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Abstract Statistical machine learning is widely used in image classification.
However, most techniques 1) require many images to achieve high accuracy and
2) do not provide support for reasoning below the level of classification, and so
are unable to support secondary reasoning, such as the existence and position
of light sources and other objects outside the image. This paper describes an
Inductive Logic Programming approach called Logical Vision which overcomes
some of these limitations. LV uses Meta-Interpretive Learning (MIL) combined
with low-level extraction of high-contrast points sampled from the image to
learn recursive logic programs describing the image. In published work LV
was demonstrated capable of high-accuracy prediction of classes such as regu-
lar polygon from small numbers of images where Support Vector Machines and
Convolutional Neural Networks gave near random predictions in some cases.
LV has so far only been applied to noise-free, artificially generated images.
This paper extends LV by a) addressing classification noise using a new noise-
telerant version of the MIL system Metagol, b) addressing atrribute noise using
a primitive-level statistical estimators to identify sub-objects in real images,
c) using a wider class of background models representing classical 2D shapes
such as circles and ellipses, d) providing richer learnable background knowl-
edge in the form of a simple but generic recursive theory of light reflection.
In our experiments we consider noisy images in both natural science settings
and in a RoboCup competition setting. The natural science settings involve

S.H. Muggleton and A. Tamaddoni-Nezhad
Department of Computing, Imperial College London, London, UK
E-mail: s.muggleton,a.tamaddoni-nezhad@imperial.ac.uk

W-Z Dai and Z-H Zhou
LAMDA group, Nanjing University, Nanjing, China
E-mail: daiwz,zhouzh@nju.edu.cn

J. Wen
School of Computer and Information Technology, Shanxi University,
E-mail: wjing@sxu.edu.cn



2 Stephen Muggleton et al.

identification of the position of the light source in telescopic and microscopic
images, while the Robocup setting involves identification of the position of the
ball. Our results indicate that with real images the new noise-robust version
of LV using a single example (ie one-shot LV) converges to an accuracy at
least comparable to thirty-shot statistical machine learner on both prediction
of hidden light sources in the scientific settings and in the RoboCup setting.
Moreover, we demonstrate that a general background recursive theory of light
can itself be invented using LV and used to identify ambiguities in the con-
vexity/concavity of objects such as craters in the scientific setting and partial
obscuration of the ball in the Robocup seting.

1 Introduction

Galileo’s Siderius Nuncius [12] describes the first ever telescopic observations of

a) b)

Convex
Concave

c) d)

e) light(X,X).
light(X,Y ) : −reflect(X,Z),
light(Z, Y ).

Fig. 1 Interpretation of light source direc-
tion: a) Waxing crescent moon (Credit: UC
Berkeley), b) Concave/Convex illusion, c)
Concave and d) Convex photon reflection
models, e) Prolog recursive model of photon
reflection

the moon. Using sketches of
shadow patterns Galileo conjec-
tured the existence of mountains
containing hollow areas (ie craters)
on a celestial body previously
thought perfectly spherical. His
reasoned description, derived from
a handful of observations, relies on
a knowledge of i) classical geome-
try, ii) straight line movement of
light and iii) the Sun as a light
source. This paper investigates the
use of Inductive Logic Program-
ming (ILP) [29] to derive logical
hypotheses from a small set of real-
world images. Figure 1 illustrates
part of the generic background
knowledge used by ILP for inter-
preting object convexity in Exper-
iment1 (Section 5.1).

Figure 1a shows an image of
the crescent moon in the night sky,
in which convexity of the overall
surface implies the position of the
Sun as a hidden light source be-
yond the lower right corner of the
image. Figure 1b shows an illusion
in which assuming a light source in the lower right leads to perception of con-
vex circles on the leading diagonal. Conversely, a light source in the upper left
implies their being concave. Figure 1c shows how interpretation of a convex
feature, such as a mountain, comes from illumination of the right side of a
convex object. Figure 1d shows that perception of a concave feature, such as
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a crater, comes from illumination of the left side. Figure 1e shows how Prolog
background knowledge encodes a simple recursive definition of the reflected
path of a photon.

This paper explores the phenomenon of knowledge-based perception using
an extension of Logical Vision (LV) [8]. In the previous work LV was shown
to accurately learn a variety of polygon classes from artificial images with
low sample requirements compared to statistical learners. LV generates logical
hypotheses concerning images using an ILP technique called Meta-Interpretive
Learning (MIL) [28,7].

Contributions of this paper The main contributions of this paper are:

1. We describe a generalisation of LV [8], which is tolerant to both classifica-
tion noise and attribute noise.

2. We show that even in the presence of noise in images (absent in artificial
images in [8]) effective learning can be achieved from as few as one image.

3. We demonstrate that in all cases studied the combination of a logic-based
learner with a statistical estimator requires far fewer images (sometimes
1) to achieved accuracies requiring large numbers of images when learning
with a statistical learning on its own.

4. We demonstrate that LV can use as well as invent generic background
knowledge about reflection of photons in providing explanations of visual
features.

5. We demonstrate that LV has potential in real application domains such as
Robocup.

Robocup domain In Experiment 2 (Section 5.2) we investigate LV

(a) (b) (c)

Fig. 2 Robot’s view of: a) another robot and
ball clearly separated, b) the ball partially
occluded by a robot, c) the ball within the
bounds of a robot

in the context of robotics. Fig-
ure 2 shows images from the
RoboCup Soccer Standard Plat-
form League 1. This is a com-
petition with five Aldebaran Nao
robots on each team. They are
placed on a 9m × 6m field, and op-
erate autonomously to play soccer.
The robots use cameras to detect
the ball, field lines, goals and other
robots. In Figure 2a, the ball can
be seen distinctly, whereas Figures
2a and 2c the ball is partially oc-
cluded. The problem with recog-
nising the ball is that it consists of
several patches of black and white,
but there are many other objects on the field that also contain white regions.

1 http://www.tzi.de/spl/bin/view/Website/WebHome
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However, background knowledge concerning the geometry of a sphere pro-
jected on a 2D plane guarantees a ball has a circular appearance. If three edge
points can be found our approach can fit them to a circle and if that circle has
the proportions of black and white pixels, the system concludes it is a ball.

The paper is organised as follows. Section 2 describes related work. The
theoretical framework for LV is provided in Section 3. Section 4 describes the
implementation of LV, including the recursive background knowledge for de-
scribing radiation and reflection of light. In Section 5 we desribe experiments
on 1) learning abstract definitions of polygons from artificial images, 2) pre-
dicting the light source direction and identification of ambigiuties in images
of the moon and microscopic images of illuminated micro-organisms and 3)
identifying the ball in the Robocup domain. Finally, we conclude and discuss
further work in Section 6.

2 Related work

Statistical machine learning based on low-level feature extraction has been
increasingly successful in image classification [32]. However, high-level vision,
involving interpretation of objects and their relations in the external world, is
still relatively poorly understood [5]. Since the 1990s perception-by-induction
[15] has been the dominant model within computer vision, where human per-
ception is viewed as inductive inference of hypotheses from sensory data. The
idea originated in the work of the 19th century physiologist Hermann von
Helmholtz [38]. The approach described in this paper is in line with perception-
by-induction in using ILP for generating high-level perceptual hypotheses by
combining sensory data with a strong bias in the form of explicitly encoded
background knowledge. Whilst Gregory [14] was one of the earliest to demon-
strate the power of the Helmholtz’s perception model for explaining human
visual illusion, recent experiments [16] show Deep Neural Networks fail to
reproduce human-like perception of illusion. This contrasts with results in
Section 5.2, in which LV achieves analogous outcomes to human vision.

Shape-from-shading [17,40] is a key computer vision technology for esti-
mating low-level surface orientation in images. Unlike our approach for identi-
fying concavities and convexities, shape-from-shading generally requires obser-
vation of the same object under multiple lighting conditions. By using back-
ground knowledge as a bias we reduce the number of images for accurate
perception of high-level shape properties such as the identification of convex
and concave image areas.

ILP has previously been used for learning concepts from images. For in-
stance, in [4] object recognition is carried out using existing low-level computer
vision approaches, with ILP being used for learning general relational concepts
from this already symbolised starting point. Farid [11] adopted a similar ap-
proach, extracting planar surfaces from a 3D image of objects encountered by
urban search and rescue robots, then using ILP to learn relational descriptions
of those objects. By contrast, LV [8] uses ILP to provide a bridge from very
low-level features, such as high contrast points, to high-level interpretation of
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objects. The present paper extends the earlier work on LV by implementing a
noise-proofing technique, applicable to real images, and extending the use of
generic background knowledge to allow the identification of objects, such as
light sources, not directly identifiable within the image itself.

Various statistics-based techniques making use of high-level vision have
been proposed for one- or even zero-shot learning [31,37]. They usually start
from an existing model pre-trained on a large corpus of instances, and then
adapt the model to data with unseen concepts. Approaches can be separated
into two categories. The first exploits a mapping from images to a set of seman-
tic attributes, then high-level models are learned based on these attributes [21,
25,31]. The second approach uses statistics-based methods, pre-trained on a
large corpus, to find localized attributes belonging to objects but not the en-
tire image, and then exploits the semantic or spatial relationships between the
attributes for scene understanding [18,22,10]. Unlike these approaches, we fo-
cus on one-shot from scratch, i.e. high-level vision based on just very low-level
features such as high contrast points.

Machine learning is used extensively in robotics, mainly to learn percep-
tual and motor skills. Current approaches for learning perceptual tasks in-
clude Deep Learning and Convolutional Neural Networks [19]. The different
approaches to vision in RoboCup can be seen in the SPQR team’s use of con-
volutional neural networks [35] and the ad hoc, but effective method used by
the 2016 SPL champions, B-Human [33]. This approach is clearly depends on
domain knowledge that has been acquired by the human designers. However,
the approach described in this paper promises the possibility that this kind of
knowledge could be acquired through machine learning.

3 Framework

The framework for LV is a special case of MIL.
Meta-Interpretive Learning Given background knowledge B and examples E

Name Metarule
PropObj1 P (obj1)←
PropObj2 P (obj2)←
PropLight P (light)←
Conjunct3 P (x, y, z)← Q(x, y, z), R(x, y, z)
Chain3 P (u, x, y)← Q(u, x, z), R(u, z, y)
Chain32 P (u, x, y)← Q(u, x, z), R(z, y)
PrePost3 P (x, y, z)← Q(x, y), R(x), S(z)
Pre2 P (x)← Q(x), R(x, y)
Post2 P (x, y)← Q(x, y), R(y)

Fig. 3 Metarules used in this paper. Uppercase let-
ters P,Q,R, S denote existentially quantified variables.
Lowercase letters u, x, y, and z are universally quanti-
fied.

the aim of a MIL sys-
tem is to learn a hypoth-
esis H such that B,H |=
E, where B = Bp ∪ M ,
Bp is a set of Prolog def-
initions and M is a set
of metarules (see Figure
3). MIL [27,28,6,26,7] is
a form of ILP based on
an adapted Prolog meta-
interpreter. A standard
Prolog meta-interpreter proves
goals by repeatedly fetch-
ing first-order clauses whose
heads unify with the goal.
By contrast, a MIL learner proves the set of all examples by fetching higher-
order metarules (Figure 3) whose heads unify with the goal. The resulting
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meta-substitutions are saved, allowing them to be used to generate a hy-
pothesised program which proves all the examples by substituting the meta-
substitutions into corresponding metarules. Use of metarules and background
knowledge helps minimise the number of clauses n of the minimal consistent
hypothesis H and consequently the number of examples m required to achieve
error below ε bound. [7] shows n dominates the upper bound for m2.

Logical Vision In LV [8], the background knowledge B, in addition to Prolog
definitions, contains a set of one or more named images I. The examples
describe properties associated with I.

4 Implementation

4.1 Noise tolerant Meta-Interpretive Learning

In this section we describe a noise tolerant version ofMetagol calledMetagolNT .
Standard Metagol implementation assumes that there is no noise in the train-
ing examples and in order to generate new hypothesis it finds an hypothesis
which proves all examples. However, MetagolNT finds hypotheses consistent
with randomly selected subsets of examples and then evaluates each hypothe-
ses on the remaining training set, returning the hypothesis with the highest
score. The size of the training samples and the number of random samples are
user defined parameters. As shown in Algorithm 1, MetagolNT is implemented
as a wrapper around Metagol and returns the highest score hypothesis Hmax

learned from randomly sampled examples from E after n iterations, the sub-
sample size is controlled by ν = (k+, k−), where k+ and k− are the number
of sub-sampled positive and negative examples correspondingly, reflecting the
noise level in dataset.

4.2 Logical Vision

Our implementation of Logical Vision, called LogV is, is shown in Algorithm 2.
The input consists of a set of images I, background knowledge B including
both Prolog primitives Bp and metarules M , a set of training examples E of
the target concept, MetagolNT ’s parameters ν and n.

The procedure of LogV is is divided into two stages. The first stage is
to extract symbolic background knowledge from images, which is done by the
visualAbduce function. By including abductive theories inBp ∈ B, visualAbduce
can abduce ground facts Bv about certain visual primitives from images, such
as points, lines, ellipses and even complex mid-level visual representations such
as super-pixels (see Section 5.3). In our implementation, visualAbduce can take
logic rules, statistical models and functions from a computer vision toolbox
as background knowledge, aiming at extracting different levels of visual prim-
itives. This makes LogV is flexible in learning many kinds of concepts. More
details about visual abduction are introduced in Section 7.

2 p predicates and M metarules m ≥ n ln|M|+p ln(3n)+ln 1
δ

ε
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Algorithm 1: MetagolNT (B,E, ν, n)

Input : Background knowledge B; Set of (noisy) examples E; Parameter about
noise level ν and number of iterations n

Output: Hypothesis Hmax
1 max score = 0;
2 max = 1;
3 for each i ∈ [1, n] do

/* Randomly select examples from E w.r.t. noise level ν */

4 Tri = randSample(E, ν);
/* Leave the rest of examples for validation */

5 Tsi = E - Tri;
/* Call Metagol and save the learned hypothesis in Hi */

6 Hi = learn(B, Tri);
/* Evaluate the learned hypothesis Hi on validating set */

7 Ei = evaluate(B, Hi, Ts);
8 if max score < Ei then
9 max = i;

10 max score = Ei;

11 end

12 end
13 Return Hmax;

Algorithm 2: LogV is(I,B,E, ν, n)

Input : Training images I; Background knowledge B; Set of (noisy) examples E;
Parameter about noise level ν and number of iterations n.

Output: Hypothesised logic program H.
/* Initialise the knowledge base of visual primitives */

1 Bv = Φ;
2 for each image i ∈ I do

/* Do visual abduction to get facts of visual primitives P */

3 Pi = visualAbduce(i, B);
4 Bv = Bv ∪ Pi;
5 end

/* Call MetagolNT to learn a model */

6 Model = MetagolNT (B ∪Bv , E, ν, n);
7 Return Model;

The second stage of LogV is simply calls the noise-tolerant MIL system
MetagolNT to induce a hypothesis for the target concept, as both abduced
visual primitives Bv and training examples E from image dataset could be
noisy.

Visual abduction The target of visual abduction is to obtain symbolic interpre-
tation of images for further learning. The abduced logical facts are groundings
of primitives defined in the background knowledge Bp. For example, in order to
learn the polygon concepts polygons, one at least needs to abduce points and
edges from an image. When the data is noise-free, this can be done by sam-
pling high-contrast pixels from the image, such as the background knowledge
about edge point applied in [8].
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However, for real images that contain a degree of noise, we can include
statistical models in visualAbduce and use it to implement a noise-robust
version of edge point. For example, in the Protist and Moon experiments of
section 5, the edge point/1 calls a pre-trained statistical image background
model which can cateogrise pixels into foreground or background points using
Gaussian models or image segmentation. costs.

a) b) c)

Fig. 4 Object detection: a) Sampled
lines with edge points; b) Fitting of initial
ellipse centred atO. Hypothesis tested us-
ing new edge points halfway between ex-
isting adjacent points. c) Revised hypoth-
esis tested until hypothesis passes test.

Furthermore, we can use an ab-
ductive theory about shapes to ab-
duce objects. For example, in real im-
ages there are many objects of inter-
est are composed of curves and can be
approximately represented by ellipses
or circles, therefore we can include
background knowledge about them in
visualAbduce to perform ellipse and
circle abduction, as shown in Figure 4.
The abduced objects will take the
form elps(Centre, Parameter) or cir-
cle(Centre, Radius) where Centre =
[X,Y ] is the shape’s centre, Parameter = [A,B, T ilt] are the axis lengths and
tilting angle and Radius is the circle radius.

In LogV is, background knowledge about visual primitives is implemented
as logical predicates in a library, including basic geomerical concepts and ex-
tractors for low-level computer vision features such as colour histogram, super-
pixel and so on. Users can implement their own background knowledge for vi-
sual abduction based on these primitives to address different kinds of problems
flexibly.

5 Experiments

5.1 Experiment 1

In the first experiment (detailed report in [8]) we compared a noise-free vari-
ant of the LogV is algorithm (refered to as LVPoly) with statistics-based ap-
proaches on the task of learning simple geometrical concepts.

Materials & methods We used Inkscape3 to randomly generate 3 labeled image
datasets for 3 polygon shape learning tasks respectively. Training sets contain
40 examples. For simplicity, the images are binary-colored, each image contains
one polygon. Target concepts are: 1) triangle/1, quadrangle/1, pentagon/1 and
hexagon/1; 2) regular poly/1 (regular polygon); 3) right tri/1 (right triangle).
All the datasets were partitioned into 5-folds respectively, 4 of them were used
for training and the rest one is for testing, thus each experiment was conducted
5 times.

3 http://inkscape.org
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Table 1 Predictive accuracy of learning simple geometrical shapes from single object train-
ing sets of size 40.

ACC tri pen hex reg r tri

HOG 0.83± 0.04 0.73± 0.03 0.75± 0.07 0.63± 0.08 0.74± 0.04
DSIFT 0.82± 0.05 0.64± 0.04 0.71± 0.03 0.71± 0.05 0.77± 0.07

LBP 0.87± 0.05 0.67± 0.03 0.73± 0.03 0.65± 0.05 0.75± 0.05
CNN 0.91± 0.01 0.75± 0.00 0.84± 0.02 0.59± 0.06 0.85± 0.04

C+d+L 0.82± 0.01 0.76± 0.01 0.76± 0.01 0.64± 0.05 0.80± 0.04
LVPoly 1.00± 0.00 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

Results & discussion Table 1 compares the predictive accuracies of an im-
plementation of LVPoly versus several statistics-based computer vision algo-
rithms. We used a popular statistics-based computer vision toolbox VLFeat [36]
to implement the statistical learning algorithms. The experiments are carried
with different kinds of features. Because the sizes of datasets are small, we used
support vector machine (libSVM [3]) as classifier. The parameters are selected
by 5-fold cross-validation. The features we have used in the experiments are
as follows: HOG, Histogram of Oriented Gradients [9], Dense-SIFT, Scale
Invariant Feature Transform [24], LBP, Local Binary Pattern [30], CNN,
Convolutional Neural Network (CNN) [34]. We also compare with a combi-
nations of above feature sets (i.e. C+d+L). According to Table 1 given 40
training examples the prediction accuracies for LVPoly are significantly better
than other approaches.

5.2 Experiment 2

This subsection describes experiments comparing one-shot LV with multi-shot
statistics-based learning4. In this experiments, we investigate the following null
hypothesis:

Null hypothesis One-shot LV cannot learn models with accuracy comparable
to thirty-shot statistics-based learning.

Materials We collected two real image datasets for the experiments: 1) Pro-
tists drawn from a microscope video of a Protists micro-organism, and 2)
Moons a collection of images of the moon drawn from Google images. The

4 Data and code at https://github.com/haldai/LogicalVision2

12
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9 3

210

11 1

8

7

4

5

EastWest

North

South

a) b)

Fig. 5 Illustrations of Moons and Protists data: a) Examples of the datasets, b) Four classes
for twelve light source positions
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instances in Protists are coloured images, while the images in Moons come
from various sources and some of are grey-scale. For the purpose of classifi-
cation, we generated the two datasets by rotating images through 12 clock
angles 5. Datasets consist of 30 images for each angle, providing a total of 360
images. Each image contains one of four labels as follows: North = {11, 12, 1}
clocks, East = {2, 3, 4} clocks, South = {5, 6, 7} clocks, and West = {8, 9, 10}
clocks. Examples of data and the labeling are shown in Fig 5. As we can see
from the figure, there is high variance in the image sizes and colours.

Methods The aim is to learn a model to predict the correct category of light
source angle from real images. For each dataset, we randomly divided the 360
images into training and test sets, with 128 and 232 examples respectively.
To evaluate the performance, the models were trained by randomly sampling
1, 2, 4, 8, 16, 32, 64 and 128 images from the training set. The sequences of
training and test instances are shared by all compared methods. The random
partition of data and learning are repeated 5 times.

Logical Vision In the experiments, we used the grey intensity of both image
datasets for LV. The hyper-parameter T in Algorithm 2 is set at 11 by val-
idating one-shot learned models on the rest of the training data. To handle
image noise, we use a background model as the statistics-based estimator for
predicate edge point/1. When edge point([X,Y]) is called, a vector of colour
distribution (which is represented by histogram of grey-scale value) of the
10× 10 region centered at (X,Y) is calculated, then the background model is
applied to determine whether this vector represents an edge point. The back-
ground model is trained from 5 randomly sampled images in the training set
by providing the bounding box of the objects.

Statistics-based Classification The experiments with statistics-based classifica-
tion were conducted in different colour spaces combined with various features.
Firstly, we performed feature extraction to transform images into fixed length
vectors. Next SVMs (libSVM [3]) with RBF kernel were applied to learn a
multiclass-classifier model. Parameters of the SVM are chosen by cross vali-
dation on the training set. Like LV, we used grey intensity from both image
datasets for the experiments. For the coloured Protists dataset, we transformed
the images to HSV and Lab colour spaces to improve the performance. Since
the image sizes in the dataset are irregular, during the object detection stage
of LV, we used background models and computer graphic techniques (e.g.
curve fitting) to extract the main objects and unified them into same sized
patches for feature extraction. The sizes of object patches were 80 × 80 and
401× 401 in Protists and Moons respectively. For the feature extraction pro-
cess, we avoided descriptors which are insensitive to scale and rotation, instead
we selected the luminance-sensitive features HOG and LBP. The Histogram
of Oriented Gradient (HOG) [9] is known as its capability of describing the
local gradient orientation in an image, and widely used in computer vision

5 Clock face angle between 12 and each hour position in {1..12}.
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Fig. 6 Classification accuracy on the two datasets.

and image processing for the purpose of object detection. Local binary pat-
tern (LBP) [30] is a powerful feature for texture classification by converting
the local texture of an image into a binary number.

In the Moons task, LV and the compared statistics-based approach both
used geometrical background knowledge for fitting circles (though in different
forms) during object extraction. However, in the Protists task, the noise in
images always caused poor performance in automatic object extraction for
the statistics-based method. Therefore, we provided additional supervision to
the statistics-based method consisting of bounding boxes for the main objects
in both training and test images during feature extraction. By comparison LV
discovers the objects without supervision.

Results Figure 6a shows the results for Moons. Note that performance of the
statistics-based approach only surpasses one-shot LV after 100 training ex-
amples. In this task, background knowledge involving circle fitting exploited
by LV and statistics-based approaches are similar, though low-level feature
used by statistics-based approach are first-order information (grey-scale gra-
dients), which is stronger than the zero-order information (grey-scale value)
used by LV. Results on Protists are shown in Figure 6b. After 30+ training
examples only one statistics-based approach outperforms one-shot LV. Since
the statistics-based approaches have additional supervision (bounding box of
main object) in the experiments, improved performance is unsurprising. The
results of LV in Figure 6 form a horizontal lines. When the number of training
examples exceeds one, LV performs multiple one-shot learning and selects the
most frequent output (see Algorithm 2), which we found is always in the same
equivalent class in LV’s hypothesis space. This suggests LV learns the optimal
model in its hypothesis space from a single example. The learned program is
shown in Figure 7.

The results in Figure 6 demonstrate that Logical Vision can learn an accu-
rate model using a single training example. By comparison the statistics-based
approaches require 40 or even 100 more training examples to reach similar ac-
curacy, which refutes the null hypothesis.

LV is implemented in SWI-Prolog [39] with multi-thread processing. Ex-
periments were executed on a laptop with Intel i5-3210M CPU (2.50GHz), the
time costs of object discovery are 9.5 seconds and 6.4 seconds per image on
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clock angle(A,B,C):-
clock angle1(A,B,D),
light source angle(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),
clock angle2(A),clock angle3(C).

clock angle2(obj1).
clock angle3(light).

Fig. 7 Program learned by LV: with background knowledge about lighting, we can under-
stand that the invented predicate clock angle2 stands for convex, clock angle3 stands for
light source name.

clock angle(A,B,C):-
clock angle1(A,B,D),clock angle4(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),clock angle2(A),clock angle3(C).

clock angle4(A,B,C):-
light source angle(A,B,D),opposite angle(D,C).

Fig. 8 Program learned by LV when concave objects are given as training examples.

a) Crater b) Flipped crater

Fig. 9 An image of a crater on Mars and the 180◦ rotated version. Credit:
NASA/JPL/University of Arizona.

Protists and Moons dataset respectively; the average running time Metagol
procedure is 0.001 second on both datasets.

Protists and Moons contain only convex objects. If instead we provide
images with concave objects (such as Figure 9), LV learns a program such
as Figure 8. Here the invented predicate clock angle2/1 can be interpreted as
concave.

Discussion: Learning ambiguity Figure 9 shows two images of a crater on
Mars, where Figure 9b is a 180◦ rotated image of Figure 9a. Human perception
often confuses the convexity of the crater in such images6. This phenomenon,
called the crater/mountain illusion, occurs because human vision usually in-
terprets pictures under the default assumption that the light is from the top
of the image.

LV can use MIL to perform abductive learning. We show below that incor-
poration of generic recursive background knowledge concerning light enables

6 http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-
picture/
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clock angle(O,H,A):-
highlight(O,H),convex(O),light source(L),
light source angle(O,L,A).

clock angle(O,H,A):-
highlight(O,H),concave(O),light source(L),
light source angle(O,L,A1),opposite(A1,A).

Fig. 10 Interpreted BK learned by LV.

Abducibles
prim(convex/1). prim(concave/1).
prim(light source/1). prim(light source angle/3).

Compiled BK
% “obj1” is an object abduced from image, “obj2” is
% the brighter part of “obj1”; “observer” is the camera
contains(obj1,obj2). brighter(obj2,obj1).
observer(observer). reflector(obj2).
light path(X,X).
light path(X,Y):-unobstructed(X,Z), light path(Z,Y).

Interpreted BK
highlight(X,Y):-

contains(X,Y),brighter(Y,X),light source(L),
light path(L,R),reflector(R),light path(R,O),
observer(O).

Fig. 11 Background knowledge for learning ambiguity from images.

LV to generate multiple mutually inconsistent perceptual hypotheses from real
images. To the authors’ knowledge, such ambiguous prediction has not been
demonstrated previously with machine learning.

Recall the learned programs from Figure 7 and Figure 8 from the previous
experiments. If we rename the invented predicates we get the general theory
about lighting and convexity shown in Figure 10.

Now we can use the program as a part of interpreted background knowledge
for LV to do abductive learning, where the abducible predicates and the rest
of background knowledge are shown in Figure 11.

If we input Figure 9a to LV, it will output four different abductive hypothe-
ses for the image, as shown in Figure 127. From the first two results we see that,
by considering different possibilities of light source direction, LV can predict
that the main object (which is the crater) is either convex or concave, which
shows the power of learning ambiguity. The last two results are even more
interesting: they suggest that obj2 (the highlighted part of the crater) might
be the light source as well, which indeed is possible, though seems unlikely.8

7 Code also at https://github.com/haldai/LogicalVision2
8 The result can be reproduced and visualized by the exmple in Logical Vision 2 repository.
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Depiction Hypothesis

a)

Convex
Obj1

a) light source(light).
light source angle(obj1,light,south).
convex(obj1).

b) Concave

Obj1

b) light source(light).
light source angle(obj1,light,north).
concave(obj1).

c)

Bright
(Obj2)

c) light source(obj2).
light source angle(obj1,obj2,south).
convex(obj1).

d) Bright
(obj2)

d) light source(obj2).
light source angle(obj1,obj2,north).
concave(obj1).

Fig. 12 Depiction of abduced hypotheses from Figure 9a.

a b c

Fig. 13 Examples of football images: a) The ball is clearly separated from other objects,
b) part of the ball is located outside of the image, c) the ball is occluded by the robot.

5.3 Experiment 3

In this subsection we describe the experiments conducted on real images in-
volving RoboCup 9 soccer where the task is to locate the ball. We address
this task in two stages: first we try to approximately locate the ball in the
image and then we use model-driven technique of Logical Vision to abduce
its location and shape. By doing this, one can estimate the size of the ball,
recognise occluded balls and deduce depth information from the images.

Dataset and task The dataset contains 377 colour images sampled from a video
of the robot’s camera view of the football field. As figure 13 shows, the scene
of this dataset contains the green field, a robot, and a football. The original

9 www.robocup.org
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a b c

Fig. 14 Super-pixel segmented data of the images in Figure 13, where the blue boxes are
the original bounding boxes of the images, the super-pixels filled with red colour are the
positive super-pixels according to the bounding boxes. Note that in b) and c), although the
footballs have been split into multiple super-pixels, they are all labelled as positive examples.

size of the images are 480×720, in this experiment they have been scaled into
240× 360 for reducing the computational complexity.

This task is more difficult than those in the previous experiments. The
objects in the images are more complex and contain more noise, therefore it
is difficult to learn a hypothesis using simple primitives such as “edge point”.
For example, the robot and football contain many edges, therefore, the original
line sampling based abduction used by Logical Vision will become a large-scale
combinatorial optimisation problem. Moreover, in 41 of the images the ball is
either occluded by or connected to other objects, and in 40 images there is no
football at all.

To address the challenges, we consider a two-staged learning procedure.
The first sub-task is to quickly find candidate locations of the balls, which can
reduce the search space of the fine grained ball discovery; the second sub-task
is to use Logical Vision to abduce the location and shape of the ball from the
candidate positions.

For the first sub-task, we use a super-pixel algorithm [1] to segment the
images into small regions, which can serve as primitives for estimating the lo-
cation of football. Super-pixel algorithms are able to group pixels into atomic
regions that capture image redundancy, greatly reduce the complexity of sub-
sequent image processing tasks. The super-pixel algorithm implementations
we used are OpenCV contrib10 [13]. The tuned parameter is the size each
super-pixels, which ranges from 10 to 30 with step size 5. During data gen-
eration, we use the football bounding boxes shipped with original images to
label the super-pixels: those who have 95% area inside of bounding box are
labelled as positive examples with predicate “ball sp”, the rests are labelled
as negatives. Examples of the dataset are shown with figure 14. The second
sub-task, model-driven football abduction, directly take “ball sp” and an ab-

10 https://github.com/opencv/opencv contrib
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ductive theory as input and output the circle parameters (centre and radius),
where the “ball sp” should be the result produced by the classification model
learned in the first stage.

Experiment: Football super-pixel classification This experiment is related to
the first sub-task described above, i.e. locating the ball from super-pixel seg-
mented images. In this experiment we compare the performance of MetagolNT

versus an statistical learner (based on the CART algorithm) and investigate
the same null hypothesis used in Section 5.2.

Materials and methods In this experiment we use the super-pixel dataset as
described above. In this dataset each super-pixel is regarded as a symbolic
object in background knowledge. We extract some basic properties, such as
size, location, colour distribution, as their features. The colour distribution
is represented by the proportion of white, grey, black and green pixels inside
of super-pixel, which is calculated in Lab colour space. Moreover, we exploit
the neighbourhood relationship between super-pixels, which is represented by
“next to/2” predicate11.

In this experiment we randomly sample 128 images for the training and
the remaining 249 images for testing. Similar to the Protists and Moons ex-
periments in Section 5.2, we randomly sample 1, 2, 4, 8, 16, 32, 64, 128 images
from the training set for learning the classification model. The random data
partition is performed 5 times. The positive training examples (both for the
statistical learner and the relational learner) are ball super-pixels from each of
1, 2, 4, 8, 16, 32, 64, 128 images and the same number of negative examples
(i.e. non-ball super-pixels) are randomly sampled from the same set of train-
ing images. Similarly, for the test data the negative examples are randomly
sampled from non-ball super-pixels in the test images. For the relational learn-
ing (i.e. MetagolNT ), background predicates mostly white/1, partly white/1,
mostly black/1, partly black/1, etc were defined based on the colour distribu-
tion of super-pixels. For example the following background definitions describe
a super-pixel which is mostly white or partly white:

mostly_white(S):- white(S, P), P > 0.6.

partly_white(S):- white(S, P), P > 0.4, P < 1.0.

The background knowledge for the relational learner also includes the
neighbourhood relationship between super-pixels, i.e. “next to/2” predicates.

In this experiment the following parameters were used for the relational
learner, i.e. MetagolNT (B,E, ν, n) in Algorithm 1. In addition to the above
mentioned background knowledge, B includes the Pre2 and Post2 Meta-rules
from Fig 3.

E is the set of positive and negative training examples as described above.
The size of randomly selected training examples Tri ⊂ E in each iteration i
of Algorithm 1 and the number of iterations n can be set according to the

11 Dataset locates at https://github.com/haldai/LogicalVision2/tree/master-2.1/data
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Fig. 15 Accuracy of MetagolNT vs CART in the task of football super-pixel classification.

expected degree of noise. Given that the expected error rate in the training
data is not known in this problem, we choose an extreme case where Tri
contains one randomly selected positive example (and one or two randomly
selected negative examples) in different experiments. The number of iterations
n was set to the number of positive examples in E.

For the statistics-base learner we use the CART decision tree algorithm [2].
The goal is to create a model that predicts the value of a target variable based
on splitting the feature space. We choose CART as the compared method
because we want to ensure the statistical model uses the same features as the
relational model. Since the number of features, i.e. the green/white/grey/black
pixel proportions, is relatively small, it is natural to choose a decision tree
as the statistical learner. The maximum number of splits, is automatically
selected by 5-fold cross validation on the training data.

Results Figure 15 compares the predictive accuracy of the relational learner
(MetagolNT ) vs the statistics-base learner (CART). As shown in the figure,
MetagolNT achieves consistently higher accuracy than CART with the accu-
racy difference particularly high for small numbers of training examples. An
example of the hypotheses found by the relational learner is as follows:

ball_sp(A):- partly_white(A), ball_sp_1(A, B).

ball_sp_1(A,B):- next_to(A, B), mostly_green(B).

Model-driven football abduction After narrowing down the candidate location
of the football, Logical Vision is able to exploit geometrical background knowl-
edge to perform model-driven abduction of the ball’s exact shape and position
(i.e. its centre and radius as a circle). This is important in robotic football
games since robot can use these information to infer the distance between it-
self and the ball. More importantly, by modelling the ball with a circle, the
robot can figure out the occlusion of the football by other robots and choose
approriate actions accordingly. We apply Logical Vision with an abductive
theory for this task, whose abducible is “football/3”. To sample edge points,
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a b c

Fig. 16 Ball abduction results of the images in Figure 13. The blue points are the
“edge points” sampled by Logical Vision, the red curves are the abduced circles.

Logical Vision draws random straight lines inside a super-pixel and its neigh-
bourhood to return the points associated with a colour transition. Examples
of ball abduction are shown in Figure 16.

6 Conclusions and further work

Human beings often learn visual concepts from single image presentations
(so-called one-shot-learning) [20]. This phenomenon is hard to explain from a
standard Machine Learning perspective, given that it is unclear how to esti-
mate any statistical parameter from a single randomly selected instance drawn
from an unknown distribution. In this paper we show that learnable generic
logical background knowledge can be used to generate high-accuracy logical
hypotheses from single examples. This compares with similar demonstrations
concerning one-shot MIL on string transformations [23] as well as previous
concept learning in artificial images [8]. The experiments in Section 5 show
that the LV system can accurately identify the position of a light source from
a single real image, in a way analogous to scientists such as Galileo, observing
the moon for the first time through a telescope or Hook observing micro-
organisms for the first time through a microscope. In Section 5.2 we show that
logical theories learned by LV from labelled images can also be used to predict
concavity and convexity predicated on the assumed position of a light source.

In further work we aim to investigate broader sets of visual phenomena
which can naturally be treated using background knowledge. For instance, the
effects of object obscuration; the interpretation of shadows in an image to infer
the existence of out-of-frame objects; the existence of unseen objects reflected
in a mirror found within the image. All these phenomena could possibly be
considered in a general way from the point of view of a logical theory describing
reflection and absorption of light, where each image pixel is used as evidence
of photons arriving at the image plane.
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The authors believe that LV has long-term potential as an AI technology
with the potential for unifying the disparate areas of logical based learning
with visual perception.
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