Inductive Logic Programming 1.1

Inverting |

“ntallment and Progol

Stephen Muggleton
Department of Computing
Imperial College, London

5th July, 2018

Overview of Inductive Logic Programming

Lecture 1.1
Lecture 1.2
Lecture 1.3

Lecture 2.1
Lecture 2.2
Lecture 2.3

Inverse entailment and Progol [1+2]

Meta-Interpretive Learning of grammars (3]

MIL for Dyadic Datalog [4]

MIL and bias reformulation [5]

Meta-Interpretive Learning from noisy images [6]
Stochastic Logic Programs and Bayesian

Meta-Interpretive Learning [7,8]

Lecture material

Lecture material available from:

.uk/~“shm/FLOC_ILP/Lecturel.
.uk/~“shm/FLOC_ILP/Lecturel.
.uk/~“shm/FLOC_ILP/Lecturel.
.uk/~“shm/FLOC_ILP/Lecture?2.
.uk/~“shm/FLOC_ILP/Lecture?2.
.uk/~“shm/FLOC_ILP/Lecture?2.

Papers for Lecture 1.1

Paper01: S.H. Muggleton. Inverse entailment and Progol. New
Generation Computing, 13:245-286, 1995.

Paper02: S.H. Muggleton and C.H. Bryant. Theory completion

using inverse entailment. In Proc. of the 10th International

Workshop on Inductive Logic Programming (ILP-00), pages
130-146, Berlin, 2000. Springer-Verlag.

What is generalisation?

Statement A
Statement B

Statement C
Statement D

Dafty Duck can fly
All ducks can fly

Marek lives in London

Marek lives in England

Simple generalisation

Atom and Clause Subsumption

Given a substitution 6 = {vy/t1,...,v,/t,} and formula F. F0 is

formed by replacing every variable v; in F' by ¢t;.

Atom A subsumes atom B, A > B , iff there exists a substitution 6
such that A0 = B.

Clause C subsumes clause D, C' = D , iff there exists a substitution 6
such that C6 C D.

Generalisation example revisited

Daffy Duck can fly | can_fly(dafty)

All ducks can fly can_fly(x)

can_fly(x) = can_fly(dafty)
0 = {x/daffy}

Generalisation as entailment

Entailment

C' more general than D iff C = D

Relative Entailment

C' more general than D wrt B iff B,C = D

Generalisation - harder example

C Marek lives in London | lives(marek,london)

D Marek lives in England | lives(marek,england)

Background knowledge

lives(x,england) < lives(x,london)

ILP general logical setting

B Background Knowledge - Logic Program
E Examples - Set of ground unit clauses

H Hypothesis - Logic Program
Given B, F find H such that

B.HEE

Search and refinement

Given B, F find H such that

B.HEE

Q : Algorithmically how do we find H given B, E?

A : Search space of clauses from simple to complex (general to

specific) or complex to simple (specific to general). This process is

called Clause Refinement .

Shapiro refinement graph p

L]

lives(U,V) <-

lives(U,V) <- lives(W,X)

lives(U,U) <—

lives(marek,V) <+

Infinite descent search space
(Shapiro’s MIS, Quinlan’s FOIL)

Inverting entailment

BANHEE
BANEEH

BANEEL1LEH

HE L

Finite interval search space (Progol)

N

N

Effect of L

Search reduction using | in mutagenesis domain
e average | clause 26 atoms

consider clauses with at most 3 atom/bond literals in body

hypothesis space without L is 3.5 x 107 clauses

hypothesis space with bottom 2.5 x 10° clauses

average pruned admissible search 2500 clauses

Summary

Logical entailment provides a general framework for the notion of

generalisaton.

Refinement provides a mechanism for search through the space of

generalisatons.

Inverse entailment is a model-theoretic approach to ILP based on

algebraic transformation of logical constraints.

Progol uses admissible search and is efficient because it supports

finite interval search.

Mutagenesis example shows that finite interval is much more

efficient than infinite descent search.

