
Secure and Practical Searchable Encryption:
A Position Paper

Shujie CuiB, Muhammad Rizwan Asghar, Steven D. Galbraith, and Giovanni
Russello

The University of Auckland, New Zealand
scui379@aucklanduni.ac.nz, {r.asghar, s.galbraith, g.russello}@auckland.ac.nz

Abstract. Searchable Encryption (SE) makes it possible for users to outsource
the encrypted database and search operation to cloud service providers without
leaking the content of the query and data to them. A number of SE schemes have
been proposed in the literature; however, most of them leak a significant amount
of information that could lead to inference attacks. To minimise information leak-
age, there are alternate solutions, such as Oblivious Random Access Memory (O-
RAM) and Private Information Retrieval (PIR). Unfortunately, existing solutions
are prohibitively costly and impractical. A practical scheme should support not
only a lightweight user client but also a flexible key management mechanism for
multi-user access.
In this position paper, we briefly analyse several leakage-based attacks, and i-
dentify a set of requirements for a secure cloud database that could resist against
these attacks and ensure usability of the system simultaneously. We also discuss
several possible solutions to fulfil the identified requirements.

1 Introduction

Cloud computing is a successful paradigm offering users virtually unlimited data stor-
age and computational power at very attractive costs. Despite its merits, cloud comput-
ing raises privacy issues to users. Once the data is outsourced, it is exposed not only
to third party intruders but also to careless or even potentially malicious Cloud Service
Providers (CSPs). Standard encryption can protect the content of the outsourced data.
However, it also prevents users from searching on encrypted data. If standard encryp-
tion is used, there is a trivial solution to perform search on encrypted data: if a particular
piece of data is needed, the user has to download all the content to its local (trusted) en-
vironment, decrypt the data, and perform the search operation. If the database is very
large, this trivial solution does not scale well. The matter becomes more complicated in
multi-user settings, where multiple users could access the same data set.

The concept of Searchable Encryption (SE) provides a promising solution to protect
outsourced data from unauthorised accesses by CSPs or external adversaries. Encrypted
data is tagged with encrypted keywords (also called search tokens) in such a way that
a CSP, which is given an encrypted search term, can check whether a record has key-
word(s) that satisfies the search term. Such schemes allow the CSP to perform encrypted
search on encrypted data without leaking the content of the query and the data.

Since the seminal paper by Song et al. [45], many SE schemes have been proposed.
A long line of works, such as [2,7,9,10,14,18,20,22,23,25,29,30,35,38,44,45,47,50,53,
54, 56, 57], focus on investigating SE with complex functionality (e.g., multi-keyword
search, range queries, rank search, and fuzzy search) and improved performance. Al-
though these schemes are secure under some cryptographic assumptions, we will see
that the CSP is still potentially able to learn about the data by observing patterns in the
results of insert, delete or update operations. For instance, the CSP is able to see which
encrypted data is accessed by a given query by looking at the matching records (referred
to as access pattern leakage). By comparing the matched records, the CSP can also in-
fer if two or more queries are equivalent or not (referred to as search pattern leakage).
Moreover, the CSP can simply log the number of matched records or files returned by
each query (referred to as size pattern leakage).

When an SE scheme supports insert and delete operations, it is referred to as a
dynamic SE scheme. Dynamic SE schemes might leak extra information if they do
not support forward privacy and backward privacy properties. Forward privacy means
that the CSP can not learn if newly inserted data or updated data matches previously
executed queries. Backward privacy means that the CSP can not learn if deleted or stale
data matches new queries. Supporting forward and backward privacy is fundamental to
limit the power of the CSP to collect information on how the data evolves over time.
Only a few of the existing schemes [5,6,10,47] support forward privacy, but no scheme
is able to support both forward and backward privacy simultaneously.

Some recent works [8, 27, 32, 34, 58] have shown that even a minor leakage could
be exploited to learn sensitive information and break a scheme. In particular, given the
plaintext of a small number of queries (e.g., data, search habit or preference of users),
a malicious CSP could recover a large fraction of the data and queries. Unfortunately,
the majority of the existing SE solutions, such as [2,7,9,10,14,18,20,22,23,25,29,30,
35,38,44,45,47,50,53,54,56,57], are vulnerable to these attacks due to the leakage of
search, access and size patterns, and lack of forward and backward privacy.

Privacy-sensitive applications, such as electronic healthcare systems, impose strin-
gent security requirements when it comes to data outsourcing. The first step to meet
those requirements is to minimise information leakage that could lead to inference at-
tacks. Oblivious Random Access Memory (ORAM) [21,36,46] and Private Information
Retrieval (PIR) [12, 13, 55] are two possible techniques to minimise information leak-
age. However, existing ORAM and PIR schemes are prohibitively costly and imprac-
tical. We are concerned with practical solutions where users can get the required data
efficiently without incurring high storage, communication and computation overheads.
Moreover, in multi-user settings, users could join or leave the system at any time, ideal-
ly without affecting the rest of the users. Unfortunately, neither ORAM nor PIR cover
these aspects. Therefore, an important problem is to develop secure and practical SE
schemes for privacy-sensitive applications. In this paper, we first define a set of require-
ments towards a secure cloud database. Then, we provide an extensive classification
of the existing literature based on these requirements. Furthermore, we provide some
research directions and possible approaches to ensure confidentiality without compro-
mising on functionality and a practical user experience.

2 Requirements and Challenges

The recent proposed attacks on SE schemes, such as [8,34,58], put the outsourced data
at risk. Almost all the attacks recover the data by leveraging private information leaked
by size, search and access patterns. To minimise information leakage, the size, search
and access patterns must be hidden from the CSP. In this section, for each pattern, we
first briefly describe the typical attacks, and then we identify the requirements and chal-
lenges for protecting it. For a practical solution, a flexible key management mechanism
is needed for applications requiring multi-user access. We also identify the requirements
and challenges to manage the keys, but without leaking private information.

Size Pattern. The number of matched records for each query is called the size pattern
or the frequency information [8, 27, 34, 45]. In particular, we say Size Pattern Privacy
(SzPP) is achieved if the CSP is unable to learn the number of matched records of a
query on encrypted data. In most of the existing SE schemes, there are two kinds of
frequency information leakages. The first kind is a leakage from the encrypted data
stored in the database; we call this static frequency information. For instance, in Crypt-
DB [38], the searchable data is only protected with deterministic encryption (the outer
layer encryptions are peeled off to support search operations). That is, the same data
in the database has the same ciphertext. The frequency information in the database is
exposed to the CSP directly. With the knowledge of publicly available information, like
census data and hospital statistics, Naveed et al. [34] successfully recover more than
60% of patient records from electronic medical databases based on static frequency in-
formation without executing any search operation. In contrast, some other schemes [2]
use semantically secure primitives to encrypt the data. In such schemes, the static fre-
quency information is protected since all the encrypted data has different ciphertexts.
However, after performing a query, the CSP could still count the number of matched
records; we call this dynamic frequency information. With the knowledge of the fre-
quency information of keywords in plaintext, attackers could recover the queries easily
based on the number of matched records, which is called a count attack in [8].

Clearly, semantically secure encryption is not sufficient to protect the dynamic fre-
quency information if the search operation is performed by the CSP. Protection against
the count attack is required.

Access Pattern. We say that an SE scheme achieves Access Pattern Privacy (APP)
if the CSP is unable to infer if two (or more) result sets contain the same data or not.
A formal definition is given in [14]. A typical instance of access pattern based attack
is the file injection attack introduced in [58], which is also referred to as the chosen-
document attack in [8]. Technically, an active malicious CSP sends files with keywords
of its choice, such as emails, to users who then encrypt and upload them to the CSP.
Afterwards, the CSP tracks these injected files and checks if they match queries. Since
all the keywords in these files are known to the CSP, given enough injected files, the CSP
could recover the keywords included in queries. Specifically, the keywords included in
the matched but not included in the unmatched injected files are the possible searched
keywords.

ORAM is a primitive intended for hiding storage access patterns. However, it is d-
ifficult to get a practical SE scheme that is based on ORAM technique. We now explain

the two main obstacles to using traditional ORAM in SE schemes. First, in ORAM,
the store address of required data is known to users before fetching. However, in SE
schemes, the CSP first needs to search over the database and get matched records or
indexes of matched files. It is impractical to store all the addresses on the user side,
especially for applications with thousands of users and resource-constrained devices.
Second, despite significant recent improvements [16,19,40], ORAM incurs huge band-
width, latency and storage overheads, making it impractical for SE schemes. According
to the study by Naveed [33], the naive approach, downloading the whole database and
search locally for each query, is even more efficient than ORAM.

PIR is another approach to hide the access pattern. It allows users to retrieve the
data without leaking which data is retrieved to the CSP. Specifically, in PIR-based SE
schemes, such as [15, 42], the CSP returns a much larger data set than required to the
user. Although the access pattern is unknown to the CSP, the user has to perform some
computation locally to extract the matched data. It is clear that the communication and
computation overheads on the user are also huge in this approach.

Although both the ORAM and PIR techniques can protect the access pattern from
the CSP, they may leak information to users. In an application with fine-grained access
control policies, users should only get what they are allowed to learn. However, all
the existing ORAM and PIR approaches do not ensure that all the returned data is
authorised to the user. Therefore, a more practical method to protect the access pattern
without leaking information to users should be proposed.

Search Pattern. We say Search Pattern Privacy (SPP) is achieved if the CSP is not
able to distinguish if two (or more) encrypted queries feature the same keywords or
not. In [32], Liu et al. show that given the search habit of users, the searched keywords
could be recovered based on the search pattern. In [8], Cash et al. illustrate that given the
plaintext of a small number of queries, the plaintext of other queries could be recovered
easily if the adversary knows the search pattern. It is not trivial to protect the search
pattern since it can be inferred not only from the encrypted queries, but also from the
access and size patterns.

To protect the search pattern, first we should use a semantically secure encryption
algorithm for the search tokens, which makes same queries look different once encrypt-
ed. Recall that to protect the static frequency information, it is also necessary to encrypt
the data with a semantically secure algorithm. If both the query and the data are se-
mantically secure, to the best of our knowledge, the only solutions in the literature use
complex cryptographic primitives such as pairings or homomorphic encryptions. These
primitives tend to be much slower than traditional symmetric encryption. So these meth-
ods do not scale well when processing the search operation over millions of records. A
more efficient approach to test equality between semantically secure encrypted data is
needed.

Furthermore, even if the encrypted queries are semantically secure, the CSP could
still infer the search pattern by looking at the access pattern. That is, by looking at the
physical locations of the encrypted data returned by a search, the CSP can infer that two
queries are equivalent if the same result sets are returned, since generally only the same
query gets exactly the same result set.

However, even if the matched data for all queries are different in terms of the storage
location and ciphertext, the search pattern can still be inferred from the size pattern.
If the database is static then equivalent queries will always return the same number of
matched records or files. This fact can be used by the CSP to mount an attack: Although
it is not always true that the two queries are logically equivalent when their result sets
have the same size, it is true that they are different queries when their result set sizes
are different.

Therefore, to conceal the search pattern, it is necessary to make the size, storage
location and ciphertext of the search results variable even if the same query is executed
twice.

Forward and Backward Privacy. Generally speaking, forward and backward privacy
mean the CSP will learn nothing if it repeats a previously executed query (using the
original search tokens) over newly added or updated data, or executes a new query
over data that was supposed to have been deleted or updated. If the SE scheme cannot
ensure forward and backward privacy, the CSP could recover all the queries with the
file injection attack by executing all the previous queries again over the newly injected
files. Similarly, if the CSP learns the plaintext of deleted files or records, then the queries
could also be recovered by checking if they match deleted data.

To protect the search and access patterns, it is, in fact, necessary to also ensure for-
ward and backward privacy. Recall that the storage locations and ciphertexts of searched
data must be updated to protect the search and access patterns. However, if the CSP
could execute the previous queries over the updated data and get a new set of matched
data, it will infer the search pattern by comparing the result set of a new query with the
result sets of previous queries. Likewise, the CSP can also infer the search pattern by
caching the database and executing all the new queries over it.

Forward privacy is achieved in [5, 6, 10, 47]. Unfortunately, all of these proposals
require the user to store a set of the latest keys, which will be used to encrypt queries. In
multi-user settings, where multiple users could read and write to the database according
to the access control policies, if one of the users inserts or updates a new record or file,
the keys have to be updated, and then the new keys would have to be distributed to
other users. Otherwise, with the stale keys, the other users cannot get the correct result
set. These key management issues are impractical for multi-user applications. A more
flexible approach is needed. Moreover, to ensure data confidentiality, backward privacy
should also be guaranteed.

Key Management. Another issue with existing SE schemes is to have a very flexible
key management mechanism for multi-user access. Many schemes, like [14], encrypt
the data and queries with a key shared among all the users. Consequently, all the queries
and search results issued by one user could be decrypted by all the other authorised
users. Even worse, when one user is revoked, the single key has to be changed and the
data has to be re-encrypted with the new key. In other schemes, such as [7] and [52],
the keys are only known to the data owner. The users have to send the query and search
result to the data owner to get the search tokens and cleartext results, which means
that the data owner represents a bottleneck in the system. Both of these options are
impractical in modern organisations, since a large number of users may access the data

concurrently, or they may join and leave their position at any time. We call all such
schemes Single User (SU).

In a Multi-User (MU) scheme, users can submit queries to search or update the data
uploaded by other users according to the access control policies, and no key regenera-
tion and data re-encryption are needed for user revocation. Almost all the existing MU
SE schemes, such as [2, 3, 17, 31, 39, 51], are based on proxy-encryption techniques.
Basically, in these schemes, instead of sharing a single encryption key among all the
users, each user has a unique key to encrypt data and queries. Moreover, the CSP stores
another key for each user, with which the CSP could perform the equality check be-
tween the query and data encrypted by different users. However, all these schemes leak
the search pattern since their query encryption algorithms are deterministic. Moreover,
in [2] and [17], if a malicious user colludes with the CSP, they can recover all the data
by putting their keys together. The schemes introduced in [3, 31, 39, 51] include sever-
al pairing operations, making the search operations computationally intensive. A more
secure and practical MU key management mechanism is needed.

3 Literature Review

Table 1. A comparison of searchable encryption schemes.

Schemes Search pattern
privacy

Access pattern
privacy

Size pattern
privacy

Forward
privacy

Backward
privacy

Key
management

Hang et al. [23] × × × × × #
Ferretti et al. [18] × × × × × #
Popa et al. [38] × × × × ×
Sarfraz et al. [44] × × × × ×
Sun et al. [50] × × × × × #
Yang et al. [56] × × × × ×
Asghar et al. [2] × × × × ×
Bao et al. [3] × × × × ×
Popa et al. [39] × × × × ×
Tang [51] × × × × ×
Kiayias et al. [31] × × × × ×
Curtmola et al. [14] × × × Static Static #
Jarecki et al. [28] × × × Static Static #
Kamara et al. [30] × × × × × #
Kamara et al. [29] × × × × × #
Hahn et al. [22] × × × × × #
Cao et al. [7] X × × Static Static #
Wang et al. [52] X X X Static Static #
Ishai et al. [26] X X X Static Static #
Naveed et al. [35] × × X × × #
Samanthula et al. [43] X X X × × #
Stefanov et al. [47] × × × X × #
Rizomiliotis et al. [41] × × × X × #
Bost [5] × × × X × #
Our objectives X X X X X

X and × indicate that the property is achieved or not, respectively.
represents a Single User (SU) scheme. represents a Multi-User (MU) scheme.

Static means the scheme does not support insert, update, or delete operations.

Since the seminal paper by Song et al. [45], many searchable schemes have been
proposed and research in this area has been extended in several directions. In this sec-
tion, we categorise the approaches presented in the literature based on information leak-
age and key management, and summarise their limitations.

Only several recent works tried to partially address the issue of information leakage.
In [35], Naveed et al. achieve SzPP. The basic idea is to divide each document into a set
of blocks. When a document is requested, a larger set of blocks will be downloaded and
decrypted by the client, which aggravates the computational and storage overheads on
the client side. Moreover, it fails to achieve SPP and APP, since the same query requests
the same block set.

Samanthula et al. [43] present a query processing framework that supports com-
plex queries. A homomorphic encryption algorithm is used to encrypt the data in their
scheme. Thus, it supports more complex queries when compared to other schemes, and
achieves SPP, APP, and SzPP. However, this scheme is single user and does not scale
well for databases with a large number of attributes.

Cao et al. [7] design a scheme that supports a multi-keyword ranked search. The
scheme ensures SPP by hiding the trapdoor linkability. Wang et al. [52] propose a pub-
lic multi-keyword searchable encryption scheme based on Paillier [37], which achieves
SPP, APP, and SzPP. More recently, in [26], Ishai et al. protect both the search and ac-
cess patterns combining a PIR technique with a B-tree data structure. Although these
three schemes provide different index structures for speeding up the search, the con-
structions are static and do not support insert, update, and delete operations.

In [47], Stefanov et al. design a dynamic sub-linear searchable construction based
on an ORAM-like hierarchical structure and achieve forward privacy. Similarly, Ri-
zomiliotis et al. [41] propose another dynamic ORAM-based scheme that achieves for-
ward privacy and sub-linear search. More recently, the dynamic SE scheme introduced
by Bost [5] also achieves forward privacy. Instead of using an ORAM-like structure,
this scheme relies on a trapdoor permutation. However, it only ensures forward privacy
until a new query is issued. A CSP could still learn if the new file contains the keyword-
s searched previously, by comparing the access pattern of a new query with those of
previous queries. Moreover, all these three schemes fail to ensure backward privacy.

Several works have concentrated on supporting multi-user access and simplifying
key management. Curtmola et al. [14] introduce a multi-user (MU) scheme by com-
bining a single user SE scheme with a broadcast encryption scheme, where only the
authorised user can issue queries with the key received from the data owner. However,
each time a user is revoked, the data owner has to generate a new key. Even worse, the
data stored on the cloud server is encrypted with the key shared among all the users,
which means the revoked users can still recover all the data if they collude with the
cloud server. The MU SE scheme given by Jarecki et al. [28] has the same problem.
That is, the data security against revoked users is achieved based on the assumption that
there is no collusion between the cloud server and revoked users; otherwise, the key has
to be updated and the data has to be re-encrypted with the new key. Moreover, in their
scheme, the data owner has to be online to generate search tokens for all the authorised
users.

Hang et al. [23] and Ferretti et al. [18] present two different collusion-resistant
mechanisms that support multi-user access to the outsourced data. Although they sup-
port approaches to avoid key sharing among users, in both, after user revocation, it is
necessary to generate a new key and re-encrypt the data.

CryptDB [38] is a multi-user scheme where each user has her own password, which
is managed by a proxy between the user and the database server. Sarfraz et al. [44] re-
visit CrtypDB and also design a MU scheme with a fine-grained access control. Instead
of assigning the keys to users, both [38] and [44] store them in a proxy. Since the users
never know the underlying encryption key, they do not require to refresh the key when
revoking a user. The problem is that these two mechanisms require the proxy to be on-
line for performing operations on behalf of the users. As a result, the proxy represents
a single point of failure: an attacker who compromises the proxy will gain access to all
the logged-in users’ keys and data.

Sun et al. [50] utilise a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [4]
mechanism to achieve a scalable SE scheme that supports multi-user read and write
operations without sharing any key. However, for user revocation, the data has to be
re-encrypted with a new access structure and secret keys of all the other users need to
be updated with a new attribute set. Strictly speaking, this scheme is also a SU scheme.

In the literature, only the proxy-based encryption schemes, such as [2, 3, 31, 39,
51, 56], can support multi-user access, where each user has her own key and does not
require any re-encryption when an authorised user is revoked.

Many other works also investigated approaches to increase search efficiency [14,
22, 30], or data integrity and reliability in the setting where the CSP is totally untrusted
[11, 49]. Unfortunately, as shown in Table 1, none of the reviewed approaches are able
to limit information leakage and support multi-user access.

4 Possible Solutions and Future Research

In this section, we propose several possible solutions and outline future research di-
rections to meet the requirements and address the challenges to minimise information
leakage and achieve a flexible key management.

Size Pattern. If the search operation is performed by the CSP, it is inevitable that the
CSP could count the matched records or files. As mentioned in [8] and [14], introducing
a set of dummy data into the database is an effective way to protect the size pattern
without leaking private information to users. Basically, the dummy data should look
exactly like the real data and even should match queries. In this way, the search result
for each query will include a random amount of dummy data. Consequently, the size
pattern is protected from the CSP. However, to ensure a lightweight overhead on the
user end, it should be easy for users to filter out the dummy data before decrypting.

Furthermore, the amount of dummy data should be controllable since it affects the
security level and performance of the system. The higher the percentage of dummy data
with respect to real data, the harder for the CSP to infer the real size pattern. However,
this also implies that more data should be searched by the CSP and more dummy data
should be filtered out by the user for each query. The study by Cash et al. in [8] suggests
that 1.6 is the minimum ratio between dummy and real data to resist against count

attacks. A thorough security analysis for identifying a right balance between real and
dummy data for achieving a sustainable level of security and performance should be
investigated.

Another possible solution could be dividing the database into partitions and dis-
tributing these partitions over multiple non-colluding CSPs. For each query, each single
CSP searches over its partition independently. Using this approach, each CSP only gets
a small part of the search result. The total number of matched records is unknown to all
the CSPs if they do not put their sub-results together.

Access Pattern. In the access pattern based attacks, the key point is that the CSP
knows which injected records match the query and which do not. Therefore, to resist
such attacks, we need to make storage locations of the injected data untraceable for
the CSP. In fact, this can be achieved by generating and uploading dummy data when
uploading real data. If the dummy and real encrypted data are indistinguishable to the
CSP, it cannot learn if the search result contains the injected data or dummy data. Even
so, the set of data injected at different time points is still distinguishable for the CSP.
A technique that makes the data inserted at different times untraceable is to shuffle the
database after executing each query, as we explain in the next sections.

Search Pattern. To protect the search pattern, first of all, the encrypted queries should
be semantically secure. Moreover, we should break the link between the search pattern
and access and size patterns. That is, we should ensure that the CSP will always see a
new set of data being matched even if a query equivalent to the previous one is executed.

To break the link between the access and search patterns, the only choice is to
shuffle the physical locations of the searched data after executing each query. Moreover,
for making the data untraceable, the corresponding ciphertext should be re-randomised
prior to moving to new locations. Even with the ORAM technique, the access pattern
is protected by changing the data location and re-randomising its ciphertext. In this
way, the CSP is unable to infer the search pattern from the access pattern, since the
access patterns for all the queries are different. Note that the scheme is secure against
file injection attacks, because the shuffling and re-randomisation operations make all
the data untraceable whenever they are inserted.

To break the link between the size pattern and search pattern, when dummy data
is introduced to hide the real size pattern, one possible solution is to ensure that the
responses to all queries have a constant size. However, this potentially requires a huge
number of dummy records (possibly exponentially many) if the database has large vari-
ability in its frequency information. A more practical solution is to vary the result size
of each query. To do this, some of the dummy data should be deleted or updated, or
some new dummy data should be inserted between any two queries. This ensures that
the number of matched dummy records are different even if the same query is executed
again. Alternatively, as mentioned in Section 2, if the database is divided into partitions
and stored on multiple CSPs, the matched data together with a set of unmatched data
in each partition should be re-randomised and moved across CSPs after executing each
query. Due to the re-randomisation and re-location of the data, each CSP will only see a
one-time match. That is, a CSP does not learn whether the data ever matched previous
queries, or will match future queries.

In summary, to resist leakage-based attacks, a number of dummy records should
be introduced and updated after executing each query, and the searched records should
be re-randomised and shuffled after executing each query. All these operations affect
the performance of the system. The fact is that there is always a trade-off between
security and performance. It is impossible to achieve a higher level security without
sacrificing performance. However, we aim to design a lightweight client for the user. It
is impractical to ask the user to perform these operations. Basically, the dummy records
increase the storage, bandwidth and computation overheads on the user end. From a
security point of view, these operations should be hidden from the CSP. Otherwise, the
CSP could learn more useful information and recover the data and queries. Inevitably,
a third entity, or more entities should be involved to guarantee security and achieve
efficiency. Specifically, the following two models can be considered:

• Combining a Private Cloud with the CSP. According to the latest report by
Rightscale [1], the hybrid cloud computing approach is getting more popular a-
mong large enterprises. This model combines the public cloud service with a private
cloud platform owned by the organisation. The private cloud could be considered
as a trusted entity, because it is inherently managed by the organisation, where the
sensitive data can be stored and executed without an extra layer of security. How-
ever, due to its limited storage and computational power, the bulk of the operations
and storage should be delegated to the public CSP. To minimise information leak-
age, the private cloud could be leveraged to perform the shuffle, re-randomisation
and dummy data refreshment operations after executing each query.

• Combining Multiple CSPs. The third entity could also be an untrusted public C-
SP. In fact, the idea of utilising multiple CSPs to reduce the load on users is already
integrated into the ORAM technique. In [48], Stefanov and Shi have introduced a
2-cloud oblivious storage system that achieves APP and significantly reduced the
bandwidth cost between the client and the CSP. Recently, Hoang et al. [24] also
proposed a distributed encrypted data structure for SE schemes that could be de-
ployed on two non-colluding CSPs. Their proposal achieves much higher security
than traditional SE schemes. Unfortunately, both [48] and [24] suffer from the same
problem as faced by traditional ORAM techniques. That is, an encrypted search op-
eration is not considered and they can only protect the file access pattern. Moreover,
in [48], the shuffle operation is performed before returning the data to users, which
increases the latency on the user side.
We could employ at least two non-colluding CSPs. However, we should also con-
sider the search operation performed on index structures, and aim to achieve the
index access pattern privacy. Specifically, one CSP stores the encrypted data and
performs the search operation, and after executing each query, first it returns the
result set to the user, and then sends the searched data to another CSP for shuffling,
re-randomising and dummy data refreshing. In this case, the CSP that performs
the queries never knows how the searched data is updated, and the CSP that per-
forms rest of the operations cannot execute the query and never knows which of
the records are matched. If the CSPs never collude together, all the patterns are
protected from them. However, the cooperation between CSPs should be careful-

ly designed, and the approaches to resist against the collusion between the CSPs
should also be investigated.

To ensure a high level of security, it is possible to shuffle all the data in the database.
However, this degrades the system performance. Although these operations do not af-
fect the end-to-end latency from the user’s point of view, the next query cannot be
executed until the shuffle, re-randomisation, and dummy data refreshment operations
have been finished. Hence, it affects the throughput of the system and should be com-
pleted efficiently. The more data is shuffled and re-randomised, the more difficult it is
for the CSPs to infer the access pattern, but it is worse in terms of the system perfor-
mance. It is an interesting research direction to investigate the required amount of data
that should be shuffled and re-randomised for achieving a sustainable level of security
and performance.

Forward and Backward Privacy. To achieve both forward and backward privacy, first
of all, we should ensure the CSP cannot execute previous queries over newly added data
or execute new queries over deleted data. Furthermore, to achieve SPP and APP, it is al-
so necessary to ensure that the CSP cannot repeat the previous query after shuffling and
re-randomising, or execute a new query over the snapshot of the data before shuffling
and re-randomising. Therefore, not only the newly added data but also the shuffled and
re-randomised data should include a new element (say a nonce) that should make them
unmatched with the previous queries.

Likewise, a new query should include an element that makes it unmatched with
stale (deleted or modified) data. However, the new queries must match with the latest
data. To this end, the element included in the latest data should be stored somewhere
and used to encrypt new queries, as done in [5, 6, 10, 47]. It is impractical to store the
new element on the user side in multi-user settings. One possible solution is for a third
entity to store and manage these query elements. In this case, all the queries should first
be sent to the third entity and re-encrypted with the element included in the latest data.
Moreover, the element should be updated when re-randomising the searched data. It is
an open problem to achieve both forward and backward privacy in an efficient manner.

Index Structure. To achieve sub-linear search time, a number of works have inves-
tigated special index structures to narrow down the search range, such as the inverted
index given in [14], the ORAM-like hierarchical structure designed in [47], the red-
black tree based structure proposed by Kamara et al. [29], and the B-tree based scheme
introduced in [26]. Unfortunately, the CSP could learn the search, access and size pat-
terns from searching the index structure.

To improve search efficiency with minimised leakage, these index structures need
to be redesigned. First, dummy data should be inserted into the structure to hide the size
pattern. Second, both the encrypted nodes and queries should be semantically secure to
hide the search pattern. Finally, to protect patterns and ensure forward and backward
privacy, the searched nodes should be shuffled and re-randomised after executing each
query.

However, it may be infeasible or inefficient to perform those operations on the pro-
posed index structures. For instance, in the inverted index structure, encrypted linked
lists are used to accelerate the searching. To hide the search and access patterns, the

linked lists should be shuffled and re-randomised after executing each query. However,
the shuffle operation will upset the linkability between nodes, and then the CSP can-
not get the correct matched indexes. Therefore, one potential future work would be to
investigate new sub-linear data structures that support equality check between seman-
tically secure encrypted data and can be shuffled and re-randomised efficiently without
leaking sensitive information.

Key Management. The existing proxy encryption based key management approaches,
including [2, 3, 17, 31, 39, 51], could be used to ensure efficient user registration and
revocation in multi-user settings. However, to ensure SPP, the query encryption should
be replaced with a semantically secure primitive, and the equality check operation in
these schemes should be changed accordingly. Moreover, as mentioned in [17], the
third party could be leveraged to secure against collusion attacks between a user and
the CSP. Meanwhile, an approach to avoid expensive pairing operations by making use
of the third entity should be investigated.

Towards a more secure cloud database, there are many other security issues to be
addressed, such as the accountability of the search result when the CSP is assumed to
be totally untrusted and the access control for fine-grained access. Certainly, there is a
long way to go to ensure confidentiality and privacy of the outsourced data.

5 Concluding Remarks

In this paper, we investigated the state of the art of SE schemes and some challenges
for achieving a secure outsourced database. Almost all the existing SE schemes are vul-
nerable to inference attacks due to sensitive information leakage, which makes them
unusable for privacy-sensitive applications. Based on these attacks, we identify a set
of requirements for a cloud database that could be secure against them and ensure an
efficient and practical user searching experience. We also briefly reviewed possible so-
lutions to meet these requirements. To achieve a better balance between the security
level and performance of the system, we finally outlined several future research direc-
tions. These directions will be developed in future work by the authors.

References

1. Rightscale 2016 state of the cloud report, https://www.rightscale.com/lp/
state-of-the-cloud, last accessed: July 3, 2016

2. Asghar, M.R., Russello, G., Crispo, B., Ion, M.: Supporting complex queries and access
policies for multi-user encrypted databases. In: Juels, A., Parno, B. (eds.) CCSW 2013. pp.
77–88. ACM (2013)

3. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-user set-
tings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. Lecture Notes in Computer Sci-
ence, vol. 4991, pp. 71–85. Springer (2008)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: S&P
2007. pp. 321–334. IEEE Computer Society (2007)

5. Bost, R.: ∑oϕoς : Forward secure searchable encryption. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) SIGSAC 2016. pp. 1143–1154. ACM (2016)

https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

6. Bost, R., Fouque, P., Pointcheval, D.: Verifiable dynamic symmetric searchable encryption:
Optimality and forward security. IACR Cryptology ePrint Archive 2016, 62 (2016)

7. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

8. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable en-
cryption. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015. pp. 668–679. ACM (2015)

9. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Dynam-
ic searchable encryption in very-large databases: Data structures and implementation. In:
NDSS 2014. The Internet Society (2014)

10. Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted
data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. Lecture Notes in Com-
puter Science, vol. 3531, pp. 442–455 (2005)

11. Cheng, R., Yan, J., Guan, C., Zhang, F., Ren, K.: Verifiable searchable symmetric encryption
from indistinguishability obfuscation. In: Bao, F., Miller, S., Zhou, J., Ahn, G. (eds.) ASIA
CCS 2015. pp. 621–626. ACM (2015)

12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM
45(6), 965–981 (1998)

13. Crescenzo, G.D., Cook, D.L., McIntosh, A., Panagos, E.: Practical private information re-
trieval from a time-varying, multi-attribute, and multiple-occurrence database. In: Atluri, V.,
Pernul, G. (eds.) DBSec 2014. Lecture Notes in Computer Science, vol. 8566, pp. 339–355.
Springer (2014)

14. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006. pp. 79–88. ACM (2006)

15. Dautrich, J., Ravishankar, C.V.: Combining ORAM with PIR to minimize bandwidth costs.
In: Park, J., Squicciarini, A.C. (eds.) CODASPY 2015. pp. 289–296. ACM (2015)

16. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion ORAM: A
constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-
A. Lecture Notes in Computer Science, vol. 9563, pp. 145–174. Springer (2016)

17. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for untrusted server-
s. In: Atluri, V. (ed.) DBSec 2008. Lecture Notes in Computer Science, vol. 5094, pp. 127–
143. Springer (2008)

18. Ferretti, L., Pierazzi, F., Colajanni, M., Marchetti, M.: Scalable architecture for multi-user
encrypted SQL operations on cloud database services. IEEE Trans. Cloud Computing 2(4),
448–458 (2014)

19. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in two rounds
with applications to searchable encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
Lecture Notes in Computer Science, vol. 9816, pp. 563–592. Springer (2016)

20. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J.

ACM 43(3), 431–473 (1996)
22. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Ahn,

G., Yung, M., Li, N. (eds.) SIGSAC 2014. pp. 310–320. ACM (2014)
23. Hang, I., Kerschbaum, F., Damiani, E.: ENKI: access control for encrypted query processing.

In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) SIGMOD 2015. pp. 183–196. ACM (2015)
24. Hoang, T., Yavuz, A.A., Guajardo, J.: Practical and secure dynamic searchable encryption via

oblivious access on distributed data structure. In: Schwab, S., Robertson, W.K., Balzarotti,
D. (eds.) ACSAC 2016. pp. 302–313. ACM (2016)

25. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its ex-
tension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.)
Pairing 2007. Lecture Notes in Computer Science, vol. 4575, pp. 2–22. Springer (2007)

26. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with distributed
searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016. Lecture Notes in Com-
puter Science, vol. 9610, pp. 90–107. Springer (2016)

27. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryp-
tion: Ramification, attack and mitigation. In: NDSS 2012. The Internet Society (2012)

28. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private
information retrieval. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) SIGSAC 2013. pp. 875–
888. ACM (2013)

29. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In:
Sadeghi, A. (ed.) FC 2013. Lecture Notes in Computer Science, vol. 7859, pp. 258–274.
Springer (2013)

30. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) CCS 2012. pp. 965–976. ACM (2012)

31. Kiayias, A., Oksuz, O., Russell, A., Tang, Q., Wang, B.: Efficient encrypted keyword search
for multi-user data sharing. In: Askoxylakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows,
C.A. (eds.) ESORICS 2016. Lecture Notes in Computer Science, vol. 9878, pp. 173–195.
Springer (2016)

32. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryption: Attacks
and new construction. Inf. Sci. 265, 176–188 (2014)

33. Naveed, M.: The fallacy of composition of oblivious RAM and searchable encryption. IACR
Cryptology ePrint Archive 2015, 668 (2015)

34. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted
databases. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015. pp. 644–655. ACM (2015)

35. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via blind stor-
age. In: SP 2014. pp. 639–654. IEEE Computer Society (2014)

36. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Ortiz, H. (ed.) STOC 1990. pp.
514–523. ACM (1990)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. Lecture Notes in Computer Science, vol. 1592, pp. 223–
238. Springer (1999)

38. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting confi-
dentiality with encrypted query processing. In: Wobber, T., Druschel, P. (eds.) SOSP 2011.
pp. 85–100. ACM (2011)

39. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology ePrint
Archive 2013, 508 (2013)

40. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas, S.: Constants
count: Practical improvements to oblivious RAM. In: Jung, J., Holz, T. (eds.) USENIX Se-
curity 2015. pp. 415–430. USENIX Association (2015)

41. Rizomiliotis, P., Gritzalis, S.: ORAM based forward privacy preserving dynamic searchable
symmetric encryption schemes. In: Ray, I., Wang, X., Ren, K., Kerschbaum, F., Nita-Rotaru,
C. (eds.) CCSW 2015. pp. 65–76. ACM (2015)

42. Rompay, C.V., Molva, R., Önen, M.: Multi-user searchable encryption in the cloud. In:
Lopez, J., Mitchell, C.J. (eds.) ISC 2015. Lecture Notes in Computer Science, vol. 9290,
pp. 299–316. Springer (2015)

43. Samanthula, B.K., Jiang, W., Bertino, E.: Privacy-preserving complex query evaluation over
semantically secure encrypted data. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014.
Lecture Notes in Computer Science, vol. 8712, pp. 400–418. Springer (2014)

44. Sarfraz, M.I., Nabeel, M., Cao, J., Bertino, E.: Dbmask: Fine-grained access control on en-
crypted relational databases. In: Park, J., Squicciarini, A.C. (eds.) CODASPY 2015. pp. 1–
11. ACM (2015)

45. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
S&P 2000. pp. 44–55. IEEE Computer Society (2000)

46. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.: Path ORAM:
an extremely simple oblivious RAM protocol. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.)
SIGSAC 2013. pp. 299–310. ACM (2013)

47. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small
leakage. In: NDSS 2013. vol. 71, pp. 72–75 (2014)

48. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) SIGSAC 2013. pp. 247–258. ACM (2013)

49. Sun, W., Liu, X., Lou, W., Hou, Y.T., Li, H.: Catch you if you lie to me: Efficient verifiable
conjunctive keyword search over large dynamic encrypted cloud data. In: INFOCOM 2015.
pp. 2110–2118. IEEE (2015)

50. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Attribute-based keyword
search with fine-grained owner-enforced search authorization in the cloud. In: INFOCOM
2014. pp. 226–234. IEEE (2014)

51. Tang, Q.: Nothing is for free: Security in searching shared and encrypted data. IEEE Trans.
Information Forensics and Security 9(11), 1943–1952 (2014)

52. Wang, B., Song, W., Lou, W., Hou, Y.T.: Inverted index based multi-keyword public-key
searchable encryption with strong privacy guarantee. In: INFOCOM 2015. pp. 2092–2100.
IEEE (2015)

53. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud. In: INFOCOM 2014. pp. 2112–2120. IEEE (2014)

54. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional range search
over encrypted cloud data with tree-based index. In: Moriai, S., Jaeger, T., Sakurai, K. (eds.)
ASIA CCS 2014. pp. 111–122. ACM (2014)

55. Williams, P., Sion, R.: Usable PIR. In: NDSS 2008. The Internet Society (2008)
56. Yang, Y., Liu, J.K., Liang, K., Choo, K.R., Zhou, J.: Extended proxy-assisted approach:

Achieving revocable fine-grained encryption of cloud data. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E.R. (eds.) ESORICS 2015. Lecture Notes in Computer Science, vol. 9327, pp.
146–166. Springer (2015)

57. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with minimal leakage
and efficient updates on commodity hardware. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. Lecture Notes in Computer Science, vol. 9566, pp. 241–259. Springer (2015)

58. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In: USENIX Security 2016. pp. 707–720.
USENIX Association (2016)

	Lecture Notes in Computer Science

