
Inductive Logic Programming 1.1

Inverting Entailment and Progol

Stephen Muggleton

Department of Computing

Imperial College, London

5th July, 2018

0-0



Overview of Inductive Logic Programming

Lecture 1.1 Inverse entailment and Progol [1+2]

Lecture 1.2 Meta-Interpretive Learning of grammars [3]

Lecture 1.3 MIL for Dyadic Datalog [4]

Lecture 2.1 MIL and bias reformulation [5]

Lecture 2.2 Meta-Interpretive Learning from noisy images [6]

Lecture 2.3 Stochastic Logic Programs and Bayesian

Meta-Interpretive Learning [7,8]



Lecture material

Lecture material available from:

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.2.pdf

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.3.pdf

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture2.1.pdf

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture2.2.pdf

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture2.3.pdf

...



Papers for Lecture 1.1

Paper01: S.H. Muggleton. Inverse entailment and Progol. New

Generation Computing, 13:245-286, 1995.

Paper02: S.H. Muggleton and C.H. Bryant. Theory completion

using inverse entailment. In Proc. of the 10th International

Workshop on Inductive Logic Programming (ILP-00), pages

130-146, Berlin, 2000. Springer-Verlag.



What is generalisation?

Statement A Daffy Duck can fly

Statement B All ducks can fly

Statement C Marek lives in London

Statement D Marek lives in England



Simple generalisation

Atom and Clause Subsumption

Given a substitution θ = {v1/t1, . . . , vn/tn} and formula F . Fθ is

formed by replacing every variable vi in F by ti.

Atom A subsumes atom B, A � B , iff there exists a substitution θ

such that Aθ = B.

Clause C subsumes clause D, C � D , iff there exists a substitution θ

such that Cθ ⊆ D.



Generalisation example revisited

Daffy Duck can fly can fly(daffy)

All ducks can fly can fly(x)

can fly(x) � can fly(daffy)

θ = {x/daffy}



Generalisation as entailment

Entailment

C more general than D iff C |= D

Relative Entailment

C more general than D wrt B iff B,C |= D



Generalisation - harder example

C Marek lives in London lives(marek,london)

D Marek lives in England lives(marek,england)

Background knowledge

lives(x,england) ← lives(x,london)



ILP general logical setting

B Background Knowledge - Logic Program

E Examples - Set of ground unit clauses

H Hypothesis - Logic Program

Given B,E find H such that

B,H |= E



Search and refinement

Given B,E find H such that

B,H |= E

Q : Algorithmically how do we find H given B,E?

A : Search space of clauses from simple to complex (general to

specific) or complex to simple (specific to general). This process is

called Clause Refinement .



Shapiro refinement graph ρ

lives(U,U) <− lives(marek,V) <−lives(U,V) <− lives(W,X)

lives(U,V) <−



Infinite descent search space

(Shapiro’s MIS, Quinlan’s FOIL)

H

✷ � H



Inverting entailment

B ∧H |= E

B ∧ E |= H

B ∧ E |= ⊥ |= H

H |= ⊥



Finite interval search space (Progol)

H

✷ � H � ⊥



Effect of ⊥

Search reduction using ⊥ in mutagenesis domain

• average ⊥ clause 26 atoms

• consider clauses with at most 3 atom/bond literals in body

• hypothesis space without ⊥ is 3.5× 107 clauses

• hypothesis space with bottom 2.5× 103 clauses

• average pruned admissible search 2500 clauses



Summary

• Logical entailment provides a general framework for the notion of

generalisaton.

• Refinement provides a mechanism for search through the space of

generalisatons.

• Inverse entailment is a model-theoretic approach to ILP based on

algebraic transformation of logical constraints.

• Progol uses admissible search and is efficient because it supports

finite interval search.

• Mutagenesis example shows that finite interval is much more

efficient than infinite descent search.


