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Hypothesizing an algorithm
from one example: the role of
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S. H. Muggleton FREng

Department of Computing, Imperial College London, London, UK

Statistical machine learning usually achieves high-
accuracy models by employing tens of thousands
of examples. By contrast, both children and adult
humans typically learn new concepts from either
one or a small number of instances. The high data
efficiency of human learning is not easily explained
in terms of standard formal frameworks for machine
learning, including Gold’s learning-in-the-limit
framework and Valiant’s probably approximately
correct (PAC) model. This paper explores ways in
which this apparent disparity between human and
machine learning can be reconciled by considering
algorithms involving a preference for specificity
combined with program minimality. It is shown
how this can be efficiently enacted using hierarchical
search based on identification of certificates and
push-down automata to support hypothesizing
compactly expressed maximal efficiency algorithms.
Early results of a new system called DeepLog indicate
that such approaches can support efficient top-down
construction of relatively complex logic programs
from a single example.

This article is part of a discussion meeting issue
‘Cognitive artificial intelligence’.

1. Introduction
Consider a typical IQ-test question, based on textual
analogy (see figure 1), which says that ‘alice’ is to
‘ECILA’ as ‘bert’ is to ‘?’. In this case assume the word
indicated by ‘?’ is ‘TREB’ (figure 2) since the relation
R between ‘alice’ and ‘ECILA’ is ‘the reverse of the
uppercase of the given letter sequence’. If there are no
limits on the length of the letter sequences, an infinity of
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Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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alice
bert

ECILA
?

Figure 1. Analogy problem.

ECILA
TREB

alice
bert

Figure 2. Expected response.

alternative answers might have been possible, including ‘ECILA’. But for such an IQ-test question
to be effective, the answer ‘TREB’ must have high consensus among typical participants. In this
paper, it will be shown that standard computational learning theory (CoLT) [1,2] approaches do
not account for humans’ ability to hypothesize such a relation, R, from a single example.

Question: How can we model human abilities to hypothesize R from a single example?

An answer to this question has potential to provide insights into human perception and
reasoning, and could help to identify new methods for efficient human–machine interaction.
One relevant point worth noting is that human subjects presented with the problem are likely to
already know the relevant commonly understood sub-concepts of uppercase and reverse sequence.
However, it is unclear how a person could identify these two relations as the most relevant out of
a large number of candidate relations which they already know.

To address the question above a modified version of an existing CoLT approach [3] is
developed. In the process, it is shown that for high expected-accuracy (EA) to be achieved
on unseen cases, the Bayes’ optimal hypothesis selected needs to provide a trade-off between
the description length and generality of the algorithm representing R. Additionally, in the
case of learning from a single example it is shown that the algorithm being learned needs to
have low generality, meaning the chances are low for it correctly predicting the truth value
of a randomly selected instance. This model of highly data efficient concept learning has
ramifications concerning the lifetime learning of concepts, such as R, by humans having access to
an accumulated mental library of previously learned low-generality relations.

The paper is organized as follows. In §2, we review relevant work related to learning from one
example, or One-shot Learning, in both Cognitive Science and Artificial Intelligence. Following
this, §3 introduces a mathematical framework consisting of a learning protocol, a Bayes’ optimal
solution and an associated expected-error (EE) bound for one-shot learning. Section 4 describes a
new meta-interpretive learning (MIT) [4] system, called DeepLog, which supports both one-shot
and few-shot learning of efficient algorithms from relational examples. DeepLog achieves this
by identifying algorithms which combine low description length with low generality. DeepLog
is used in the experiments described in §5, which indicate that high-accuracy algorithms can be
efficiently learned from one example, not only for simple memory-free automata, but also for
cases such as the textual analogy (figure 1), in which a push-down stack, of unbounded size, is
required. In §6, we conclude and discuss possible areas for future research on this topic.

2. Related work

(a) Cognitive science
Over the last two decades there have been an increasing number of papers (e.g. [5–9])
demonstrating machine learning algorithms which learn concepts from a single example. This is
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referred to as ‘one-shot learning’. Such algorithms are motivated by the observation that human
learning often involves generalizations from a single example. However, such work has, to date,
lacked mathematical analysis of the error associated with this form of learning. According to one
of these papers published in the Cognitive Science literature [5] ‘People can learn ... concepts from
just one example, but it remains a mystery how this is accomplished.’ Clarifying the elements of
this mystery is the central motivation of the present paper.

(b) Linguistics
As already pointed out in the example shown in figure 1, it is clear that some of the learning
bias which enables one-shot learning comes from concepts already known to the human learner,
such as uppercase and reverse sequence. However, it is not immediately obvious how many such
background concepts humans have which might play a part in learning a new concept. One
bound on available concepts comes from studies in linguistics on the typical size of human
vocabulary. According to one such study [10] the average adult knows somewhere in the
range of 10 000–42 000 words, including, in our ‘alice’ example case, ‘uppercase’ and ‘reverse’.
However, any algorithm employing tens of thousands of background concepts would be not only
overwhelmed by the available combinations of these terms, but also have to deal with the danger
of over-fitting the example provided (e.g. always predicting ‘ECILA’). Despite this, humans are
able to rapidly and reliably identify the relevance of ‘uppercase’ and ‘reverse’ and use these to
hypothesize a new concept in the ‘alice/ECILA’ example.

(c) Identification in the limit
CoLT [11,12] is the study of algorithms which learn hypotheses from examples. The earliest such
theoretical framework was introduced in 1967 by Gold [13], and is known as Identification in
the Limit, in which learning algorithms which are provided with a finite enumeration of both
hypotheses and examples of a target language, for positing consistent hypotheses. Learning
is effective in the case there exists a finite prefix of the example sequence after which the
learning algorithm chooses the target language, and does not subsequently alter its hypothesis.
Gold proved that, in general, for infinite formal languages (such as regular and context-free
languages in the Chomsky hierarchy) such identification is not possible when learning from
positive examples alone. The reason, as shown in figure 3, is that for such language classes,
given a finite number of examples, at no point can an algorithm discriminate between the most
general language, consisting of all possible sequences from a given alphabet, or alternatively the
most specific language, containing only the examples provided so far. Gold [13] pointed out the
apparent disparity between this formal result and existing psycholinguistic studies by McNeill
[14], which had shown that children learn language largely from positive examples, and tend to
ignore corrections to their use of grammar.

(d) Probably approximately correct learning
In 1984, a new framework for computational learning was introduced by Leslie Valiant [2]. By
contrast to Gold’s requirement of exact identification, probably approximately correct (PAC)
addresses learning algorithms which converge efficiently, with high probably, on an arbitrarily
close approximation of the target theory, as increasing numbers of randomly selected examples
are provided. Among those hypothesis classes considered by Valiant [2] only k-CNF propositional
logic formulae, has a PAC convergence proof based on positive examples alone. However, for a
given propositional signature a k-CNF formula has a finite domain, as opposed to the grammar
classes with infinite domains studied by Gold. In general, positive learnability results for the PAC
framework tend to be restricted to highly constrained hypothesis classes, and the upperbounds
on out-of-sample error tend to be weak when compared to the actual error in experimental trials.
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E = {ab,aab,aaab}

a

a

a

b

b

b

a,b
or

Figure 3. Identification in the limit. Complexity versus generality.

(e) Bayesian positive-only learning
In 1996 [3], the author introduced a framework to analyse the learning of logic programs from
positive-only examples.1 A Bayesian prior over the hypothesis space is assumed. The next section
shows how a Bayesian approach allows the identification of maximal aposterior probably (MAP)
hypotheses which provide a trade-off between the complexity of the hypothesis and its generality.
It is shown that polynomial time logic programs can be learned with high accuracy from a
randomly selected positive example sequence. This result goes beyond the positive-only results
of Gold and Valiant, and supports efficient learning of infinite languages and programs. However,
Muggleton [3] falls short of providing effective error bounds for one-shot learning. We will
address this issue in the next section.

3. Theoretical framework

(a) Bayesian learning protocol
For the purposes of this paper, we introduce a specialization of the teacher-learner positive-only
protocol introduced in [3]. In this variant, relational instances are atoms r(a, b), where r is a relation
(i.e. predicate of arity 2) and a and b are ground terms.2 A relational program is a logic program
in which all predicates have arity 2.

— X is a countable3 set of relational instances.
— DX is the teacher’s probability distribution over X.
— H⊂ 2X is a countable hypothesis set for which each H ∈H represents the least Herbrand

model of a relational program.
— DH is the teacher’s probability distribution over H.
— The teacher randomly chooses target theory T ∈H from DH and then chooses E =

x1 . . . xm randomly and independently from DX|T, with probability x ∈ E such that

DX|T(x) = DX(x|T) = DX(x ∩ T)/DX(T) =
{

0 if x �∈ T
DX(x)
DX(T) otherwise

— The learner now selects H ∈H for which E ⊆ H.

1Later Tenenbaum [8] investigated positive-only learning in a Bayesian framework and referenced [3] but concentrated on
an approach based on finite extensions. Note that infinite extensions, such as those considered in [3] and §3 of this paper, are
required for learning algorithms such as reverse.
2For instance, X = {rvu(〈〈A,l,i,c,e〉, 〈E,C,I,L,A〉〉), rvu(〈〈B,e,r,t〉, 〈T,R,E,B〉〉),. . . } are relational instances of the relation rvu. Note
that an algorithm like reverse uppercase is usually defined over a countably infinite set, and is both a relation and a one-to-one
function.
3Either finite or countably infinite.
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ln ln

ln

Figure 4. Positive-only MAP selection.m= |E|, xi ∈ E, cm = ∏m
i=1 DX (xi) and dm = ln cm.

–ln p(H �E) = sz(H) + ln g(H) + d1

Figure 5. Bayesian one-shot learning,m= 1 case.

— For H ∈H, DX(H) = ∑
x∈H DX(x).

— The teacher then assesses Error(H, T) as DX(H \ T) + DX(T \ H).
— The EE of hypothesis H is then

EE(m) =
∑
T∈H

DH(T)
∑

x∈E∈Tm

DX(x|T)Error(H, T).

where the set of all cardinality m training sets Tm is defined recursively as follows. T1 = T
and Tm = T × Tm−1.

— sz(H) = −lnDH(H) is referred to as the size of H.
— g(H) = ∑

x∈H DX(x) is referred to as the generality of H.

(b) Positive-only MAP selection
Using the Bayesian Learning Protocol the learner’s positive-only MAP selection method
introduced in [3] is shown in figure 4. The complexity versus generality problem highlighted
by Gold’s result (figure 3) is resolved by the learner selecting an hypothesis H which trades-off
sz(H) and g(H).4 As the number of training examples m increases, the need to minimize g(H)
progressively dominates minimizing sz(H), which contrasts with the fixed hypothesis ordering
assumption of Gold [13]. Let us now consider Bayesian one-shot learning.

(c) Bayesian one-shot learning
One-shot learning is simply the special case of Bayesian positive-only learning for which m = 1
(see figure 5). However, this case was not considered in [3], since the EE bound derived in that
paper gives EE(1) ≤ 2.33, which is trivially true since error is in the [0, 1] interval.

(d) Expected-error bounds
EE results are shown in figure 6. The positive-only result was based on the assumption that
g(T) ≤ 1/2. Under this assumption, it was noted [3] that the bounds indicate (see figure 6)

4While [3] assumes p(E|H) = (1/g(H))m, Tenenbaum’s size principle in [8] is that p(E|H) = (1/size(H))m. The former corresponds
to the probability of H, with potentially infinite extension, being true of m instances randomly selected from DX , while the
latter is the non-normalized probability of concept H, with finite extension size (H), being true of m instances randomly selected
from a uniform distribution over X.
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EE (m = 1�g(T )) � 4.66g(T)

positive-only [3]

positive + negative [3]

type expected-error

one-shot

EE(m)  � 2.33 + 2ln m
m

EE(m)  � 1.51 + 2ln m
m

Figure 6. Previous and new expected-error bounds.

EE(m = 1�g(T)) � 0.05 when g(T) � 0.01

Figure 7. Low-generality/high-accuracy region.

monkey banana
wormsparrow

Figure 8. Analogy involving relation eats.

that it does not take many more examples to learn from positive-only than from a mixture of
positive and negative examples. This was found to be consistent with out-of-sample results for
an implementation of these two approaches [3]. The third is a new result of the present paper.
This can be derived by generalizing the g(T) ≤ 1/2 assumption to g(T) ≤ α where 0 ≤ α ≤ 1, in
which case EE(m) ≤ α(4.66 + 4 ln m)/m. In the one-shot learning case, m = 1, we get EE(m = 1) ≤
α(4.66 + 4ln 1)/1 and therefore EE(m = 1|g(T)) ≤ 4.66g(T).

(e) Low-generality targets
The new one-shot EE bound in figure 6 allows us to predict high-accuracy hypotheses are possible
from one example if and only if the generality of the target hypothesis is low (see figure 7).

(f) Choice of representation
The motivation for this work is to analyse and demonstrate a general approach to learning
from a single example in a way that models human abilities. One-shot learning of an algorithm
is particularly challenging, since it involves a countably infinite domain (e.g. reversing and
uppercasing a sequence such as 〈a, l, i, c, e〉). However, humans also have a capacity to identify
relations from a single example, as part of a broad range of analogy problems. For instance, the
answer ‘Insect’ to the analogy problem in figure 8 would be equally acceptable for a human
to that given. For this reason, rather than select a functional programming language, the base
representation is that of relational logic programs rather than functional programs, though the
results in figure 6 would apply in either case since functions can be considered as many-to-
one relations. In the following two sections, we will investigate the learning of relational logic
programs from a single example, in order to test the one-shot result of figure 6 in practice.5

4. DeepLog implementation

5Since this result applies to very low-generality hypotheses, finding a single satisfying solution is considered to be of more
importance than the order in which multiple satisfying solutions should be presented.
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chain: R(x, y) S (x, z) , T (z, y)

Figure 9. Chain metarule defines relation R as composition of S and T . Only clauses of this form are included in programs
hypothesized by DeepLog.

(a) DeepLog system
DeepLog67 is a new inductive logic programming (ILP) [15–17] system, implemented in SWI-
Prolog, based on MIL [4,18–21]. ILP systems hypothesize a relational logic program H from
background knowledge B, primitive relations library B0 ⊆ B, positive examples E+ and negative
examples E−. MIL systems additionally require the user to provide a set of metarules M which
indicate the structure of rules to be learned. By contrast, DeepLog minimizes the requirements on
the user by providing background knowledge from an existing library of definitions and uses a
fixed metarule set M consisting of only one of the metarules from the Metagol system [19], namely
Chain, shown in figure 9. The chain rule allows the introduction of a relation R based on relational
composition of S and T.

(b) DeepLog architecture
The overall structure of DeepLog is shown in figure 10.

(c) Meta-compilation
The positive examples E+ are used to find a set of minimal length input–output certificates,8

where C is a length n certificate of an example r(a, b) ∈ E+ if r(a, b) is a relational instance, a and b
are the logical terms and there exists a sequence of ground instances C = 〈p0(a, x0), . . . , pn(xn, b)〉
(simplified below to C = 〈p0, . . . , pn〉). B0 |
 α for each ground atom α in C. C has minimal length
n in case there is no certificate C′ for r(a, b) of length n′ where n′ < n. This step is used to identify
both a minimal signature of primitive relations from the library B0 and a minimal universe of
logical terms xi to be considered as intermediate states in the certificates considered by the meta-
interpretation stage. Minimal (Min9 ) [3] and maximal (Max10 ) bounds on the number of clauses
in any hypothesized program are identified. Additionally, repeated subsequences of the minimal
certificates are identified as potentially useful auxiliary primitives. Finally, a set of binary square
matrices are computed to provide a look-up oracle for the meta-interpreter to rapidly identify
minimal certificates and optimal choice points in the meta-interpreter’s derivation of hypotheses.

(d) Meta-interpretation
A binary search procedure (figure 11) is used to progressively reduce the 〈Min, Max〉 boundaries
in order to find the minimum number of clauses in any consistent hypothesis returned by the
meta-interpreter. For any specific 〈Min, Max〉 pair the meta-interpreter’s search order considers
more specific hypotheses before more general ones, and returns the first consistent hypothesis.
This strategy is aimed at finding low complexity hypotheses which have low generality, in
accordance with the positive-only MAP selection strategy described in §3.

6‘Deep’ refers to the initial deep dive to find a consistent certificate.

7DeepLog code and datasets available at https://github.com/StephenMuggleton/DeepLog/.

8In Computability theory these are called certificates, in Graph theory they are called edge-labelled paths and in the AI planning
literature they are sequential plans.
9Min is the length of the minimal number of relations in any minimal certificate identified.

10Max is one less than the length of a minimal certificate.
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examples

Meta-Compilation

minimal certificate

{�call1,pop,push,..,return1�}

Meta-Interpretation

see output hypothesis
H in figure 18

hypothesis

�a,l,i,c,e� �E,C,I,L,A�

Figure 10. DeepLog stages.

16

4

Try 10
Find 8

Try 18

Find 16

Max = 32

Min = 4

Find 6
Return 6

8

4 4
Fail 5

6

Figure 11. Binary search exponentially reduces hypothesis space to return consistent programwithminimal number of clauses.
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abc4(X,Y) :- a(X,Z), abc4_1(Z,Y).

abc4_1(X,Y) :- b(X,Z), abc4_1_1(Z,Y).

abc4_1_1(X,Y) :- g(X,Z), h(Z,Y).
abc4_1_1(X,Y) :- cdef(X,Z), abc4_1_1(Z,Y).

cdef(X,Y) :- cd(X,Z), ef(Z,Y).

a([a | T],T) :- type(T,cl).

b([b | T],T) :- type(T,cl).

c([c | T],T) :- type(T,cl).
d([d | T],T) :- type(T,cl).

e([e | T],T) :- type(T,cl).
f([f | T],T) :- type(T,cl).
g([g | T],T) :- type(T,cl).
h([h | T],T) :- type(T,cl).

cd(X,Y) :- c(X,Z), d(Z,Y).
ef(X,Y) :- e(X,Z), f(Z,Y).

target example e+ primitives P
library 62 primitivesabc4 �a,b,c,d,e,f,c,d,e,f,g,h�

{�a, b, c, d, e,  f, c, d, e,  f, g, h�}
��

minimal certificates

time = 0.15 s � 0.56 s

–ln p (H�E) = 17.97

EA (1, T) > 99.57%

0.00091
1080

�g (H ) =

hypothesized program H (7 clauses) trainingprimitives used (8 of 62)

auxiliary primitives

Figure 12. Problem1: Example, minimal certificate, hypothesis, primitives used and training. EA is defined as EA(1, T)=
100(1 − EE(H)). Primitives a,b,. . . ,h remove a single character from the input to produce the output. The input and output type
cl is a character list. The hypothesized program represents the regular grammar ab(cdef )∗gh

5. Experiments
In this section, the EE predictions from §3 are compared against the behaviour of DeepLog in the
learning of three specific target programs. For each target program the same background library
of 62 primitive relations is used. The library was developed progressively from investigating
57 different problems, and contains a set of type identifiers and basic relations over various
types of entities, including characters, lists, stacks, numbers, three-dimensional positions, chess
and family relations. In the problem descriptions below one-shot percentage EA is defined as
EA(1, T) = 100(1 − EE(m = 1|g(T))).

(a) Problem1: regular grammar
Consider a formal language which involves repeated letter sequences. For instance, the positive
example sequence e+ = ‘abcdefcdefgh’ might be used to exemplify the target language G =
ab(cdef)∗gh. G corresponds to letter sequences, such as e+, which have a prefix 〈a, b〉, a suffix 〈g, h〉
and zero or more repetitions of 〈c, d, e, f 〉 inbetween. Figure 12 shows e+ as an input/output pair
and DeepLog’s hypothesized Logic Program, corresponding to G. This program is constructed
from primitives which reduce the sequence by one letter (such as a, b, . . .), auxiliary relations (such
as cdef, cd, . . .) composed from the primitives introduced during Meta-Compilation (figure 10),
and invented relations (such as abc4_1, abc4_1_1, . . .) introduced during Meta-Interpretation
(figure 10).

Training time taken on a laptop (Intel-i7/2.80 GHz) is 0.15 s for meta-compilation and 0.56 s
for meta-interpretation. The generality of the hypothesized program is g(H) ≈ 0.0009, leading
to an EA of EA(1, T) > 99.57% and negative log posterior of 17.97. This corresponds to the
low-generality criterion for one-shot learning, shown in figure 7.

Figure 13 illustrates the way in which the value of g(H) is derived from equations using SWI-
Prolog’s CLPR rational solver [22]. CLPR solves rational number equational constraints based
on a polynomial-time solver. The equations used in figure 13 are derived by Deeplog from the
definitions in the hypothesis. For instance, w = (1/6)2 + (w/6) is the sum of the generalities of
the first and second clause of abc4_1_1.11 The generality of the first clause is 1/62 since g(g) =
11The recursive definition of abc4_1_1 is reflected in the infinite sum w = ((1/6)2 + (w/6)) = ((1/6)2 + (1/6)3 + (1/6)4 + · · · ) .
CLPR efficiently solves sets of such interrelated equations to provide an exact rational solution.
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equations
for
CLPR
solver

abc4(X,Y) :- a(X,Z), abc4_1(Z,Y). u = g(abc4)

w = g(abc4_1_1)

,

,,

v = g(abc4_1)abc4_1(X,Y) :- b(X,Z), abc4_1_1(Z,Y).
abc4_1_1(X,Y) :- g(X,Z), h(Z,Y).
abc4_1_1(X,Y) :- cdef(X,Z), abc4_1_1(Z,Y).

u

u

u υ υ

w

w

ww

w w

5w
6

6

36
1

1080

180
1

6 1
30

6

w
6

3636

6
1

1
6

2

=

=

=

==

=

=

=

=

Figure 13. Calculation of g(H).
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99.6
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Figure 14. Problem1: (a) Accuracy increase and (b) negative log probability decrease.

g(h) = 1/6 and g, h are selected from the six non-invented relations in the identified program. The
generality of the second clause is w/6 since it is the product of g(abc_1_1) and g(cdef ).

Figure 14 shows (a) a comparison of Actual predictive accuracy for DeepLog versus the
positive-only EE bound of figure 6 and (b) the variation of negative log posterior with decreasing
clause bounds.

(b) Problem2: Fire escape plan
This problem involves a general fire escape plan for leaving a 16 storey building. The floorplan
is shown in figure 15. All floors have the same layout as Floor 16, except Floor 1, which
contains the EXIT. Figures 16 and 17 show the problem description and results for the fire escape
problem. Figure 17a shows once more that the learned program has low generality leading to
high predictive accuracy from the first example provided, in accordance with the predictions of
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A

B

C

Floor 16 Floor 1

STAIRSTAIR

EXIT

Figure 15. Problem2: Floorplan.

target example e+ primitives P

hypothesized program H (7 clauses)

library 62 primitivesfire16

fire16(X,Y) :- ws(X,Z), fire16_1(Z,Y).

fire16_1(X,Y) :- ss(X,Z), fire16_1_1(Z,Y).

at(8,8,16) at(10,10,1)

minimal certificates {�ws, ss, es, ns, ws, ss, d, d, d, d, d, d, d, d, d, d, d, d, d, d, d, ns, es�}

0.0009�1
1079

time = 0.2 s � 4.14 s

g(H ) =

–ln p(H�E) = 32.57

EA(1, T) > 99.57%

trainingprimitives (5 of 62)
ws (X,Y) :- . . .

ss (X,Y) :- . . .

ns (X,Y) :- . . .

es (X,Y) :- . . .
d (X,Y) :- . . .

fire16_1_1(X,Y) :- ns(X,Z), es(Z,Y).

fire16_1_1(X,Y) :- es(X,Z), fire16_1_1_1(Z,Y).

fire16_1_1_1(X,Y) :- ns(X,Z), fire16(Z,Y).

fire16_1_1(X,Y) :- d(X,Z), fire16_1_1(Z,Y).

Figure 16. Problem2: Example, hypothesis and training. The example indicates that the agent starts at coordinate 〈8, 8, 16〉
position A (see figure 15) on floor 16 and needs to reach coordinate 〈10, 10, 1〉, position Exit on Floor 1. Primitivesws, ss, ns and
es repeatedlymove the agent in a given direction until obstructed, while primitive dmoves the agent down one floor.While the
Minimal Certificate represents an optimal plan for getting to the Exit from A on floor 16, the hypothesized programwill get the
agent to the Exit from A, B or C from any floor of the building.

the positive-only EE bound in figure 6. Additionally, figure 17b indicates how two cycles of the
Deeplog’s binary search process (see figure 11) successively reduce the number of clauses and
negative log posterior of the hypothesis.

(c) Problem3: Reverse uppercase
We now consider the ‘alice’ to ‘ECILA’ textual analogy problem introduced in §1. This is shown
in figure 18, which involves the construction of a function for reversing and making uppercase
a letter sequence. Efficient Prolog programs normally require the introduction of an arity 3
auxiliary predicate to reverse a list. The same end is achieved with arity 2 predicates for DeepLog
by dynamically creating a stack in the program state. Since Problem3 requires such a stack to
be of unbounded size, the resulting program can be thought of as a push-down automaton
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Figure 17. Problem2: (a) Accuracy increase and (b) negative log probability decrease.

(PDA) as opposed to the finite state automata (FSA) solutions in Problem1 and Problem2. PDAs
represent a higher expressivity function class than FSAs since the stack can be treated as an
unbounded Turing-machine tape. This additional functionality is enabled by the availability of
the background library primitives call1 (see figure 18), which introduces a new ‘empty’ object
on the top of the calling stack. The type of the new object, in this case a list, is assigned by
DeepLog using type-recognition predicates applied to the example provided. On exit this object is
passed back using ret1. It should be noted that the resulting program would be relatively complex
to encode manually, since it involves introduction of three subsidiary relations with mutual
recursion and efficient interleaving of pushing, popping and uppercasing of letters. Training is
achieved with EA from one example in under 1s on a laptop, and the generality and negative log
probability are lower than in Problem1 and Problem2. This is reflected by more rapid accuracy
and posterior convergence in figure 19a. Figure 19b shows that posterior converges is achieved in
three binary search iterations (see figure 11) which reduce the hypothesis from 16 clauses down
to the final 5 clause hypothesis returned.

6. Conclusion and further work

(a) One-shot learning
The paper introduces a form of textual analogy problem as an example of human ability to
hypothesize a concept effectively from a single example. This phenomenon, known as one-shot
learning, has been extensively studied over the last decade within both Cognitive Science and
Machine Learning. However, one-shot learning has not previously been explained within CoLT,
and no theoretical framework exists for analysing its EE.

(b) Bayes’ model of one-shot learning
A framework for analysing EE when learning from one example is introduced in this paper
based on an adaptation of the author’s existing Bayesian analysis of positive-only learning. The
approach enables, for the first time, an upper-bound error analysis of the human phenomenon
of one-shot learning. EE bounds for one-shot learning are introduced as a special case of
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{�call1, pop, up, psh, pop, up, psh, pop, up, psh,
pop, up, psh, pop, up, psh, ret1�}

library 62 primitivesrvu

0.0001�1
7740

time = 0.21 s � 0.65s 

g(H ) =

–ln p(H�E) = 24.01
EA(1, T) > 99.94%

target

minimal certificates

primitives (4 of 62) trainingoutput hypothesis H (5 clauses)

example e+ primitives P
�a,l,i,c,e�

up(C | S,Up | S) :- ..

ret1(Y | Ident,Y) :- ..

pop(Z | [X | Y],X | Z | Y) :- ..

call1(X | Z,A | (X | Z )) :- ..rvu(X,Y) :- call1(X,Z), rvu_1(Z,Y).

rvu_1(X,Y) :- pop(X,Z), rvu_1_1(Z,Y).

rvu_1_1(X,Y) :- up(X,Z), rvu_1_1_1(Z,Y).

rvu_1_1_1(X,Y) :- psh(X,Z), ret1(Z,Y).
rvu_1_1_1(X,Y) :- psh(X,Z), rvu_1(Z,Y).

psh(X | Z | Y,[X | Z] | Y) :- ..

�E,C,I,L,A�

Figure 18. Problem3: Example, hypothesis and training. The primitive call1 pushes an empty list A onto the program stack as
an accumulator. Primitive pop removes the head of the input list and pushes it onto the program stack. Primitive psh replaces
the top two elements X,Z of the program stack by a list with head X and tail Y. Primitive up replaces the letter at the top of the
program stack by its uppercase version. Lastly, ret1 replaces the program stack Y—Ident by the output list Y.
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Figure 19. Problem3: (a) Accuracy increase and (b) negative log probability decrease.

Bayesian positive-only learning. The analysis indicates that the effectiveness of one-shot learning
is dependent on the target theory having generality below 0.01.

(c) DeepLog experiments
A new system called DeepLog is introduced and its convergence properties are compared against
the Bayesian EE bounds for one-shot and positive-only learning on three problems involving the
conjecture of algorithms from one positive example. The error results for Deeplog are found to be
consistent with the Bayes’ model error bounds.
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(d) One-shot learning in the context of science
Within the context of scientific discovery we suggest that one-shot hypotheses play the part of
an initial conjecture, where subsequent examples provide either further confirmation, resulting
in increased EA, or alternatively a refutation of the initial conjecture. Such initial conjectures,
concerning observed phenomena, have played a vital role historically in the initial development
of novel scientific theories, whether in positing Newtonian gravity or the theory of Mendelian
genes. However, it seems reasonable to assume that such an ability is reliant on innate properties
and abilities of human perception and reasoning.

(e) Further work
The result in figure 7 indicates high-accuracy concepts can be learned with high data efficiency
when the target has low generality. If learning is used to progressively accumulate low-generality
background concepts, this should lead to a reduction in search combinations when learning new
concepts for which the new concepts are relevant. Future work is needed to explore this effect.

For the sake of simplicity it has been assumed that examples are (i) noise-free and (ii)
background primitives are correct and complete. Situations in which these assumptions do not
hold should be explored in future work.

Finally, the EE bounds given in this paper and [3] fit empirical results more tightly than worst
case bounds found in PAC learning. It might be possible to find even tighter bounds, though this
is likely to come from making stronger assumptions than those found in [3].
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15. Cropper A, Dumanc̆ić S, Evans R, Muggleton SH. 2021 Inductive logic programming at 30.
Mach. Learn. 111, 147–172. (doi:10.1007/s10994-021-06089-1)

16. Muggleton SH. 1991 Inductive logic programming. New Gener. Comput. 8, 295–318.
(doi:10.1007/BF03037089)

17. Muggleton SH, De Raedt L. 1994 Inductive logic programming. Theory and methods. J. Log.
Programm. 19, 629–679. (doi:10.1016/0743-1066(94)90035-3)

18. Dai W-Z, Muggleton SH. 2021 Abductive knowledge induction from raw data. In Proc.
of the 30th Conf. on Artificial Intelligence (IJCAI 2021), Montreal, Canada, 19–27 August 2021,
pp. 1845–1851. IJCAI.

19. Muggleton SH, Lin D, Pahlavi N, Tamaddoni-Nezhad A. 2014 Meta-interpretive learning:
application to grammatical inference. Mach. Learn. 94, 25–49. (doi:10.1007/s10994-013-5358-3)

20. Patsantzis S, Muggleton SH. 2022 Meta-interpretive learning as metarule specialisation. Mach.
Learn. 111, 3703–3731. (doi:10.1007/s10994-022-06156-1)

21. Zhou Z-H. 2019 Abductive learning: towards bridging machine learning and logical
reasoning. Sci. China Inf. Sci. 62, 1–3.

22. Harvey W, Stuckey PJ. 1995 A unit two variable per inequality integer constraint solver for
constraint logic programming. Melbourne, Australia: University of Melbourne.

23. Muggleton FREng SH. 2023 Hypothesizing an algorithm from one example: the role of
specificity. Figshare. (doi:10.6084/m9.figshare.c.6607461)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

un
e 

20
23

 

http://dx.doi.org/10.1093/applin/11.4.341
http://dx.doi.org/10.1145/203610.606411
http://dx.doi.org/10.1016/S0019-9958(67)91165-5
http://dx.doi.org/10.1007/s10994-021-06089-1
http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://dx.doi.org/10.1007/s10994-013-5358-3
http://dx.doi.org/10.1007/s10994-022-06156-1
http://dx.doi.org/10.6084/m9.figshare.c.6607461

	Introduction
	Related work
	Cognitive science
	Linguistics
	Identification in the limit
	Probably approximately correct learning
	Bayesian positive-only learning

	Theoretical framework
	Bayesian learning protocol
	Positive-only MAP selection
	Bayesian one-shot learning
	Expected-error bounds
	Low-generality targets
	Choice of representation

	DeepLog implementation
	DeepLog system
	DeepLog architecture
	Meta-compilation
	Meta-interpretation

	Experiments
	Problem1: regular grammar
	Problem2: Fire escape plan
	Problem3: Reverse uppercase

	Conclusion and further work
	One-shot learning
	Bayes' model of one-shot learning
	DeepLog experiments
	One-shot learning in the context of science
	Further work

	References

