Inductive Programming
Lecture 2
Domain-Specific Languages and
Background Knowledge

Stephen Muggleton
University of Nanjing
Emeritus Professor Imperial College London

14th October, 2025

Papers for this lecture

Paper2.1: S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad.
Meta-interpretive learning of higher-order dyadic datalog:

Predicate invention revisited. Machine Learning, 100(1):49-73,

2015.

Paper2.2: A. Cropper and S.H. Muggleton. Learning higher-order
logic programs through abstraction and invention. In

Proceedings of the 25th International Joint Conference Artificial
Intelligence (IJCAI 2016), pages 1418-1424. 1JCAI, 2016.

Motivation

Inductive Programming

Simple programs

Support repetitive tasks

Few examples provided by human

Weak learning bias implies many examples

Strong learning bias requires few examples

Probably Approximately Correct (PAC)
learnability model

PAC-learning (Valiant, 1984) Defines a class of polynomial-time

learning algorithms which, when given sufficient training
examples, have high Probability of choosing a hypothesis which
is Approximately Correct on unseen examples.

Formal definition Polynomial-time learning algorithm A is PAC
for hypothesis and example space ‘H and & respectively iff V prob
bounds €,§ € [0, 1], hypothesis H € H, prob distribution D¢ and
sample size m d polynomial function p such that E randomly
sampled from D2 and m < p(%, +,In(H)) and H = A(E) implies

€78

Pr(Error(H,Dg) >€) <1 —0.

Blumer bound - Learning from few examples

PAC algorithm Assume PAC algorithm with m = |E|, H, €, 0.

Blumer bound (JACM, 1989) m > (In|H|+inz)

€

Significance of Blumer Ohm’s Law of Machine Learning.

Blumer 1 m is O(22)

€

Blumer 2 e is O(22),

m

Learning Few examples requires In|H| small.

Strong Bias in IP DSLs, Background knowledge, Meta-logical

constraints.

Meta-Interpretive Learning (MIL)

MIL An Inductive Programming approach in which recursive logic
programs can be induced incrementally from a small number of

examples together with background predicates and metarules.

Formal definition Given input (B, M, E™, E~) where background
B is a logic program, metarules M are higher-order clauses and

examples ET, E~ are ground atoms. An MIL algorithm returns a
logic program hypothesis H such that M = H and HUB | ET
and HUB (= E~.

Meta-interpreter (Paper2.1)

Generalised meta-interpreter

prove(|], Prog, Prog).
prove(|Atom|As|, Progl, Prog2) : —

metarule(Name, MetaSub, (Atom :- Body), Order),

Order,
save_subst(metasub(Name, MetaSub), Progl, Prog3),

prove(Body, Prog3, Prog4),

prove(As, Prog4, Prog2).

Metarules

Name

Meta-Rule

PreCon

PostCon

Chain

TailRec

H?2 hypothesis space

Hypothesis space H3 definite clauses with at most two body

atoms and at most predicate arity of two.

Size hypothesis space H is O(|M|"p°") given M metarules, n

clauses, p predicate symbols.

Log hypothesis space size [n(|H|) = n(in(M) + 3in(p)).

Sample complexity (Blumer) For fixed M, p we have m is O(%).

Logical form of Metarules

General form

Meta-rule general form is

1P, Q, .Vx,y,..P(z,..) <+ Q(y, ..), .-

Supports predicate/object invention and recursion.

Hypothesis language is datalog logic programs in H3, which contain

predicates with arity at most 2 and has at most 2 atoms in the body.

Metagolp implementation

Ordered Herbrand Base [Knuth and Bendix, 1970; Yahya,
Fernandez and Minker, 1994| - guarantees termination of

derivations. Lexicographic + interval.

Episodes - sequence of related learned concepts, reduces | [, |H;|
to 2_; |Hil.

Iterative deepening search Hy, .., H, returns h,, € H,, where n is

number of clauses in h,, and n is minimal consistent hypothesis.

Log-bounding (PAC result) - logon clause definition needs n

examples.
Github implementation - https://github.com /metagol /metagol.

PHP interface - http://metagol.doc.ic.ac.uk.

Inductive Programming task
Robotic Waiter

@% T T C T C
|ﬂﬂﬂﬂﬂ|

Initial state Final state

Metagolp (Paper2.1)
First-order background knowledge
Recursive solution

-f3(A,B),at_end(B).

-f3(A,C),f(C,B).
-f2(A,C),move_right(C,B).
-turn_cup_over(A,C),f1(C,B).
-wants_tea(A),pour_tea(A,B).

-wants_coffee(A),pour_coffee(A,B).

Metagol a1 (Paper2.2)
Higher-order background knowledge

Abstraction and Invention solution

Shorter program

f(A,B):-until(A,B,at_end,f3).
f3(A,B):-f2(A,C),move_right(C,B).
f2(A,B):-turn_cup_over(A,C),f1(C,B).

f1(A,B):-ifthenelse(A,B,wants_tea, pour_tea, pour_coffee).

Alternation of Abstraction and Invention steps

— Abstract — Invent — Abstract
f until t3,2,f1 ifthenelse

Abstraction and Invention - Robot example

Higher-order definition
until(S1,52,Cond,Do) < Cond(S1)
until(S1,52,Cond,Do) < not(Cond(S1)), Do(S1,52)

Abstraction
f(A,B) < until(A,B,at_end,f3)

Invention

f3(A,B) < f2(A,C),move_right(C,B)

Metagol,; (Paper2.2)
https://github.com/metagol /metagol

Addition clause for meta-interpreter

prove_aux(Atom,H1,H2):-
background((Atom:-Body)),
prove(Body,H1,H2).

Results - Waiter

Predictive accuracy

Learning time

100

(0]
s}

W
(an}

Predictive accuracy (%)
(@)
[a)

Learning time (seconds)

—e— Metagol 41
—#— Metagol
Default
\ | |

2 3 4

No. training examples

| | —@— Metagolar

—m— Metagol

No. training examples

Blumer 2 ¢ is O(%)

1 1s minimum consistent program size

Summary

Inductive Programming - Complex programs, Few examples.
Blumer bound - error decreases with log hypothesis space.

Meta-Interpretive Learning and Metagol.

First-order background knowledge - eg. move right /2.

Metarules - eg Chain.
Second-order background knowledge - eg. until /4.

Blumer bound - Abstraction and Invention decreased example

requirement.

