
Preserving Access Pattern Privacy in SGX-Assisted
Encrypted Search

Shujie Cui, Sana Belguith, Ming Zhang, Muhammad Rizwan Asghar, and Giovanni Russello
Cyber Security Foundry

The University of Auckland
Auckland, New Zealand

Email: {scui379,sbel452}@aucklanduni.ac.nz, {ming.zhang, r.asghar,g.russello}@auckland.ac.nz

Abstract—Outsourcing sensitive data and operations to un-
trusted cloud providers is considered a challenging issue. To
perform a search operation, even if both the data and the query
are encrypted, attackers still can learn which data locations
match the query and what results are returned to the user.
This kind of leakage is referred to as data access pattern.
Indeed, using access pattern leakage, attackers can easily infer
the content of the data and the query. Oblivious RAM (ORAM),
Fully Homomorphic Encryption (FHE), and secure Multi-Party
Computation (MPC) offer a higher level of security but incur
high computation and communication overheads.

One promising practical approach to process the outsourced
data efficiently and securely is leveraging trusted hardware
like Intel SGX. Recently, several SGX-based solutions have
been proposed in the literature. However, those solutions suffer
from side channel attacks, high overheads of context switching,
or limited SGX memory. In this paper, we present an SGX-
assisted scheme for performing search over encrypted data. Our
solution protects access pattern against side channel attacks while
ensuring search efficiency. It can process large databases without
requiring any long-term storage on SGX. We have implemented
a prototype of the scheme and evaluated its performance using a
dataset of 1 million records. The equality query can be completed
in 9.55 milliseconds. Comparing with ORAM-based solutions,
such as ObliDB, our scheme is more than 11× faster.

I. INTRODUCTION

Cloud computing is a paradigm that offers on-demand stor-
age and computing resources to individuals and enterprises.
Due to its low cost and high scalability, cloud computing is
growing rapidly. However, data stored and processed in the
cloud is becoming an attractive target for adversaries because
of the cloud platform’s underlying infrastructure and shared
model [8].

To protect outsourced data, Searchable Encryption (SE)
schemes [9] have been proposed to enable the Cloud Server
(CS) to perform encrypted search while ensuring security and
privacy of outsourced data. However, due to access pattern
leakage, outsourcing sensitive data and search functionality
to untrusted cloud providers is still considered a challenging
issue. Many recent works, such as [10]–[12], have shown that
access pattern leakage can be leveraged to recover the content
of the encrypted data and query. Although Oblivious RAM
(ORAM) [13], Fully Homomorphic Encryption (FHE) [14],
and Secure Multi-Party Computation (MPC) [15] provide a
high level of protection to sensitive data, they incur high com-
putation and communication overheads for systems requiring

big data storage and intensive processing. There are works
[16], [17] that introduce more practical ways to hide access
pattern based on multiple cloud service providers.

Another promising practical approach to process outsourced
data efficiently and securely is leveraging trusted hardware like
Intel Software Guard Extension (SGX) [18]. SGX can isolate
sensitive code and data in an encrypted memory region, called
enclave. During execution, privacy and integrity of enclave
memory are preserved with a set of hardware mechanisms.
Recently, several SGX-based approaches for encrypted data
access have been investigated in the literature. For instance,
Fuhry et al. [1] present two constructions for sub-linear search
over encrypted database by using SGX. Zheng et al. [4]
introduce an SGX-assisted oblivious data analytics scheme
that conceals data access pattern. Moreover, several works [3],
[5], [6] explore deployment of ORAM on SGX. Unfortunately,
these schemes suffer from several limitations. For instance, the
constructions proposed in [1] leak access pattern. Although
access pattern is concealed in [3], [5], [6], these schemes
require long-term storage on SGX for managing the map
between each data instance and its store location, which is
in big size when the database has millions of distinct values.
Moreover, in the scheme proposed by Zheng et al. [4], the
entire database needs to be linearly scanned to answer a query.
All these solutions are not very practical due to very limited
memory resources in SGX. Another limitation is that there are
side channel attacks when using SGX to ensure secure data
access. Indeed, several recent works, such as [19]–[21], have
shown that the Operating System (OS) can infer data access
pattern in SGX by launching side channel attacks, such as
page faults and timing attacks. State of the art solutions [3]–
[6] do not give the solutions to resist the side channel attacks.
In Table I, we compare existing SGX-based schemes.

Research Challenges. The main objective of this paper is to
preserve access pattern privacy by using SGX while ensuring
efficient search over encrypted data and without any long-term
storage requirement in the enclave. As discussed below, there
are two main challenges to achieve our objective: preserving
access pattern privacy while providing efficient search and
withstanding side channel attacks.

To support efficient search, a straightforward method is to
build indexes and load only the required indexes into SGX.

TABLE I
COMPARISON OF RECENT SGX-BASED SCHEMES.

Scheme Search
complexity

Access pattern
leakage

Side channel
leakage

No long-term
storage on SGX

Fuhry et al. [1] – Construction 1 O(logN) G# # X
Fuhry et al. [1] – Construction 2 O(logN) # # X
Gribov et al. [2] O(logN) # # X
Eskandarian et al. [3] – Linear O(N) # X
Eskandarian et al. [3] – Indexed O(log2 N) G# # X
Zheng et al. [4] O(N) # X
Sasy et al. [5] – ×
Costa et al. [6] – ×
Ahmad et al. [7] – ×
Our work O(N/P) X

#, G#, and mean the information is completely leaked, partially leaked, and not leaked, respectively. X and × represent if long-term storage on SGX is
not required or required, respectively. N represents the number of nodes in the tree or number of records in the database. P is page size in an SGX enclave.

In [5], [6], no search operation is performed and this is denoted by –.

However, this method leaks the index access pattern directly
to the CS. To fully hide the index access pattern, a typical
strategy is to load all the indexes into SGX. Nonetheless, an
SGX enclave only has around 90 MB memory for storing the
code and data. For a large database, indexes will exhaust the
enclave memory and virtual memory mechanism of the OS.
Consequently, this will significantly affect the performance of
SGX. Moreover, as shown in [1], which pages are accessed is
still unprotected because of the page fault attack. Therefore,
the first challenge is to fully guarantee the data access pattern
privacy without exhausting the enclave memory when the
database is large.

Although SGX provides a trusted environment for data
processing, it suffers from side channel leakage. Actually, the
data is leaked when it is loaded to SGX [19]–[21]. Thus,
the second challenge is to protect data access pattern against
potential side channel attacks. Several countermeasures, such
as data oblivious access, balanced code execution, and data
shuffling have been proposed in [22]–[24]. However, these
techniques are too generic to be used for SE schemes. For
instance, to defend against the page fault attack, Shinde et
al. [23] propose to balance the code execution by adding and
accessing dummy data. Nonetheless, in a B+ tree, we should
ensure the added dummy keys can be checked like real ones
and do not affect correctness of search results; otherwise, the
CS can infer the real index access pattern. Therefore, the
techniques specific to SE schemes should be considered.

Our Contributions. In this paper, we present an SGX-
assisted SE scheme addressing aforementioned research chal-
lenges. Basically, our solution uses the B+ tree structure to
ensure search efficiency. To address the first challenge, our
scheme loads and processes the tree indexes in batches. On
the one hand, this method ensures that the index access pattern
is protected. On the other hand, our scheme can also process
a large database without exhausting the enclave memory.
Moreover, it is also necessary to defend against the page fault
attack. To mitigate other side channel attacks, the B+ tree is
searched in a balanced way, independent of the query and
access pattern. To analyse the performance, we evaluate our

proposed scheme and compare it with ObliDB [3] on Big
Data benchmark [25]. Our scheme outperforms ObliDB by
at least 11×. We also compare our scheme with a baseline
implementation without access pattern protection with sub
linear search support. Our results show that our techniques to
defend side channel attacks add less than 157× overhead when
the B+ tree contains 1 million keys. In addition, our approach
does not require any long-term storage on the enclave. In
summary, our contributions in this paper are as follows:
• Our scheme protects data access pattern from the CS by

leveraging a trusted SGX.
• Our scheme prevents the CS from inferring access pattern

by launching side channel attacks.
• In our scheme, a search operation can be performed

efficiently.
• We implement a prototype of the system and test its

performance on an SGX-based hardware.

Paper Organisation. The remainder of this paper is organised
as follows. First, Section II reviews related work. Section III
gives a brief overview of SGX functionalities and explains
possible side channel attacks. An overview of our proposed
solution is provided in Section IV. Then, we present our
solution details in Section V before introducing its security
analysis in Section VI. In Section VII, we report performance
analysis. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Fuhry et al. [1] present two SGX-assisted constructions for
search over encrypted data. To support sub-linear search, the
B+ tree index is utilised in both constructions. In the first
construction, the encrypted index tree is entirely loaded into
the enclave for performing search, which is not scalable for
large databases. Moreover, the untrusted server could observe
data access inside the enclave with a page-level granularity
by leveraging the page fault side channel attack [19]. In
their second construction, only the nodes involved in the tree
traversal are loaded into the enclave. In this case, the accessed
nodes are leaked to the CS directly.

In [2], Gribov et al. also present a B+ tree-based SGX-
assisted encrypted database, fully supporting SQL queries,

called StealthDB. They also reduce the context switching
overhead between the enclave and the untrusted server memory
by 5×−10× by using an exit-less communication mechanism
[26]. Unfortunately, StealthDB still leaks the index access
pattern since it only loads the matched nodes into the enclave
for performing search.

Eskandarian and Zaharia [3] also proposed two basic meth-
ods for the data storage and access, named linear and indexed
storage. For linear storage, SGX searches each record one
by one, and then loads the matched records with ORAM
primitives. This method can conceal access pattern effectively,
but it incurs significantly high computation overheads. In the
indexed storage, a B+ tree is searched first to narrow down
the records to be scanned. However, access pattern over the
B+ tree is leaked.

Zheng et al. [4] study how to leverage SGX to secure
distributed analytical workloads, and propose a system called
Opaque. By sorting and shuffling the data, Opaque could
avoid the access pattern leakage. However, Opaque linearly
scans and sorts the entire database to answer a query, which
is inefficient for large databases. Moreover, they do not give
specific solutions to address side channel attacks.

There are works [5]–[7] that present three different designs
and implement the ORAM primitives running on SGX that
can protect access pattern and defend side channel attacks.
However, in those designs, the enclave has to store a map
between each distinct value and its store location. Due to
limited memory of SGX enclave, those implementations are
not scalable to the databases with a large number of distinct
values.

As summarised in Table I, none of above schemes can
achieve our objective, i.e., preserving access pattern privacy
by using SGX while ensuring efficient search over encrypted
data without any long-term storage on SGX.

III. BACKGROUND

A. Intel SGX

In this section, we give a brief introduction of SGX func-
tionalities relevant to our system. For more details on SGX,
we refer the reader to [18], [27]. SGX is an extension of x86
instructions for creating and managing software components,
called enclave. Physically, the enclave is located inside a
hardware guarded area of memory called Enclave Page Cache
(EPC). The EPC consists of 4KB page chunks, and only
around 90MB EPC can be used by the application. The
SGX hardware enforces additional protection on the enclave,
such that it is isolated from the code running on the system
including the OS and the hypervisor.

Apart from the isolated code and execution, SGX has anoth-
er two main security properties: sealing and attestation. Sealing
is the process of encrypting enclave secrets for persistent
storage to disk [28]. Every SGX processor has a key called
the Root Seal Key that is embedded during the manufacturing
process. Once an enclave is created, a seal key – which is
specific to the enclave – is derived from the root seal key.
When the enclave is torn down, this seal key is used to encrypt

data, and store the data in disk. SGX also supports remote
attestation, enabling a remote party to verify if an enclave is
created properly on a trusted SGX. It also provides integrity
to the code and data loaded into the enclave. Furthermore,
the remote attestation feature helps in establishing a secure
channel between an external party and the enclave.

B. Side Channel Attacks on SGX

Intel SGX offers secure execution environment by crypto-
graphically protecting code and data on an untrusted server.
Unfortunately, it is vulnerable to side channel attacks. As
discussed below, there are at least two possible side channel
attacks that could be launched by the untrusted server to derive
sensitive information.

Page Fault Attack. An SGX program is executed in user
mode, and it needs the underlying OS to manage virtual
memory pages. Specifically, when launching an SGX process,
the OS creates the page tables that map the virtual addresses
to physical memory entries. However, when the virtual pages
can not be mapped to the physical memory, the CPU incurs a
page fault and the faulting address will be reported to the OS.
By manipulating the page table mappings, as shown in [19],
a malicious OS can observe the page access pattern in SGX.

Timing Attack. Timing attack allows attackers to learn sen-
sitive information by analysing the time taken to execute data-
dependent operations. Every logical operation in a computer
takes time to execute, and this time could differ based on the
input, which is also the case for the operations in SGX. With
precise measurements of the execution time for each operation,
an attacker can backtrack the input data.

IV. SOLUTION OVERVIEW

In this section, we first define the threat model. Then, we
describe the leakage and give a security definition of our
system. Finally, we briefly explain our proposed approach.

A. Threat Model and Assumptions

Our system includes three entities: the user, SGX-enabled
Cloud Server (CS) and an SGX enclave within the CS. The
user uploads encrypted databases to the CS and later sends
encrypted queries. We assume the user is trusted.

The CS is responsible for storing encrypted data and loading
data into the enclave for performing search. Similar to existing
work (see Section II), we assume adversaries could attack and
fully control the OS running on the CS, and they are curious
about the data residing on the CS. For simplicity, in the rest of
the paper, we regard the CS as an adversary, which honestly
follows the specified protocol but is curious to know the data.
Since we employ encryption, the CS is unable to access the
data directly. Moreover, the CS can not control and access the
code and data within the enclave. Nonetheless, it can interrupt
the enclave as desired, by modifying the OS and SGX SDK, in
order to get side channel information. Therefore, we assume
the CS is able to exploit side channel attacks including the
page fault attack [19] and timing attack [29] to infer the code

User

SGX enabled untrusted cloud server

Trusted enclave

Search

I. Secret key

II. Encrypted records and indexes

1. Encrypted query
Index trees

Records
3. rid lists

4. Encrypted records

2. Encrypted

nodes

Fig. 1. Proposed approach: The user shares the secret key with the trusted
SGX enclave (Step I). The encrypted data and indexes are stored in the
untrusted cloud server (Step II). The query is decrypted and processed by
the enclave (Steps 1, 2, and 3). After searching, the matched records together
with a set of random records will be returned to the user (Step 4).

paths and data access patterns inside the enclave. There are
also other types of side channel attacks, such as cache attack
[30], [31], power monitoring [32], electromagnetic [33], and
acoustic [34], which are out of the scope of this work.

SGX enclave is responsible for processing user queries and
returning search results to users without leaking any content
and access pattern to the CS. SGX enclave is also considered
to be trusted. In particular, both integrity and confidentiality
of the code and data inside the enclave are protected with
inherent cryptographic mechanisms. We also assume that SGX
provides methods for establishing a secure channel with the
users for protecting the communication between them.

B. Leakage and Security Definition

In this work, we do not make any effort to hide the tree
structure and database size. Basically, for each B+ tree (there
is a B+ tree for every field in the database), the number of
its levels, the number of nodes at each level, and the size of
each encrypted node are leaked to the CS. In this section, we
define the leakage as index size, i.e., Size(I). Moreover, from
the search history, the CS knows the number of queries has
been issued, which tree is searched for each query, and the
structure of each encrypted query. This leakage from queries
is defined as L(Q). For the dataset D, the number of records
and the size of each encrypted record are also leaked, which
are defined as Size(D). Based on the leakage, the security of
access pattern is defined as follows:

Definition 1 (Access Pattern Security): Let −→H :=
((Q1, R1), . . . , (QT , RT)) be the search history at time T ,
where Qt denotes the query, and Rt is its search result at time t
(1 ≤ t ≤ T). Let A(

−→
H) be access history of the data stored on

the CS, where search history is −→H . We say that access pattern
is protected from the CS if for any two search histories −→H 0

and −→H 1 of the same length and leakage (as defined above)
and their access pattern A(

−→
H 0) and A(

−→
H 1), respectively, are

computationally indistinguishable by the CS.

C. Architecture Overview

The overview of our proposed architecture is illustrated in
Fig. 1. It consists of a trusted code base inside the enclave
for processing queries, the data storage on the CS, and the
encryption and decryption operations on the user side.

Initially, the user generates a secret key sk to encrypt the
outsourced data and queries. The secret key sk is shared with
the enclave via a secure channel (Step I). To ensure search
efficiency, the user first builds B+ tree indexes for the dataset
and then uploads both the encrypted dataset and index trees
to the CS (Step II). When issuing a query, the user encrypts
it using randomised encryption and sk (Step 1). Since sk is
unknown to the CS, the content of the query and whether
the same query has been sent before (i.e., search pattern) are
protected from the CS. With the secret key sk, the enclave
decrypts the query and loads the associated index tree from
the CS for performing search (Step 2). To hide the tree access
pattern, the nodes are loaded and accessed in an oblivious
manner that is independent of the query and could resist
against side channel attacks including page fault and timing
as explained in Section V. Every key stored in the leaf node is
attached with a pointer pointing to a list of identifiers (rids)
of the records matching the key. To hide the record access
pattern, the enclave sends the matched rids to the CS also
in an oblivious manner that could resist against side channel
attacks (Step 3). With the matched rids, the CS sends the
matched records to the user (Step 4). Finally, the user obtains
the result in plaintext by decrypting them using sk.

In this work, we only give the details of processing basic
equality queries. More complicated SQL queries, such as range
query, GROUP BY, JOIN, COUNT, and SUM will be our
future work.

V. SOLUTION DETAIL

In this section, we first introduce our solution used to protect
access pattern. Then, we show how the data is represented and
encrypted. Finally, we describe how the queries are processed
in our system.

A. Access Pattern Protection

In this work, the main objective is to hide access pattern
over the B+ tree from the CS. Protecting the index access
pattern means protecting which node(s) at each level is(are)
accessed from the CS, excluding the root node.

In our approach, to fully hide the index access pattern
without exhausting the enclave memory, SGX reserves only
a single EPC page and loads the index tree in batches, rather
than loading the entire tree in one go. Specifically, SGX loads
and processes the tree nodes level by level. When the nodes at
one level can not be loaded in one page, they will be grouped
in fragments and loaded fragment by fragment, where each
fragment contains the maximum number of nodes that can be
loaded in one page. Thus, our system can efficiently process
the dataset with any size. Moreover, which node is accessed
inside each loaded page is unknown to the CS.

Note that SGX could also reserve more pages and load more
nodes per batch. In this work, we focus on the case of loading
one page each time.

1) Solutions against Page Fault Attacks: Using a single
page to hold data blocks is not sufficient to resist the page
fault attack. Indeed, when the CS launches page fault attacks,

it can still learn if the page is accessed or not since only when
the page is accessed the fault address will be reported to the
OS. Our solution is to ensure every loaded page is accessed by
SGX. In particular, when the matched nodes are not included
in the EPC page, some random nodes will be accessed. In this
case, even if the page fault exception occurs, the CS is unable
to know if it is caused by accessing the matched nodes or
random ones.

2) Solutions against Timing Attacks: To resist timing at-
tacks, the time of searching the B+ tree should be independent
of the query and access pattern.

In the traditional B+ tree, only one node at each level should
be searched for equality queries. To hide access pattern at a
page level, we just need to ensure a random node is accessed
when the matched node is not contained in the EPC page.
However, there are still two issues making the index access
pattern vulnerable to timing attacks. First, in a traditional B+
tree, the nodes may contain a different number of keys, and the
time of processing a fragment depends on how many keys are
checked in the accessed node. In turn, based on the processing
time, the CS can infer the number of checked keys, and then
infer which node is accessed. For instance, assume checking
one key takes T time. If the loaded fragment is processed in
nT time, the searched node must contain no less than n keys.
According to the size of each encrypted node, the CS could
infer which node is accessed with a high probability. This issue
can be solved by hiding the real size of each node. However,
in a traditional B+ tree, the number of keys checked in the
accessed node also varies with the query. That is, different
queries are processed at different times, and the equivalent
queries must be processed at the same time. On the contrary,
when all the pages are processed at the same time, there is a
high probability that the two queries are equivalent and their
tree access patterns are the same. To solve the two issues, each
fragment should be processed in constant time for all equality
queries. To this end, we first propose to ensure all the nodes in
the tree contains b−1 keys by adding dummy keys, where b is
the branching factor for building the tree. Second, we propose
to check all the keys in the accessed node, rather than to stop
the search once the matching key is found. As a consequence,
each fragment is processed in (b− 1)T time no matter which
node is accessed. The details of generating dummy keys and
checking the node are given in the Sections V-B and V-D,
respectively.

B. Data Representation

To support sub linear search, given the database, the
user first builds a standard B+ tree based on a defined
branching factor. Formally, we define a B+ tree as tree =
{b, L,N, cnt,nodes}. Here, b is the branching factor, indicat-
ing each node can have up to b children nodes and b−1 keys.
L is the number of levels of the tree, and the root node is in
level l = 1. cnt = {cnt1, . . . , cntL} is an array of integers
of length L. cntl represents the number of nodes in level l,
where l ∈ [1, L]. The total number of nodes in the tree is
N = Σl=Ll=1 cntl. nodes = (node0, . . . , nodeN−1) is the array

1 …

2 …

rid lists

1 32

4 65 7 0 80 9 10 12110

0

1 2 3

8

Tree={4, 3, (1, 3, 9), (node0={0, (,), (1, 2, 3)}, node1= …) }

0 0 2 1

…

Logical structure

…

4

…

125 6 7 9 10 11

… … … … … …

Fig. 2. A B+ tree index example with branch = 4, 3 levels, and 13 nodes:
From root to leave nodes and from left to right, all the nodes are assigned
a sequence of numbers in order as the id. Each non-root node stores 3 keys
and 4 values, including both real and dummy keys and values. The dummy
keys and values must be stored in the most left. The real value is the id of
its children node. The dummy values are set to 0. The real value in each
leaf-node is the id of a list of identifiers of the records matching the key.

storing the N nodes in the tree. The order of storing nodes is
from root to leave nodes and from left to right.

The non-leaf node is defined as nodeid =
{id, (k1, . . . , kb−1), (cid1, . . . , cidb))}. id is unique and
used to identify the node, which also represents the node
store location in nodes. In the B+ tree, each node contains an
array of keys (k1, . . . , kb−1) for searching, and an array of its
child nodes ids (cid1, . . . , cidb) for reaching its child nodes.

It is known that the root node is always the first node to be
searched whatever the query is. To defend against the timing
attack, we just need to search all its keys for all queries.
Thus, we do not need to pad the root node with dummy keys.
However, as already mentioned, we should ensure all the non-
root nodes has b− 1 keys by adding dummy keys.

The b − 1 keys in each non-root node consist of both real
and dummy keys. Specifically, assume the node contains γ
real keys. To ensure the node can be processed in a balanced
way (the details are given in Section V-D), the real keys are
stored in the most right of the node and in increasing order,
i.e., (k1, . . . , kb−1−γ) and (kb−γ , . . . , kb−1) are dummy and
real keys respectively, and k1 < . . . < kb−1. The γ real
keys separate the key domain into γ + 1 subtrees which are
reachable by γ+ 1 children node ids, i.e., (cidb−γ , . . . , cidb).
Moreover, the real keys in nodecidi are in (ki−1, ki]. In other
words, there is a sub domain for each node. To ensure the
dummy keys never match the query, we assign them the
values out of the node’s sub domain. Specifically, we set
nodecidi .dummy keys < ki−1. In addition, the dummy keys
are not used to generate subtrees, so (cid1, . . . , cidb−γ−1) are
also dummy and set to 0.

The leaf node has the same structure as the non-leaf node.
However, the leaf node does not have children nodes; instead,
its cidi points to a list of rids of the records whose values are

equal to ki. Likewise, if the leaf node has less than b− 1 real
keys, a number of dummy keys will be generated and stored
in the most left of the key array. The record identifiers lists
are encrypted and stored separately. Moreover, to hide size
information, the user pads the lists to the same size before
encrypting.

Fig. 2 illustrates the logical structure of a sample tree with
b = 4, L = 4, and N = 13, where cnt1 = 1, cnt2 = 3,
and cnt3 = 9. The node with less than 3 keys is padded with
dummy keys that are inserted to the most left of the nodes.
For instance, the first two keys κ21 and κ22 in node2 and the
first key κ31 in node3 are the dummy keys. Moreover, the sub
domain for node2 is (k01, k

0
2], so we should set κ22, κ

2
1 < k01 .

The sub domain for node3 is (k02,MAX], so κ31 < k02 , where
MAX represents the maximum value for keys.

C. Data Encryption

Algorithm 1 Encryption(tree, P)
1: Pads each node into s-bit if required
2: for l = 1 to l = tree.L do
3: Segment the nodes at level l into fragments Fl = {fl1, . . . , flnl

}, where nl =

d tree.cntl
P e

4: πsk‖l(Fl)
5: for i = 1 to i = nl do
6: Encsk(fli)
7: for each cid in each leaf node do
8: Encsk(listcid), pad the list first if required

After building the tree, the user encrypts both the dataset and
the index tree before sending them to the CS. For encryption,
given a security parameter λ, the user generates the secret
key sk. Basically, each record is encrypted with sk using a
randomised encryption algorithm such as AES-GCM. Each
encrypted record is identified with a unique rid in plaintext.

In this work, we do not aim to hide the tree structure from
the CS. That is, the CS could learn the values of b, L,N and
cnt. The user only encrypts the nodes in nodes. The detail of
the tree encryption is shown in Algorithm 1.

Specifically, the tree encryption is performed in three phas-
es. In the first phase, all the nodes are padded to the same
size. In addition to adding dummy keys, the elements inside
each node, including id, cid and key, should also be padded
to the same size. Assume all the nodes are s bits. It is known
that the enclave page size is 4 KB, meaning each page can
hold at most P = b 4KBs c nodes.

In phase 2, the user fragments the nodes at each level P by
P (Line 3), and then permutes the fragments with a pseudo-
random permutation π : {0, 1}λ′ × {0, 1}nL → {0, 1}nL

(Line 4) in order to hide the order among the fragments,
where nL represents the number of fragments at the last
level and λ′ = λ + log2 nL. Each fragment has P nodes
excluding the last fragment, such the nodes in each level will
be loaded fragment by fragment. Afterwards, each fragment
is encrypted with a semantically secure block encryption
Enc : {0, 1}λ × {0, 1}32768 → {0, 1}32768 (32768 = 4KB
is the data size in bit that can be hold in one EPC page), e.g.,
AES-128 in GCM mode (Line 6).

In the last phase, for each cid in each leaf node, the user
pads and encrypts its rid list with Enc and sk (Line 8). By
padding the lists into the same size, the data distribution can
be hidden from the CS.

D. Searching Tree

Algorithm 2 EqualityQuery(EQ, tree, P)
1: Q← Decsk(EQ)
2: mid← 0
3: Nodes[P]← 0 {Allocate an EPC for loading tree nodes}
4: for l = 1 to l = tree.L do
5: for i = 1 to i = d tree.cntl

P e do
6: Load Encsk(fli) to Nodes
7: SearchPage(Q,Nodes, n, l, i, tree.b, tree.L,mid), where n is the

number of nodes in this fragment

When issuing a query Q, the user encrypts it by computing
EQ ← Encsk(Q), such the query is protected from the CS.
Moreover, Enc is semantically secure and search pattern is
also hidden from the CS.

The search operation is performed on SGX, and the details
are shown in Algorithm 2. Once received EQ, SGX first
decrypts EQ with sk (Line 1), such it can learn the type of
the query, the interested field(s) and keyword(s).

In Algorithm 2, mid is used to cache the id(s) of the node(s)
should be searched at the next level, or the identifier(s) of the
matched rids list(s) after searching each fragment. When Q
is an equality query, mid is set to be an integer of the same
length as node id, and initialised as id of the root node.

SGX reserves a fixed EPC page Nodes (Line 3) and loads
the required index tree(s) in batches for performing search
(Line 4 - Line 7). Indeed, SGX loads and processes the
permuted fragments at each level one by one. Since all the
nodes at each level will be loaded, it is unnecessary to recover
the order of the fragments before loading. In the following,
we show how the loaded fragment is processed in detail for
equality queries.

Algorithm 3 EqualitySearch(Q,Nodes, len, l, i, b, L,mid)
1: Nodes← Decryptsk(Nodes)

2: r1
$← {0, len− 1}

3: r2 ← mid−Nodes[0].id
4: if Nodes[0].id ≤ mid ≤ Nodes[len− 1].id then
5: node← Nodes[r2]
6: flag ← 1
7: else
8: node← Nodes[r1]
9: flag ← 0

10: tid← node.cidb
11: for j = b− 1 to j = 1 do
12: if (Q.K ≤ node.kj and l < L) or (Q.K = node.kj and l = L) then
13: shift← 1
14: else
15: shift← 0
16: tid← tid− shift
17: mid← mid ∗ (1− flag) + flag ∗ tid

For an equality query, only one node will be accessed in
each loaded fragment, i.e., the matched one or a random one.
The challenge is how to ensure that the CS is unable to learn
whether the accessed node is the matched one or a random
one via side channels.

The detail of processing each loaded fragment is described
in Algorithm 3, EqualitySearch. After searching the nodes at
the upper level, the id of the matched node (i.e., mid) is cached
in SGX. SGX first decrypts the loaded fragment (Line 1).
Second, it checks if the matched node nodemid is contained
in the current fragment (Line 4). To hide if the accessed node is
the matched one or a random one, the two cases are processed
in a balanced way (Line 2 - Line 9). Specifically, SGX pre-
computes a random location r1 and the possible location of
the matched node r2. If the matched node is included in
this fragment, the r2-th node in the page will be accessed.
Otherwise, the r1-th node will be accessed. Moreover, a flag
is used to mark if the searched node is the matched one or a
random one. Specifically, flag = 1 when the searched node
is the matched one, and flag = 0 otherwise.

Once the node to be searched is determined, the next step
is to check which key inside the node matches the query. The
enclave traverses all the keys inside the node (Line 10 - Line
16). To resist timing attacks, the node is also processed in a
balanced way. That is, all the keys in the node are checked
in the same way no matter whether it is a dummy or real
and whether it matches the query or not. Specifically, Q.K
is first assumed to be greater than the last key node.keyb−1
(Line 10). In other words, the last child node is assumed to be
the matched one at the next level. From the most right to the
left, SGX checks if each key node.kj is greater than or equal
to the query. If yes, tid decrements, meaning the child node
cidj+1 is not the matched one. Otherwise, tid is unchanged,
indicating cidj+1 is the matched child node.

Nevertheless, the dummy keys in the searched node could
also match the query since they are assigned with real values.
To ensure the correctness of the search result, we should ensure
the dummy keys can not change the value of mid. As shown
in Line 17, after searching a node, mid is updated based on
two values: flag and tid. When the searched node is randomly
picked, flag = 0 and mid is not changed after searching no
matter what tid is. On the contrary, when flag = 1, i.e., the
searched node is the matched one, mid will be updated with
tid. We should ensure the dummy keys can not change the
value of tid, i.e., shift = 0 and Q.K is greater than all the
dummy keys stored in matched nodes. Indeed, Q.K should be
greater than or equal to the first real key in the matched node.
Recall that the dummy keys are stored in the most left of the
node. By assigning the values less than the first real key, they
will never change tid since they are less than Q.K.

Note that, if the searched node is the matched leaf node,
the result mid is the identifier of the matched rids list.

E. Returning Search Results

After searching the tree index, SGX gets the identifier(s) of
the matched rids list. The next step is to return the matched
records to the user. The straightforward way is to send mid to
the CS. However, the CS could learn the record access pattern,
and then infer the search pattern and tree access pattern.

In our system, the matched records are returned in an
oblivious manner. Specifically, SGX first loads the matched

list(s) together with a set of random lists, and which of them
are the matched one (s) is unknown to the CS. Second, to
resist side channel attacks, SGX decrypts all the lists to get
the rids of the matched records. Third, the matched rids and
a set of random rids are sent to the CS, and the CS sends
the records identified with these rids to the user. Fourth, SGX
re-encrypts the matched rids with sk to make it different from
the one stored in the CS, and sends it to the user, using which
the user can identify which records are the matched ones.
Finally, the user decrypts the matched records and get the
data in plaintext.

VI. SECURITY ANALYSIS

In this section, we prove that our scheme achieves the data
access pattern security against the CS.

Thereom 1: The proposed system protects access pattern
from the CS.
Proof. Let −→H be the query history of size T .

Tree Access. In our system, for any query, SGX loads the
whole tree into the enclave in batches. That is, the index
access pattern for each query is always the whole tree from
the CS perspective. Moreover, which node is accessed in the
EPC page is invisible to the CS. Access pattern at the page
granularity is protected from the CS, since the page is searched
after each loading. In particular, when there is a page fault, the
CS OS can always get the fault report, no matter which node
inside the page is searched. However, the CS has no idea if
the accessed node is the matched or random one. By padding
all the non-root nodes to the same size and checking the keys
in a balanced way, each page of the nodes can be processed in
a constant time for equality queries and such the index access
pattern is protected against the timing attack.

Records Access. While returning records to users, the CS sees
A(
−→
H), which is a sequence (R′1, . . . , R

′
T), where R′t consists

of the matched records and a set of random records. All
the records stored in the CS are encrypted using randomised
encryption. Therefore, the records in each R′t are indistin-
guishable from a set of random bit strings by the definition
of randomised encryption. Note that although R′t is revealed
to the CS, it can not differentiate matched records from the
random ones, and it can infer the precise access pattern with
1
2

|R′
t| probability.

Another issue is if the CS can infer search pattern from
A(
−→
H) when Qi = Qj(1 ≤ i, j ≤ T), R′i ∩R′j 6= ∅. However,

when Qi 6= Qj(1 ≤ i, j ≤ T), it is also possible that R′i ∩
R′j 6= ∅, where the intersection are unmatched records. Thus,
only when R′i ∩ R′j = ∅, the CS can learn Qi 6= Qj . On the
contrary, it can not determine if they are equal when R′i∩R′j 6=
∅.

VII. PERFORMANCE ANALYSIS

In this section, we first analyse the B+ tree search complex-
ity of our scheme. Then, we demonstrate the performance of
our scheme by using the TPC-H [35] and Big data benchmarks
[25].

TABLE II
COMPARISON WITH OBLIDB AND THE BASELINE.

Tables Keys in
B+ Tree

Branching
Factor #Pages per Batch Query Result

Size
Our
Work

ObliDB
Indexed Speedup Baseline Overhead

ORDERS 1,048,575 32 16 Q0 1 9.55ms – – 0.061ms 156.6×
CFPB 1023 4 1 Q1 1 0.352ms 3.9ms 11× 0.029ms 12.1×
CFPB 1023 4 1 Q2 177 0.352ms 695ms 1974.4× 0.029ms 12.1×

 8
 10
 12
 14
 16
 18
 20

 1 2 4 8 16 32 64 128 256 512

T
im

e
in

 m
s

Number of pages per batch

Fig. 3. Tree search time with 1 million keys.

A. Complexity Analysis

For a traditional B+ tree, the search complexity is
O(logbN), where N represents the number of nodes and b
is a branching factor of the tree. However, in our system, in
order to resist side channel attacks, the B+ tree is accessed in
a balanced way, where multiple nodes at each level should be
searched for each query. Specifically, within every P nodes,
at least one of them should be accessed. Thus, the search
complexity is O(NP) in our system.

B. Implementation

We implemented and evaluated the performance of our
system on an Intel NUC 7i3BNH, with a 4-core Intel i3-7100U
2.4GHZ processor with SGX enabled and 8GB RAM. The
prototype of the proposed system is implemented in C/C++.
The cryptography primitives used on the user side, such as
the records and indexes encryption, are implemented based
on Libgcrypt 1.8.2 library [36]. The trusted code on SGX
is implemented based on SGX SDK 2.0. Specifically, we
use ‘sgx rijndael128GCM decrypt’ to recover the plaintext of
loaded nodes in SGX. The performance is tested on real SGX
hardware. All the times presented in the following are averaged
over 100 runs.

C. TPC-H Benchmarking

We first evaluated the performance of our scheme with
TPC-H [35] dataset. The table used in our experiment is the
‘ORDER’ table, which consists of 1.5 million records and 9
fields. We built a B+ tree index for ‘O ORDERKEY’ field,
which consists of 1 million keys (when building the tree
48, 575 dummy keys are added).

We first evaluated the B+ tree search time with different
batch sizes, i.e., the number of fragments loaded per batch,
which is also the number of EPC pages reserved in the enclave.
When building the B+ tree, the branching factor was fixed to
32. We tested the B+ tree searching time for equality queries
by changing the batch size from 1 to 512. The result is shown
in Fig. 3.

From Fig. 3, we see the searching time goes down when
loading more pages each time, and reaches the lowest point
when loading 16 pages per batch, which is about 9.55 mil-
liseconds (ms). However, when loading more than 16 pages,
the searching time goes up again. That is because there is less
context switching between the untrusted and trusted code when
loading more nodes in each batch. However, when loading
more than 16 pages, the enclave memory is exhausted, and
part of the data has to be swapped in and out between the
enclave and the untrusted memory.

Moreover, we also implemented the second construction
(i.e., Construction 2) of HardIDX [1] as a baseline, where
only the matched nodes in the B+ tree are loaded into SGX
for searching. Comparing with the baseline, our scheme takes
many strategies to protect access pattern from the CS. In Table
II, we test a simple query Q0: ‘select * from ORDERS where
O ORDERKEY= 1506’ and compare the search time of our
system with the baseline case, and show the overhead added by
these strategies. When loading 16 pages per batch, our scheme
incurs 156.6× performance overheads than the baseline.

D. Big Data Benchmarking

ObliDB [3] is an ORAM-based solution that can also protect
access pattern. In [3], Eskandarian et al. have shown that their
indexed solution is much more efficient than Opaque [4]. In
the following, we will show our scheme is much more efficient
than ObliDB indexed solution.

For the comparison, as done in ObliDB, we evaluated our
scheme with Big Data Benchmark [25]. Specifically, we tested
two queries, Q1: ‘select * from CFPB where Date recieved =
20130817’ and Q2: select * from CFPB where Date recieved
= 20130514’, with different result sizes on ‘CFPB’ table.
‘CFPB’ contains 107000 rows, and we built a B+ tree with
1023 keys (including 543 real keys and 460 dummy keys) for
the searched field.

We downloaded the code of ObliDB from [37] and tested its
performance on our own machine. Moreover, we also tested
the baseline implementation, where only the matched nodes
are loaded into SGX for search, with the same queries and
datasets. For testing our scheme, the branching factor was fixed
to 4, only 1 page was loaded per batch. Moreover, once the
matched rids list is found, we loaded 2× random matched
records to hide the real access pattern.

The test results for our scheme, ObliDB and the baseline
are illustrated in Table II. In our scheme, to resist timing
attacks, the same type of queries are processed in constant
time. From Table II, we can see that, both Q1 and Q2 were
executed in 0.352 ms, which includes the B+ tree search time

and the rids list processing time. In contrast, the ObliDB
indexed solution is implemented based on ORAM primitives,
which is affected significantly by the result size. For the point
queries over ‘CFPB’ dataset, when result sizes are 1 and
177, our scheme is 11× and 1974.4× faster than ObliDB
(indexed solution), respectively. Comparing with the baseline,
our solution is 12.1× slower.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce an approach that supports search
over encrypted data and preserves privacy of access pattern
using SGX. B+ tree indexes are built in order to support sub
linear search. By loading the tree nodes page by page and
accessing the nodes in a balanced manner, access pattern is
also protected against page fault and timing channel attacks.
Moreover, our solution can process large databases efficiently
without requiring long-term storage on SGX. As for future
work, we aim to support more complicated SQL queries,
such as GROUP BY, JOIN, COUNT, and SUM, and show
the performance. Moreover, we will investigate sophisticated
solutions to resist cache attacks. In addition, we will consider
dynamic databases and support more complex operations.

ACKNOWLEDGEMENTS

This research is supported by STRATUS (Security Tech-
nologies Returning Accountability, Trust and User-Centric
Services in the Cloud), a project funded by the Ministry of
Business, Innovation and Employment (MBIE), New Zealand.

REFERENCES

[1] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A. Sadeghi, “HardIDX: Practical and secure index with SGX,” in DBSec
2017. Springer, 2017, pp. 386–408.

[2] A. Gribov, D. Vinayagamurthy, and S. Gorbunov, “StealthDB: A Scal-
able Encrypted Database with Full SQL Query Support,” ArXiv e-prints,
November 2017.

[3] S. Eskandarian and M. Zaharia, “An oblivious general-purpose SQL
database for the cloud,” CoRR, vol. abs/1710.00458, 2017.

[4] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI 2017, A. Akella and J. Howell, Eds. USENIX
Association, 2017, pp. 283–298.

[5] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious
memory primitives from Intel SGX,” IACR Cryptology ePrint Archive,
vol. 2017, p. 549, 2017.

[6] M. Costa, L. Esswood, O. Ohrimenko, F. Schuster, and S. Wagh, “The
pyramid scheme: Oblivious RAM for trusted processors,” CoRR, vol.
abs/1712.07882, 2017.

[7] A. Ahmad, K. Kim, A. Kumar, M. I. Sarfaraz, and B. Lee, “OBLIVI-
ATE: A data oblivious file system for intel sgx,” 2018.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in S&P 2000. IEEE Computer Society, 2000, pp.
44–55.

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in SIGSAC 2015, I. Ray, N. Li, and
C. Kruegel, Eds. ACM, 2015, pp. 668–679.

[11] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in NDSS
2012. The Internet Society, 2012.

[12] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security 2016. USENIX Association, 2016, pp. 707–720.

[13] R. Ostrovsky, “Efficient computation on Oblivious RAMs,” in STOC
1990. ACM, 1990, pp. 514–523.

[14] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC
2009. ACM, 2009, pp. 169–178.

[15] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky, “Private large-scale
databases with distributed searchable symmetric encryption,” in CT-RSA
2016, ser. Lecture Notes in Computer Science, vol. 9610. Springer,
2016, pp. 90–107.

[16] S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello, “P-McDb:
Privacy-preserving search using multi-cloud encrypted databases,” in
CLOUD 2017, G. C. Fox, Ed. IEEE Computer Society, 2017, pp.
334–341.

[17] S. Cui, M. R. Asghar, and G. Russello, “ObliviousDB: Practical and
efficient searchable encryption with controllable leakage,” 2016, https:
//www.cs.auckland.ac.nz/∼asghar/papers/eprint16-ObliviousDB.pdf.

[18] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[19] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in SP 2015. IEEE
Computer Society, 2015, pp. 640–656.

[20] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in WOOT 2017, W. Enck and C. Mulliner, Eds. USENIX Association,
2017.

[21] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in USENIX 2017. USENIX Association, 2017, pp. 557–574.

[22] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. M.
Thuraisingham, “Securing data analytics on SGX with randomization,”
in ESORICS 2017. Springer, 2017, pp. 352–369.

[23] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in AsiaCCS 2016. ACM, 2016, pp.
317–328.

[24] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Müller, and A. Sadeghi, “DR.SGX: hardening SGX enclaves a-
gainst cache attacks with data location randomization,” CoRR, vol.
abs/1709.09917, 2017.

[25] AMPLAB, University of Califorian, “Big data benchmark,” https://
amplab.cs.berkeley.edu/benchmark/, last accessed: March 2, 2018.

[26] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS services for SGX enclaves,” in EuroSys 2017. ACM,
2017, pp. 238–253.

[27] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP 2013, 2013, p. 10.

[28] “Introduction to Intel SGX sealing,” https://software.intel.com/en-
us/blogs/2016/05/04/introduction-to-intel-sgx-sealing, last accessed:
March 4, 2018.

[29] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in
USENIX 2003. USENIX Association, 2003.

[30] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in CT-RSA 2006. Springer, 2006, pp.
1–20.

[31] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
amplifies the power of cache attacks,” in CHES 2017, ser. Lecture Notes
in Computer Science, vol. 10529. Springer, 2017, pp. 69–90.

[32] J. Ambrose and A. Ignjatovic, Power Analysis Side Channel Attacks: The
Processor Design-level Context. Omniscriptum Gmbh & Company Kg.,
2010.

[33] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in CHES 2001, ser. Lecture Notes in Computer
Science, vol. 2162, no. Generators. Springer, 2001, pp. 251–261.

[34] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J.
Cryptology, vol. 30, no. 2, pp. 392–443, 2017.

[35] “TPC-H,” http://www.tpc.org/tpch/, last accessed: March 2, 2018.
[36] “GnuPG,” https://www.gnupg.org/index.html, last accessed: March 1,

2018.
[37] “An oblivious general-purpose SQL database for the cloud,” https:

//github.com/SabaEskandarian/ObliDB, last accessed: March 4, 2018.

