Inductive Programming
Lecture 5
Induction of Efficient Programs

Stephen Muggleton
University of Nanjing and
Emeritus Professor Imperial College London

23rd October, 2025

0-0

Updated Overview of Inductive Programming

Lecture 1

Lecture 2

Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7

Lecture 8

09-10-25
14-10-25

16-10-25
21-10-25
23-10-25
27-10-25
28-10-25
30-10-25

Each Lecture immediately followed by Tutorial.

End-user Programming by Induction
Domain-specific languages and
Background Knowledge

One-shot induction and Bias reformulation
Inducing an Algorithm from One Example
Induction of Efficient Programs
Comprehensibility

Data wrangling

Game Strategy Induction

Papers for this lecture

Paper5.1: A. Cropper and S.H. Muggleton. Learning efficient logical
robot strategies involving composable objects. In Proceedings of the

24th International Joint Conference Artificial Intelligence (IJCAI
2015), pages 3423-3429. 1JCAI, 2015.

Paper5.2: A. Cropper and S.H. Muggleton. Learning efficient logic
programs. Machine Learning, 108:1063-1083, 2019.

Motivation

Inductive Programming

Few examples per task

Short programs preferred - Blumer bound

Are shorter programs always preferable?

Permutation Sort versus Merge Sort

Program size
s(L1,L2) :- permute(L1,L2), sorted(L2).

s(LLLD.
s(LO,L) :- sp(LO,L1,L2), s(L.1,L3), s(L.2,L.4), m(L3,L4,L).

Time complexity

psort | O(n!)

msort | O(nlog(n))

Postman [Paper5.1]

Lo

Before After

n letters and d places for delivery

Postman [Paper5.1]

Metagol, - O(nd)

Metagol, - O(n+d)

P(A,B):- p2(A,C), p(C,B).
p(AaB):_ pz(A)C)) gtb(C)B)

pl1(A,B):- fns(A,C), take(C,B).
pl1(A,B):- fnr(A,C), give(C,B).

p(A,B):- p2(A,C), p2(C,B).
p2(A,B):- p1(A,C), p2(C,B).
p2(A,B):- p1(A,Q), gtb(C,B).
pl1(A,B):- fns(A,C), bag(C,B).
pl1(A,B):- fnr(A,C), give(C,B).

Postman mean resource complexity 50 places [Paper5.1]

[
—@— Metagolp
—l— Metagol p
Composable tight bound 2(n + d)
— — — Non-composable tight bound n.(2d + 2)

>
N
o v—
>
Q
o
o
g
o
&)
D)
Q
—
o’
®)
[70]
O
—
-
S
>

. objects

Robot Letter Sorter [Paper5.1]

Metagol, - O(n?) Metagol, - O(nlog(n))

1s(A,B):- rs1(A,C), rs(C,B). 1s(A,B):- rs1(A,C), rs(C,B).
rs1(A,B):- cmp(A,C), rs1(C,B). rs1(A,B):- pick(A,C), split(C,B).
rs1(A,B):- dec(A,C), gst(C,B). rs1(A,B):- cmb(A,C), gst(C,B).
1s(A,B):- rs1(A,C), gst(C,B). rs(A,B):- split(A,C), cmb(C,B).

Robot Letter Sorting mean resource complexity [Paper5.1]

| |
5,000 |- | —e— Metagolo
—m— Metagolp

Tight bound n log n
- - - Tight bound n(n-1)/2

N
o
-
O

>
N
=
>
Q
p—{
o
g
o
&)
D)
Q
S
o’
®)
70]
O
—
-
<
>

20 40 60
List length

Duplicate Character [Paper5.2]

Examples

f([p,5,0,g,5,a,m],1).

f([i,n,d,u,c,t,i,o,n],i).

Duplicate Character [Paper5.2]

Metagol,, - O(n?)

Metaopt - O(nlog(n))

f(A,B):-head(A,B),f 1(A,B).
f(A,B):-tail(A,C),f(C,B).

f 1(A,B):-tail(A,C),element(C,B).

Seconds (log)

f(A,B):-msort(A,C),f 1(C,B).
f 1(A,B):-head(A,B),f 2(A,B).
f 1(A,B):-tail(A,C),f 1(C,B).
f 2(A,B):-tail(A,C),head(C,B).

100 F

—_
(@)
o

—_
9
TR T TTTTTT T T T TTTT T T T TTT

—_
9

—_

N

—=— Metagol
—e— Metaopt

|
2,000

|
4,000

|
6,000

Input size

|
8,000 10,000

Framework - Cost function ¢ [Paper5.2]

Metagol,, Dep(H,e€)

Metaopt D . treecost(H, e)

General ordering | <

Framework - Cost minimisation over Version Space [Paper5.2]

Dfn6

Version space Vg p

Hypothesis space consistent with B, E

Dfn7

Cost minimisation

He€ V3 pand YH' € ¥ ;H <4 H’

Metagol, and Metaopt algorithm
Cost Minimisation

Iteration | Hypothesis

1 |H; | minimal in 3 g

|H;| minimal and H; <4 H;_;
AH; H; < H; 4

Hfinal1

Convergence theorem [Thm 1 Paper5.2]

Given sufficiently large |E|

Metaopt returns inf ¥ g

)
7]
o
o
<]
g

]

Duplicate Character - Median Tree Costs [Paper5.2]

- - - Minimal

—e— Metaopt | |

\ A
6 7 8

No. examples

(a) Tree costs

T
—e— Metaopt
- - - Minimal

No. examples

(b) Program runtimes

~
b0
o
—
(-’
-
[72]
o
Q
V]
s
B

Duplicate Letter - Input size vs Tree Cost [Paper5.2]

—m— Metagol
—a— Metagol, | |
—e— Metaopt | |
- - - Minimal

|
0.4 0.6 0.8
Input size -10*

(a) Tree costs

Seconds (log)

| —m— Metagol

—— Metagoly ||
—e— Metaopt | |
- - - Minimal

0.4

|
0.6

Input size

0.8 1
10

(b) Program runtimes

String Transformations - Median Tree Costs [Paper5.2]

-
[75]
(@]
()]
(]
g

H

pO1 p06 pll p22 p25 p29 p30 p3l p32
/0 Metagol |8 Metagol,, £ 8 Metaopt

Summary

Shorter programs fewer examples - Blumer bound

Shorter programs not always most efficient

Metagol, minimises robot energy cost

Metaopt minimises SLD resolutions
Both find minimal size program first
[teratively relax size minimising cost
Convergence theorem

Efficiency - Postman, Sorting, Duplicate, String Transform

