Inductive Programming Lecture 8 Game Strategy Induction

Stephen Muggleton Department of Computing Imperial College, London and University of Nanjing

29th October, 2024

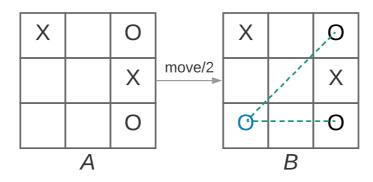
Papers for this lecture

Paper8.1: S.H. Muggleton and C. Hocquette. Machine discovery of comprehensible strategies for simple games using meta-interpretive learning. New Generation Computing, 37:203-217, 2019.

Motivation

- Inductive Programming and AI
- World-class play for Go, Chess, Checkers AlphaGo (2016) and AlphaZero (2018)
- Deep Reinforcement Learning
- Poor Data Efficiency and Human Comprehensibility
- Meta-Interpretive Game Ordinator (MIGO)
- Minimax Evaluable games Noughts-and-Crosses and Hexapawn

Noughts and Crosses



win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).
win_1(A,B):- move(A,B),won(B).

Related work

Reinforcement Learning World's first reinforcement learning, MENACE (Michie, 1963) learned noughts-and-crosses using matchboxes, punishment and reward beads. HER (Gardner, 1962) for Hexapawn.

- Chess endgame strategies Learn minimax depth-of-win using ID3 (Shapiro,Niblett, 1982; Quinlan, 1983) and ILP (Bain Muggleton, 1995).
- **Q-learning** Learn optimal policy (Watkins, 1989). Asymptotic convergence proved (Watkins, Dayan, 1992).
- **Relational Reinforcement Learning** States and actions represented relationally (Dzeroski et al, 2001). Single agent learning problems.
- Deep Q-learning Extension of Q-learning with deep convolutional neural network (Mnih et al, 2015). Atari 2600 games. Also AlphaGo (Silver et al, 2016) and AlphaZero (Silver et al, 2018).

Credit assignment problem

- Learning by playing Learner evaluates success from outcomes of games.
- **Credit assignment** What is reward for individual moves?
- **Reinforcement Learning** Assign reward to individual moves based on a delay function. Rewards used to update parameters across all board states in game. The number of board states for Noughts-and-Crosses is 10^5 ; Chess is 10^{45} ; Go is 10^{100} .
- **Exploration vs exploitation** Step size $\in [0, 1]$ is degree new information overides old.

Discount factors $\gamma \in [0, 1]$ is importance of future rewards.

Function approximation Deal with larger problem by approximating function over a continuous state space. eg using Convolution Neural Network.

Credit assignment - MIGO

- **Outcome** $Outcome(P,G) \in \{won, drawn, lost\}$ where $won \succ drawn \succ lost$
- **Play** Learner P_1 plays against opponent P_2 which follows minimax strategy.

Selection Game starts from a randomly chosen initial board B.

Lemma 1 The outcome of P_1 monotonically decreases during a game.

- **Theorem 2** If the outcome is won for P_1 , then every move of P_1 is a positive example for the task of winning.
- **Theorem 3** If S_W accurate strategy and $Outcome(S_W, G) \neq won$ and $Outcome(P_1, G) = drawn$ then every move of P_1 is a positive example for the task of drawing.

MIGO algorithm - Dependency Learning

 $\mathbf{Input}:$ Positive examples for win_k and draw_k

 $\mathbf{Output}:$ Strategy for win_k and draw_k

1: for k in [1,Depth] do

- 2: for each example of win_k/2 do
- 3: one shot learn a rule and add it to the BK

4: end for

5: Learn win_k/2 and add it to the BK

6: **end for**

7: for k in [1,Depth] do

- 8: for each example of draw_k/2 do
- 9: one shot learn a rule and add it to the BK

10: **end for**

11: Learn draw_k/2 and add it to the BK

12: end for

MIL representation

	Name	Metarule
Metarules	postcond	$P(A,B) \leftarrow Q(A,B), R(B).$
	negation	$P(A,B) \leftarrow Q(A,B), not(R(B,C)).$

Board state | Pair s(B, P) where board B and player P.

	Predicate	Call
Primitives	Move	$move(S_1, S_2)$
1 1 111101 V CS	Won	$\operatorname{won}(S)$
	Drawn	$\operatorname{drawn}(S)$

Game evaluation - minimax regret

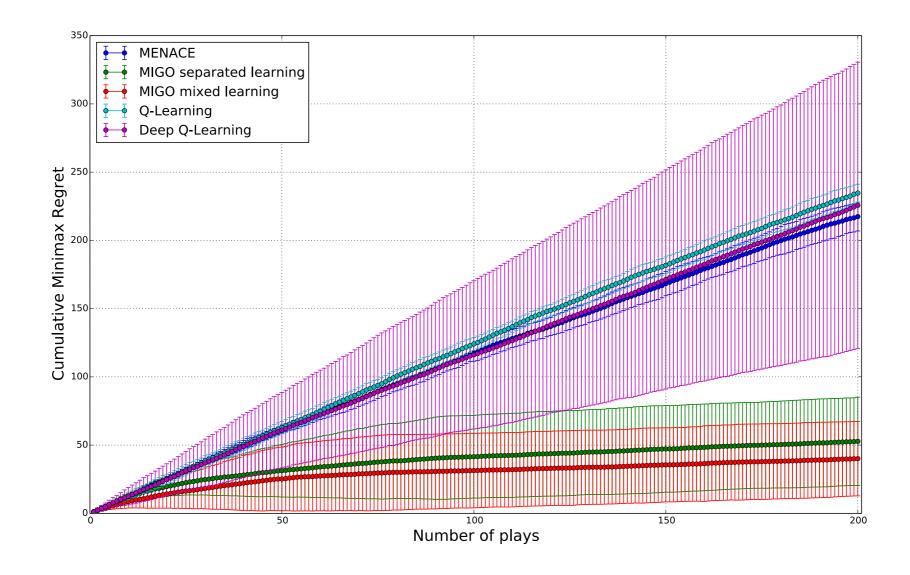
- **Defn 3.4** The **minimax regret** of game G is the difference between minimax outcome of the initial position in G and actual outcome of G.
- **Cumulative minimax regret** The sum of minimax regret over a sequence of games. This is an objective measure of performance for competing strategies.
- **Database** Minimax database computed beforehand.

Experiment 1 - Comparison Cumulative Minimax Regret

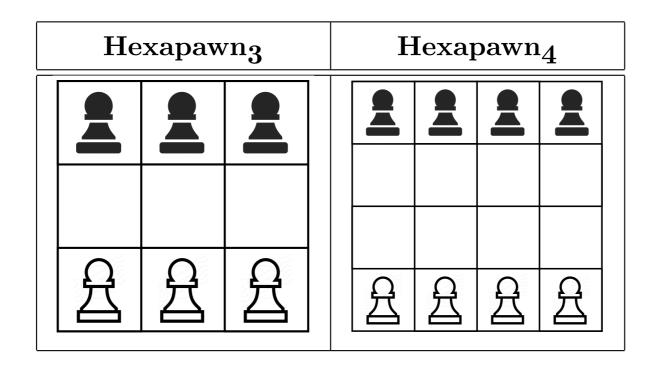
Null Hypothesis 1 MIGO cannot converge faster than MENACE/HER, Q-learning and Deep Q-learning for learning optimal two-player game strategies.

Code for these experiments available at https://github.com/migo19/migo.git

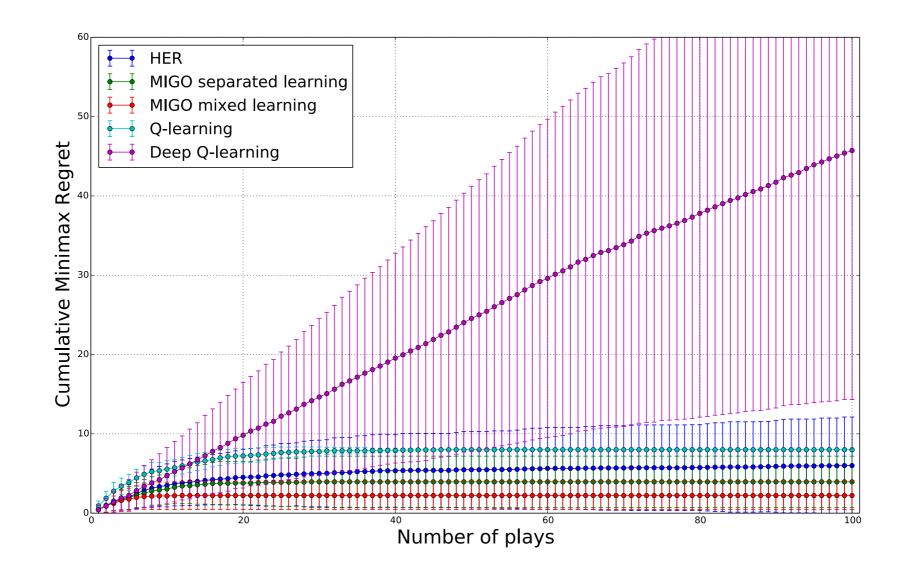
Experiment 1 Nought-and-Crosses



Hexapawn



Experiment Hexapawn₃

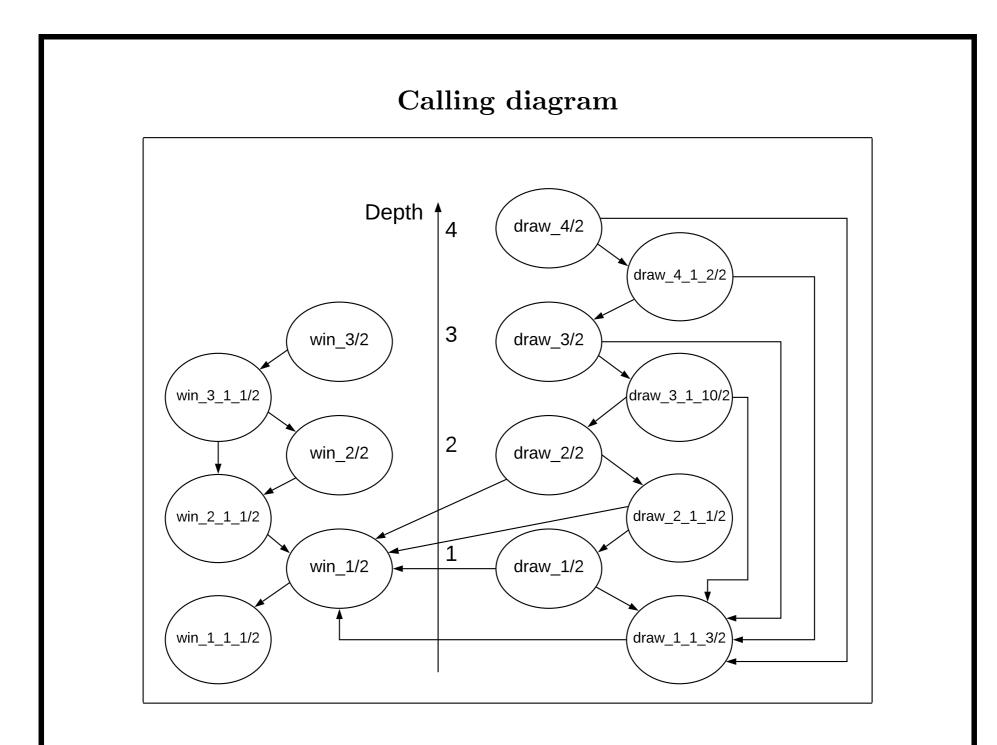


Mean CPU seconds per iteration

	OX	${ m Hexapawn}_{3}$	Hexapawn ₄
MIGO mixed learning	$1.5.10^{-1}$	$3.0.10^{-3}$	3.9
MIGO separated learning	$8.9.10^{-2}$	$2.8.10^{-3}$	3.8
MENACE / HER	$1.5.10^{-3}$	$2.7.10^{-4}$	/
Q-Learning	$2.3.10^{-1}$	$1.9 \ .10^{-3}$	$2.7 \ .10^{-1}$
Deep Q-Learning	$2.4.10^{-1}$	$1.7.10^{-2}$	$2.1 \ .10^{-1}$

Learned rules

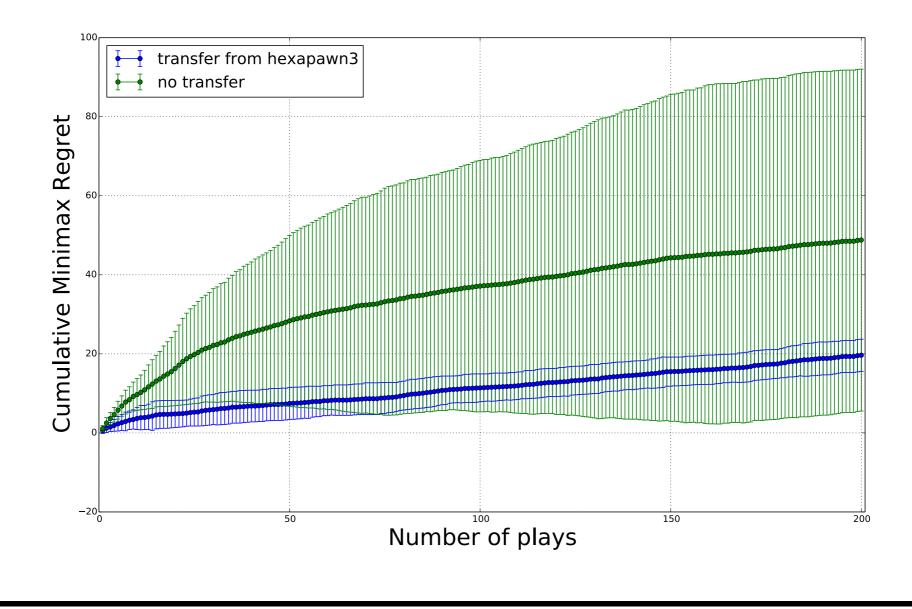
Depth	Rule
1	win_1(A,B):-win_1_1(A,B),won(B).
	win_1_1(A,B):-move(A,B),won(B).
	$draw_1(A,B):-draw_1_1_3(A,B),not(win_1(B,C)).$
	$draw_1_1_3(A,B):-move(A,B),not(win_1(B,C)).$
2	win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
	win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).
	$draw_2(A,B):-draw_2_1_1(A,B),not(win_1(B,C)).$
	$draw_2_1_1(A,B):-draw_1(A,B),not(win_1(B,C)).$
3	win_3(A,B):-win_3_1_1(A,B),not(win_3_1_1(B,C)).
	win_3_1_1(A,B):-win_2_1_1(A,B),not(win_2(B,C)).
	$draw_3(A,B):-draw_3_1_10(A,B),not(draw_1_1_12(B,C)).$
	$draw_3_1_10(A,B):-draw_2(A,B),not(draw_1_1_12(B,C)).$
4	$draw_4(A,B):-draw_4_1_2(A,B),not(draw_1_1_2(B,C)).$
	$draw_4_1_2(A,B):-draw_3(A,B),not(draw_1_1_2(B,C)).$

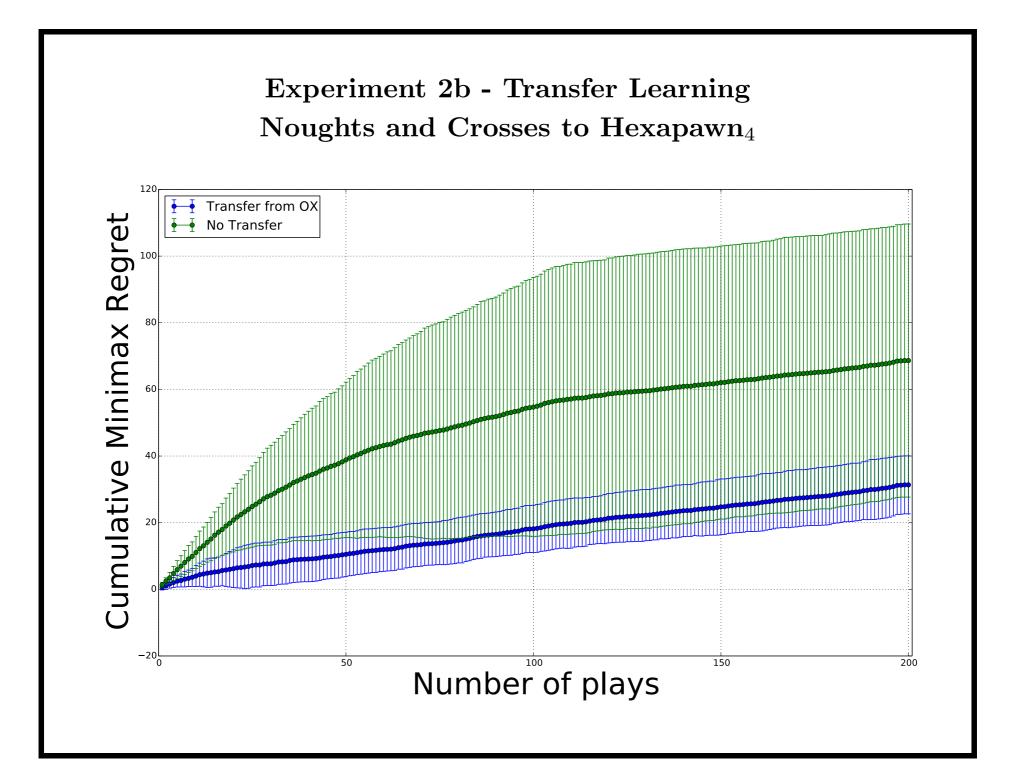


Experiment 2

Null Hypothesis 2 MIGO cannot transfer the knowledge learned during a previous task to a more complex game.

Experiment 2a - Transfer Learning Hexapawn₃ to Noughts and Crosses





Summary

- MIGO Meta-Interpretive Inductive Programming for two-player-games.
- Novel approach to Credit Assignment Problem.
- Lower Cumulative Minimax Regret than to Deep and classic Q-Learning.
- Strategies transferable to more complex games.
- Over-generalisation since learning from positive example only.
- Running time scales badly with large numbers of board states.
- Optimise running times using Metaopt.
- Assumes optimal opponent relax assumptions and use self-play.
- Need to assess comprehensibility of strategies. Michie's Ultra-Strong Machine Learning.