
Machine Learning Journal manuscript No.
(will be inserted by the editor)

Meta-Interpretive Learning of Higher-Order Dyadic
Datalog:

Predicate Invention revisited

Stephen H. Muggleton · Dianhuan Lin ·

Alireza Tamaddoni-Nezhad

Received: date / Accepted: date

Abstract Since the late 1990s Predicate Invention has been under-explored
within Inductive Logic Programming due to difficulties in formulating efficient
search mechanisms. However, a recent paper demonstrated that both predi-
cate invention and the learning of recursion can be efficiently implemented
for regular and context-free grammars, by way of metalogical substitutions
with respect to a modified Prolog meta-interpreter which acts as the learning
engine. New predicate symbols are introduced as constants representing ex-
istentially quantified higher-order variables. The approach demonstrates that
predicate invention can be treated as a form of higher-order logical reasoning.
In this paper we generalise the approach of Meta-Interpretive Learning (MIL)
to that of learning higher-order dyadic datalog programs. We show that with
an infinite signature the higher-order dyadic datalog class H2

2 has universal
Turing expressivity though H2

2 is decidable given a finite signature. Addition-
ally we show that Knuth-Bendix ordering of the hypothesis space together
with logarithmic clause bounding allows our MIL implementation MetagolD
to PAC-learn minimal cardinally H2

2 definitions. This result is consistent with
our experiments which indicate that MetagolD efficiently learns compact H2

2
definitions involving predicate invention for learning robotic strategies, the
East-West train challenge and NELL. Additionally higher-order concepts were
learned in the NELL language learning domain. The Metagol code and datasets
described in this paper have been made publicly available on a website to allow
reproduction of results in this paper.

1 Introduction

Suppose we machine learn a set of kinship relations such as those in Figure 1.
If examples of the ancestor relation are provided and the background contains

S.H. Muggleton · D. Lin · A. Tamaddoni-Nezhad
Department of Computing, Imperial College London
Tel.: +44 20 7594 8307
Fax: +44 20 7581 8024
E-mail: s.muggleton@imperial.ac.uk

2 Stephen H. Muggleton et al.

only father and mother facts, then a system must not only be able to learn
ancestor as a recursive definition but also simultaneously invent parent to learn
these definitions.

Family Tree

Jake

Jo

Sam

Megan

Alice

Jill

Jane

Bob

Liz

John
Mary

Susan

Bill

Matilda

Ted

Harry

Andy

Target Theory
father(ted, bob) ←
father(ted, jane) ←
parent(X, Y) ← mother(X, Y)
parent(X, Y) ← father(X, Y)
ancestor(X, Y) ← parent(X, Y)
ancestor(X, Y) ← parent(X, Z), ancestor(Z, Y)

First-order Metalogical substitutions
Examples

ancestor(jake, bob) ←
ancestor(alice, jane) ←

N/A

Background Knowledge
father(jake, alice) ←
mother(alice, ted) ←

N/A

Instantiated Hypothesis
father(ted, bob) ←
father(ted, jane) ←
p1(X, Y) ← father(X, Y)
p1(X, Y) ← mother(X, Y)
ancestor(X, Y) ← p1(X, Y)
ancestor(X, Y) ← p1(X, Z),

ancestor(Z, Y)

metasub(instance, [father, ted, bob])
metasub(instance, [father, ted, jane])
metasub(base, [p1, father])
metasub(base, [p1, mother])
metasub(base, [ancestor, p1])
metasub(tailrec, [ancestor, p1, ancestor])

Fig. 1 Kinship example. p1 invented, representing parent.

Although the topic of Predicate Invention was investigated in early In-
ductive Logic Programming (ILP) research [31,46] it is still seen as hard
and under-explored [36]. ILP systems such as ALEPH [45] and FOIL [41]
have no predicate invention and limited recursion learning and therefore can-
not learn recursive grammars from example sequences. By contrast, in [34]
definite clause grammars were learned with predicate invention using Meta-
Interpretive Learning (MIL). MIL [32,33,22] is a technique which supports
efficient predicate invention and learning of recursive logic programs built
as a set of metalogical substitutions by a modified Prolog meta-interpreter
(see Figure 2) which acts as the central part of the ILP learning engine. The
meta-interpreter is provided by the user with meta-rules (see Figure 3) which
are higher-order expressions describing the forms of clauses permitted in hy-
pothesised programs. As shown in Figure 3 each meta-rule has an associated
Order constraint, which is designed to ensure termination of the proof (see Sec-
tion 4.1). The meta-interpreter attempts to prove the examples and, for any
successful proof, saves the substitutions for existentially quantified variables
found in the associated meta-rules. When these substitutions are applied to
the meta-rules they result in a first-order definite program which is an induc-
tive generalisation of the examples. For instance, the two examples shown in

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 3

Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(Name, MetaSub, (Atom :- Body), Order),
Order,
save subst(metasub(Name, MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Fig. 2 Prolog code for the generalised meta-interpreter. The interpreter recursively proves
a series of atomic goals by matching them against the heads of meta-rules. After testing the
Order constraint save subst checks whether the meta-substitution is already in the program
and otherwise adds it to form an augmented program. On completion the returned program,
by construction, derives all the examples.

Name Meta-Rule Order
Instance P (X, Y) ← True
Base P (x, y) ← Q(x, y) P ≻ Q
Chain P (x, y) ← Q(x, z), R(z, y) P ≻ Q, P ≻ R
TailRec P (x, y) ← Q(x, z), P (z, y) P ≻ Q,

x ≻ z ≻ y

Fig. 3 Examples of dyadic meta-rules with associated Herbrand ordering constraints. ≻ is
a pre-defined ordering over symbols in the signature.

the upper part of Figure 1 could be proved by the meta-interpreter in Figure
2 from the Background Knowledge BK by generating the Hypothesis H using
the Prolog goal

← prove([ancestor, jake, bob], [ancestor, alice, jane], BK,H).

H is constructed by applying the metalogical substitutions in Figure 1 to
the corresponding meta-rules found in Figure 3. Note that p1 is an invented
predicate corresponding to parent.

Completeness of SLD resolution ensures that all hypotheses consistent with
the examples can be constructed. Moreover, unlike many ILP systems, only hy-
potheses consistent with all examples are considered. Owing to the efficiency of
Prolog backtracking MIL implementations have been demonstrated to search
the hypothesis space 100-1000 times faster than state-of-the-art ILP systems
[34] in the task of learning recursive grammars1. In this paper we investigate
MIL’s efficiency and completeness with respect to the broader class of Dyadic
Datalog programs. We show that a fragment of this class is Turing equivalent,
allowing the learning of complex recursive programs such as robot strategies.

1.1 Organisation of paper

The paper is organised as follows. In Section 2 we provide a comparison to
related work. Section 3 describes the MIL framework. The implementation of
the MetagolD

2 system is then given in Section 4. Experiments on predicate
invention and recursion for 1) structuring robot strategies, 2) the East-West

1 MetagolR and MetagolCF learn Regular and Context-Free grammars respectively.
2 MetagolD learns Dyadic Datalog programs.

4 Stephen H. Muggleton et al.

trains competition data and 3) construction of concepts for the NELL language
learning domain are given in Section 5 together with a reference to the website
from which the Metagol code and datasets can be obtained. Lastly we conclude
the paper and discuss future work in Section 6.

2 Related work

Predicate Invention has been viewed as an important problem since the early
days of ILP (e.g. [31,42,46]) since it is essential for automating the introduc-
tion of auxiliary predicates within top-down programming. Early approaches
were based on the use of W operators within the inverting resolution frame-
work [31,42]. However, apart from the inherent problems in controlling the
search, the completeness of these approaches was never demonstrated, partly
because of the lack of a declarative bias to delimit the hypothesis space. This
led to particular limitations such as the approaches being limited to introduc-
ing a single new predicate call as the tail literal of the calling clause. Failure
to address these issues has led to limited progress being made in this impor-
tant topic over a protracted period [36]. In the MIL framework described in
[34] and in this paper, predicate invention is conducted via construction of
substitutions for meta-rules employed by a meta-interpreter. The use of the
meta-rules clarifies the declarative bias being employed. New predicate names
are introduced as higher-order skolem constants, a finite number of which are
introduced during every iterative deepening of the search.

MIL is related to other studies where abduction has been used for predicate
invention (e.g. [15]). One important feature of MIL, which distinguishes it from
other existing approaches, is that it introduces new predicate symbols which
represent relations rather than new objects or propositions. This is critical for
challenging applications such as robot planning. The NELL language learning
task (Section 5.3) separately demonstrates MIL’s abilities for learning higher-
order concepts such as symmetry.

By comparison with other forms of declarative bias in ILP, such as modes
[30,45] or grammars [3], meta-rules are logical statements. This provides the
potential for reasoning about them and manipulating them alongside normal
first-order background knowledge. For instance, in [4] it is demonstrated that
sets of irreducible, or minimal sets of meta-rules can be found automatically
by applying Plotkin’s clausal theory reduction algorithm to an enumeration
of all meta-rules in a given finite hypothesis language, resulting in meta-rules
which exhibit lower runtimes and higher predictive accuracies. Moreover logical
equivalence with the larger set ensures completeness of the reduced set.

The use of proof-completion in MIL is in some ways comparable to that
used in Explananation-Based Generalisation (EBG) [8,17,28]. In EBG the
proof of an example leads to a specialisation of the given domain theory lead-
ing to the generation of a special-purpose sub-theory described within a user-
defined operational language. By constrast, in MIL the derivation of the exam-
ples is made from a higher-order program, and results in a first-order program
based on a set of substitutions into the higher-order variables. A key difference
is that inductive generalisation and predicate invention are not achieved in ex-
isting EBG paradigms, which assume a complete first-order domain theory.
By contrast, induction, adbuction and predicate invention are all achieved in
MIL by way of the meta-rules. Owing to the existentially quantified variables

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 5

in the meta-rules, the resulting first-order theories are strictly logical gener-
alisation of the meta-rules. Viewed from the perspective of Formal Metohds,
the meta-rules in MIL can be viewed as a Program Specification in the style
advocated by Tony Hoare [12,13].

Although John McCarthy long advocated the use of higher-order logic for
representing common sense reasoning [24], most knowledge representation lan-
guages avoid higher-order quantification owing to problems with decidability
[14] and theorem-proving efficiency. λ-Prolog [27], is a notable exception which
achieves efficient unification through assumptions on the flexibility of terms.
Various authors [11,23] have advocated higher-order logic learning frameworks.
However, to date these approaches have difficulties in incorporation of back-
ground knowledge and compatibility with more developed logic programming
frameworks. Second-order logic clauses are used by Davis and Domingo [5]
as templates for rule learning in Markov logic. Here tractability is achieved
by avoiding theorem proving. Higher-order rules have also been encoded in
first-order Markov Logic [44] to bias learning in tasks involving knowledge ex-
traction from text. As a knowledge representation, higher-order datalog (see
Section 3), first introduced in [39], has advantages in being both expressive
and decidable. The NELL language application (Section 5.3) demonstrates
that higher-order concepts can be readily and naturally expressed in H2

2 and
learned within the MIL framework.

Relational Reinforcement [10] has been used in the context of learning robot
strategies [16,9]. However, unlike the approach for learning recursive robot
strategies described in Section 5.1 the Relational Reinforcement approaches are
based on the use of ground instances and do not involve predicate invention to
extend the relational vocabulary provided by the user. The approach of Pasula
and Lang [40] for learning STRIPS-like operators in a relational language is
closer to the approach described in Section 5.1, but is restricted to learning
non-recursive operators and does not involve predicate invention.

3 MIL framework

3.1 Logical notation

A variable is represented by an upper case letter followed by a string of lower
case letters and digits. A function symbol is a lower case letter followed by a
string of lower case letters and digits. A predicate symbol is a lower case letter
followed by a string of lower case letters and digits. The set of all predicate
symbols is referred to as the predicate signature and denoted P. An arbitrary
reference total ordering over the predicate signature is denoted ºP . The arity
of a function or predicate symbol is the number of arguments it takes. A
constant is a function or predicate symbol with arity zero. The set of all
constants is referred to as the constant signature and denoted C. An arbitrary
reference total ordering over the constant signature is denoted ºC . Functions
and predicate symbols are said to be monadic when they have arity one and
dyadic when they have arity two. Variables and constants are terms, and a
function symbol immediately followed by a bracketed n-tuple of terms is a
term. A variable is first-order if it can be substituted for by a term. A variable
is higher-order if it can be substituted for by a predicate symbol. A predicate
symbol or higher-order variable immediately followed by a bracketed n-tuple

6 Stephen H. Muggleton et al.

of terms is called an atomic formula or atom for short. The negation symbol is
¬. Both A and ¬A are literals whenever A is an atom. In this case A is called a
positive literal and ¬A is called a negative literal. A finite set (possibly empty)
of literals is called a clause. A clause represents the disjunction of its literals.
Thus the clause {A1, A2, ..¬Ai,¬Ai+1, ...} can be equivalently represented as
(A1 ∨A2 ∨ ..¬Ai ∨¬Ai+1 ∨ ...) or A1, A2, .. ← Ai, Ai+1, A Horn clause is a
clause which contains at most one positive literal. A Horn clause is unit if and
only if it contains exactly one literal. A denial or goal is a Horn clause which
contains no positive literals. A definite clause is a Horn clause which contains
exactly one positive literal. The positive literal in a definite clause is called the
head of the clause while the negative literals are collectively called the body
of the clause. A unit clause is positive if it contains a head and no body. A
unit clause is negative if it contains one literal in the body. A set of clauses
is called a clausal theory. A clausal theory represents the conjunction of its
clauses. Thus the clausal theory {C1, C2, ...} can be equivalently represented
as (C1 ∧ C2 ∧ ...). A clausal theory in which all predicates have arity at most
one is called monadic. A clausal theory in which all predicates have arity at
most two is called dyadic. A clausal theory in which each clause is Horn is
called a logic program. A logic program in which each clause is definite is
called a definite program. Literals, clauses and clausal theories are all well-
formed-formulae (wffs) in which the variables are assumed to be universally
quantified. Let E be a wff or term and σ, τ be sets of variables. ∃σ.E and
∀τ.E are wffs. E is said to be ground whenever it contains no variables. E is
said to be higher-order whenever it contains at least one higher-order variable
or a predicate symbol as an argument of a term. E is said to be datalog if
it contains no function symbols other than constants. A logic program which
contains only datalog Horn clauses is called a datalog program. The set of
all ground atoms constructed from P, C is called the datalog Herbrand Base.
θ = {v1/t1, .., vv/tn} is a substitution in the case that each vi is a variable and
each ti is a term. Eθ is formed by replacing each variable vi from θ found in E
by ti. µ is called a unifying substitution for atoms A,B in the case Aµ = Bµ.
We say clause C θ-subsumes clause D or C ºθ D whenever there exists a
substitution θ such that Cθ ⊆ D.

3.2 Framework

We first define the higher-order meta-rules used by the Prolog meta-interpreter.

Definition 1 (Meta-rules) A meta-rule is a higher-order wff

∃σ∀τP (s1, .., sm) ← .., Qi(t1, .., tn), ..

where σ, τ are disjoint sets of variables, P,Qi ∈ σ∪τ∪P and s1, .., sm, t1, .., tn ∈
σ ∪ τ ∪ C. Meta-rules are denoted concisely without quantifiers as

P (s1, .., sm) ← .., Qi(t1, .., tn), ..

The quantified version of the meta-rules in Figure 3 is shown in Figure 4. In
general, unification is known to be semi-decidable for higher-order logic [14].
We now contrast the case for higher-order datalog programs.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 7

Name Meta-Rule Quantified version
Instance P (X, Y) ← ∃PXY P (X, Y)
Base P (x, y) ← Q(x, y) ∃PQ∀xy P (x, y) ← Q(x, y)
Chain P (x, y) ← Q(x, z), R(z, y) ∃PQR∀xyz P (x, y) ← Q(x, z), R(z, y)
TailRec Same as Chain

Fig. 4 Quantification of meta-rules in Figure 3.

Meta-Substitution Higher-order substitution
metasub(instance, [father, ted, bob]) {P/father, X/ted, Y/bob}
metasub(base, [ancestor, p1]) {P/ancestor, Q/p1}
metasub(tailrec, [ancestor, p1, ancestor]) {P/ancestor, Q/p1, R/ancestor}

Fig. 5 Relationship between meta-substitutions used by the meta-interpreter and higher-
order substitutions.

Proposition 1 (Decidable unification) Given higher-order datalog atoms
A = P (s1, .., sm), B = Q(t1, .., tn) the existence of a unifying substitution µ is
decidable.
Proof. A,B has unifying substitution µ iff p(P, s1, .., sm)µ = p(Q, t1, .., tn)µ.

Figure 5 shows for the meta-rules from Figure 3 of the relationship between
the meta-substitutions constructed by the meta-interpreter (Figure 2) and
higher-order substitutions of existential variables.

Definition 2 (MIL setting) Given meta-rules M , definite program back-
ground knowledge B and ground positive and negative unit examples E+, E−,
MIL returns a higher-order datalog program hypothesis H if one exists such
that M,B,H |= E+ and M,B,H,E− is consistent.

The following describes decidable conditions for MIL.

Theorem 1 (MIL decidable) The MIL setting is decidable in the case
M,B,E+, E− are Datalog and P, C are finite.
Proof. Follows from the fact that the set of Herbrand interpretations is finite.

3.3 Learning from interpretations

The MIL setting is an extension of the Normal semantics setting [35] of ILP.
We now consider whether a variant of MIL could be formulated within the
Learning from Interpretations setting [6] in which examples are pairs 〈I, T 〉
where I is a set of ground facts (an interpretation) and T is a truth value. In
this case each interpretation I will be a subset of the datalog Herbrand Base,
which is constructed from P and C. To account for predicate invention we
assume that P ′ ⊆ P and C′ ⊆ C represent uninterpreted predicates and con-
stants respectively, whose interpretation is assigned by the Meta-interpreter.
Since the user has no ascribed meaning for P ′ and C′, it would not be possible
to provide examples containing full interpretations, and therefore the Learning
from Interpretations setting is inappropriate. Clearly, a variant of the Learn-
ing from Interpretations setting could be introduced in which examples are
represented as incomplete interpretations.

8 Stephen H. Muggleton et al.

3.4 Language classes and expressivity

We now define language classes for instantiated hypotheses.

Definition 3 (Hi
j program class) Assuming i, j are natural, the class Hi

j

contains all higher-order definite datalog programs constructed from signatures
P, C with predicates of arity at most i and at most j atoms in the body of
each clause.

The class of dyadic logic programs with one function symbol has Universal
Turing Machine (UTM) expressivity [48]. Note that H2

2 is sufficient for the
kinship example in Section 1. This fragment also has UTM expressivity, as
demonstrated by the following H2

2 encoding of a UTM in which S, S1, T rep-
resent Turing machine tapes.

utm(S,S) ← halt(S).
utm(S,T) ← execute(S,S1), utm(S1,T).
execute(S,T) ← instruction(S,F), F(S,T).

We assume the UTM has a suitably designed set of machine instructions rep-
resenting functions of the form

f : T → T

where T is the set of all Turing machine tapes. Below assume G is a datalog
goal and program P ∈ H2

2 .

Proposition 2 (Undecidable fragment of H2
2) The satisfiability of G,P

is undecidable when C is infinite.
Proof. Follows from undecidability of halting of UTM above.

The situation differs in the case C is finite.

Theorem 2 (Decidable fragment of H2
2) The satisfiability of G,P is de-

cidable when P, C is finite.
Proof. The set of Herbrand interpretations is finite.

The universality of the H2
2 fragment is established by the existence of the UTM

above. However, there are many concepts for which this approach would lead
to a cumbersome and inefficient approach to learning. For instance, consider
the following definition of an undirected edge.

undirected(A,B) : −edge(A,B), edge(B,A).

A program for the UTM above would be required to search through each pair
of edges to find a pair of nodes A,B with associated edges in each direction.
As a deterministic program this is non-trivial and is likely to involve two iter-
ative loops. However, the clause above is directly and compactly representable
within H2

2 given the following meta-rule.

P (x, y) ← Q(x, y), R(y, x)

Thus effective use of meta-rules can lead to a more constrained and effective
search. Although the meta-interpreter in Figure 2 can be applied to meta-
rules containing more than two atoms in the body, we limit ourselves to the
H2

2 fragment throughout this paper. This restriction limits the number of
possible meta-rules and forces more prolific predicate invention, leading to
more opportunities for internal re-use of part of the hypothesised program.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 9

4 Implementation

The MetagolD system is an implementation of the MIL setting in Yap Prolog
and is based around the general Meta-Interpreter shown in Section 1. The
modifications are aimed at increasing efficiency of a Prolog backtracking search
which returns the first satisfying solution of a goal

← ..e+
i , .., not(e−j), ..

where e+
i ∈ E+ and e−j ∈ E− and not represents negation by failure. In par-

ticular, the modifications include methods for a) ordering the Herbrand Base,
b) returning a minimal cardinality hypothesis, c) logarithmic clause bound-
ing and d) use of a series of episodes for ordering multi-predicate incremental
learning.

4.1 Ordering the Herbrand Base

Within ILP, search efficiency depends on the partial order of θ-subsumption
[37]. Similarly in MetagolD search efficiency is achieved using a total order-
ing over the Herbrand Base to constrain deductive, abductive and inductive
operations carried out by the Meta-Interpreter and to reduce redundancy in
the search. In particular, we employ Knuth-Bendix [18,53] (lexicographic) as
well as interval inclusion total orderings over the Herbrand Base to guarantee
termination. Termination is guaranteed because atoms higher in the Herbrand
Base are always proved by ones lower in the ordering. Also the ordering is finite
and so cannot be infinitely descending.

The user input file for Metagol contains an initial list of predicate sym-
bols and constants. The ordering of these lists provide the basis for the total
orderings ºP and ºC .

Example 1 (Predicate constant symbol ordering.) The initial predicate and
constant symbol orderings for the kinship example are as follows.

initial predicates([mother/2,father/2]).
initial constants([matilda,jake,mary,john,bill,

alice,andy,susan,harry,liz,
megan,ted,jill,jo,sam,jane,bob]).

Using the ordering provided by the user in these lists Metagol can infer, for
instance, that mother/2 ≻P father/2 and matilda ≻C bill.

During an episode (see Section 4.4) when a new predicate definition p/a is
learned, p/a is added to the head of the list along with a frame of invented
auxiliary predicates p1, .., pn. This allows an ordered scope of predicates which
can be used to define p/a consisting of local invented auxiliary predicates,
followed by predicates from preceding episodes, followed by any initial predi-
cates.

Figure 6 illustrates alternative OrderTests which each constrain the chain
meta-rule to descend through the Herbrand Base. In the lexicographic ordering
predicates which are higher in the ordering, such as grandparent/2, are defined
in terms of ones which are lower, such as parent/2.

10 Stephen H. Muggleton et al.

Lexicographic Interval inclusion
parent(a alice,b ted) leq(0,0)
.. leq(1,1)
parent(c jake,d john) leq(2,2)
.. ..
grandparent(a alice,e jane) leq(0,1)
grandparent(c jake,f bob) leq(1,2)
.. leq(0,2)

Lex OrderTest Inclusion OrderTest
P ≻P Q AND P ≻P R x ≻C z AND z ≻C y

Fig. 6 Datalog Herbrand Base orderings with chain meta-rule OrderTests.

Example 2 (Lexicographic order) The definite clause

grandparent(X,Y) ← parent(X,Z), parent(Z,Y)

is consistent with the lexicographic ordering on the chain meta-rule since
grandparent/2 ≻P parent/2.

Meanwhile interval inclusion supports definitions of (mutually) recursive
definitions such as leq/2, ancestor/2, even/2 and odd/23.

Example 3 (Interval inclusion order) The definite clause

leq(X,Y) ← succ(X,Z), leq(Z,Y)

is not consistent with a lexicographic ordering on the chain meta-rule since
leq 6≻P leq. However, it is consistent with the interval inclusion ordering since
in the case X < Z < Y the interval [X,Y] includes both [X,Z] and [Z, Y]. To
ensure interval inclusion holds for the chain rule it is sufficient to test X ≻C Z
and Z ≻C Y . Thus interval inclusion supports the learning of (mutually) recur-
sive predicates. Finite descent guarantees termination even when an ordering
is infinitely ascending (eg over the natural numbers).

Figure 7 shows a definition of even number learned by Metagol4. The solu-
tion involves mutual recursion with the definition of odd (invented predicate
even 2). A modified interval inclusion order constraint forces Metagol to use
an inverse meta-rule P (x, y) ← Q(y, x) to introduce predecessor (invented
predicate even 1) which then guarantees termination over natural numbers.

4.2 Minimum cardinality hypotheses

MetagolD uses iterative deepening to ensure the first hypothesis returned con-
tains the minimal number of clauses. The search starts at depth 1. At depth i
the search returns an hypothesis consistent with at most i clauses if one exists.
Otherwise it continues to depth i + 1. During episode p (see Section 4.4) at
depth i Metagol augments P with up to i − 1 new predicate symbols which
are named as extensions of the episode name as p1, ..pi−1.

3 The predicates even/2 and odd/2 can be treated as intervals by treating even(X) and
odd(Y) as the natural number intervals [0, X] and [0, Y].

4 Difficulties involved in learning a mutually recursive definition of even/1 and odd/1 was
used by [52] to demonstrate the incompleteness of Inverse Entailment.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 11

even(0).

even(A) ← even 1(A,B), even 2(B).

even 1(A,B) ← succ(B,A).

even 2(A) ← even 1(A,B), even(B).

Fig. 7 Recursive definition for even/1 learned by Metagol using a modified interval inclusion
constraint. The invented predicates correspond to even 1=predecessor and even 2=odd.

ggparent(A,B) ← ggparent 1(A,C), ggparent 2(C,B).

ggparent 1(A,B) ← ggparent 2(A,C), ggparent 2(C,B).

ggparent 2(A,B) ← father(A,B).

ggparent 2(A,B) ← mother(A,B).

Fig. 8 Minimal logic program learned by Metagol for great-grandparent (ggparent). The
invented predicates correspond to ggparent 1=grandparent and ggparent 2=parent.

Example 4 (Auxilliary predicate names) In the kinship example, great-grandparent
(ggparent) can can be learned by Metagol using only the initial predicate defi-
nitions for father/2 and mother/2. The minimal logic program found at depth
4 is shown in Figure 8. In this case predicates are invented which correspond
to both grandparent and parent.

4.3 Logarithmic bounding and PAC model

We now consider the error convergence of a PAC learning model [50] of the
logarithmic bounded iterative deepening approach used in MetagolD.

Lemma 1 (Bound on hypotheses of size d) . Assume m training exam-
ples, d is the maximum number of clauses in a hypothesis where d ≤ log2m
and c is the number of distinct clauses in H2

2 for a given P, C. The number of
hypotheses |Hd| considered at depth d is bounded by mlog2c.
Proof. Since each hypothesis in Hd consists of d clauses chosen from a set
of size c it follows that |Hd| =

(

c
d

)

≤ cd. Using the logarithmic bound cd ≤

clog2m = mlog2c. Thus |Hd| ≤ mlog2c.

We now consider the size of the space containing all hypotheses up to and
including size d.

Proposition 3 (Bound on hypotheses up to size d) The hypothesis space
considered in all depths up to and including d is bounded by dmlog2c.
Proof. Follows from the fact that the number of hypotheses in each depth up
to d is bounded by mlog2c.

We now evaluate the minimal sample convergence for MetagolD.

Theorem 3 Metagol’s logarithmic bounded iterative deepening strategy has a

polynomial sample complexity of m ≥
ln(d)+ln(5)log2c+ln 1

δ

ǫ
.

12 Stephen H. Muggleton et al.

Proof. According to the Blumer bound [1] the error of consistent hypotheses is

bounded by ǫ with probability at least (1 − δ) once m ≥
ln|H|+ln 1

δ

ǫ
, where |H|

is the size of the hypothesis space. From Proposition 3 this happens with the

Metagol strategy once m ≥
ln(dmlog2c)+ln 1

δ

ǫ
. Assuming ǫ, δ < 1

2 and c, d ≥ 1

and simplifying gives ln(m)+ln(2)
m

< 1
2 . Numerically this holds once m is at

least 5. Substituting into the Blumer bound gives m ≥
ln(d)+ln(5)log2c+ln 1

δ

ǫ
.

This theorem indicates that in order to ensure polynomial time learning in the
worst case we need an example set which is much larger than the definition we
aim to learn. We refer to this as the big data assumption. In the case that only
small numbers of examples are available (see [22]) the big data assumption in
Metagol can be over-ridden by giving a maximum bound on the number of
clauses (see Section 5.3.2).

4.4 Episodes for multi-predicate learning

Learning definitions from a mixture of examples of two inter-dependent predi-
cates such as parent and grandparent requires more examples and search than
learning them sequentially in separate episodes. In the latter case the grand-
parent episode is learned once it can use the definition from the parent episode.
This phenomenon can be explained by considering that time taken for search-
ing the hypothesis space for the joint definition is a function of the product of
the hypothesis spaces of the individual predicates. By contrast the total time
taken for sequential learning of episodes is the sum of the times taken for the
individual episodes5 so long as each predicate is learned with low error.

5 Experiments

In this section we describe experiments in which Metagol is used to carry out
1) predicate invention for structuring robot strategies and 2) predicate inven-
tion and recursion learning for east-west trains and 3) construction of higher-
order and first-order concepts for language learning using data from the NELL
project [2]. All datasets together with the implementation of Metagol used in
the experiments are available at http://ilp.doc.ic.ac.uk/metagolD MLJ/.

5.1 Robot strategy learning

In AI, planning traditionally involves deriving a sequence of actions which
achieves a specific goal from a specific initial situation [43]. However, various
machine learning approaches support the construction of strategies6. Such
approaches include the SOAR architecture [19], reinforcement learning [47],
and action learning within ILP [29,38].

In this experiment structured strategies are learned which build a sta-
ble wall from a supply of bricks. Predicate invention is used for top-down

5 Misordering episodes leads to additional predicate invention.
6 A strategy is a mapping from a set of initial to a set of goal situations.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 13

 a) b) c)

Fig. 9 Examples of a) stable wall, b) column and c) non-stable wall

buildWall(X, Y) ← buildWall 1(X, Y), emptyResource(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

Fig. 10 Column/wall building strategy learned from positive examples. buildWall 1 is in-
vented.

buildWall(X, Y) ← buildWall 1(X, Y), buildWall 3(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← buildWall 2(X, Y), buildWall 3(Y)
buildWall 2(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)
buildWall 3(X) ← offset(X), continuous(X)

Fig. 11 Stable wall strategy built from positive and negative examples. buildWall 2, build-
Wall 1 and buildWall 3 are invented.

construction of re-usable sub-strategies. Fluents are treated as monadic pred-
icates which apply to a situation, while Actions are dyadic predicates which
transform one situation to another.

5.1.1 Materials

Figure 9 shows a positive example (a) of a stable wall together with two nega-
tive examples (unstable walls) consisting of a column (b) and a wall with insuf-
ficient central support (c). Predicates are either high-level if defined in terms
of other predicates or primitive otherwise. High-level predicates are learned as
datalog definitions. Primitive predicates are non-datalog background knowl-
edge which manipulate situations as compound terms.

A wall is a list of lists. Thus Figure 9a) can be represented as [[2, 4], [1, 3, 5]],
where each number corresponds to the position of a brick7 and each sublist cor-
responds to a row of bricks. The primitive actions are fetch and putOnTopOf,
while the primitive fluents are emptyResource, offset and continuous (meaning
no gap). This model is a simplification of a real-world robotics application.

When presented with only positive examples, MetagolD learns the recursive
strategy shown in Figure 10. The invented action buildWall 2 is decomposed
into sub-actions fetch and putOnTopOf. The strategy is non-deterministic and
repeatedly fetches a brick and puts it on top of others so that it could produce
either Figure 9a or 9b.

Given negative examples MetagolD generates the refined strategy shown
in Figure 11, where the invented action buildWall 1 tests the invented fluent
buildWall 3. buildWall 3 can be interpreted as stable. This revised strategy
will only build stable walls like Figure 9a.

7 Bricks are width 2 and position is a horizontal index.

14 Stephen H. Muggleton et al.

a) Predictive accuracy

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of Training Examples

MetagolD
Progol

Default accuracy

b) Learning time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

No. of Training Examples

MetagolD
Progol

Fig. 12 Graphs of a) Predictive accuracy and b) Learning time for robot strategy learning

5.1.2 Method

An experiment was conducted to compare the performance of MetagolD against
that of Progol. Training and test examples of walls containing at most 100
bricks were randomly selected without replacement. Training set sizes were
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80} and the test set size was
200. Both training and test datasets contain half positive and half negative,
thus the default accuracy is 50%. Predictive accuracies and associated learning
times were averaged over 5 resamples for each training set size.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 15

H8

buildWall(X, Y) ← buildWall 1(X, Y), offset(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

H10

buildWall(X, Y) ← buildWall 1(X, Y), emptyResource(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← buildWall 2(X, Y), continuous(Y)
buildWall 2(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

Fig. 13 H8: an hypothesis derived by MetagolD at training size 8; H10: an hypothesis
derived by MetagolD at training size 10

5.1.3 Results and discussion

Metagol’s accuracy and learning time plots shown in Figure 12 indicate that,
consistent with the analysis in Section 4.3, MetagolD, given increasing number
of randomly chosen examples, produces rapid error reduction while learning
time increases roughly linearly. The dramatic time increase at training size 10
is due to the additional negative example, which requires MetagolD switching
to a different hypothesis with larger size. Figure 13 shows such an example.
Originally, MetagolD derived the hypothesis H8 for a set of eight training
example, but the additional negative example [[9],[6,8,10],[2,6,8,10]], which is
explainable by H8, forces MetagolD to backtrack and continue the search until
H10 is found.

At training size 2 with only one positive and one negative example, MetagolD
already reaches a predictive accuracy in excess of 90%. This shows the small
sample complexity of MetagolD due to the inductive bias incorporated in its
meta-interpreter.

Figure 12 compares the performance of Progol on this problem. Progol is
not able to derive the theory shown in Figure 11 due to its limitations for learn-
ing recursive theories and predicate invention. The only hypothesis derivable
by Progol is buildWall(A,B) ← fetch(A,C), putOnTop(C,B), which only
tells how to build a wall out of one single brick. Given that training and test
examples are dominated by stable walls with more than one brick, Progol’s
hypothesis has default accuracy in Figure 12.

5.2 East-West trains

In this section we demonstrate that the Dyadic representation considered in
this paper is sufficient for learning typical ILP problems and show the advan-
tage of Metagol when predicate invention and recursion learning is required. In
particular we use Metagol to discover logic programs for classifying Michalski-
style east-west trains from a machine learning competition [25,26]. This com-
petition was based on a classification problem first proposed by Larson and
Michalski [21] which has been regarded as a classical machine learning prob-
lem and many real-world problems (e.g. non-determinate learning of chemical
properties from atom and bond descriptions) can be mapped to Michalski’s
trains problem.

16 Stephen H. Muggleton et al.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 14 Michalski’s original east-west trains problem.

5.2.1 Materials

Michalski’s original trains problem is shown in Figure 14. The learning task is
to discover a general rule that distinguishes 5 eastbound trains from 5 west-
bound trains. An example of such a rule is, If a train has a car which is short
and closed then it is eastbound and otherwise westbound. Learning a classifier
from the original 10 trains is not difficult for most of existing ILP systems.
However, more challenging trains problems have been introduced based on
this. For example, Michie et al. [25,26] ran a machine learning challenge com-
petition which extended Michalski’s original 10 trains with 10 new trains as
shown in Figure 15. The challenge involved using machine learning systems to
discover the simplest possible theory which can classify the combined set of 20
trains of Figures 14 and 15 into eastbound and westbound trains. The com-
plexity of a theory was measured by the sum of the number of occurrences of
clauses, atoms and terms in the theory. A second competition involved classify-
ing 100 separate trains, using a classifier learned from the 20 trains of Figures
14 and 15.

5.2.2 Method

In this section we use Metagol to learn a theory using the 20 trains from the
first competition and evaluate the learned theory using the 100 trains from
the second competition described above.

5.2.3 Results and discussion

When provided with standard background knowledge for this problem and the
20 trains examples (shown in Figures 14 and 15), Metagol learns a recursive
theory shown in Figure 16. This theory correctly classifies all 20 trains and is
equivalent to the winning entry for the first competition submitted by Bern-
hard Pfahringer [49]. His program used a brute-force search to generate all
possible clauses of size 3,4,... and so on in a depth-first iterative deepening

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 17

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 15 The new set of 10 trains by Michie et al. ([26]) for the east-west competition.

manner where every completed clause is checked for completeness and cover-
age. His program took about one day real-time on Sun Sparc 10 (40 MHz).
Metagol learns the recursive theory of Figure 16 in about 45 sec. on a Mac-
Book laptop (2.5 GHz)8.

The theory found by Pfahringer splits the 100 trains of the second compe-
tition into 50 eastbound and 50 westbound trains. We use these trains as the
test examples for evaluating hypotheses learned by Metagol. The performance
of Metagol was evaluated on predictive accuracies and running time using the
training and test examples described above. The size of training set varied
using random samples from the 20 trains (4, 8, 12, 16 and 20) where half were
eastbound (positive examples) and half were westbound (negative examples).
The predictive accuracies and running time were averaged over 10 randomly
sampled training examples. For each sample size, we used a fixed test set of
100 trains from the second competition as classified by Pfahringer’s model.

The results of the experiments described above are shown in Figure 17.
This figure also compares the performance of Progol on this problem. When
provided with all 20 trains, Progol can quickly find a partial solution shown in
Figure 18. However, due to its limitations for learning recursive theories and
predicate invention, Progol is not able to find any complete theory for this
problem.

5.3 NELL learning

NELL [2] is a Carnegie Mellon University (CMU) online system which has
extracted more than 50 million facts since 2010 by reading text from web
pages. The facts cover everything from tea drinking to sports personalities. In
this paper, we focus on a susbset of NELL about sports, which was suggested
by the NELL developers. NELL facts are represented in the form of dyadic
ground atoms of the following kind.

8 Ignoring hardware differences other than clockspeed this represents a speed-up of around
30 times over Pfahringer’s implementation.

18 Stephen H. Muggleton et al.

east(A) ← t1(A), t2(A)
t1(A) ← car(A, B), closed(B)
t1(A) ← cdr(A, B), load1 triangle(B)
t2(A) ← car(A, B), short(B)
t2(A) ← cdr(A, B), east(B)

Fig. 16 A recursive theory found by Metagol for the east-west trains competition 1. Pred-
icates t1 and t2 are invented. car and cdr provide the first carriage and remaining carriages
respectively. closed, short and load1 triangle are background knowledge predicates pro-
vided in the East-West competitions. load1 triangle tests if the train has a carriage con-
taining a triangle. This theory correctly classifies all 20 trains and is equivalent to Bernhard
Pfahringer’s winning entry for the first competition.

playssport(eva longoria,baseball)
playssport(pudge rodriguez,baseball)
athletehomestadium(chris pronger,honda center)
athletehomestadium(peter forsberg,wachovia center)
athletealsoknownas(cleveland browns,buffalo bills)
athletealsoknownas(buffalo bills,cleveland browns)

5.3.1 Initial experiment - debugging NELL using abduction

A variant of the ILP system FOIL [41] has previously been used [20] to induc-
tively infer clauses similar to the following from the NELL database.

athletehomestadium(X,Y) ← athleteplaysforteam(X,Z),
teamhomestadium(Z, Y)

In our initial experiment Metagol inductively inferred the clause above from
NELL data and used it to abduce the following facts, not found in the database.

1. athleteplaysforteam(john salmons,los angeles lakers)
2. athleteplaysforteam(trevor ariza,los angeles lakers)
3. athleteplaysforteam(shareef abdur rahim,los angeles lakers)
4. athleteplaysforteam(armando marsans,cincinnati)
5. teamhomestadium(carolina hurricanes,rbc center)
6. teamhomestadium(anaheim angels,angel stadium of anaheim)

Abductive hypotheses 2,4,5 and 6 were confirmed correct using internet search
queries. However, 1 and 3 are erroneous. The problem is that NELL’s database
indicates that only Los Angeles Lakers has Staples Center as its home stadium.
In fact Staples is home to four teams9. The Metagol abductive hypotheses
thus uncovered an error in NELL’s knowledge10 which assumed uniqueness of
teams associated with a home stadium. This demonstrates MIL’s potential for
helping debug large scale knowledge structures.

9 Los Angeles Lakers, Clippers, Kings and Sparks.
10 Tom Mitchell and Jayant Krishnamurthy (CMU) confirmed these errors and the cor-

rectness of the inductively inferred clause.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 19

a) Predictive accuracy

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12 14 16 18 20

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of Training Examples

Metagol
Progol

Default accuracy

b) Learning time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

No. of Training Examples

Metagol
Progol

Fig. 17 Predictive accuracies (a) and learning times (b) of Metagol and Progol in east-west
trains competition 1.

east(A) ← car(A, B), closed(B), short(B)
east(A) ← cdr(A, B), east(B)

Fig. 18 A recursive theory found by Progol for the east-west trains competition 1. This is
a partial solution and does not cover all examples.

5.3.2 Evaluation experiment – learning athletehomestadium

We conducted a 10-fold cross-validation on this dataset. The training exam-
ples were for athletehomestadium and consisted of 120 examples in total11.

11 We removed examples which have missing information about athleteplaysforteam, con-
sidering the specific facts about athleteplaysforteam do not have predictive power on ex-

20 Stephen H. Muggleton et al.

a) Predictive accuracy

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

Num of Training Examples

MetagolD+Greedy
MetagolD

b) Learning time

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

T
im

e
(s

)

Num of Training Examples

MetagolD+Greedy
MetagolD

Fig. 19 Predictive accuracies (a) and learning times (b) of Metagol and Progol in NELL
learning

They were randomly permuted and divided into 10 folds. During the cross-
validation, each fold with 12 examples was used as a test set, while the rest
108 examples were used for training. We considered different training sizes of
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 108]. When
the training size was smaller than 108, it was derived from the first two ex-
amples of the corresponding set of 108 examples. Figure 19 plots the averaged
results on these 10 different folds.

The background knowledge contained 919 facts about athleteplaysforteam
and teamhomestadium. However, this data is incomplete. Specifically, 17% of

amples of athletehomestadium. Therefore, the total number of examples decrease from 187
to 120.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 21

the examples have incomplete information on teamhomestadium, requiring
abduction of ground facts. This leads to a large hypothesis space. Below is
an example of the target hypothesis, which contains both induced rules and
abduced facts.

athletehomestadium(A,B) :- athleteplaysforteam(A,C), teamhomestadium(C,B)
teamhomestadium(anaheim angels,angel stadium of anaheim)
teamhomestadium(blackhawks,united center)
teamhomestadium(boston bruins,scotiabank place)
teamhomestadium(carolina hurricanes,rbc center)
teamhomestadium(red wings,scottrade center)
teamhomestadium(seattle mariners,great american ballpark)

There are seven clauses in this hypothesis. When learning up to seven
clauses, not only is the hypothesis space excessively large but learning requires
more training examples than is consistent with the logarithmic bound in The-
orem 3. Thus in this experiment, we dropped the logarithmic bound condition
and instead used a time limit of 2 minutes. That is, if MetagolD fails to find a
hypothesis within 2 minutes, then it will return no hypothesis and have predic-
tive accuracy of 0. Consequently the learning curve of MetagolD (Figure 19a)
drops significantly at training size 80. This is a limitation of the current ver-
sion MetagolD. However, we investigated addressing this using a greedy search
strategy, which is a variant of the dependent learning approach introduced in
[22]. Specifically, a shortest hypothesis covering one example is greedily added
to the hypothesis so far and becomes part of the background knowledge for
learning later examples. The learning curve of ‘MetagolD+Greedy’ shows the
feasibility of such an approach. Considering there are only one or two clauses
to be added for each example, the search space is much smaller than the case
without the greedy approach. Therefore, the running time with the greedy
search strategy is around 0.004s, which is hundreds of times faster than the
original MetagolD without being greedy. However, this greedy search strategy
has not been applied to other experiments. The approach seems promising
though there are unresolved issues relating to potential overfitting. Further
work on these issues is discussed in Section 6.1.

NELL presently incorporates manual annotation on concepts being sym-
metric or transitive. The following meta-rule allows MetagolD to abduce sym-
metry of a predicate.

P (X,Y) ← symmetric(P), P (Y,X)

Using this MetagolD abduced the following hypothesis.

symmetric(athletealsoknownas) ←
athletealsoknownas(buffalo bills, broncos) ←
athletealsoknownas(buffalo bills, kansas city chiefs) ←
athletealsoknownas(buffalo bills, cleveland browns) ←

This example demonstrates the potential for the MIL framework to use and
infer higher-order concepts.

22 Stephen H. Muggleton et al.

5.3.3 Predicate invention and recursion

The following hypothesised program was learned by MetagolD from examples
drawn from the NELL database with the facts about teamplayssport/2 being
removed12.

athleteplayssport(X,Y) ← p1(X,Z), athleteplayssport(Z, Y).
p1(X,Y) ← athleteplaysforteam(X,Z), p2(Z, Y).
p2(X,Y) ← athleteplaysforteam(Y,X).

Note p1 can be interpreted as team mate and p2 as the inverse of athleteplaysforteam.
When inspecting this hypothesis Tom Mitchell and William Cohen commented
that PROPPR [51] had already learned the following equivalent rule.

athleteplayssport(X,Y) ← athleteplaysforteam(X,Z),
athleteplaysforteam(W,Z),
athleteplayssport(W,Y).

This rule can be produced by unfolding the invented predicates in the MetagolD
hypothesis. The advantage of the MetagolD solution over the PROPPR one is
that the invented predicates can be reused as additional background predicates
in further learning such as learning another clause for athletehomestadium/2,
such as athletehomestadium(X,Y) ← p1(X,Z), athletehomestadium(Z, Y).

5.3.4 Discussion

The NELL experiments are distinct from those on robot strategies and east-
west trains in providing an initial indication of the power of the technique
to reveal new and unexpected insights in large-scale real-world data. The ex-
periment also indicates the potential for learning higher-order concepts like
symmetric. Clearly further in-depth work is required in this area to clarify the
opportunities for predicate invention and the learning of recursive definitions.

6 Conclusions and further work

MIL [34] is an approach which uses a Declarative Machine Learning [7] de-
scription in the form of a set of meta-rules, with procedural constraints in-
corporated within a Meta-Interpreter. The paper extends the theory, imple-
mentation and experimental application of MIL from grammar learning to the
dyadic datalog fragment H2

2 . This fragment is shown to be Turing expres-
sive in the case of an infinite signature, but decidable otherwise. We show
how meta-rules for this fragment can be incorporated into a Prolog Meta-
Interpreter. MIL supports hard tasks such as Predicate Invention and learn-
ing of recursive definitions by saving successful higher-order substitutions for
the meta-rules, which can be used to reconstitute the clauses in the hypoth-
esis. The MIL framework described in this paper has been implemented in
MetagolD, which is a Yap Prolog program, and has been made available at
http://ilp.doc.ic.ac.uk/metagolD MLJ/ as part of the experimental materials

12 In the case where facts about teamplayssport/2 are available, then
it is sufficient to hypothesise a single clause athleteplayssport(X, Y) ←
athleteplaysforteam(X, Z), teamplayssport(Z, Y).

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 23

associated with this paper. However, the approach can also be implemented
within more sophisticated solvers such as ASP (see [34]). In the Prolog im-
plementation, MetagolD, efficiency of search is achieved by constraining the
backtracking search in several ways. For instance, a Knuth-Bendix style total
ordering can be imposed over the Herbrand base which requires predicates
which are higher in the ordering to be defined in terms of lower ones. Al-
ternatively, an interval inclusion ordering ensures finite termination of (mu-
tual) recursion in the case that the Herbrand Base is infinitely ascending but
finitely descending. Additionally, under the big data assumption (Section 4.3)
iterative deepening combined with logarithmic bounding of episodes guaran-
tees polynomial-time searches which identify minimal cardinality solutions.
Blumer-bound arguments are provided which indicate that search constrained
in this way achieves not only speed improvements but also reduction in out-
of-sample error.

We have applied MetagolD to the problem of inductively inferring robot
plans and to NELL language learning tasks. In the planning task the MetagolD
implementation used predicate invention to carry-out top-down construction
of strategies for building both columns and stable walls. Experimental results
indicate that, as predicted by Theorem 3, when logarithmic bounding is ap-
plied, rapid predictive accuracy increase is accompanied by polynomial (near
linear) growth in search time with increasing training set sizes.

In the NELL task abduction with respect to inductively inferred rules un-
covered a systematic error in the existing NELL data, indicating that MetagolD
shows promise in helping debug large-scale knowledge bases. MetagolD was
also shown to be capable of learning higher-order concepts such as symmetry
from NELL data. Additionally predicate invention and recursion were shown
to be potentially tractable useful in the NELL context. In an evaluation exper-
iment it was found that learning on the NELL dataset can lead to excessive
runtimes, which are improved using a greedy version of the search Metagol
mechanism.

6.1 Further work

This paper has not explored the effect of incompleteness of meta-rules on pre-
dictive accuracy and robustness of the learning. However, in [4] we address this
issue by investigating methods for logical minimisation of full enumerations of
dyadic meta-rules. This takes advantage of the fact that the MIL framework
described in Section 3.2 allows meta-rules to be treated as part of the back-
ground knowledge, allowing them, in principle, to be revised as part of the
learning. In future we aim to further investigate the issue of automatically
revising meta-rules. However, as with the approach described in this paper,
effective control mechanisms will be key to making the search tractable.

A related issue is that the user is expected to provide the total orderings
ºP and ºC over the initial predicate symbols and constants. In future we
intend to investigate the degree to which these orderings can be learned.

In the NELL experiment described in Section 5.3.2 we found that a greedy
modification of the MetagolD search strategy leads to considerable speed in-
creases. This provides an interesting topic for further work since the use of
a non-greedy complete search for each episode leads to search time increas-
ing exponentially in the maximum number of clauses considered (see search

24 Stephen H. Muggleton et al.

bound in [22]). However, the greedy approach can lead to overly specific re-
sults. For instance, the greedy strategy leads to the following non-minimal,
overly specific program when learning grandparent

grandparent(A,B) ← father(A,C), father(C,B). (1)

grandparent(A,B) ← mother(A,C),mother(C,B). (2)

grandparent(A,B) ← mother(A,C), father(C,B). (3)

rather than the target theory of

grandparent(A,B) ← parent(A,C), parent(C,B).

This problem could conceivably be overcome using a two-stage learning ap-
proach in which clauses (1), (2) and (3) are generalised to the target theory
clause. This would require that Metagol be extended to allow generalisation
over non-ground clauses. Additionally the process should allow for invention
of a predicate equivalent to parent.

Finally it is worth noting that a Universal Turing Machine can be consid-
ered as simply a meta-interpreter incorporated within hardware. In this sense,
meta-interpretation is one of, if not the most fundamental concept in Com-
puter Science. Consequently we believe there are fundamental reasons that
Meta-Interpretive Learning, which integrates deductive, inductive and abduc-
tive reasoning as higher-level operations within a meta-interpreter, will prove
to be a flexible and fruitful new paradigm for Artificial Intelligence.

Acknowledgments

We thank Tom Mitchell, William Cohen and Jayant Krishnamurthy for help-
ful discussions and data from the NELL database. We also acknowledge the
support of Syngenta in its funding of the University Innovations Centre at
Imperial College. The first author would like to thank the Royal Academy of
Engineering and Syngenta for funding his present 5 year Research Chair.

References

1. A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

2. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell. To-
ward an architecture for never-ending language learning. In Proceedings of the Twenty-
Fourth Conference on Artificial Intelligence (AAAI 2010), 2010.

3. W. Cohen. Grammatically biased learning: Learning logic programs using an explicit
antecedent description language. Artificial Intelligence, 68:303–366, 1994.

4. A. Cropper and S.H. Muggleton. Logical minimisation of meta-rules within meta-
interpretive learning. In Proceedings of the 24th International Conference on Inductive
Logic Programming, 2014. To appear.

5. J. Davis and P. Domingo. Deep transfer via second-order markov logic. In Proceedings
of the Twenty-Sixth International Conference on Machine Learning, pages 217–224,
San Mateo, CA, 2009. Morgan Kaufmann.

6. L. De Raedt. Logical seetings for concept learning. Artificial Intelligence, 95:187–201,
1997.

7. L. De Raedt. Declarative modeling for machine learning and data mining. In Proceedings
of the International Conference on Algorithmic Learning Theory, page 12, 2012.

Meta-Interpretive Learning of Higher-Order Dyadic Datalog: 25

8. G. DeJong. Generalisations based on explanations. In IJCAI-81, pages 67–69. Kauf-
mann, 1981.

9. Kurt Driessens and Jan Ramon. Relational instance based regression for relational
reinforcement learning. In ICML, pages 123–130, 2003.

10. Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning.
Machine learning, 43(1-2):7–52, 2001.

11. C. Feng and S.H. Muggleton. Towards inductive generalisation in higher order logic. In
D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Workshop
on Machine Learning, pages 154–162, San Mateo, CA, 1992. Morgan Kaufmann.

12. C.A.R. Hoare. Programs are predicates. In Proceedings of the Final Fifth Generation
Conference, pages 211–218, Tokyo, 1992. Ohmsha.

13. C.A.R. Hoare and H. Jifeng. Unifying theories for logic programming. In C.A.R. Hoare,
M. Broy, and R. Steinbruggen, editors, Engineering theories of Software Construction,
pages 21–45. IOS Press, Leipzig, 2001.

14. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1(1):27–57, 1975.

15. K. Inoue, K. Furukawa, and I. Kobayashiand H. Nabeshima. Discovering rules by
meta-level abduction. In L. De Raedt, editor, Proceedings of the Nineteenth Interna-
tional Conference on Inductive Logic Programming (ILP09), pages 49–64, Berlin, 2010.
Springer-Verlag. LNAI 5989.

16. Dov Katz, Yuri Pyuro, and Oliver Brock. Learning to manipulate articulated objects in
unstructured environments using a grounded relational representation. In In Robotics:
Science and Systems. Citeseer, 2008.

17. S.T. Kedar-Cabelli and L.T. McCarty. Explanation-based generalization as resolution
theorem proving. In P. Langley, editor, Proceedings of the Fourth International Work-
shop on Machine Learning, pages 383–389, Los Altos, 1987. Morgan Kaufmann.

18. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon, Oxford, 1970.

19. J. E. Laird. Extending the soar cognitive architecture. Frontiers in Artificial Intelligence
and Applications, pages 224–235, 2008.

20. N. Lao, T. Mitchell, and W.W. Cohen. Random walk inference and learning in a large
scale knowledge base. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 529–539, 2011.

21. J. Larson and R.S. Michalski. Inductive inference of VL decision rules. ACM SIGART
Bulletin, 63:38–44, 1977.

22. D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, and S.H. Muggleton. Bias reformulation
for one-shot function induction. In Proceedings of the 23rd European Conference on
Artificial Intelligence (ECAI 2014), Amsterdam, 2014. IOS Press. In Press.

23. J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
24. J. McCarthy. Making robots conscious. In K. Furukawa, D. Michie, and S.H. Muggleton,

editors, Machine Intelligence 15: intelligent agents. Oxford University Press, Oxford,
1999.

25. D. Michie. On the rails. Computing Magazine, 1994. Magzine article text available
from http://www.doc.ic.ac.uk/s̃hm/Papers/computing.pdf.

26. D. Michie, S.H. Muggleton, C.D. Page, D. Page, and A. Srinivasan. To the international
computing community: a new east-west challenge, 1994. Distributed email document
available from http://www.doc.ic.ac.uk/s̃hm/Papers/ml-chall.pdf.

27. D. Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

28. T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based generalization:
A unifying view. Machine Learning, 1(1):47–80, 1986.

29. S. Moyle and S.H. Muggleton. Learning programs in the event calculus. In N. Lavrač and
S. Džeroski, editors, Proceedings of the Seventh Inductive Logic Programming Workshop
(ILP97), LNAI 1297, pages 205–212, Berlin, 1997. Springer-Verlag.

30. S.H. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–
286, 1995.

31. S.H. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting
resolution. In Proceedings of the 5th International Conference on Machine Learning,
pages 339–352. Kaufmann, 1988.

32. S.H. Muggleton and D. Lin. Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. In Proceedings of the 23rd International Joint Conference
Artificial Intelligence (IJCAI 2013), pages 1551–1557, 2013.

33. S.H. Muggleton, D. Lin, J. Chen, and A. Tamaddoni-Nezhad. Metabayes: Bayesian
meta-interpretative learning using higher-order stochastic refinement. In Proceedings of
the 23rd International Conference on Inductive Logic Programming, 2014. Invited as
long paper.

26 Stephen H. Muggleton et al.

34. S.H. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-interpretive
learning: application to grammatical inference. Machine Learning, 94:25–49, 2014.

35. S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19,20:629–679, 1994.

36. S.H. Muggleton, L. De Raedt, D. Poole, I. Bratko, P. Flach, and K. Inoue. ILP turns
20: biography and future challenges. Machine Learning, 86(1):3–23, 2011.

37. S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming.
Springer-Verlag, Berlin, 1997. LNAI 1228.

38. R. Otero. Induction of the indirect effects of actions by monotonic methods. In Pro-
ceedings of the Fifteenth International Conference on Inductive Logic Programming
(ILP05), volume 3625, pages 279–294. Springer, 2005.

39. N. Pahlavi and S.H. Muggleton. Towards efficient higher-order logic learning in a first-
order datalog framework. In Latest Advances in Inductive Logic Programming. Imperial
College Press, 2012. In Press.

40. Hanna Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning probabilistic
relational planning rules. In ICAPS, pages 73–82, 2004.

41. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

42. C. Rouveirol and J-F. Puget. A simple and general solution for inverting resolution. In
EWSL-89, pages 201–210, London, 1989. Pitman.

43. S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, New
Jersey, 2010. Third Edition.

44. Mohammad S Sorower, Janardhan R Doppa, Walker Orr, Prasad Tadepalli, Thomas G
Dietterich, and Xiaoli Z Fern. Inverting grice’s maxims to learn rules from natural
language extractions. In Advances in Neural Information Processing Systems, pages
1053–1061, 2011.

45. A. Srinivasan. The ALEPH manual. Machine Learning at the Computing Laboratory,
Oxford University, 2001.

46. I. Stahl. Constructive induction in inductive logic programming: an overview. Technical
report, Fakultat Informatik, Universitat Stuttgart, 1992.

47. R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1. Cam-
bridge Univ Press, 1998.

48. S-A Tärnlund. Horn clause computability. BIT Numerical Mathematics, 17(2):215–226,
1977.

49. P. Turney. Low size-complexity inductive logic programming: The east-west challenge
considered as a problem in cost-sensitive classification. NRC report cs/0212039, National
Research Council of Canada, 1995.

50. L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142,
1984.

51. William Yang Wang, Kathryn Mazaitis, and William W. Cohen. Programming with
personalized pagerank: A locally groundable first-order probabilistic logic. In Proceed-
ings of the 22Nd ACM International Conference on Conference on Information &
Knowledge Management, CIKM ’13, pages 2129–2138, New York, NY, USA, 2013. ACM.

52. A. Yamamoto. Which hypotheses can be found with inverse entailment? In N. Lavrač
and S. Džeroski, editors, Proceedings of the Seventh International Workshop on Induc-
tive Logic Programming, pages 296–308. Springer-Verlag, Berlin, 1997. LNAI 1297.

53. T. Zhang, H. Sipma, and Z. Manna. The decidability of the first-order theory of Knuth-
Bendix order. In Automated Deduction–CADE-20, pages 738–738. Springer, 2005.

