
Inductive Programming

Lecture 4

Hypothesising an Algorithm from One Example

Stephen Muggleton

Department of Computing

Imperial College, London and

University of Nanjing

15th October, 2024

0-0

Papers for this lecture

Paper4.1: S.H. Muggleton. Hypothesising an algorithm from one

example: the role of specificity. Philosophical Transaction of the

Royal Society A, 381:20220046, 2023.

Motivation

• Inductive Programming

• Simple repetitive programs

• PAC, Blumer bound, Strong Learning Bias

• One-shot induction

Textual analogy problem

alice ECILA

bert ?

Expected human response - human bias?

alice ECILA

bert TREB

One-Shot Learning - Open Question

Cognitive Science “People can learn .. concepts from just one

example , but it remains a mystery how this is accomplished.”

(Lake et al, Proc Cognitive Science, 2011)

Relevant human background knowledge for learning Average

human vocabulary - 10,000 - 42,000 (Goulden et al, 1990)

Key Question Under what circumstances can machines learn

accurate hypotheses from one example?

Computer Science - Positive-only Learnability

Gold 1967: No infinite language, in the Chomsky hierarchy, can be

exactly identified from a positive example sequence.

Valiant 1984: k-CNF propositional formulae can be learned

efficiently (polynomial time) with high accuracy from a randomly

selected positive example sequence.

Muggleton 1996: Given a Bayes’ prior distribution over

hypotheses, efficient (polynomial runtime) logic programs can be

learned efficiently, with high expected accuracy, from a randomly

selected positive example sequence.

Bayes’ framework [Muggleton, 1996]

DH: probability distribution over hypothesis class H.

DX : probability distribution over instance class X .

T ∈ H: teacher’s target chosen randomly from DH.

E = x1 . . . xm: examples of T chosen randomly from DX .

H ∈ H: learner’s hypothesis.

sz(H) = −lnDH(H): size of H.

g(H) =
∑

x∈H
DX(x): generality of H.

Bayes’ positive-only MAP selection

Muggleton, 1996

p(H|E) =
p(H)p(E|H)

p(E)

= p(H)

(

1

g(H)

)m

cm

−ln p(H|E) = sz(H) +m (ln g(H)) + dm

Minimise −ln p(H|E) over H ∈ H

One-shot Learning, m=1 case

−ln p(H|E) = sz(H) + ln g(H) + d1

Key Finding

Source Type Expected Error

Muggleton, 1996 Pos only EE(m) ≤ 2.33+2ln m

m

Muggleton, 1996 Pos+Neg EE(m) ≤ 1.51+2ln m

m

One-shot m=1 given g(T) EE(1|g(T)) ≤ 4.66g(T)

EA(1|g(T)) ≥ 95% when g(T) ≤ 0.01

Expected accuracy below default

Accurate one-shot learning requires a low-generality target

DeepLog - two stage hypothesis construction

Meta-Compilation Examples used to find a minimal Input-Output

transformation sequences. Each transformation is an application

of a primitive relation from the library.

Meta-Interpretation For each example, a transformation sequence

is threaded into the hypothesised logic program. The program

size is constrained by a bound. The bound is varied to find a

minimum program with low generality.

DeepLog - Regular Grammar

Target Example (σ → τ) Primitives P

abc4 〈a,b,c,d,e,f,c,d,e,f,g,h〉 → 〈〉 Library 63 primitives

Output Hypothesis H [7] Evaluation

abc4(X,Y) :- a(X,Z), abc4 1(Z,Y). T ime = 0.15s/0.56s

abc4 1(X,Y) :- b(X,Z), abc4 1 1(Z,Y).

abc4 1 1(X,Y) :- g(X,Z), h(Z,Y). g(H) = 1

1080
≈ 0.0009

abc4 1 1(X,Y) :- cdef(X,Z), abc4 1 1(Z,Y).

Introduced Auxiliaries [3] −ln p(H|E) = 17.97

cdef(X,Y) :- cd(X,Z), ef(Z,Y).

cd(X,Y) :- c(X,Z), d(Z,Y). EA(H) > 99.57%

ef(X,Y) :- e(X,Z), f(Z,Y).

Calculating g(H)

abc4(X,Y) :- a(X,Z), abc4 1(Z,Y). u=g(abc4)

abc4 1(X,Y) :- b(X,Z), abc4 1 1(Z,Y). v=g(abc4 1)

abc4 1 1(X,Y) :- g(X,Z), h(Z,Y). w=g(abc4 1 1)

abc4 1 1(X,Y) :- cdef(X,Z), abc4 1 1(Z,Y).

u = v

6
, v = w

6
, w = 1

6

2
+ w

6
Equations

=⇒ u = w

36
, w = 1

36
+ w

6
for

=⇒ 5w

6
= 1

36
CLPR

=⇒ w = 6

180
= 1

30
solver

=⇒ u = 1

1080

Regular Grammar Results

Accuracy Posterior

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 1 2 3 4 5 6 7 8

P=PosOnly

LowerBound(P)P
re

d
ic

ti
v

e
ac

cu
ra

cy
 (

%
)

Training Set Size (m)

 18

 19

 20

 21

 22

 23

 24

 6.5 7 7.5 8 8.5
−

 l
n

 p
(H

|E
)

Clauses in Hypothesis

Fire Escape 16 Storey Building Floorplans

B

C

A

FLOOR 16 FLOOR 1

STAIR STAIR

EXIT

Fire Escape 16 Storey Building

Target Example (σ → τ) Primitives P

fire16 at(8,8,16) → at(10,10,1) Library 63 primitives

Output Hypothesis H [7] Evaluation

fire16(X,Y) :- ws(X,Z), fire16 1(Z,Y). T ime = 0.2s/4.14s

fire16 1(X,Y) :- ss(X,Z), fire16 1 1(Z,Y).

g(H) = 1

1079
≈ 0.0009

fire16 1 1(X,Y) :- ns(X,Z), es(Z,Y).

fire16 1 1(X,Y) :- d(X,Z), fire16 1 1(Z,Y). −ln p(H|E) = 32.57

fire16 1 1(X,Y) :- es(X,Z), fire16 1 1 1(Z,Y).

EA(H) > 99.57%

fire16 1 1 1(X,Y) :- ns(X,Z), fire16(Z,Y).

Fire Escape 16 Results

Accuracy Posterior

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 1 2 3 4 5 6 7 8

P=Posonly

LowerBound(P)

P
re

d
ic

ti
v

e
ac

cu
ra

cy
 (

%
)

Training Set Size (m)

 40

 60

 80

 100

 120

 140

 160

 180

 5 10 15 20 25
−

 l
n

 p
(H

|E
)

Clauses in Hypothesis

Reverse Uppercase

Target Example (σ → τ) Primitives P

rvup 〈a,l,i,c,e〉 →〈E,C,I,L,A〉 Library 63 primitives

Output Hypothesis H [5] Evaluation

rvup(X,Y) :- call1(X,Z), rvup 1(Z,Y). T ime = 0.21s/0.65s

rvup 1(X,Y) :- pop(X,Z), rvup 1 1(Z,Y). g(H) = 1

7740
≈ 0.0001

rvup 1 1(X,Y) :- upc(X,Z), rvup 1 1 1(Z,Y).

rvup 1 1 1(X,Y) :- push(X,Z), return1(Z,Y). −ln p(H|E) = 24.01

rvup 1 1 1(X,Y) :- push(X,Z), rvup 1(Z,Y). EA(H) > 99.94%

Reverse Uppercase Results

Accuracy Posterior

 99.93

 99.94

 99.95

 99.96

 99.97

 99.98

 99.99

 100

 1 2 3 4 5 6 7 8

P=PosOnly

LowerCase(P)P
re

d
ic

ti
v

e
ac

cu
ra

cy
 (

%
)

Training Set Size (m)

 20

 40

 60

 80

 100

 120

 6 8 10 12 14 16
−

 l
n

 p
(H

|E
)

Clauses in Hypothesis

Summary

One-shot learning Analogy problems show humans make single

example hypotheses with high consensus. One-shot learning in

Cognitive Science and Artificial Intelligence.

Bayes’ model of One-shot learning Bayes model of One-shot

learning special case of earlier positive-only model. Effectiveness

for low-generality targets.

DeepLog Experiments with DeepLog show construction of

high-accuracy general recursive programs from one example.

Further work Investigate circumstances in which an incrementally

learned large background library supports rather than degrades

further learning. What is the role of low-generality background

primitives?

