Inductive Programming Lecture 7 Data Wrangling

Stephen Muggleton
Department of Computing
Imperial College, London and
University of Nanjing

24th October, 2024

Papers for this lecture

- Paper 7.1 L. Contreras-Ochando, C. Ferri, J. Hernández-Orallo, F. Martinez-Plumed, M.J. Ramirez-Quintana General-purpose Declarative Inductive Programming with Domain-Specific Background Knowledge for Data Wrangling Automation. arXiv:1809.10054v1 [cs.AI] 26 Sep 2018.
- Paper 7.2: A. Cropper, A. Tamaddoni-Nezhad and S.H. Muggleton. Meta-interpretive learning of data transformation programs. In Proceedings of the 25th International Conference on Inductive Logic Programming, pages 46-59. Springer-Verlag, 2016.

Motivation

- Inductive Programming
- Data Wrangling transform raw data for analysis
- Large amount of effort writing small, error-prone programs
- Applications in Business, Science, Medicine
- Microsoft Research Redmond Inductive Programming
- Academic Research

Commercial Data Wrangling Video

- Microsoft Inductive Programming products Sumit Gulwani
- YouTube Data Wrangling using Programming by Examples
- https://www.youtube.com/watch?v=XWRsxy8SbzY

Inductive Functional Programming Data Wrangling [Paper 7.1]

Id	Input	Outputs
1	25-03-74	25/03/74
2	29-03-86	29/03/86
3	11-02-96	11/02/96
4	11-17-98	17/11/98
5	17-05-17	17/05/17
6	25-08-05	25/08/05
7	30-06-75	30/06/75
8	•••	•••

Dates with desired output format

Materials and Method [Paper7.1]

id	Domain	#Ex.	Description
1	Freetext	12	Complete brackets (From [29])
2	•••		
6	Dates	26	Change the punctuation of a date (From [30])
7		•••	
14	Emails	24	Extract words after '@' (From [33])
15		•••	
30	${ m Units}$	12	Extract the units of a value (From [32]
31			

Table 6: Data wrangling repository.

http://dmip.webs.upv.es/datawrangling/

Method: MagicHaskeller

Results [Paper7.1]

id	Domain	default	freetext	dates	•••	all
1	freetext	0.00	1.00	0.00		0.00
				• • •		
6	dates	0.00	1.00	1.00		0.00
14	emails	0.00	0.04	0.04		0.00
		•••	• • •			
30	units	0.64	0.18	0.18		0.00
	•••	•••	•••	•••		•••

Table 7: Accuracy depending on set of primitives (DSBK). Demonstrates Background **Relevance** problem.

Inductive Logic Programming Data Wrangling Extracting predation facts from Ecological papers. [Paper 7.2]

InputHarpalus rufipeseatslarge prey such asLepidoptera.Bembidion lampros: In cereals the mainfoodwasCollembola

Ecological data output [Paper 7.2]

Output

Harpalus rufipes	eats	Lepidoptera
Bembidion lampros	food	Collembola

Ecological data Background Knowledge (BK) [Paper 7.2]

 $find_species(A,B):-$

 \mathbf{BK}

 $known_species(Species),$

 $find_sublist(A,B,Species).$

 $known_species([L,o,r,i,c,e,r,a,\;,p,i,l,i,c,o,r,n,i,s]).$

 $known_species([H,a,r,p,a,l,u,s, ,r,u,f,i,p,e,s]).$

Ecological predictive accuracies [Paper 7.2]

Ecological training times [Paper 7.2]

Ecological Induced Program[Paper7.2]

 $f(A,B):-f3(A,C), find_species(C,B).$

f3(A,B):- $find_species(A,C)$, f2(C,B).

f2(A,B):- closed_interval(A,B,[f,o],[o,d]).

f3(A,B):- $find_species(A,C)$, f1(C,B).

f1(A,B):- closed_interval(A,B,[e,a],[t,s]).

Medical Data Wrangling input [Paper 7.2]

```
P_001
67 year
lung disease: n/a, Diagnosis: Unknown
80.78

P_003
56
Diagnosis: carcinoma, lung disease: unknown
20.78

P_013
70
Diagnosis: pneumonia
55.9
```

Output [Paper7.2]

Output

P_001	67	Unknown
P_003	56	carcinoma
P_013	70	pneumonia

Induced program [Paper 7.2]

Induced program

```
f(A,B):=f2(A,C), \ f1(C,B). f2(A,B):=\begin{array}{cccc} find\_patient\_id(A,C) & find\_int(C,B) \\ f1(A,B):= & open\_interval(A,B,[':',''],[',''n']). \\ f1(A,B):= & open\_interval(A,B,[':',''],[',','']). \end{array}
```

Medical predictive accuracies [Paper 7.2]

Medical training times [Paper 7.2]

Medical Induced Program[Paper7.2]

f(A,B):- f2(A,C), f2(C,B).

f2(A,B):- $find_patient_id(A,C)$, $find_int(C,B)$.

f2(A,B):- f1(A,C), find_float(C,B).

f1(A,B):- open_interval(A,B,[':',' '],[';'n']).

 $f1(A,B):-open_interval(A,B,[':',''],[',','']).$

Summary

- Data Wrangling transform raw data for analysis
- First commercial mass market use of IP in 2013
- Microsoft Research Redmond Inductive Programming
- Academic Research results dependent on primitives used
- Medical records example patientID and delimiters
- Ecological records example speciesID and delimiters
- Induced programs readable supports debugging