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End-user Programming by Induction
Domain-specific languages and
Background Knowledge

One-shot induction and Bias reformulation
Inducing an Algorithm from One Example
Induction of Efficient Programs
Comprehensibility

Data wrangling

Game Strategy Induction




Lecture material

Lecture material:

http://www.doc.ic.ac.uk/“shm/IP/Lecturel.pdf
http://www.doc.ic.ac.uk/“"shm/IP/Lecture2.pdf




Presentation of IP course

e Research papers provided for each lecture in place of lecture notes

e Tutorial sheets provided with model answers




Paper for this lecture

Paperl.1l: S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S.H.

Muggleton, U. Schmid, and B. Zorn. Inductive programming
meets the real world. Communications of the ACM, 58(11):90-99,
2015.




Motivation - End-User Programming

Much of world population use computers for everyday tasks

Most end-users cannot program
Often perform repetitive tasks manually

Programming by example - Inductive Programming - Mass
Market? - Microsoft Excel 2013- release of FlashFill

Small but complex programs induced from few examples




FlashFill (Excel 2013, Gulwani, ACM Milner award 2014)
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Induced string transformation program
Concatenate( ToLower(Substring(v, Word Token, 1)), “ 7,
ToLower(SubString(v, Word Token,2)))




End-User Programming - FlashExtract
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User Induced program extracts fields

Highlights from Database of unstructured text




Inductive Programming

Earliest work in 1970s (Plotkin, 1971, Summers, 1975)

Recent strong revival of interest, both academia and industry
Inter-disciplinary research area

Computer Science, Artificial Intelligence and Cognitive Science
Automatic synthesis of programs from examples

Inductive Functional Programming

Inductive Logic Programming




Inductive Functional Programming

Induction from Examples of Functional Programming
Functional Programming Framework, deterministic

Background Knowledge B - set of functions

Examples E - set of ground equalities, eg factorial(5) = 120

Hypothesis H - a function




Inductive Logic Programming

Induction from Examples of Logic Programming

Logic Programming Framework, non-deterministic
Background Knowledge B - set of definite clause definitions
Examples E - set of ground facts, eg larger(jupiter,earth)

Hypothesis H - set of definite clauses

ILP systems find H such that B,H = F




IP versus Machine Learning

Inductive Programming

Machine Learning

Examples

Small data

Big data

Form

Relations, constructors

Tables, text

Source

Humans, software

Databases, internet

Hypotheses

Programs

Network, kernel

Search

Derivation

Gradient Descent

Comprehend

High

Low

Expressivity

High

Low

Bias

Background knowledge

Bayes’ Prior

Evaluation

Diverse

Error




Inductive Programming Techniques (1)

Domain-Specific Language (DSL) synthesisers

Formal Methods/Computer Science

Systems: FlashFill, FlashExtract

. Problem definition. Collect common scenarios based on user

studies.
. DSL. Design DSL expressive enough to capture scenarios.

. Inductive Synthesis. Systematically reduce problem to

sub-expressions. (Generate multiple DSL programs.

. Ranking. Return ranking over programs.




Inductive Programming Techniques (2)
Higher-order function induction

Programming Languages/Computer Science

Systems: Igor2, MagicHaskeller

e Background knowledge. Consists of first-order functions, such

as ”+” and higher-order function such as “map”.

e Examples. Provided as equations, eg f [ [5,7],[12,3]] =]
12,15].

e Inductive Synthesis. Searches function space, eg

MagicHaskeller gives f = (map,sum).
MagicHaskeller demo:

http://nautilus.cs.miyazaki-u.ac.jp/ skata/MagicHaskeller.html




Inductive Programming Techniques (3)
Meta-Interpretive Learning
Artificial Intelligence

Systems: Metagol

e Background knowledge. Consists of first-order predicates,
such as “copyword” and meta-level predicates such as “while”
and MetaRules such as “Composition”.

e Examples. Provided as ground facts, eg
transform( “john”, “John”) .

e Inductive Synthesis. Searches predicate space and invents
predicates, eg Metagol gives transform(X,Y) < makeupper(X,Z),
copyword(Z,Y).

Metagol demo: http://metagol.doc.ic.ac.uk

Metagol code: https://github.com/metagol /metagol




Challenges:

Complexity and Compositionality

e Large search space. How do we reduce the size of the search
space?

e Complexity of programs. How do we minimise the

complexity of the learned program?

e Complex tasks. How do we decompose tasks to be learned into
subtasks?




Challenges:

Domain change

New domain. Developing a new application area for Inductive

Programming requires a large investment of time and effort.

Transfer. Can we use ideas from Transfer Learning to allow IP

systems to be re-used in a new domain related to previous ones?

First-order re-use. How can background functions and

predicates be re-used effectively?

Meta-level re-use. How can meta-level functions and

predicates be re-used effectively?




Challenges:
Validation and Comprehensibility

Understandability. Many invented predicates. Generate names

to reflect semantics?
Abstractions. Abstractions to explain programs?

Confidence measures. Statistical measures to indicate areas of

the program which have high empirical support?

Pictures. Pictures generated to indicate what a program does?

Explanations. Explanations of a program in Natural Language

to help user to understand it?




Challenges:

Noise tolerance

Noise. Real world data often noisy. Values missing or incorrect.

Representation. Some values might occur in different formats,

eg dates and numbers.

Background errors. Background knowledge may contain

CITOorS.

ML approach. Some existing approaches can be imported from
ML literature.

One-shot noise. ML does not address how noise treated for

one-shot learning. Problem for IP.




Challenges:
Making IP Cognitive

Human interface. IP involves interaction with human beings.

Few examples. Cognitive Science shows humans learn complex

ideas from small numbers of positive examples.

Background knowledge. Humans learn using large amounts of

background knowledge.

Life-Long Learning. Humans learn continuously and

incrementally.

Interaction. Human-Computer interactions need to be more

human-like.




Summary

End-user programming - allow world’s population to program

complex tasks by example.

Inductive Programming (IP) - emerging inter-disciplinary

research area.

ILP and IFP - IP areas representing

examples/background /hypotheses as logic/ functional programs.

Differences between IP and Machine Learning.

Search techniques include DSL, Meta-synthesis, constraint

solving, Meta-Interpretive Learning.

Challenges - Domain change, Validation, Noise, Cognitive IP.




