Inductive Programming Lecture 4 Hypothesising an Algorithm from One Example

> Stephen Muggleton Department of Computing Imperial College, London and University of Nanjing

> > 15th October, 2024

Papers for this lecture

Paper4.1: S.H. Muggleton. Hypothesising an algorithm from one example: the role of specificity. Philosophical Transaction of the Royal Society A, 381:20220046, 2023.

Motivation

- Inductive Programming
- Simple repetitive programs
- PAC, Blumer bound, Strong Learning Bias
- One-shot induction

Expected human response - human bias?

One-Shot Learning - Open Question

Cognitive Science "People can learn .. concepts from just one example , but it remains a mystery how this is accomplished." (Lake et al, Proc Cognitive Science, 2011)

- Relevant human background knowledge for learning Average human vocabulary - 10,000 - 42,000 (Goulden et al, 1990)
- **Key Question** Under what circumstances can machines learn accurate hypotheses from one example?

Computer Science - Positive-only Learnability

- **Gold 1967:** No infinite language, in the Chomsky hierarchy, can be exactly identified from a positive example sequence.
- Valiant 1984: k-CNF propositional formulae can be learned efficiently (polynomial time) with high accuracy from a randomly selected positive example sequence.
- Muggleton 1996: Given a Bayes' prior distribution over hypotheses, efficient (polynomial runtime) logic programs can be learned efficiently, with high expected accuracy, from a randomly selected positive example sequence.

Bayes' framework [Muggleton, 1996]

 $D_{\mathcal{H}}$: probability distribution over hypothesis class \mathcal{H} . D_X : probability distribution over instance class X. $T \in \mathcal{H}$: teacher's target chosen randomly from $D_{\mathcal{H}}$. $E = x_1 \dots x_m$: examples of T chosen randomly from D_X . $H \in \mathcal{H}$: learner's hypothesis. $sz(H) = -lnD_{\mathcal{H}}(H)$: size of H. $g(H) = \sum_{x \in H} D_X(x)$: generality of H.

Bayes' positive-only MAP selection

Muggleton, 1996

$$p(H|E) = \frac{p(H)p(E|H)}{p(E)}$$
$$= p(H)\left(\frac{1}{g(H)}\right)^m c_m$$
$$-ln \ p(H|E) = sz(H) + m \left(ln \ g(H)\right) + d_m$$

Minimise $-ln \ p(H|E)$ over $H \in \mathcal{H}$

One-shot Learning, m=1 case $-ln \ p(H|E) = sz(H) + ln \ g(H) + d_1$

Key Finding

Source	Type	Expected Error
Muggleton, 1996	Pos only	$EE(m) \le \frac{2.33 + 2ln \ m}{m}$
Muggleton, 1996	Pos+Neg	$EE(m) \le \frac{1.51 + 2ln \ m}{m}$
One-shot	m=1 given $g(T)$	$EE(1 g(T)) \le 4.66g(T)$

 $EA(1|g(T)) \ge 95\%$ when $g(T) \le 0.01$

Expected accuracy below default

Accurate one-shot learning requires a low-generality target

DeepLog - two stage hypothesis construction

- Meta-Compilation Examples used to find a minimal Input-Output transformation sequences. Each transformation is an application of a primitive relation from the library.
- Meta-Interpretation For each example, a transformation sequence is threaded into the hypothesised logic program. The program size is constrained by a bound. The bound is varied to find a minimum program with low generality.

	DeepLog - Regular Grammar						
	Target	Example $(\sigma \to \tau)$	Primitives P				
	abc4	$\langle a, b, c, d, e, f, c, d, e, f, g, h \rangle \rightarrow \langle \rangle$	L	ibrary 63 primitives			
0	Output Hypothesis H [7]			Evaluation			
a	$abc4(X,Y) := a(X,Z), abc4_1(Z,Y).$			Time = 0.15s/0.56s			
$abc4_1(X,Y) := b(X,Z), abc4_1(Z,Y).$							
$abc4_1(X,Y) := g(X,Z), h(Z,Y).$				$g(H) = \frac{1}{1080} \approx 0.0009$			
$abc4_1(X,Y) := cdef(X,Z), abc4_1(Z,Y).$							
Introduced Auxiliaries [3]				$-ln \ p(H E) = 17.97$			
$\operatorname{cdef}(X,Y) := \operatorname{cd}(X,Z), \operatorname{ef}(Z,Y).$							
CO	cd(X,Y) := c(X,Z), d(Z,Y).			EA(H) > 99.57%			
ef	f(X,Y) := e	(X,Z), f(Z,Y).					

Fire Escape 16 Storey Building					
	Target	Example $(\sigma \to \tau)$	Primitives P		
	fire16	$at(8,8,16) \to at(10,10,1)$	Libra	ary 63 primitives	
Output Hypothesis H [7]			Evaluation		
$fire16(X,Y) := ws(X,Z), fire16_1(Z,Y).$			Time = 0.2s/4.14s		
fire16_1(X,Y) :- $ss(X,Z)$, fire16_1_1(Z,Y).					
			$g(H) = \frac{1}{1079} \approx 0.0009$		
fire16_1_1(X,Y) :- $ns(X,Z)$, $es(Z,Y)$.					
fire16_1_1(X,Y) :- $d(X,Z)$, fire16_1_1(Z,Y).			$-ln \ p(H E) = 32.57$		
fire16_1_1(X,Y) :- $es(X,Z)$, fire16_1_1(Z,Y).					
				EA(H) > 99.57%	0
fire16_1_1(X,Y) :- $ns(X,Z)$, fire16(Z,Y).			•		

Reverse Uppercase

	Target	Example $(\sigma \to \tau)$	Primitives P		
	rvup	$\langle a,l,i,c,e \rangle \rightarrow \langle E,C,I,L,A \rangle$	Libra	ary 63 primitives	
Output Hypothesis H [5]			Evaluation		
$rvup(X,Y) := call1(X,Z), rvup_1(Z,Y).$			Time = 0.21s/0.65s		
$rvup_1(X,Y) := pop(X,Z), rvup_1(Z,Y).$			$g(H) = \frac{1}{7740} \approx 0.0001$		
$rvup_1(X,Y) := upc(X,Z), rvup_1_1(Z,Y).$					
rvu	$rvup_1_1(X,Y) := push(X,Z), return1(Z,Y).$			$-ln \ p(H E) = 24.01$	
rvu	p_1_1(X	$(Y) := push(X,Z), rvup_1(Z)$	Z,Y).	EA(H) > 99.94%	%

Summary

- **One-shot learning** Analogy problems show humans make single example hypotheses with high consensus. One-shot learning in Cognitive Science and Artificial Intelligence.
- **Bayes' model of One-shot learning** Bayes model of One-shot learning special case of earlier positive-only model. Effectiveness for low-generality targets.
- **DeepLog** Experiments with DeepLog show construction of high-accuracy general recursive programs from one example.
- **Further work** Investigate circumstances in which an incrementally learned large background library supports rather than degrades further learning. What is the role of low-generality background primitives?