

Inductive Programming

Lecture 2

Domain-Specific Languages and

Background Knowledge

Stephen Muggleton
University of Nanjing
Emeritus Professor Imperial College London

14th October, 2025

Papers for this lecture

Paper2.1: S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. *Machine Learning*, 100(1):49-73, 2015.

Paper2.2: A. Cropper and S.H. Muggleton. Learning higher-order logic programs through abstraction and invention. In *Proceedings of the 25th International Joint Conference Artificial Intelligence (IJCAI 2016)*, pages 1418-1424. IJCAI, 2016.

Motivation

- Inductive Programming
- Simple programs
- Support repetitive tasks
- Few examples provided by human
- Weak learning bias implies many examples
- Strong learning bias requires few examples

Probably Approximately Correct (PAC) learnability model

PAC-learning (Valiant, 1984) Defines a class of polynomial-time learning algorithms which, when given sufficient training examples, have high Probability of choosing a hypothesis which is Approximately Correct on unseen examples.

Formal definition Polynomial-time learning algorithm A is PAC for hypothesis and example space \mathcal{H} and \mathcal{E} respectively iff \forall prob bounds $\epsilon, \delta \in [0, 1]$, hypothesis $H \in \mathcal{H}$, prob distribution $\mathcal{D}_{\mathcal{E}}$ and sample size $m \exists$ polynomial function p such that E randomly sampled from $\mathcal{D}_{\mathcal{E}}^m$ and $m < p(\frac{1}{\epsilon}, \frac{1}{\delta}, \ln(\mathcal{H}))$ and $H = A(E)$ implies $Pr(\text{Error}(H, \mathcal{D}_{\mathcal{E}}) > \epsilon) < 1 - \delta$.

Blumer bound - Learning from few examples

PAC algorithm Assume PAC algorithm with $m = |E|, \mathcal{H}, \epsilon, \delta$.

Blumer bound (JACM, 1989) $m \geq \frac{(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}{\epsilon}$

Significance of Blumer Ohm's Law of Machine Learning.

Blumer 1 m is $O(\frac{\ln|\mathcal{H}|}{\epsilon})$

Blumer 2 ϵ is $O(\frac{\ln|\mathcal{H}|}{m})$.

Learning Few examples requires $\ln|\mathcal{H}|$ small.

Strong Bias in IP DSLs, Background knowledge, Meta-logical constraints.

Meta-Interprete Learning (MIL)

MIL An Inductive Programming approach in which recursive logic programs can be induced incrementally from a small number of examples together with background predicates and metarules.

Formal definition Given input (B, M, E^+, E^-) where background B is a logic program, metarules M are higher-order clauses and examples E^+, E^- are ground atoms. An MIL algorithm returns a logic program hypothesis H such that $M \models H$ and $H \cup B \models E^+$ and $H \cup B \not\models E^-$.

Meta-interpreter (Paper2.1)

Generalised meta-interpreter

```
prove([], Prog, Prog).  
  
prove([Atom|As], Prog1, Prog2) :-  
    metarule(Name, MetaSub, (Atom :- Body), Order),  
    Order,  
    save_subst(metasub(Name, MetaSub), Prog1, Prog3),  
    prove(Body, Prog3, Prog4),  
    prove(As, Prog4, Prog2).
```

Metarules

Name	Meta-Rule	Order
PreCon	$P(x, y) \leftarrow Q(x), R(x, y)$	$P \succ Q, P \succ R$
PostCon	$P(x, y) \leftarrow Q(x, y), R(y)$	$P \succ Q, P \succ R$
Chain	$P(x, y) \leftarrow Q(x, z), R(z, y)$	$P \succ Q, P \succ R$
TailRec	$P(x, y) \leftarrow Q(x, z), P(z, y)$	$P \succ Q,$ $x \succ z \succ y$

H_2^2 hypothesis space

Hypothesis space H_2^2 definite clauses with at most two body atoms and at most predicate arity of two.

Size hypothesis space \mathcal{H} is $O(|M|^n p^{3n})$ given M metarules, n clauses, p predicate symbols.

Log hypothesis space size $\ln(|\mathcal{H}|) = n(\ln(M) + 3\ln(p))$.

Sample complexity (Blumer) For fixed M, p we have m is $O(\frac{n}{\epsilon})$.

Logical form of Metarules

General form

$$P(x, y) \leftarrow Q(x, y)$$

$$P(x, y) \leftarrow Q(x, z), R(z, y)$$

Meta-rule general form is

$$\exists P, Q, \dots \forall x, y, \dots P(x, \dots) \leftarrow Q(y, \dots), \dots$$

Supports predicate/object invention and recursion.

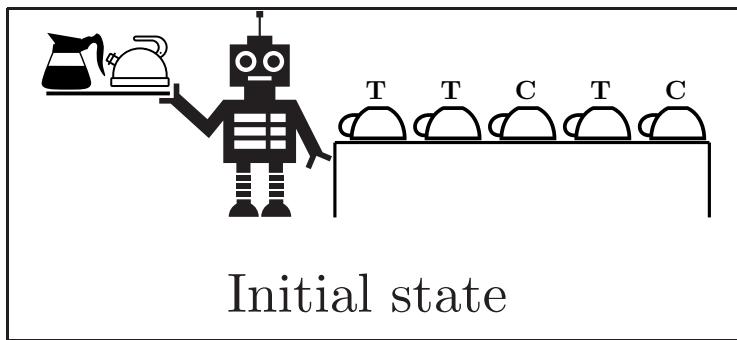
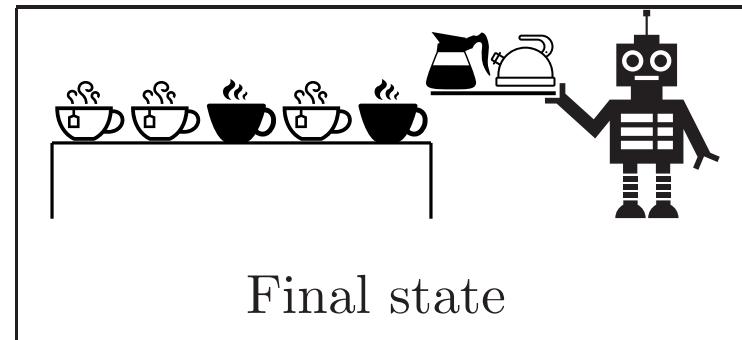
Hypothesis language is datalog logic programs in H_2^2 , which contain predicates with arity at most 2 and has at most 2 atoms in the body.

Metagol_D implementation

- Ordered Herbrand Base [Knuth and Bendix, 1970; Yahya, Fernandez and Minker, 1994] - guarantees termination of derivations. Lexicographic + interval.
- Episodes - sequence of related learned concepts, reduces $\prod_i |H_i|$ to $\sum_i |H_i|$.
- Iterative deepening search H_0, \dots, H_n returns $h_n \in H_n$ where n is number of clauses in h_n and n is minimal consistent hypothesis.
- Log-bounding (PAC result) - $\log_2 n$ clause definition needs n examples.
- Github implementation - <https://github.com/metagol/metagol>.
- PHP interface - <http://metagol.doc.ic.ac.uk>.

Inductive Programming task

Robotic Waiter



Metagol_D (Paper2.1)

First-order background knowledge

Recursive solution

```
f(A,B):-f3(A,B),at_end(B).  
f(A,B):-f3(A,C),f(C,B).  
f3(A,B):-f2(A,C),move_right(C,B).  
f2(A,B):-turn_cup_over(A,C),f1(C,B).  
f1(A,B):-wants_tea(A),pour_tea(A,B).  
f1(A,B):-wants_coffee(A),pour_coffee(A,B).
```

Metagol_{AI} (Paper2.2)

Higher-order background knowledge

Abstraction and Invention solution

Shorter program

```
f(A,B):-until(A,B,at_end,f3).  
f3(A,B):-f2(A,C),move_right(C,B).  
f2(A,B):-turn_cup_over(A,C),f1(C,B).  
f1(A,B):-ifthenelse(A,B,wants_tea, pour_tea, pour_coffee).
```

Alternation of Abstraction and Invention steps

→	Abstract	→	Invent	→	Abstract
f	until		f3,f2,f1		ifthenelse

Abstraction and Invention - Robot example

Higher-order definition

$\text{until}(S1, S2, \text{Cond}, \text{Do}) \leftarrow \text{Cond}(S1)$

$\text{until}(S1, S2, \text{Cond}, \text{Do}) \leftarrow \text{not}(\text{Cond}(S1)), \text{Do}(S1, S2)$

Abstraction

$f(A, B) \leftarrow \text{until}(A, B, \text{at_end}, f3)$

Invention

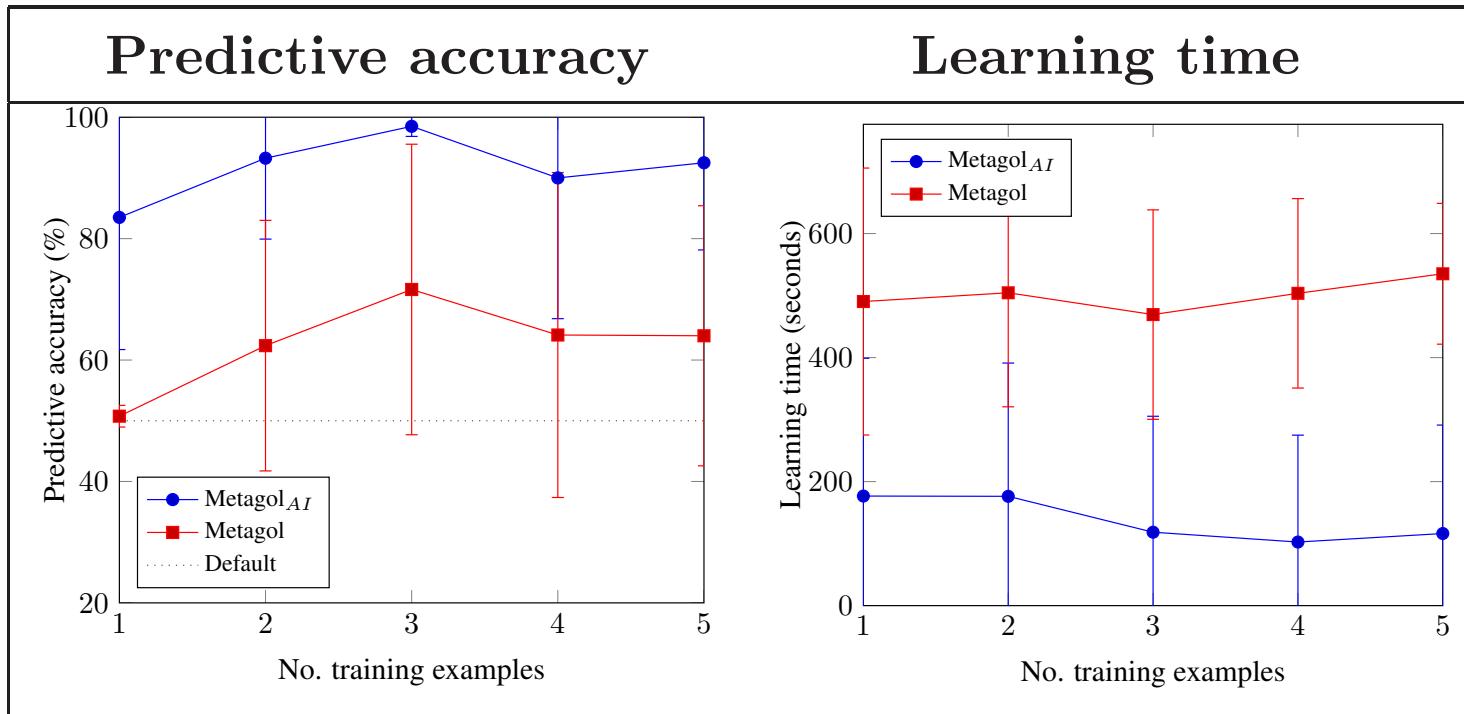
$f3(A, B) \leftarrow f2(A, C), \text{move_right}(C, B)$

Metagol_{AI} (Paper2.2)
<https://github.com/metagol/metagol>

Addition clause for meta-interpreter

```
prove_aux(Atom,H1,H2):-  
    background((Atom:-Body)),  
    prove(Body,H1,H2).
```

Results - Waiter



Blumer 2 ϵ is $O(\frac{n}{m})$

n is minimum consistent program size

Summary

- Inductive Programming - Complex programs, Few examples.
- Blumer bound - error decreases with \log hypothesis space.
- Meta-Interprete Learning and Metagol.
- First-order background knowledge - eg. move_right/2.
- Metarules - eg Chain.
- Second-order background knowledge - eg. until/4.
- Blumer bound - Abstraction and Invention decreased example requirement.