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Updated Overview of Inductive Programming

Each Lecture immediately followed by Tutorial.

Lecture 1 09-10-25 End-user Programming by Induction

Lecture 2 14-10-25 Domain-specific languages and

Background Knowledge

Lecture 3 16-10-25 One-shot induction and Bias reformulation

Lecture 4 21-10-25 Inducing an Algorithm from One Example

Lecture 5 23-10-25 Induction of Efficient Programs

Lecture 6 27-10-25 Comprehensibility

Lecture 7 28-10-25 Data wrangling

Lecture 8 30-10-25 Game Strategy Induction



Papers for this lecture

Paper5.1: A. Cropper and S.H. Muggleton. Learning efficient logical

robot strategies involving composable objects. In Proceedings of the

24th International Joint Conference Artificial Intelligence (IJCAI

2015), pages 3423-3429. IJCAI, 2015.

Paper5.2: A. Cropper and S.H. Muggleton. Learning efficient logic

programs. Machine Learning, 108:1063-1083, 2019.



Motivation

• Inductive Programming

• Few examples per task

• Short programs preferred - Blumer bound

• Are shorter programs always preferable?



Permutation Sort versus Merge Sort

Program size

psort s(L1,L2) :- permute(L1,L2), sorted(L2).

msort s([],[]).

s(L0,L) :- sp(L0,L1,L2), s(L1,L3), s(L2,L4), m(L3,L4,L).

Time complexity

psort O(n!)

msort O(nlog(n))



Postman [Paper5.1]
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Postman [Paper5.1]

MetagolD - O(nd)

p(A,B):- p2(A,C), p(C,B).

p(A,B):- p2(A,C), gtb(C,B).

p2(A,B):- p1(A,C), gtb(C,B).

p1(A,B):- fns(A,C), take(C,B).

p1(A,B):- fnr(A,C), give(C,B).

MetagolO - O(n+ d)

p(A,B):- p2(A,C), p2(C,B).

p2(A,B):- p1(A,C), p2(C,B).

p2(A,B):- p1(A,C), gtb(C,B).

p1(A,B):- fns(A,C), bag(C,B).

p1(A,B):- fnr(A,C), give(C,B).



Postman mean resource complexity 50 places [Paper5.1]
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Robot Letter Sorter [Paper5.1]

MetagolD - O(n2)

rs(A,B):- rs1(A,C), rs(C,B).

rs1(A,B):- cmp(A,C), rs1(C,B).

rs1(A,B):- dec(A,C), gst(C,B).

rs(A,B):- rs1(A,C), gst(C,B).

MetagolO - O(nlog(n))

rs(A,B):- rs1(A,C), rs(C,B).

rs1(A,B):- pick(A,C), split(C,B).

rs1(A,B):- cmb(A,C), gst(C,B).

rs(A,B):- split(A,C), cmb(C,B).



Robot Letter Sorting mean resource complexity [Paper5.1]
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Duplicate Character [Paper5.2]

Examples

f([p,r,o,g,r,a,m],r).

f([i,n,d,u,c,t,i,o,n],i).



Duplicate Character [Paper5.2]

MetagolD - O(n2)

f(A,B):-head(A,B),f_1(A,B).

f(A,B):-tail(A,C),f(C,B).

f_1(A,B):-tail(A,C),element(C,B).

Metaopt - O(nlog(n))

f(A,B):-msort(A,C),f_1(C,B).

f_1(A,B):-head(A,B),f_2(A,B).

f_1(A,B):-tail(A,C),f_1(C,B).

f_2(A,B):-tail(A,C),head(C,B).
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Framework - Cost function Φ [Paper5.2]

MetagolO
∑

e∈E r(H, e)

Metaopt
∑

e∈E treecost(H, e)

General ordering ≺Φ



Framework - Cost minimisation over Version Space [Paper5.2]

Dfn6 Version space VB,E Hypothesis space consistent with B, E

Dfn7 Cost minimisation H ∈ VB,E and ∀H ′ ∈ VB,EH �Φ H ′



MetagolO and Metaopt algorithm

Cost Minimisation

Iteration Hypothesis

1 |H1| minimal in VB,E

i > 1 |Hi | minimal and Hi ≺Φ Hi−1

i = final 6 ∃Hi Hi ≺Φ Hi−1

Return Hfinal−1



Convergence theorem [Thm 1 Paper5.2]

Given sufficiently large |E|

Metaopt returns inf�ΦVB,E



Duplicate Character - Median Tree Costs [Paper5.2]
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Duplicate Letter - Input size vs Tree Cost [Paper5.2]
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String Transformations - Median Tree Costs [Paper5.2]
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Summary

• Shorter programs fewer examples - Blumer bound

• Shorter programs not always most efficient

• MetagolO minimises robot energy cost

• Metaopt minimises SLD resolutions

• Both find minimal size program first

• Iteratively relax size minimising cost Φ

• Convergence theorem

• Efficiency - Postman, Sorting, Duplicate, String Transform


