result set
size. It should be noted however, that for a 20K result set the
user requires around 120 ms to filter out dummy records and
decrypt all the real ones. The increase in the result set size
also affects the latency on the INS because a larger result set
means more records to shuffle.

More tests reporting the performance comparison with other
works, the performance of more complex queries and the
latency to shuffle all the touched records can be found in the
extended version of this paper [24].

VII. DISCUSSION

In P-McDb, if the SSS colludes with the INS, they could
learn the search and access patterns by removing the nonces
included in records and queries. Furthermore, if a user colludes
with both the INS and the SSS, they can decrypt all the
records. To resist such collusion attacks, there are two possible
solutions. The simplest one would be to introduce a proxy
server between the users and the CSPs. The proxy server
would blind the records and queries with its own set of nonces.
As long as the proxy server is deployed on a trusted private
cloud managed by the data owner, the CSPs could not decrypt
the data even if they have the key k. The other approach would
be to generalise the system by introducing n CSPs, assuming
not all of them collude together. In this case, each data element
is blinded with n nonces. Only when n CSPs collude together,
the search and access patterns will be leaked, and only when
the user collude with n CSPs, all the data can be recovered.

Considering field names in queries and tables are encrypted
using a deterministic algorithm, P-McDb leaks if the queries
are searched over the same fields or not. This can be protected
by also encrypting field names using nonces and storing the
nonces on the INS. It is also necessary to shuffle the database
over columns and re-randomise encrypted field names to make
them untraceable on the INS after executing each query.

For each query, the INS has to send all the nonces indexed
by IL to the SSS. When IL is large, the communication
overhead will be computationally intensive. This is because
each record in P-McDb is bound with a unique nonce record
Nrcd. Although the encryption function Enc is deterministic,
considering statistical information is already protected by
dummy records, the records can be bound with same nonces.
The INS could use the same nonce set to re-randomise the
records in the same group during the shuffle operation. In this
way, only one encrypted nonce set ENrcd should be sent to
the SSS.

VIII. CONCLUSION

In this work, we presented P-McDb, a dynamic search-
able encryption scheme for multi-cloud outsourced databases.
P-McDb supports sub-linear search and does not leak infor-
mation about search, access and size patterns. It also achieves
both forward and backward privacy, where the CSPs cannot
reuse cached queries for checking if new records have been
inserted or if records have been deleted. Furthermore, P-McDb
offers a flexible key management scheme where revoking
users does not require regeneration of keys and re-encryption
of the data. As future work, we plan to investigate some
performance optimisations to achieve more efficiency without
sacrificing security guarantees offered by P-McDb, and do
our performance analysis by deploying the scheme in the real
multi-cloud setting.

REFERENCES

[1] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting complex
queries and access policies for multi-user encrypted databases,” in CCSW
2013 (A. Juels and B. Parno, eds.), pp. 77–88, ACM, 2013.

[2] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233, 2014.

[3] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS 2014, The Internet
Society, 2014.

[4] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in CCS 2006 (A. Juels, R. N. Wright, and S. D. C. di Vimercati, eds.),
pp. 79–88, ACM, 2006.

[5] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in SP 2014, pp. 639–654, IEEE Computer
Society, 2014.

[6] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query processing,”
in SOSP 2011 (T. Wobber and P. Druschel, eds.), pp. 85–100, ACM,
2011.

[7] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage.,” in NDSS 2013, vol. 71, pp. 72–75, 2014.

[8] B. Wang, W. Song, W. Lou, and Y. T. Hou, “Inverted index based
multi-keyword public-key searchable encryption with strong privacy
guarantee,” in INFOCOM 2015, pp. 2092–2100, IEEE, 2015.

[9] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,” in INFOCOM 2014, pp. 226–234, IEEE,
2014.

[10] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in S&P 2000, pp. 44–55, IEEE Computer Society,
2000.

[11] P. Rizomiliotis and S. Gritzalis, “ORAM based forward privacy preserv-
ing dynamic searchable symmetric encryption schemes,” in CCSW 2015
(I. Ray, X. Wang, K. Ren, F. Kerschbaum, and C. Nita-Rotaru, eds.),
pp. 65–76, ACM, 2015.

[12] M. I. Sarfraz, M. Nabeel, J. Cao, and E. Bertino, “Dbmask: Fine-grained
access control on encrypted relational databases,” in CODASPY 2015
(J. Park and A. C. Squicciarini, eds.), pp. 1–11, ACM, 2015.

[13] R. Bost, “
∑

oϕoς: Forward secure searchable encryption,” in SIGSAC
2016 (E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, eds.), pp. 1143–1154, ACM, 2016.

[14] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in ACNS 2005 (J. Ioannidis, A. D. Keromytis,
and M. Yung, eds.), vol. 3531 of Lecture Notes in Computer Science,
pp. 442–455, 2005.

[15] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in SIGSAC 2015 (I. Ray, N. Li, and
C. Kruegel, eds.), pp. 668–679, ACM, 2015.

[16] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in SIGSAC 2015 (I. Ray, N. Li, and
C. Kruegel, eds.), pp. 644–655, ACM, 2015.

[17] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security 2016, pp. 707–720, USENIX Association, 2016.

[18] C. Liu, L. Zhu, M. Wang, and Y. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Inf. Sci., vol. 265,
pp. 176–188, 2014.

[19] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in SIGSAC 2013
(A. Sadeghi, V. D. Gligor, and M. Yung, eds.), pp. 875–888, ACM,
2013.

[20] I. Hang, F. Kerschbaum, and E. Damiani, “ENKI: access control for
encrypted query processing,” in SIGMOD 2015 (T. K. Sellis, S. B.
Davidson, and Z. G. Ives, eds.), pp. 183–196, ACM, 2015.

[21] L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchetti, “Scalable
architecture for multi-user encrypted SQL operations on cloud database
services,” IEEE Trans. Cloud Computing, vol. 2, no. 4, pp. 448–458,
2014.

[22] S. Cui, M. R. Asghar, S. Galbraith, and G. Russello, “Secure and
practical searchable encryption: A position paper,” in ACISP 2017,
Lecture Notes in Computer Science, Springer, 2017.

[23] “RightScale2016.” Last accessed: June 14, 2016.
[24] S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello, “P-McDb:

Privacy-preserving search in multi-cloud encrypted databases,” 2017.
https://www.cs.auckland.ac.nz/∼asghar/papers/eprint-P-McDb.pdf.

