
1

Probabilistic Tracking of Affine-Invariant
Anisotropic Regions

Stamatia Giannarou, Marco Visentini-Scarzanella and Guang-Zhong Yang

Abstract—Despite a wide range of feature detectors developed in the computer vision community over the years, direct application
of these techniques to surgical navigation has shown significant difficulties due to the paucity of reliable salient features coupled
with free-form tissue deformation and changing visual appearance of surgical scenes. The aim of this paper is to propose a novel
probabilistic framework to track affine-invariant anisotropic regions under contrastingly different visual appearances during Minimally
Invasive Surgery (MIS). The theoretical background of the affine-invariant anisotropic feature detector is presented and a real-time
implementation exploiting the computational power of the GPU is proposed. An Extended Kalman Filter (EKF) parameterisation scheme
is used to adaptively adjust the optimal templates of the detected regions, enabling accurate identification and matching of the tracked
features. For effective tracking verification, spatial context and region similarity have also been incorporated. They are used to boost
the prediction of the EKF and recover potential tracking failure due to drift or false positives. The proposed framework is compared to
the existing methods and their respective performance is evaluated with in vivo video sequences recorded from robotic assisted MIS
procedures, as well as real-world scenes.

Index Terms—Salient feature extraction, feature point tracking, image-guided navigation
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1 INTRODUCTION

In neurosurgery, maxillo-facial and orthopaedic surgery [1],
image-guided surgical navigation is an important part of
the surgical workflow, where pre- and intra-operative data
provides a common, co-registered frame-of-reference for ac-
curate surgical manoeuvring. Despite major advances in image
guided surgery in recent years, its progress in MIS involving
large scale tissue deformation, such as those encountered in
cardiothoracic and gastrointestinal procedures, is faced with
major difficulties [2]. It is important in such situations to ac-
curately reconstruct 3D tissue deformation in situ to facilitate
3D anatomical registration, tracking and motion stabilisation.
The use of the existing laparoscopic camera based on com-
puter vision techniques without introducing additional imaging
equipment to the surgical scene has many advantages in terms
of simplicity and ease of integration with the existing surgical
flow.

Thus far, methods based on optical flow, time-of-flight,
structured lighting, natural anatomical features and fiducial
markers have been used to recover dynamic tissue deformation
in real-time [3]. The prerequisite of many of these techniques
is accurate feature tracking, which is a well-researched topic
in computer vision. However, existing research has shown that
direct application of the commonly used vision techniques to
MIS has significant problems due to the large scale free-form
tissue deformation involved and contrastingly different visual
appearances of changing surgical scenes. For MIS, identifica-
tion and tracking of surface features ideally needs to be based
on intrinsic tissue surface appearance without the introduction
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of additional fiducial markers. Desirable properties include
high repeatability under rotation, translation, scaling and affine
transformation and robustness to scene variations due to tissue
deformation and inter-reflection within the lumen.

In general, feature tracking involves detecting salient fea-
tures, establishing the appearance model and searching for
the optimal feature correspondence. In computer vision, recent
work has concentrated on feature detectors that are invariant to
global image transformations by considering both geometric
and photometric transformations that arise due to changes in
imaging conditions. Example approaches include Edge Based
Region (EBR) and Intensity Extrema-Based Region (IBR)
detectors for affine invariant localisation and tracking [4] and
Harris-Laplace detectors [5].

The accuracy and the efficiency of deformation tracking
rely significantly on the detection of visual features which
exhibit high repeatability under image transformations and
robustness under scene variations. In [6], a salient region
detector is proposed, where local maxima in affine transfor-
mation space are detected by measuring the entropy of pixel
intensity histograms computed for elliptical regions. Based on
intensity extrema, Matas et al. [7] used a watershed-based
segmentation algorithm to detect Maximally Stable Extremal
Regions (MSER) that are invariant to affine transformations.
Furthermore, Harris and Hessian corner point detectors have
also been extended to detect affine-invariant regions in [8]. In
[9], interest points are detected measuring the self-similarity
of local regions. A performance evaluation study of region
detectors is given in [10].

In feature tracking, the target appearance model consists of
feature representation and similarity measurements. Template
windows of pixel intensities [11] and appearance templates
[12] have been used to represent targets. Beyond the use
of raw intensity patterns, target representation can be based
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on local invariant features such as SIFT [13]. Successful
tracking systems have employed colour histograms [14] [15]
to represent the targets. The loss of spatial information which
is inherent in the use of histograms, can be overcome with the
spatiograms which are histograms with spatially weighed bins
[16]. The weakness of the histogram representation to handle
occlusion is addressed in [17] by representing a target with
multiple image fragments employing an integral histogram
data structure. Although popular tracking approaches are based
on static appearance models, it has been shown that adaptive
appearance models, which evolve as the target appearance
changes, can improve the tracking performance [18].

Generally, the performance of appearance-based tracking
approaches is poor in cases of geometric deformation and
cluttered background as they rely only on the target appearance
model ignoring the background. A solution to this problem is
the discriminative tracking where the target is distinguished
from the background. Such discriminative models can be
trained offline [19] or online [20] [21]. In [22], it is shown
that using Multiple Instance Learning for on-line training
of discriminative models leads to a more robust tracking
compared to traditional supervised learning approaches. A
novel biologically inspired tracking framework based on dis-
criminant saliency is proposed in [23].

The search for the optimal correspondence, on the other
hand, can follow either a deterministic or a probabilistic
approach. The main advantage of probabilistic methods is
that they take into account measurement and model uncertain-
ties to establish point correspondences. Example probabilistic
correspondence approaches include Kalman filter tracking
[24], Particle filters [25] and the Joint Probabilistic Data-
Association Filter (JPDAF) [26].

Tracking features in real-world applications, particularly in
surgery, however, is a challenging task due to the paucity
of reliable visual features and contrastingly different visual
appearances of the environment. A tracker is likely to drift
away in the presence of occlusion, artefact or when features
are entering or exiting the field of view (FoV). Another factor
that affects the performance of the tracker is the difficulty
of verifying whether or not the tracker is following the true
target, since a match could be due to false positives. In
literature, various approaches have been proposed to tackle
the above challenges. For instance, Jepson et al. [27] have
proposed on-line adaptation of appearance models by using the
Expectation Maximisation (EM) algorithm. An online learning
based tracking method where feature tracking is formalised as
a classification problem and is able to deal with nonlinear
deformation has been proposed in [28]. In [29], co-inference
learning is used to integrate multiple visual cues for a more
detailed feature description model. In an attempt to distinguish
the target from its background using discriminative likelihood
models, Collins et al. [30] have proposed an approach for on-
line selection of discriminative colour spaces from a set of
predefined colour spaces. An efficient substitute to optical flow
is suggested in [31] by incorporating contexts to constraint
motion estimation for target tracking. More recently, Context-
Aware Tracking (CAT) is proposed to describe the context of
the target by detecting a set of auxiliary objects on the fly

[32].
The work presented in this paper is a significant extension

of the preliminary work presented in [33]. The purpose of
this paper is to study in detail the affine-invariant anisotropic
feature detector [33]. A scale-space representation based on
feature strength is proposed to achieve both scale and affine
adaptation for reliable feature tracking and deal with the
shortcomings of the commonly used Laplacian-of-Gaussian
(LoG) and Difference-of-Gaussian (DoG) operators. The pro-
posed approach instead of relying only on local gradients and
intensities, the local anisotropism is incorporated to estimate
the strength of image features in a novel fashion. This enables
accurate identification of anisotropic features. Another strong
point is the use of integrated single derivatives that makes
feature detection less sensitive to noise. The parallelisable
structure of the algorithm is exploited to provide a real-
time GPU implementation faster than the normal video frame
rate. Performance evaluation results verify the suitability of
the proposed framework for applications with difficult condi-
tions such as changing visual appearance, blur, illumination
changes, occlusion and free-form deformation.

In this paper, a novel probabilistic framework is proposed to
track the anisotropic features over a series of frames. To this
end, an EKF has been designed to model the properties of the
affine-invariant regions. The tracking result is verified using
the spatial context and regional similarity. Spatial context
information is used to boost the prediction of the EKF and
recover tracking failure due to drift or false positive features.

The performance of the proposed feature detector and
tracking algorithm is compared to the existing approaches
under different transformations including viewpoint, illumina-
tion variations, as well as changes in blur, scale and rotation.
The data used includes both real-world scenes and in vivo
sequences from robotic assisted MIS procedures. To facilitate
algorithm comparison, the GPU implementation of the affine-
invariant anisotropic feature detector and the MIS data used in
this work are available from http://hamlyn.doc.ic.ac.uk/vision.

The paper is organised as follows. An affine-invariant
anisotropic detector is introduced in Section 2, followed by
probabilistic feature tracking in Section 3. Detailed experimen-
tal results are provided in Section 4. Parameter settings for the
proposed affine-invariant anisotropic feature detector and prob-
abilistic tracking are provided in Appendix A. Computational
complexity analysis and real-time implementation details of
the proposed feature detector are provide in Appendix B,
which includes the pseudo-code and execution flow of the
algorithm.

2 AFFINE-INVARIANT ANISOTROPIC DETEC-
TOR

In [34], Yang et al. addressed the issue of feature identi-
fication as part of an approach for computing the measure
of anisotropism at each point within an image. Features
are identified as points that have strong gradients and are
anisotropic along several directions. The power spectrum of
a strongly oriented intensity pattern clusters along a line
through the origin in the Fourier domain. The strength g of
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Fig. 1: Regions generated by the Affine-Invariant Anisotropic Region detector on corresponding sub-parts of (a) the first and (b) the fourth
“Graffiti” images. (c) Repeatability (%) scores and (d) number of corresponding regions for viewpoint changes for the “Graffiti” sequence.

the unidirectionality of the pattern at point x = (x, y) can

be defined as g(x) =
(
∫ ∫

Ω
(Ix

2−Iy
2)dxdy)

2
+(

∫ ∫
Ω
2IxIydxdy)

2

(
∫ ∫

Ω
(Ix2+Iy2)dxdy)

2

where, Ω is a small neighbourhood of x, and Ix, Iy are
the derivatives of image I along the x and y directions,
respectively. For strongly oriented patterns, the strength of
unidirectionality, g, is close to 1 while values of g close to
0 correspond to isotropic image patterns. The above evidence,
combined with the fact that the intensity gradient attains high
values at edges, corner points and junctions, leads to the
definition of the feature strength c(x) = (1− g(x))| ▽I(x) |2,
also known as cornerness. The local maxima of c(x) determine
the location of salient points.

For multi-scale feature localisation, the feature strength
measure must be adapted to scale changes [8]. The scale-
adapted c(x) is defined as:

c(x, σI , σD) = σI
2(1− g(x, σI , σD))| ▽I(x, σD) |2 (1)

where, σI is the integration scale, σD is the differentia-
tion scale and g(x, σI , σD) is the scale-adapted measure of
anisotropism given by:

g(x, σI , σD) =

(∫ ∫
σI
(I2x(x, σD)− I2y (x, σD))dxdy

)2

(∫ ∫
σI
(I2x(x, σD) + I2y (x, σD))dxdy

)2

+

(∫ ∫
σI

2IxIy(x, σD)dxdy
)2

(∫ ∫
σI
(I2x(x, σD) + I2y (x, σD))dxdy

)2

(2)

The derivatives Ix and Iy are computed with Gaussian kernels
of size determined by the differentiation scale σD and they
are integrated in the neighbourhood of the point by applying
a Gaussian filter determined by the integration scale σI .

To deal with significant scale changes, salient points are de-
tected at several scales and characteristic points are identified
by automatic scale selection based on the approach proposed
by Lindeberg [35]. The idea is to select a characteristic
scale by searching for a local extremum of a given function
over scales. Thus far, several derivative-based functions have
been used to compute the scale representation of an image.
Lindeberg [35] used the LoG while in [36], Lowe used
the DoG. The common drawback of the DoG and the LoG
representation is that local maxima can also be detected in the
neighborhood of contours or straight edges. These maxima are

less stable because their localization is more sensitive to noise
or small changes in neighboring texture.

In this work, a novel scale representation is proposed based
on the scale-adapted c(x) measure defined in Eq. (1). The
scale-space representation is built by calculating the scale-
adapted c(x) for a set of predefined scales, given by σn =
ξnσ0, where ξ is the interval between successive scales. For
the estimation of scale-adapted c(x) in Eq. (1), the integration
scale σI is set to be equal to the levels σn of the scale-
space representation and the differentiation scale σD is set
to be proportional to the integration scale, σD = srσI . The
evaluation of the scale interval ξ and the ratio sr between the
integration and the differentiation scales is detailed Appendix
A.

At each level of the scale-space representation, salient
points are detected at the local maxima of c(x) in the image
plane. This is mathematically expressed as: c(x, σI , σD) >
c(xW , σI , σD),∀x ∈ xW and c(x, σI , σD) > Υ, where W is a
neighbourhood of x. At this stage, the scale of the salient point
at each level of the scale-space is defined as the scale level σn

where the features are detected. For each of the salient points
detected on the predefined levels, a scale selection process
is initialised in the scale-space where the algorithm examines
whether the scale-adapted c(x) attains a maximum at the given
detection scale and if the response is above a certain threshold:

c(x, σn, srσn) > c(x, σn−1, srσn−1)

c(x, σn, srσn) > c(x, σn+1, srσn+1) (3)
c(x, σn, srσn) > Υ

The Υ in the above equations is defined as a percentage of the
maximum c(x) detected at the given scale. Salient points that
do not satisfy the conditions in Eq. (3) are rejected. At this
stage of the algorithm, each salient point is associated with
a scale invariant local region which is a subset of the image
and is represented by a circle of radius proportional to the
detection scale σn and centred at the salient point.

The strength of the proposed scale representation is that it
responds only to structures with low unidirectionality, solving
the drawback of LoG and DoG. As it can been observed in
Eq. (2), the calculation of c(x) only involves integrated single
derivatives, making feature identification less sensitive to noise
compared to techniques where second order derivatives are
used. In addition, using the scale-adapted c(x) measure to
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(a) (b)

(c) (d)

Fig. 2: Regions on corresponding sub-parts of two images from in vivo MIS data with soft tissue deformation and illumination changes (Fig.
5(b)) generated by the (a) Affine-Invariant Anisotropic Region detector (b) Harris-Affine (c) Hessian-Affine (d) MSER. The lines between
the images show the corresponding regions and each correspondence has been highlighted in a different color.

identify characteristic scales does not increase the compu-
tational complexity of the method as c(x) has already been
estimated at the feature identification step.

In the case of viewpoint changes, the scale change can
vary independently in the x and y directions and the proposed
scale invariant approach may fail in the presence of significant
affine transformations. To compensate for affine deformations,
the shape of the Gaussian kernels has to be adapted for each
interest point such that the common circular regions have to
be replaced by ellipses. According to the structure-adaptive
anisotropic filtering approach proposed in [34], the shape of
the adaptive Gaussian kernel centred at a point x is controlled
through two non-negative functions σ1(x) and σ2(x). The ratio
of these functions is defined as:

σ1(x)
σ2(x)

=
1

1− g(x)
(4)

where g(x) is the strength of the unidirectionality. According
to Eq. (4), at salient points where the strength of unidirec-
tionality is low, the smoothing kernel that preserves the image
pattern is close to a uniform kernel as the ratio between σ1(x)
and σ2(x) is close to one. When an edge is encountered, it
is deduced from Eq. (4) that the kernel is deformed into an
ellipse with its principal axis aligned in parallel with the edge
orientation.

In the proposed approach, salient points are detected at
the maxima of the scale-adapted c(x) where the measure of
anisotropism attains low values and therefore the ratio between
σ1(x) and σ2(x) is close to 1. This effectively ensures that
when estimating the shape of the neighbourhood around salient
points, uniform Gaussian kernels can be used to smooth the
pattern and estimate differential affine invariants, without a
significant loss of accuracy. This assumption simplifies the

adaptation of the proposed approach to affine transformations,
since it does not require the generation of an affine scale-
space and the computation of non-uniform Gaussian kernels.
In addition, our affine adaptation scheme assumes that the
detection scale of the salient points is consistent across images
and further scale adaptation is not necessary. The elliptical
shape of the neighbourhood around the detected features is
defined based on the properties of their second moment matrix.
This is because the ratio of the eigenvalues of the second
moment matrix define the ratio between the radius of the
ellipse while the major axes of the ellipse is consistent with the
direction of the eigenvector that corresponds to the minimum
eigenvalue [37].

For the proposed technique, robustness to changing lighting
conditions is achieved by adjusting the contrast of the image
prior to feature detection through histogram equalization. In
addition, the use of relative intensities (image derivatives)
instead of absolute intensities to estimate feature strength
and extract salient points with Eq. (1) reduces the effect of
illumination variations on the detector. Also, the threshold
for the feature extraction in Eq. (3) is defined according
to the maximum observed feature strength. This enables the
detector to automatically adjust to scene contrast and respond
to changing illumination conditions. Since the detector does
not rely on image segmentation or region boundaries, its
performance is resilient to increasing image blur.

The performance of the proposed anisotropic region detector
under affine transformations can be visually evaluated on the
“Graffiti” sequence in Fig. 1 and compared against state-of-
the-art approaches on in vivo MIS data with significant soft
tissue deformation and illumination changes in Fig. 2. In both
cases, the high repeatability of the proposed detector is verified
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by the fact that corresponding ellipses represent similar regions
on the pair of images while regions generated by the other
detectors do not cover the same part of the affine deformed
image.

Given the requirements for real-time performance in MIS
applications, the detector has been implemented in GPU.
Computational complexity analysis and the real-time imple-
mentation details are given in Appendix B in the supplemental
material.

3 PROBABILISTIC FEATURE TRACKING
BASED ON THE EXTENDED KALMAN FILTER
In order to track the identified features over time, a Kalman
filter based framework is proposed by using the elliptical pa-
rameters that represent the affine-invariant anisotropic regions.
Traditional tracking methods tend to use Kalman filters to track
only the position and velocity of the salient points. In this
work, a Kalman filter is used instead to estimate the optimal
adaptive templates of the anisotropic regions that represent the
salient points, allowing accurate identification and matching of
the tracked features in video sequences.

3.1 EKF for Anisotropic Region Tracking
In the proposed framework, a Kalman filter is designed to track
each salient point. The information provided to the Kalman
filter is the location of the salient point in each frame and the
parameters of the ellipse that represents the affine-invariant
anisotropic region of the point. The state vector of the Kalman
filter consists of the coordinates of the ellipse centre (x, y),
the velocities along the horizontal and vertical axes (u, v), the
coordinates of the tip of the major axis (rx, ry), the angle
between the horizontal and the major axis of the ellipse θ, the
angular velocity ω, and the ratio between the major and the
minor axes k of the ellipse. The elliptical regions are assumed
to be moving with constant translational and rotational velocity
in the image plane. The state of a salient point at time t is
defined as:

st = f(st−1, wt) =



xt

yt
ut

vt
θt
ωt

rxt
ryt
kt


=



xt−1 + (ut−1 + wu
t−1)

yt−1 + (vt−1 + wv
t−1)

ut−1 + wu
t−1

vt−1 + wv
t−1

θt−1 + ωt−1 + wω
t−1

ωt−1 + wω
t−1

rxt
ryt
kt−1


(5)

where, rxt and ryt are the results of the homography:[
rxt
ryt

]
=

[
cos(ωt−1 + wω

t−1) − sin(ωt−1 + wω
t−1)

sin(ωt−1 + wω
t−1) cos(ωt−1 + wω

t−1)

]
·
[

rxt−1 − xt−1

ryt−1 − yt−1

]
+

[
ut−1 + wu

t−1 + xt−1

vt−1 + wv
t−1 + yt−1

]
In the time update model shown in the above equation, the
coordinates of the tip of the major axis (rxt , r

y
t ) are a nonlinear

function of the ellipse parameters at the previous time step and
zero mean additive Gaussian noise wt = [wu

t , w
v
t , w

ω
t ].

In order to model the above nonlinear process, linearization
is performed in the context of an EKF. To formulate the
estimation process of the EKF, we define the a priori state
estimate ŝ−t at time t given the knowledge of the process
prior to time t and the a posteriori state estimate ŝ+t at time t
given the measurement zt. The a priori and a posteriori state
estimates are associated with the a priori and a posteriori error
estimates with error covariance represented as P−

t and P+
t ,

respectively. The state of a salient point can be approximated
as ŝ−t = f(ŝ+t−1, 0) where, f is the nonlinear function defined
in Eq. (5).

At the correction stage, the measurement zt is directly
observed from the matched feature, formed by the coordinates
of the matched ellipse centre (x, y), the coordinates of the tip
of the major axis (rx, ry), the angle between the horizontal
and the major axis of the matched ellipses θ, and the ratio k
between the major and the minor axes of the matched ellipses:

zt =V st + ηt

=


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





xt

yt
ut

vt
θt
ωt

rxt
ryt
kt


+ ηt

(6)

where, η is the measurement noise. Given the above equation,
the state estimate can be refined in response to the measure-
ment by updating ŝ−t :

ŝ+t = ŝ−t +Kt(zt −Hŝ−t ) (7)

where the difference (zt−Hŝ−t ) reflects the disagreement be-
tween the actual measurement and the predicted measurement.
The matrix K is the so called Kalman gain.

3.2 Feature Correspondence
By using the above EKF framework, we seek a salient point
at time t based on the state prediction ŝ−t . The predicted state
provides an estimation of the location of the salient points
in each frame, restricting the feature search and defining a
predicted affine-invariant elliptic region that represents the
feature. In general, the search area Π for locating the feature
is a circle centred at the predicted location of the salient
point, of size twice the scale of the predicted ellipse. The aim
of tracking is therefore to establish correspondence between
the predicted salient region defined by the state ŝ−t and the
detected regions in the search window in frame t. In this
work, we use the relative amount of overlap in the image
area covered by the compared regions and the dissimilarity
in c(x) of the compared features as an indication of region
correspondence. Two regions correspond if the overlap error
and dissimilarity in c(x) are sufficiently small. The overlap
error between two regions, A and B, is expressed as:

OEA,B = 1− A ∩B

A ∪B
(8)
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Fig. 3: Graphical representation of the proposed probabilistic framework for tracking a single feature between consecutive frames. The
number in each processing block represents the corresponding section number in the paper.

where A ∩ B is the intersection of the regions and A ∪ B
is their union [10], both are computed numerically. If A
and B completely overlap A ∩ B = A ∪ B and therefore
OEA,B = 0. This error increases if A and B don’t overlap
and the maximum error is equal to 1. The dissimilarity in c(x)
between two features A and B is defined as:

CDA,B =
|cA − cB |

max
n∈Π

|cA − cn|
(9)

where cA stands for the cornerness of feature A and Π denotes
the search area.

If in the search window, there is a feature that matches the
predicted region defined by the state ŝ−t , then this matched
feature becomes the measurement zt in the EKF framework
and is used to carry out the measurement update, which
yields the corrected state estimate ŝ+t . The above procedure
is performed in parallel with feature tracking. The proposed
probabilistic tracking framework is illustrated in Fig. 3.

3.3 Tracking Verification
In order to verify whether the tracker is following the true
salient points, another estimation of the point locations is
carried out by considering the spatial context of the tracked
features for verifying the EKF state estimate ŝ+t . For this
purpose, a set of auxiliary points is identified for a feature
by selecting among the set of tracked features the points that
exhibit strong motion correlation to the feature. The distance
between the feature and the auxiliary points in previous frames
is used to predict the location of the feature in the current
frame. The set of auxiliary points are assumed to belong to a
region that is locally continuous and rigid. This assumption is
characteristic to the problem of soft tissue tracking in MIS.

For the identification of auxiliary points, linear models are
employed to approximate the motion of salient points. The
aim is to evaluate inter-frame motion correlation of two salient
points given their position coordinates. Let’s denote the tra-
jectory of a tracked salient point as TA = {xA

f , y
A
f }f=t−N...t

formed by the coordinates of the feature position (xA
f , y

A
f )

within frame interval [t−N . . . t]. The trajectory of a possible
auxiliary point TB is defined in a similar way. The covariance
matrix of the zero-mean normalized trajectories T̃A and T̃B is
given by:

CV = E

[(
T̃T
A

T̃T
B

)(
T̃A T̃B

)]
(10)

According to [32], trajectories TA and TB generally exhibit
strong motion correlation if the eigenvalues {λi}i=1...4 of CV
form two distinctive subspaces namely the signal and the noise
subspace that correspond to the higher and lower eigenvalues,
respectively.

The auxiliary points that have been successfully tracked
in the examined frame interval are used to estimate a global
scale factor {ζi}i=t−N...t−1 between the current frame t and
the previous frames in the examined interval. The location of
feature A with respect to the auxiliary point APi at frame t
is estimated as:

Dt(A,APi) =
1

N − 1

t−1∑
f=t−N

ζf ·Df (A,APi) (11)

where, Df (A,APi) is the distance between the tracked feature
A and the auxiliary point APi at frame f .

Distance Dt(A,APi) defines a trajectory where the tracked
point A should lie with respect to point APi at frame t. This
trajectory is a circle centred at point APi with a radius of
Dt(A,APi). A set of n identified auxiliary points define a
set of n trajectories and the approximated location {x̃A

t , ỹ
A
t }

of point A at time t lies at the intersection point of the n
trajectories. This approximation is used to verify the tracking
result by estimating the distance between the corrected state
ŝ+t and {x̃A

t , ỹ
A
t }. If the distance is greater than a threshold,

the matched feature represented by the state ŝ+t is considered
a false positive.

Spatial context information has also been used in the
collaborative mean-shift tracking approach proposed in [38].
The main difference between this approach and our proposed
method is that in our work, the approximate position of a
feature is estimated as the intersection of the circular tra-
jectories formed by each auxiliary point while in [38] the
approximate position of a point is given by the mean of the
likely positions deduced by the auxiliary objects. In addition,
in our approach for higher accuracy in the approximate feature
location we consider the scaling factor between the frames
when estimating the trajectory where the tracked point should
lie.

The accuracy of the tracking result is also evaluated by
measuring the Bhattacharryya distance between the RGB
histograms of the region defined by the corrected state ŝ+t
and the most recent true match defined by ŝ+f . Ideally,
these regions should represent the same image area and
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therefore should be described by similar RGB histograms.
The Bhattacharryya distance between two histograms is de-
fined as BD(HA,HB) =

√
1− ρ(HA,HB), where HA =

{hA
b }b=1...m (with

∑m
b=1 h

A
b = 1) represents the normalised

discrete density of the m-bin histogram of region A. The
normalised histogram density HB of region B is defined
in a similar way. In the above equation, ρ(HA,HB) stands
for the Bhattacharryya coefficient given by ρ(HA,HB) =
m∑
b=1

√
hA
b h

B
b . Using the Bhattacharryya distance, the dissim-

ilarity between two regions is defined as the mean distance
between the RGB histograms of the regions estimated as:

BDRGB(A,B) =
BD(HA

R ,HB
R ) +BD(HA

G ,HB
G )

3

+
BD(HA

B ,HB
B )

3

(12)

According to the above analysis, the region defined by the
corrected state ŝ+t will correspond to the true tracked feature
if the following conditions are satisfied:√

(x̂+
t − x̃t)2 + (ŷ+t − ỹt)2 < Υdrift

BDRGB(ŝ
+
t , ŝ

+
f ) < Υbhat

(13)

3.4 Recovery from Failure
For practical applications, conditions such as scene variations,
occlusions and illumination changes can affect feature corre-
spondence results, causing tracking failure. In such cases, the
tracker is not able to find a good match to the predicted region
defined by the EKF state ŝ−t (False Negative). It may also
follow a false positive if the matched features do not satisfy
the conditions in (13) (False Positive).

In this work, a novel approach is proposed to recover
tracking failure (eliminate FN and FP) by using the spatial
information of the features to boost the EKF state prediction.
To this end, the approximate location {x̃A

t , ỹ
A
t } derived from

the spatial context of the feature is considered to generate
a new prediction of the feature’s location at frame t. This
estimation is used to generate a “hypothetical” predicted state
ŝht , defined as:

ŝht =



x̃t

ỹt
x̃t − x̂+

t−1

ỹt − ŷ+t−1

θ̂t−1

ω̂t−1

r̂xt−1 + (x̃t − x̂+
t−1)

r̂yt−1 + (ỹt − ŷ+t−1)

k̂t−1


(14)

The aim of generating a hypothetical state is to rectify
EKF prediction that fails to correspond to any feature in the
search area, probably because the movement of the feature
does not satisfy the system’s motion model. By considering
the information provided by the auxiliary features, a new
hypothetical feature region is generated to facilitate feature
correspondences.

The state ŝht defines a search area Π and an elliptical region
that is compared to the affine-invariant anisotropic regions
included in Π. In case a correspondence is established, the
matched region becomes the measurement zt in the EKF
framework and a corrected state estimate ŝ+t is generated.
The tracking result ŝ+t is verified using the feature’s spatial
context and the Battacharryya distance, as described above.
If the region defined by ŝ+t is not a valid correspondence or
if it is not able to be matched to any of the features in the
search area Π, the state ŝht becomes the measurement zt in the
EKF framework to estimate the corrected state ŝ+t . A feature
is declared lost if the verification of the hypothetical state has
failed for a number of consecutive frames.

4 EXPERIMENTAL RESULTS

To assess the practical value of the proposed framework, the
performance of the method for detecting and tracking affine-
invariant anisotropic regions is evaluated and compared to the
state-of-the-art region detectors and trackers. Details on the
parameters used in this paper for the extraction and tracking
of affine-invariant features and the GPU implementation are
given in the Appendices. Two different data sets have been
used.

The first data set includes structured, real-world scenes with
homogeneous regions with distinctive edge boundaries and
textured real-world scenes characterised by different textures
[39]. The data set includes 8 sequences with varying imag-
ing conditions including scale and rotation changes, affine
transformation, illumination changes, as well as image blur
and JPEG compression. Each sequence contains 6 medium
resolution images (approximately 800 × 640 pixels) with a
gradual geometric and photometric transformation.

The second data set includes in vivo video sequences
recorded from robotic assisted MIS procedures. The sequences
involve scale and rotation changes due to the movement of the
endoscope, significant tissue deformation due to instrument-
tissue interaction, specular reflections, artefacts due to bleed-
ing and cauterisation induced smoke. The images are of
resolution 360× 288 pixels, in line with the output resolution
of the available endoscopic tools used in MIS and are available
from http://hamlyn.doc.ic.ac.uk/vision/.

4.1 Performance Evaluation of the Affine-Invariant
Anisotropic Feature Detector
The affine-invariant anisotropic feature detector is compared to
four popular region detectors namely, the SIFT (DoG) features
[13], the Harris-Affine detector, the Hessian-Affine detector
[8] and the MSER [7]. The selection for the above detectors
is based on the performance evaluation study presented in [10],
according to which the above feature detectors gave the highest
performance scores in most of the examined conditions.

The objective of the present evaluation study is to measure
to what extent the regions detected by the feature detectors
overlap exactly with the same image area. To this end, the
repeatability of the detectors is estimated as the average
number of corresponding regions detected in the images. The
repeatability score is defined as the ratio between the number
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Fig. 4: (a) Repeatability (%) scores for different number of scales and step size for the “Boat” sequence (b) Number of corresponding regions
for different number of scales and step size for the “Boat” sequence (c) Repeatability (%) scores for different number of scales and step size
for the “Graffiti” sequence (d) Number of corresponding regions for different number of scales and step size for the “Graffiti” sequence.

TABLE 1: Statistical analysis (mean(SOi
norm)± std(SOi

norm)) of the repeatability (%) scores (Eq.(15)) for the compared detectors.

Sequence SIFT [13] MSER [7] Hessian-Affine [8] Harris-Affine [8] Anisotropic
Real-World Data

Boat Sequence −1.65 ± 5.63 −5.24 ± 1.32 2.76 ± 4.00 −6.64 ± 0.56 10.77 ± 2.11
Bark Sequence 11.48 ± 5.12 −19.58 ± 10.99 4.81 ± 4.96 −12.19 ± 1.90 15.48 ± 11.72

Graffiti Sequence −16.13 ± 11.56 17.27 ± 10.08 3.07 ± 5.00 −6.53 ± 2.87 2.33 ± 6.92
Wall Sequence −0.20 ± 5.43 3.05 ± 6.21 −6.95 ± 3.21 −7.55 ± 4.17 11.65 ± 7.57
Bikes Sequence −1.49 ± 4.65 −12.25 ± 7.45 7.16 ± 3.43 −10.45 ± 1.11 17.03 ± 2.06
Trees Sequence 1.12 ± 1.89 −14.22 ± 1.10 1.38 ± 4.27 −2.62 ± 1.46 14.34 ± 2.43

Leuven Sequence −4.35 ± 1.01 5.45 ± 2.58 −5.55 ± 1.38 −14.55 ± 2.31 19.01 ± 2.42
UBC Sequence −12.26 ± 4.07 −24.10 ± 4.10 12.50 ± 2.67 6.50 ± 1.62 17.37 ± 4.38

MIS Data
Rotation Change (Fig.5a) −37.09 ± 5.17 3.77 ± 5.32 10.84 ± 3.05 11.22 ± 2.04 11.24 ± 2.91

Scale Change (Fig.5c) −59.26 ± 9.28 9.38 ± 6.78 11.62 ± 5.79 18.23 ± 5.39 20.03 ± 4.99
Image Blur (Fig.6a) −39.30 ± 8.50 −2.20 ± 7.75 −11.21 ± 8.83 7.13 ± 14.48 45.57 ± 12.93

Tissue Deform./ Illumination Change (Fig.5b) −54.90 ± 9.91 12.79 ± 5.94 4.62 ± 6.72 18.36 ± 5.07 19.12 ± 5.49
Tissue Deformation (Fig.5d) −62.66 ± 7.43 13.51 ± 6.24 15.10 ± 5.15 15.03 ± 6.59 19.02 ± 7.06

of region-to-region correspondences and the smallest number
of regions detected in the pair of images.

RepeatabilityI,J =
C(I, J)

min(nI , nJ)
(15)

where C(I, J) denotes the number of corresponding regions
between images I and J and nI , and nJ is the number of
detected regions in image I and J , respectively. Two regions
correspond if the overlap error defined in Eq. (8) is sufficiently
small. In our experiments, the threshold for the overlap error
that defines the region correspondences is set to 40% since
according to [10] it can guarantee successful region matching.

To enable more accurate estimation of repeatability, the ref-
erence regions are rescaled to a fixed size. In our experiment,
the fixed region size corresponds to a radius equal to 30 pixels,
in agreement with the evaluation study in [10]. Regarding the
region density, in order to compare our results of the first data
set to those given in [10], the parameters of the detectors are
tuned to the same values used in [10]. For the MIS sequences,
the parameters of the detectors are defined such that they all
output a similar number of regions, that is, 1600 regions are
detected on the reference frame of each video sequence. For
both data sets, the parameters to detect SIFT (DoG) features
were tuned to the values suggested by the author [36] and
were fixed for all the sequences.

4.2 Performance Evaluation of the Probabilistic
Tracking Framework
To evaluate the performance of the proposed probabilistic
tracking method, results from in vivo data are compared to
state-of-the-art feature trackers namely, the Pyramidal Lucas
Kanade tracker (PyrLK) [40], SIFT [36], Mean Shift [14],
Spatiograms [16], Incremental Visual Tracking (IVT) [18],
Fragments-based tracking (FragTrack) [17], Multiple Instance
Learning tracking (MilTrack) [22], Contextual Flow (Cont-
Flow) [31] and Online Learning tracking [28]. In the above
set, SIFT is the only tracker which does not have an estimation
method associated with it. Therefore, in order to enable a fair
comparison for SIFT, an extra step of Kalman filter is included
and the tracker is denoted by SIFT-KF.

The aim of this study is to evaluate how accurate the
tracking result is with respect to drift under varying condi-
tions such as image transformations, environment changes,
blur and illumination changes. The affine-invariant anisotropic
regions are used to estimate how efficient the tracker is for
establishing accurate feature correspondences and following
the true features along time. For this purpose, the sensitivity
of a given tracker is estimated as the number of correct
matches recovered between successive frames over the number
of correspondences:

Sensitivity =
# correct matches

# correspondences
(16)

A matching is correct if the actual feature location defined
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5: Sample frames taken from MIS data sequences with (a)
rotation changes (b) soft tissue deformation and illumination changes
(c) scale changes (d) soft tissue deformation (e) low quality and
respiration deformation (f) low quality and scale changes (g) scene
changes due to water (h) image blur and tissue deformation.

by the ground truth is included in the region representing the
matched salient point.

4.3 Statistical Analysis of the Performance Evalua-
tion Results
The slope of the repeatability and the sensitivity curves is
an indication of the robustness of the detector and the tracker,
respectively. However, unless the difference in the performance
of the compared operators is distinctive, the repeatability and
sensitivity curves do not provide sufficient information for
performance evaluation. In this regard, a statistical analysis
of the repeatability and the sensitivity scores is used.

In this work, the performance of an operator (detector/
tracker) is demonstrated with the mean and standard de-
viation of their performance scores (repeatability/ sensitiv-
ity) over time, estimated as mean(SOi

norm) and std(SOi
norm).

SOi
norm(t) = SOi

t − 1
N

N∑
j=1

S
Oj

t stands for the normalised scores

of operator Oi, SOi
t denotes the performance score of operator

Oi at time t, N is the total number of compared operators and

1
N

N∑
j=1

S
Oj

t is the mean of the performance scores of all the

compared operators at time t.
A good and consistent operator should have high mean and

low standard deviation. A negative mean(SOi
norm) denotes that

the average performance of operator Oi is below the mean
performance of the set of compared approaches.
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Fig. 6: Performance evaluation of region detectors with porcine data
with blur due to tissue cauterisation induced smoke. (a) Sample
frames taken from porcine data (b) Repeatability (%) scores over
time.

4.4 Region Detector Performance Evaluation on
Real-World and MIS Data

In the first set of experiments, we have evaluated the repeata-
bility of the compared region detectors for gradually increasing
transformations on a set of real-world scenes [39]. The images
are related by homographies, which are used to determine the
ground truth matches for the affine regions.

It is evident from Table 1 that the affine-invariant anisotropic
region detector outperforms the other detectors having the
highest mean of repeatability (%) scores under scale and
rotation changes for both structured and textured images. This
indicates the robustness of the scale-adapted c(x) measure
for providing an accurate estimation of the scale and spatial
location of the salient points. The statistical analysis of the
repeatability (%) scores for different degrees of image blur
confirms the high level of invariance of the anisotropic detector
to image blur and its ability to identify salient points in the
presence of weak features. In the case of changing light condi-
tions the affine-invariant anisotropic region detector performs
significantly better, followed by the MSER. For increasing
JPEG compression the proposed detector performs the best
with repeatability (%) scores higher than 80% for any degree
of compression.

The repeatability curves of the region detectors under
viewpoint changes with the “Graffiti” sequence are shown
in Fig. 1(c)-(d). The performance degradation for significant
viewpoint change can be explained by the fact that a view-
point change is in fact a perspective transformation, which
can be approximated by an affine transform only for small
angles. Although in our approach the scale and the location
of the salient points are not extracted in an affine invariant
way, the anisotropic detector outperforms the Hessian-Affine
and the Harris-Affine detectors for angles up to 40 degrees,
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while their repeatability (%) scores are comparable for greater
viewpoint changes. The invariance of the anisotropic region
detector to affine transformations for textured scenes with the
“Wall” sequence, shows that the anisotropic feature detector
performs best for viewpoint changes up to 50 degrees and
for angles greater than that, its performance decreased but is
still comparable to the Harris-Affine and the Hessian-Affine
detectors.

The effect of the number of scales and the step size on the
repeatability of the affine-invariant anisotropic region detector
is examined with further experimental results presented in Fig.
4. To this end, we use the “Boat” sequence which involves
scale change and the “Graffiti” which involves viewpoint
change. For the above analysis the initial scale remains con-
stant to 1.5 and 2 different scale ranges have been used,
covered with different number of scales and step size. A set of
repeatability (%) scores is estimated with 7 resolution levels
for the scale representation, with σ0 = 1.5 and ξ = 1.44.
This parameterisation results in scale levels ranging from 1.5
up to 1.5 × 1.447 = 19.2588. The same scale range is also
covered with 14 scale levels and ξ = 1.2. By setting the
number of resolution levels to 3 and the step between them
to 1.44, the range of the scale levels varies from 1.5 to
1.5 × 1.443 = 4.4790. The same scale range is also covered
with 6 scale levels and ξ = 1.2.

From the repeatability curves in Fig. 4(a)-(b), it can be
seen that the narrower the range of scale levels, the lower
the repeatability (%) scores of the anisotropic detector. This
is to be expected as low scale levels limit the range of the
region size for which the detector is designed, and therefore
large regions can not be modelled accurately. Furthermore,
when the scale range is narrow, a small step size boosts the
performance of the detector as it facilitates more accurate
detection of the location and the scale of the salient points.
The repeatability curves for the wide scale range show that
the anisotropic detector is relatively robust to the size of
the step when high scale levels are used. For the “Graffiti”
sequence the performance results for the above parameter
settings are comparable as shown in Fig. 4(c)-(d). The fact
that the performance of the detector under viewpoint change is
not significantly affected by the number of scales and the step
size can be justified by the fact for this type of transformation,
the degree of scale change is low.

The performance of the examined region detector has also
been quantitatively evaluated on MIS data. The ground truth
data for quantitative analysis is obtained manually by detailed
annotation by an experienced observer. In order to reduce the
computational complexity of the performance evaluation, a
sample of the initially detected features is examined along
time, i.e., a total number of 30 salient points detected by all
of the examined detectors at the reference frame.

In the in vivo porcine data in Fig. 5(a), the camera rotates
around its axis introducing for each frame different degrees of
in-plane rotation and small scale changes. The statistical anal-
ysis of the repeatability (%) scores in Table 1 shows that the
affine-invariant anisotropic region detector attains the highest
performance while MSER appears to be slightly more sensitive
to rotation changes. The repeatability of the region detectors
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Fig. 7: Performance evaluation of feature trackers with porcine data
with illumination changes. (a) Tracking results for two regions using
AnisEKF (yellow), ContFlow (blue) and MilTrack (green) on frames
10, 80, 150, 180 of the in vivo sequence with the ground truth
superimposed (white cross) (b) Sensitivity scores over time.

under different degrees of scale transformation is examined
with the porcine data in Fig. 5(c) where the camera moves
rapidly, introducing significant scale changes. According to
the statistical analysis results, the affine-invariant anisotropic
detector performs the best, followed by the Harris-Affine
detector, while the invariance level of the Hessian-Affine and
the MSER detector to scale changes is significantly lower.

The effect of introducing blur due to cauterisation induced
smoke on the repeatability of the detectors is investigated with
the sequence in Fig. 6(a). The examined porcine data is part
of a footage recording the dissection of the diaphragm to
provide access to the heart during a NOTES (Natural Orifice
Transluminal Endoscopic Surgery) procedure. The data also
involve significant deformation due to cardiac motion, artefacts
due to bleeding, specular reflections and instrument occlusion,
making feature tracking challenging. From the performance
results in Table 1 and Fig. 6(b), it is evident that the affine-
invariant anisotropic feature detector outperforms the other
detectors even in cases of severe blur. The low performance
of the MSER is anticipated as blurring makes the region
boundaries smoother, thus affecting the segmentation process.

Finally, the performance of the affine region detectors
is evaluated under soft tissue deformation and illumination
changes. Data from a Totally Endoscopic Coronary Artery
Bypass (TECAB) procedure at the point of insertion of the
mechanical stabiliser (Fig. 5(b)) and a footage part of a lung
lobectomy procedure (Fig. 5(d)) are used as they involve
significant deformation due to respiration and instrument-
tissue interaction. In both cases, the performance of the affine-
invariant anisotropic region detector is superior, followed by
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TABLE 2: Statistical analysis (mean(SOi
norm)± std(SOi

norm)) of the sensitivity scores (Eq.(16)) for the compared trackers.

Sequence MeanShift [14] PyrLK [40] SIFT [13] SIFT-KF Spatiograms [16] IVT [18]
Rotation Change (Fig.5a) −0.65 ± 0.13 0.33 ± 0.10 −0.36 ± 0.10 0.23 ± 0.08 −0.33 ± 0.17 0.29 ± 0.06

Scale Change (Fig.5c) −0.25 ± 0.13 0.38 ± 0.17 −0.27 ± 0.11 0.17 ± 0.18 −0.16 ± 0.10 0.06 ± 0.14
Image Blur (Fig.6a) −0.19 ± 0.23 −0.06 ± 0.16 −0.25 ± 0.18 −0.02 ± 0.11 −0.18 ± 0.10 −0.01 ± 0.16

Low Quality/ Resp. Deform. (Fig.5e) −0.54 ± 0.04 0.28 ± 0.09 −0.54 ± 0.04 −0.24 ± 0.10 −0.49 ± 0.06 0.35 ± 0.07
Low Quality/ Scale Change (Fig.5f) −0.19 ± 0.11 0.45 ± 0.06 −0.37 ± 0.09 0.00 ± 0.08 −0.32 ± 0.07 −0.13 ± 0.11
Image Blur/ Tissue Deform. (Fig.5h) −0.39 ± 0.10 0.32 ± 0.08 −0.34 ± 0.12 −0.04 ± 0.12 0.01 ± 0.15 0.03 ± 0.14
Scene Change due to Water (Fig.5g) −0.40 ± 0.09 0.07 ± 0.10 −0.46 ± 0.06 −0.11 ± 0.06 −0.18 ± 0.11 0.24 ± 0.06

Illumination Change (Fig.7a) −0.30 ± 0.10 0.14 ± 0.15 −0.31 ± 0.08 −0.07 ± 0.09 −0.28 ± 0.07 −0.10 ± 0.07
Online ContFlow [31] FragTrack [17] MilTrack [22] AnisEKF

Learning [28]
Rotation Change (Fig.5a) 0.32 ± 0.10 − 0.06 ± 0.20 −0.21 ± 0.31 0.32 ± 0.09

Scale Change (Fig.5c) − − −0.20 ± 0.08 −0.24 ± 0.15 0.50 ± 0.13
Image Blur (Fig.6a) 0.06 ± 0.18 0.13 ± 0.14 −0.13 ± 0.09 0.16 ± 0.15 0.47 ± 0.12

Low Quality/ Resp. Deform. (Fig.5e) 0.31 ± 0.15 0.10 ± 0.13 0.07 ± 0.07 0.43 ± 0.07 0.26 ± 0.12
Low Quality/ Scale Change (Fig.5f) 0.54 ± 0.06 − −0.31 ± 0.08 −0.13 ± 0.29 0.47 ± 0.09
Image Blur/ Tissue Deform. (Fig.5h) 0.38 ± 0.10 − −0.40 ± 0.14 0.05 ± 0.11 0.37 ± 0.13
Scene Change due to Water (Fig.5g) 0.25 ± 0.17 − 0.25 ± 0.03 0.22 ± 0.16 0.12 ± 0.18

Illumination Change (Fig.7a) 0.40 ± 0.13 0.09 ± 0.09 −0.19 ± 0.05 0.19 ± 0.18 0.43 ± 0.07

(a)

(b)

Fig. 8: Tracking results for two regions using (a) AnisEKF (red), IVT (cyan) and Spatiograms (green) on frames 1, 110, 130, 180 of the
sequence in Fig. 5(h) with the ground truth superimposed (yellow cross) (b) AnisEKF (red), IVT (yellow) and MilTrack (green) on frames
1, 120, 160, 180 of the in vivo sequence in Fig. 5(a) with the track paths and the ground truth superimposed (black cross).

the Harris-Affine and the MSER detectors. The Hessian-Affine
detector appears to be more sensitive to soft tissue deformation
and illumination changes.

The repeatability curves for all the real-world data and the
MIS sequences presented in the paper have been attached as
supplemental material.

4.5 Feature Tracking Performance Evaluation on
MIS Data

The effectiveness of different feature tracking techniques has
been quantitatively evaluated on in vivo MIS sequences. The
parameters for the compared approaches were tuned to the
values suggested by the authors of each technique and were
fixed for all the video sequences. The Online Learning tracker
[28] is designed to track regions of a fixed size equal to 21×21

pixels. All the other trackers evaluated were tuned according
to the initial size of the detected affine-invariant anisotropic
regions to be tracked, which in many cases was much smaller.
This translates to a performance bias in favour of the Online
Learning tracker due to the ability to consider larger, more
stable regions for feature matching. Nevertheless, the Online
Learning tracker has been included in the evaluation study for
the sake of completeness. It should be noted that the learning
framework can be integrated to the current tracking algorithm
to further enhance the performance of the method proposed.
The ground truth for the examined sequences has been defined
manually as explained previously.

The performance of the trackers under rotation and scale
changes is evaluated on the sequences in Fig. 5(a) and Fig.
5(c), respectively. According to the statistical analysis in Table
2, PyrLK provides comparable performance to our proposed
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(a) (b)

Fig. 9: Single feature tracking over time applying (a) AnisEKF (ribbon with green edges), IVT (ribbon with red edges) and MilTrack (ribbon
with blue edges) on the sequence in Fig. 5(f). (b) AnisEKF (ribbon with green edges) and MilTrack (ribbon with blue edges) on the sequence
in Fig. 5(g).

AnisEKF framework because it tracks features extracted by
our proposed detector. Mean Shift performed relatively poorly
under these image transformations because colour histograms
were estimated at a single scale and rotation was unobservable
when matching them. Spatiograms suffer from similar weak-
nesses. The MilTrack algorithm is based on single scale and
orientation and since the used features are, to some degrees,
scale and rotation invariant, the approach can not handle
significant scale changes. Fig. 8(b) shows an example of
MilTrack experiencing significant drift off one of the tracked
regions while with IVT the shape of the other region deforms
along time. In the same example, AnisEKF maintains accurate
feature locking on both tracked regions.

The performance of the trackers has also been evaluated
with low quality video data captured using a Medigus Camera
(1.8mm × 1.8mm size, 326 × 382 resolution) mounted on
an articulated laparoscopic robot during an intra-abdominal
exploration [41]. To this end, image sequences involving tissue
deformation due to respiration (Fig. 5(e)) and scale changes
due to tissue motion (Fig. 5(f)) have been examined. In
the case of respiration deformation the performance of the
AnisEKF is slightly lower than MilTrack and IVT due to
abrupt tissue movement which can not be handled by EKF.
Quantitative estimate of the tracking error of a single feature
for the sequence in Fig. 5(f) is presented in Fig. 9(a). The
ribbon plots show the position of the feature over time tracked
by AnisEKF, IVT and MiltTrack and the colourmap represents
the distance of the tracks from the ground truth. The low
tracking error of the AnisEKF shows its ability to follow the
tissue motion and adapt to scale changes even in low contrast
environments.

For the sequence shown in Fig. 5(g), significant changes in
the tracking environment are introduced due to the presence

of saline water used to clean the tissue surface during surgery.
The Online Learning tracker performs the best. This is due
to the extra step of updating the visual characteristics of
the tracked regions as the tracking progresses. As mentioned
earlier, such adaptation can be augmented to the proposed
tracking framework to further enhance its performance. Fig.
9(b) illustrates the trajectories of a single feature which lies
in the area that undergoes significant change, tracked with
MilTrack and AnisEKF. It is evident that MilTrack is affected
by the scene change moving far from the ground truth, whereas
AnisEKF gives a low tracking error as indicated by colours
on the ribbon surface.

One of the major advantages of the proposed probabilistic
framework against the other trackers is demonstrated on in
vivo data involving blur and significant surgical scene changes.
The effect of blur due to tissue cauterisation induced smoke
is examined with the sequences in Fig. 6(a) and Fig. 5(h). In
both cases, the performance of the compared trackers is lower
than AnisEKF showing their inefficiency to handle appearance
changes well. The success of the proposed framework can
be attributed to the hight repeatability of the affine-invariant
anisotropic regions under blur, as shown in Table 1 and Fig.
6. The robustness of AnisEKF is also illustrated in Fig. 8(a)
by tracking a pair of features on the footage of Fig. 5(h),
which involves blur due to smoke combined with occlusion
and tissue deformation due to tissue-tool interaction. One of
the examined features lies close to the affected area while the
other one is far from it. IVT and Spatiograms drift away from
both regions along time while AnisEKF successfully follows
both of them.

Another strength of AnisEKF is shown by examining the
effect of changing illumination conditions on feature tracking.
For that purpose in vivo data has been used, collected during
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intra-abdominal exploration where an articulated laparoscope
present in the field of view is moving, shedding light at
different areas of the abdomen as shown in Fig. 7(a). The
sensitivity scores presented in Fig. 7(b) and the statistical
results in Table 2 demonstrate the robustness of the proposed
probabilistic tracking approach and its relative performance
compared to the other trackers. The superiority of AnisEKF
against MilTrack and ContFlow is also illustrated in Fig. 8(c).
This is another example of the inability of the compared
tracking approaches to adapt to changes in the appearance of
the tracked features.

The results for trackers such as Mean Shift, SIFT and
Spatiograms for the surgical scenes evaluated can be attributed
to the nature of their appearance model which is not adaptive
over time. Therefore, they are not sufficiently discriminative
for tracking small regions within changing environments. The
measured performance of the Contextual Flow approach is
explained by the fact that it is not designed for small target
tracking because context is difficult to model when the target
is small. It generally requires to integrate many salient points,
and therefore is more suited to a large rigid object - a condition
that is difficult to satisfy for MIS sequences. Furthermore, the
low contrast environment also affects the tracking result.

The sensitivity curves for all the in vivo MIS data have been
attached as supplemental material.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have presented an affine-invariant anisotropic
feature detector and its GPU based real-time implementation
for tissue deformation tracking. One of the advantages of the
proposed approach is the incorporation of local anisotropism to
identify salient features which gives the detector the advantage
to handle isotropic features efficiently. Another novel aspect
is the proposed scale-space representation which is based on
the strength of the detected features, responds only to features
with low anisotropism and therefore deals with the drawbacks
of LoG and DoG. The proposed scale-space representation is
computationally efficient as the function employed to identify
characteristic scales is part of the anisotropic feature detector
and has already been estimated at the feature identification
step. The parallelisable structure of the algorithm enables an
efficient real-time GPU implementation. Performance evalua-
tion shows that, thanks to its repeatability the proposed feature
detector can be combined with a simple probabilistic tracking
method and still perform favourably compared to existing
techniques in challenging conditions.

The proposed detector can effectively deal with linear illu-
mination variations but it is expected that the performance will
degrade under complex illumination changes. A performance
degradation is also expected for significant viewpoint changes
as a viewpoint change is in effect a perspective transformation,
which can be approximated by an affine transform only
for small angles. In MIS, where most surgical sequences
involve progressive camera movement, this compromise in fact
works well as the computational complexity of the proposed
technique is low, enabling its use in real time applications
such as image-guided interventions. Furthermore, due to the

progressive motion of the light source, abrupt illumination
changes are unlikely, thus making linear approximation of
illumination variation acceptable.

In the second part of the paper, an EKF parameterisation
based on the elliptical parameters of anisotropic regions is
used to adaptively estimate the optimal template, enabling the
accurate identification and matching of the tracked features in
video sequences. Furthermore, spatial context is used to boost
the prediction of the EKF and recover tracking failure due to
drift or false positive features.

The strength of the proposed technique is the reliable feature
detection and tracking under changing visual appearance of
the surgical environment. The presented performance analysis
results on data with significant blur due to cauterisation smoke,
illumination changes, occlusion due to the presence of surgical
tools or insertion of saline water and deformation due to
respiratory motion and instrument-tissue interaction, verify
the suitability of the proposed framework against existing
techniques for real medical applications. Furthermore, the
GPU based real-time implementation of the affine-invariant
anisotropic feature detector enables its use in real-time applica-
tions. The proposed method can therefore be used as the basis
for 3D deformation recovery, intra-operative image registration
and motion adapted tissue stabilisation.
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