

Inductive Programming

Lecture 8

Game Strategy Induction

Stephen Muggleton
University of Nanjing and
Emeritus Professor Imperial College London

30th November, 2025

Papers for this lecture

Paper8.1: S.H. Muggleton and C. Hocquette. Machine discovery of comprehensible strategies for simple games using meta-interpretive learning. *New Generation Computing*, 37:203-217, 2019.

Motivation

- Inductive Programming and AI
- World-class play for Go, Chess, Checkers - AlphaGo (2016) and AlphaZero (2018)
- Deep Reinforcement Learning - played 30 (AlphaGo) million to 44 million (AlphaZero) self-play games
- Go has more than 10^{108} possible game sequences. Observable Universe around 10^{80} elementary particles, and 10^{16} seconds old
- Poor Data Efficiency and Human Comprehensibility
- Meta-Interpretable Game Ordinator (MIGO)
- Minimax Evaluatable games - Noughts-and-Crosses and Hexapawn

Noughts and Crosses


```
win_2(A,B) :- win_2_1_1(A,B), not(win_2_1_1(B,C)).
```

```
win_2_1_1(A,B) :- move(A,B), not(win_1(B,C)).
```

```
win_1(A,B) :- move(A,B), won(B).
```

Related work

Reinforcement Learning World's first reinforcement learning, MENACE (Michie, 1963) learned noughts-and-crosses using matchboxes, punishment and reward beads. HER (Gardner, 1962) for Hexapawn.

Chess endgame strategies Learn minimax depth-of-win using ID3 (Shapiro, Niblett, 1982; Quinlan, 1983) and ILP (Bain Muggleton, 1995).

Q-learning Learn optimal policy (Watkins, 1989). Asymptotic convergence proved (Watkins, Dayan, 1992).

Relational Reinforcement Learning States and actions represented relationally (Dzeroski et al, 2001). Single agent learning problems.

Deep Q-learning Extension of Q-learning with deep convolutional neural network (Mnih et al, 2015). Atari 2600 games. Also AlphaGo (Silver et al, 2016) and AlphaZero (Silver et al, 2018).

Credit assignment problem

Learning by playing Learner evaluates success from outcomes of games.

Credit assignment What is reward for individual moves?

Reinforcement Learning Assign reward to individual moves based on a delay function. Rewards used to update parameters across all board states in game. The number of board states for Noughts-and-Crosses is 10^5 ; Chess is 10^{45} ; Go is 10^{100} .

Exploration vs exploitation Step size $\in [0, 1]$ is degree new information overides old.

Discount factors $\gamma \in [0, 1]$ is importance of future rewards.

Function approximation Deal with larger problem by approximating function over a continuous state space. eg using Convolution Neural Network.

Credit assignment - MIGO

Outcome $Outcome(P, G) \in \{won, drawn, lost\}$ where
 $won \succ drawn \succ lost$

Play Learner P_1 plays against opponent P_2 which follows minimax strategy.

Selection Game starts from a randomly chosen initial board B .

Lemma 1 The outcome of P_1 monotonically decreases during a game.

Theorem 2 If the outcome is won for P_1 , then every move of P_1 is a positive example for the task of winning.

Theorem 3 If S_W accurate strategy and $Outcome(S_W, G) \neq won$ and $Outcome(P_1, G) = drawn$ then every move of P_1 is a positive example for the task of drawing.

MIGO algorithm - Dependency Learning

Input: Positive examples for win_k and draw_k

Output: Strategy for win_k and draw_k

```
1: for  $k$  in  $[1, \text{Depth}]$  do
2:   for each example of  $\text{win\_k}/2$  do
3:     one shot learn a rule and add it to the BK
4:   end for
5:   Learn  $\text{win\_k}/2$  and add it to the BK
6: end for
7: for  $k$  in  $[1, \text{Depth}]$  do
8:   for each example of  $\text{draw\_k}/2$  do
9:     one shot learn a rule and add it to the BK
10:  end for
11:  Learn  $\text{draw\_k}/2$  and add it to the BK
12: end for
```

MIL representation

	Name	Metarule
Metarules	<i>postcond</i>	$P(A, B) \leftarrow Q(A, B), R(B).$
	<i>negation</i>	$P(A, B) \leftarrow Q(A, B), \text{not}(R(B, C)).$
Board state	Pair $s(B, P)$ where board B and player P .	
Primitives	Predicate	Call
	Move	$\text{move}(S_1, S_2)$
	Won	$\text{won}(S)$
	Drawn	$\text{drawn}(S)$

Game evaluation - minimax regret

Defn 3.4 The **minimax regret** of game G is the difference between minimax outcome of the initial position in G and actual outcome of G .

Cumulative minimax regret The sum of minimax regret over a sequence of games. This is an objective measure of performance for competing strategies.

Database Minimax database computed beforehand.

Experiment 1 - Comparison Cumulative Minimax Regret

Null Hypothesis 1 MIGO cannot converge faster than
MENACE/HER, Q-learning and Deep Q-learning for learning
optimal two-player game strategies.

Code for these experiments available at
<https://github.com/migo19/migo.git>

Experiment 1 Nought-and-Crosses

Hexapawn

Hexapawn ₃	Hexapawn ₄
A 3x3 grid of squares. The top and bottom rows contain three solid black pawn pieces. The middle row is empty. The bottom row also contains three hollow white pawn pieces.	A 4x4 grid of squares. The top and bottom rows contain four solid black pawn pieces. The middle two rows are empty.

Experiment Hexapawn3

Mean CPU seconds per iteration

	OX	Hexapawn₃	Hexapawn₄
MIGO mixed learning	$1.5.10^{-1}$	$3.0.10^{-3}$	3.9
MIGO separated learning	$8.9.10^{-2}$	$2.8.10^{-3}$	3.8
MENACE / HER	$1.5.10^{-3}$	$2.7.10^{-4}$	/
Q-Learning	$2.3.10^{-1}$	$1.9 .10^{-3}$	$2.7 .10^{-1}$
Deep Q-Learning	$2.4.10^{-1}$	$1.7.10^{-2}$	$2.1 .10^{-1}$

Learned rules

Depth	Rule
1	$\text{win_1(A,B)} : - \text{win_1_1_1(A,B)}, \text{won}(B).$ $\text{win_1_1_1(A,B)} : - \text{move}(A,B), \text{won}(B).$
	$\text{draw_1(A,B)} : - \text{draw_1_1_3(A,B)}, \text{not}(\text{win_1}(B,C)).$ $\text{draw_1_1_3(A,B)} : - \text{move}(A,B), \text{not}(\text{win_1}(B,C)).$
2	$\text{win_2(A,B)} : - \text{win_2_1_1(A,B)}, \text{not}(\text{win_2_1_1}(B,C)).$ $\text{win_2_1_1(A,B)} : - \text{move}(A,B), \text{not}(\text{win_1}(B,C)).$
	$\text{draw_2(A,B)} : - \text{draw_2_1_1(A,B)}, \text{not}(\text{win_1}(B,C)).$ $\text{draw_2_1_1(A,B)} : - \text{draw_1}(A,B), \text{not}(\text{win_1}(B,C)).$
3	$\text{win_3(A,B)} : - \text{win_3_1_1(A,B)}, \text{not}(\text{win_3_1_1}(B,C)).$ $\text{win_3_1_1(A,B)} : - \text{win_2_1_1(A,B)}, \text{not}(\text{win_2}(B,C)).$
	$\text{draw_3(A,B)} : - \text{draw_3_1_10(A,B)}, \text{not}(\text{draw_1_1_12}(B,C)).$ $\text{draw_3_1_10(A,B)} : - \text{draw_2}(A,B), \text{not}(\text{draw_1_1_12}(B,C)).$
4	$\text{draw_4(A,B)} : - \text{draw_4_1_2(A,B)}, \text{not}(\text{draw_1_1_12}(B,C)).$ $\text{draw_4_1_2(A,B)} : - \text{draw_3}(A,B), \text{not}(\text{draw_1_1_12}(B,C)).$

Calling diagram

Experiment 2

Null Hypothesis 2 MIGO cannot transfer the knowledge learned during a previous task to a more complex game.

Experiment 2a - Transfer Learning Hexapawn₃ to Noughts and Crosses

Experiment 2b - Transfer Learning

Noughts and Crosses to Hexapawn₄

Summary

- MIGO Meta-Interpretive Inductive Programming for two-player-games.
- Novel approach to Credit Assignment Problem.
- Lower Cumulative Minimax Regret than to Deep and classic Q-Learning.
- Strategies transferable to more complex games.
- Over-generalisation since learning from positive example only.
- Running time scales badly with large numbers of board states.
- Optimise running times using Metaopt.
- Assumes optimal opponent - relax assumptions and use self-play.
- Need to assess comprehensibility of strategies. Michie's Ultra-Strong Machine Learning.