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Papers for this lecture

Paper2.1: S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad.

Meta-interpretive learning of higher-order dyadic datalog:

Predicate invention revisited. Machine Learning, 100(1):49-73,

2015.

Paper2.2: A. Cropper and S.H. Muggleton. Learning higher-order

logic programs through abstraction and invention. In

Proceedings of the 25th International Joint Conference Artificial

Intelligence (IJCAI 2016), pages 1418-1424. IJCAI, 2016.



Motivation

• Inductive Programming

• Simple programs

• Support repetitive tasks

• Few examples provided by human

• Weak learning bias implies many examples

• Strong learning bias requires few examples



Probably Approximately Correct (PAC)

learnability model

PAC-learning (Valiant, 1984) Defines a class of polynomial-time

learning algorithms which, when given sufficient training

examples, have high Probability of choosing a hypothesis which

is Approximately Correct on unseen examples.

Formal definition Polynomial-time learning algorithm A is PAC

for hypothesis and example space H and E respectively iff ∀ prob

bounds ǫ, δ ∈ [0, 1], hypothesis H ∈ H, prob distribution DE and

sample size m ∃ polynomial function p such that E randomly

sampled from Dm

E and m < p( 1
ǫ
, 1
δ
, ln(H)) and H = A(E) implies

Pr(Error(H,DE) > ǫ) < 1− δ.



Blumer bound - Learning from few examples

PAC algorithm Assume PAC algorithm with m = |E|, H, ǫ, δ.

Blumer bound (JACM, 1989) m ≥
(ln|H|+ln

1

δ
)

ǫ

Significance of Blumer Ohm’s Law of Machine Learning.

Blumer 1 m is O( ln|H|
ǫ

)

Blumer 2 ǫ is O( ln|H|
m

).

Learning Few examples requires ln|H| small.

Strong Bias in IP DSLs, Background knowledge, Meta-logical

constraints.



Meta-Interpretive Learning (MIL)

MIL An Inductive Programming approach in which recursive logic

programs can be induced incrementally from a small number of

examples together with background predicates and metarules.

Formal definition Given input (B,M,E+, E−) where background

B is a logic program, metarules M are higher-order clauses and

examples E+, E− are ground atoms. An MIL algorithm returns a

logic program hypothesis H such that M |= H and H ∪B |= E+

and H ∪B 6|= E−.



Meta-interpreter (Paper2.1)

Generalised meta-interpreter

prove([], P rog, Prog).

prove([Atom|As], P rog1, P rog2) : −

metarule(Name,MetaSub, (Atom :- Body), Order),

Order,

save subst(metasub(Name,MetaSub), P rog1, P rog3),

prove(Body, Prog3, P rog4),

prove(As, Prog4, P rog2).



Metarules

Name Meta-Rule Order

PreCon P (x, y)← Q(x), R(x, y) P ≻ Q,P ≻ R

PostCon P (x, y)← Q(x, y), R(y) P ≻ Q,P ≻ R

Chain P (x, y)← Q(x, z), R(z, y) P ≻ Q,P ≻ R

TailRec P (x, y)← Q(x, z), P (z, y) P ≻ Q,

x ≻ z ≻ y



H2
2 hypothesis space

Hypothesis space H2
2 definite clauses with at most two body

atoms and at most predicate arity of two.

Size hypothesis space H is O(|M |np3n) given M metarules, n

clauses, p predicate symbols.

Log hypothesis space size ln(|H|) = n(ln(M) + 3ln(p)).

Sample complexity (Blumer) For fixed M, p we have m is O(n
ǫ
).



Logical form of Metarules

General form

P (x, y) ← Q(x, y)

P (x, y) ← Q(x, z), R(z, y)

Meta-rule general form is

∃P,Q, ..∀x, y, ..P (x, ..)← Q(y, ..), ..

Supports predicate/object invention and recursion.

Hypothesis language is datalog logic programs in H2
2 , which contain

predicates with arity at most 2 and has at most 2 atoms in the body.



MetagolD implementation

• Ordered Herbrand Base [Knuth and Bendix, 1970; Yahya,

Fernandez and Minker, 1994] - guarantees termination of

derivations. Lexicographic + interval.

• Episodes - sequence of related learned concepts, reduces
∏

i
|Hi|

to
∑

i
|Hi|.

• Iterative deepening search H0, .., Hn returns hn ∈ Hn where n is

number of clauses in hn and n is minimal consistent hypothesis.

• Log-bounding (PAC result) - log2n clause definition needs n

examples.

• Github implementation - https://github.com/metagol/metagol.

• PHP interface - http://metagol.doc.ic.ac.uk.



Inductive Programming task

Robotic Waiter

T T C T C

Initial state Final state



MetagolD (Paper2.1)

First-order background knowledge

Recursive solution

f(A,B):-f3(A,B),at end(B).

f(A,B):-f3(A,C),f(C,B).

f3(A,B):-f2(A,C),move right(C,B).

f2(A,B):-turn cup over(A,C),f1(C,B).

f1(A,B):-wants tea(A),pour tea(A,B).

f1(A,B):-wants coffee(A),pour coffee(A,B).



MetagolAI (Paper2.2)

Higher-order background knowledge

Abstraction and Invention solution

Shorter program

f(A,B):-until(A,B,at end,f3).

f3(A,B):-f2(A,C),move right(C,B).

f2(A,B):-turn cup over(A,C),f1(C,B).

f1(A,B):-ifthenelse(A,B,wants tea, pour tea, pour coffee).

Alternation of Abstraction and Invention steps

→ Abstract → Invent → Abstract

f until f3,f2,f1 ifthenelse



Abstraction and Invention - Robot example

Higher-order definition

until(S1,S2,Cond,Do) ← Cond(S1)

until(S1,S2,Cond,Do) ← not(Cond(S1)), Do(S1,S2)

Abstraction

f(A,B) ← until(A,B,at end,f3)

Invention

f3(A,B) ← f2(A,C),move right(C,B)



MetagolAI (Paper2.2)

https://github.com/metagol/metagol

Addition clause for meta-interpreter

prove aux(Atom,H1,H2):-

background((Atom:-Body)),

prove(Body,H1,H2).



Results - Waiter
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n is minimum consistent program size



Summary

• Inductive Programming - Complex programs, Few examples.

• Blumer bound - error decreases with log hypothesis space.

• Meta-Interpretive Learning and Metagol.

• First-order background knowledge - eg. move right/2.

• Metarules - eg Chain.

• Second-order background knowledge - eg. until/4.

• Blumer bound - Abstraction and Invention decreased example

requirement.


